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ABSTRACT

Recent works have shown that tackling offline reinforcement learning (RL) with
a conditional policy produces promising results. The Decision Transformer (DT)
combines the conditional policy approach and a transformer architecture, showing
competitive performance against several benchmarks. However, DT lacks stitch-
ing ability – one of the critical abilities for offline RL to learn the optimal policy
from sub-optimal trajectories. This issue becomes particularly significant when
the offline dataset only contains sub-optimal trajectories. On the other hand,
the conventional RL approaches based on Dynamic Programming (such as Q-
learning) do not have the same limitation; however, they suffer from unstable
learning behaviours, especially when they rely on function approximation in an
off-policy learning setting. In this paper, we propose the Q-learning Decision
Transformer (QDT) to address the shortcomings of DT by leveraging the bene-
fits of Dynamic Programming (Q-learning). It utilises the Dynamic Programming
results to relabel the return-to-go in the training data to then train the DT with
the relabelled data. Our approach efficiently exploits the benefits of these two
approaches and compensates for each other’s shortcomings to achieve better per-
formance. We empirically show these in both simple toy environments and the
more complex D4RL benchmark, showing competitive performance gains.

1 INTRODUCTION

The transformer architecture employs a self-attention mechanism to extract relevant information
from high-dimensional data. It achieves state-of-the-art performance in a variety of applications, in-
cluding natural language processing (NLP) (Vaswani et al., 2017; Radford et al., 2018; Devlin et al.,
2018) or computer vision (Ramesh et al., 2021). Its translation to the RL domain, the Decision
transformer (DT) (Chen et al., 2021), successfully applies the transformer architecture to offline
reinforcement learning tasks with good performance when shifting their focus on the sequential
modelling. It employs a goal conditioned policy which converts offline RL into a supervised learn-
ing task, and it avoids the stability issues related to bootstrapping for the long term credit assign-
ment (Srivastava et al., 2019; Kumar et al., 2019b; Ghosh et al., 2019). More specifically, DT con-
siders a sum of the future rewards – return-to-go (RTG), as the goal and learns a policy conditioned
on the RTG and the state. It is categorised as a reward conditioning approach.

Although DT shows very competitive performance in the offline reinforcement learning (RL) tasks,
it fails to achieve one of the desired properties of offline RL agents, stitching. This property is an
ability to combine parts of sub-optimal trajectories and produce an optimal one (Fu et al., 2020).
Below, we show a simple example of how DT (reward conditioning approaches) would fail to find
the optimal path.

To demonstrate the limitation of the reward conditioning approaches (DT), consider a task to find
the shortest path from the left-most state to the rightmost state without going down to the fail state
in Fig. 1. We set the reward as −1 at every time step and −10 for the action going down to the
fail state. The training data covers the optimal path, but none of the training data trajectories has
the entire optimal path. The agent needs to combine these two trajectories and come up with the
optimal path. The reward conditioning approach essentially finds a trajectory from the training data
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Figure 1: A simple example demonstrates the decision transformer approach’s issue (lack of stitch-
ing ability) – fails to find the shortest path to the goal. In contrast, Q-learning finds the shortest path.
The numbers on the arrows are rewards on the path and the numbers on the states are RTGs.

Figure 2: Evaluation results for conservative Q-learning (CQL), Decision Transformer (DT) and Q-
learning Decision Transformer (QDT). The left two plots (simple and maze2d environments) show
that the DT does not perform as it fails to stitch trajectories, and the right plot shows that CQL fails
to learn from a sparse reward scenario (delayed reward). In contrast, QDT achieves consistently
good results across all the environments.

that gives the ideal reward and takes the same action as the trajectory. In this simple example,
trajectory 2 has a meagre reward. Hence, it always follows the path of trajectory 1 despite trajectory
2 giving the optimal path for the first action.

In contrast to the reward conditioning approaches (DT), Q-learning1 does not suffer from the issue
and finds the optimal path quickly in this simple example. Q-learning takes each time step separately
and propagates the best future rewards backwards. Hence it can learn from the first optimal action
from trajectory 2. However, Q-learning has some issues on a long time horizon and sparse reward
scenarios. It attempts propagating the value function backwards to its initial state, often struggling
to learn across long time horizons and sparse reward tasks. This is especially true when Q-learning
uses function approximation in an off-policy setting as discussed in Section 11.3 in (Sutton & Barto,
1998).

Here, we devise a method to address the issues above by leveraging Q-learning to improve DT.
Our approach differs from other offline RL algorithms that often propose a new single architecture
of the agent and achieves better performance. We propose a framework that improves the quality
of the offline dataset and obtains better performance from the existing offline RL algorithms. Our
approach exploits the Q-learning estimates to relabel the RTG in the training data for the DT agent.
The motivation for this comes from the fact that Q-learning learns RTG value for the optimal policy.
This suggests that relabelling the RTG in the training data with the learned RTG should resolve
the DT stitching issue. However, Q-learning also struggles in situations where the states require a
large time step backward propagation. In these cases, we argue that DT will help as it estimates
the sequence of states and actions without backward propagation. Our proposal (QDT) exploits the
strengths of each of the two different approaches to compensate for other’s weaknesses and achieve
a more robust performance. Our main evaluation results are summarised in Fig. 2. The left two

1In this paper, we will use the Q-learning and Dynamic Programming interchangeably to indicate any RL
algorithm relying on the Bellman-backup operation.
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plots (simple and maze2d environments) show that DT does not perform well as it fails to stitch
trajectories, while the right plot illustrates that CQL (Q-learning algorithm for offline reinforcement
learning) fails to learn in a sparse reward scenario (delayed reward). These results indicate that
neither of these approaches works well for all environments, and we might have abysmal results
by selecting the wrong type of algorithms. In contrast, QDT performs consistently well across all
environments and shows robustness against different environments. Through our evaluations, we
also find that some of the evaluation results in the prior works may not be directly comparable, and
it causes some contradicting conclusions. We touch on the issue in Section 6.

2 PRELIMINARIES

Offline Reinforcement Learning. The goal of RL is to learn a policy that maximises the expected
sum of rewards in a Markov decision process (MDP), which is a four-tuple (S,A, p, r) where S is a
set of states, A is a set of actions, p is the state transition probabilities, and r is a reward function.

In the online or on-policy RL settings, an agent has access to the target environment and collects
a new set of trajectories every time it updates its policy. The trajectory consists of {st, at, rt}Tt=0
where st, at and rt are the state, action and reward at time t respectively, and T is the episode time
horizon.

In off-policy RL case, the agent also has access to the environment to collect trajectories, but it can
update its policy with the trajectories collected with other policies. Hence, it improves its sample
efficiency as it can still make use of past trajectories.

Offline RL goes one step further than off-policy RL. It learns its policy purely from a static dataset
that is previously collected with an unknown behaviour policy (or policies). This paradigm can be
precious in case of the interaction with the environment being expensive or high risk (e.g., safety
critical applications).

Decision Transformers. DT architecture (Chen et al., 2021) casts the RL problem as conditional
sequence modelling. Unlike the majority of prior RL approaches that estimates value functions or
compute policy gradients, DT outputs desired future actions from the target sum of future rewards
RTGs, past states and actions.

τ = (Rt−K+1, st−K+1, at−K+1, · · · , Rt−1, st−1, at−1, Rt, st) . (1)

Equation 1 shows the input of a DT, where K is the context length, R is RTGs (Rt =
∑T

t′=t rt′ ), s
is states and a is actions. Then DT outputs the next action (at).

DT employs Transformer architecture (Vaswani et al., 2017), which consists of stacked self-attention
layers with residual connections. It has been shown that the Transformer architecture successfully
relates scattered information in long input sequences and produces accurate outputs (Vaswani et al.,
2017; Radford et al., 2018; Devlin et al., 2018; Ramesh et al., 2021).

Conservative Q learning. In this work, we use the conservative Q learning (CQL) framework (Ku-
mar et al., 2020) for the Q-learning algorithm. CQL is an offline RL framework that learns Q-
functions that are lower-bounds of the true values. It augments the standard Bellman error objective
with a regulariser which reduces the value function for the out-of-distribution state-action pair while
maintaining ones for state-action pairs in the distribution of the training dataset. In practice, it uses
the following iterative update equation to learn the Q-function under a learning policy µ(a|s).

Q̂k+1 ← argmin
Q

α
(
Es∼D,a∼µ(a|s)[Q(s, a)]− Es,a∼D[Q(s, a)]

)
+

1

2
E s, a, s′ ∼ D
a′ ∼ µ(a′|s′)

[(
r(s, a) + γQ̂k(s′, a′)−Q(s, a)

)2
]
, (2)

where D is the training dataset and γ is a discount factor. Kumar et al. (2020) showed that while the
resulting Q-function, Q̂µ := limk→∞ Q̂k may not be a point-wise lower-bound, it is a lower bound
of V (s), i.e. Eµ(a|s)[Q̂

µ(s, a)] ≤ V µ(s).
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3 METHOD

We propose a method that leverages Dynamic Programming approach (Q-learning) to compensate
for the shortcomings of the reward conditioning approach (DT) and build a robust algorithm for the
offline RL setting. Our proposal consists of three steps. First, the value function is learned with
Q-learning. Second, the offline RL dataset is refined by relabelling the RTG values with the result
of Q-learning. Finally, the DT is trained with the relabelled dataset. The first and third steps do not
require any modifications of the existing algorithms.

The reward conditioning approach (DT) takes an entire trajectory sequence and conditions on it
using the sum of the rewards for that given sequence. Such an approach struggles on tasks requiring
stitching (Fu et al., 2020) – the ability to learn an optimal policy from sub-optimal trajectories by
combining them. In contrast, the Q-learning alternative propagates the value function backwards for
each time step separately with the Bellman backup, and pools the information for each state across
trajectories. It therefore does not have the same issue. Our proposal tackles the stitching issue of the
reward conditioning approach by relabelling the RTG values with the learned Q-functions. With the
relabelled dataset, the reward conditioning approach (DT) can then utilize optimal sub-trajectories
from their respective sub-optimal trajectories.

We now discuss how to relabel the RTGs values with the learned Q-functions. Replacing all of the
RTGs values with Q-functions is not adequate because not all the learned Q-functions are accurate,
especially in a long time horizon and sparse reward case. Ideally, we would like to replace the RTGs
values where the learned Q-functions are accurate. In this work, we employ the CQL framework for
the offline Q-learning algorithm, which learns the lower bound of the value function. We replace
the RTGs values when the RTG in the trajectory is lower than the lower bound. With this approach,
our method substitutes the RTGs values where the learned value function is indeed accurate (or
closer to the true values). We also replace all RTG values prior to the replaced RTG along with
the trajectory by using reward recursion (Rt−1 = rt−1 + Rt). This propagates the replaced RTG
values to all the time steps prior to the replaced point. To apply this idea, we initialise the last state
RTG to zero (RT = 0), and then we start the following process from the end of the trajectory to
the initial state backwards in time. First, the state value is computed for the current state with the
learned value function V̂ (st) = Ea∼π(a|st)[Q̂(st, a)], where the π is the learned policy. Next, the
value function is compared (V̂ (st)) against the RTG value for the current state (Rt). If the value
function is greater than that of the RTG, the RTG for the previous time step is set from (Rt−1) to
rt−1+ V̂ (st), otherwise it is set to rt−1+Rt. We repeat this process until the initial state is reached.
This process is summarised in Algorithm 1.

The above relabelling process might introduce inconsistencies between the reward and RTG within
the DT input sequence (Eq. 1). The RTG value is sum of the future rewards, hence it must always
be Rt = rt + Rt+1. However, the relabelling process might break this relationship. To maintain
this consistency within the input sequence of DT, we regenerate the RTG for the input sequence
({R̂t−K+1, · · · , R̂t−1, R̂t}) by copying the last RTG (R̂t = Rt) and then repeatedly apply R̂t′ =

r′t + R̂t′+1 backwards until t′ = t−K +1. We repeat this for each the input sequences to maintain
the consistency of the rewards and RTGs. This process is summarised in Algorithm 2.

Algorithm 1 Relabelling return-to-go
Input

r1:T rewards
V̂ (s) learned value function
T time horizon (trajectory length)

Output
R1:T relabelled return to go

RT ← 0
τ ← T
while τ > 0 do

Rτ−1 ← rτ−1 +max(Rτ , V̂ (sτ ))
τ ← τ − 1

end while

Algorithm 2 Generating return-to-go for DT
Input

rt−K+1:t rewards
Rt return to go for time t
K context length

Output
R̂1:T relabelled return to go for DT

R̂t ← Rt

τ ← t− 1
while τ > t−K do

R̂τ ← rτ + R̂τ+1

τ ← τ − 1
end while
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Theoretical considerations of QDT. Q-learning Decision Transformer (QDT) relies on DT as the
agent algorithm, which can be seen as a reward conditioning model. A reward conditioning model
takes the states and RTG as inputs and outputs actions. If we assume the model is trained with
the state st and the optimal state-action value function (Q∗(st, at)), then we can guarantee that
the model will output the optimal action (argmaxa Q

∗(st, a)) for as long as it is given st and
maxa Q

∗(st, a) as inputs (Srivastava et al., 2019). In practice, we do not know the optimal value
function Q∗(s, a), hence DT (and similarly other reward conditioning approaches) uses RTG in-
stead. RTG is collected through the behaviour policy (or policies) and often is not optimal – with
the majority of values being much lower than the corresponding optimal value function (Q∗(s, a)).
As QDT uses CQL to learn the optimal conservative value function, Th. 3.2 in Kumar et al. (2020)
shows that the conservative value function is a lower bound of the true value function. Hence the
QDT relabelling process moves the RTG in the training dataset closer to the optimal value function
(see Appendix D).

4 RELATED WORK

Offline reinforcement learning. The offline RL learns its policy purely from a static dataset that
was previously collected with an unknown behaviour policy (or policies). As the learned policy
might differ from the behaviour policy, the offline algorithms must mitigate the effect of the dis-
tributional shift (Agarwal et al., 2020; Prudencio et al., 2022). One of the most straightforward
approaches to address the issue is by constraining the learned policy to the behaviour policy (Fu-
jimoto et al., 2019; Kumar et al., 2019a; Wu et al., 2019). Other methods constrain the learned
policy by making conservative estimates of future rewards (Kumar et al., 2020; Yu et al., 2021).
Some model-based methods estimate the model’s uncertainty and penalize the actions whose conse-
quences are highly uncertain (Janner et al., 2019; Kidambi et al., 2020). Some approaches address
the distributional shift without restricting the learned policy. One such approach group is weighted
imitation learning (Wang et al., 2018; Peng et al., 2019; Wang et al., 2020; Nair et al., 2020; Chen
et al., 2020; Siegel et al., 2020; Brandfonbrener et al., 2021), which carries out imitation learning
by putting higher weights on the good state-action pairs. It usually uses an estimated advantage
function as the weight. As this approach imitates the selected parts of the behaviour policy, and it
naturally restricts the learned policy within the behaviour policy. The other group of the approaches
without restricting the learning policy is conditional sequence modelling, which learns a policy con-
ditioned with a particular metric for the future trajectories. Some examples of the metrics are sum
of the future rewards (Srivastava et al., 2019; Chen et al., 2021), a certain state (sub goal) (Codev-
illa et al., 2018; Ghosh et al., 2019; Lynch et al., 2020) and even learned features from the future
trajectory (Furuta et al., 2021).

Our approach does not belong to any of these groups but is related to the approach of learning
pessimistic value function, the conditional sequence modelling and weighted imitation learning ap-
proaches. Essentially, our method is a conditional sequence modelling approach as it learns the
following action conditioned on the current state and the sum of the future rewards, but the training
data is augmented by the result of the learned pessimistic value function. Also, the overall high-level
structure is somewhat similar to the weighted imitation learning, which learns the value function and
uses it to weight the training data in the following imitation learning stage. However, each compo-
nent is very different from ours, and it uses the value function to weight the training data, whereas
our approach relabels the RTG values by tracing back the trajectory with the learned value function
as well as the trajectory itself where the learned value function is not reliable. Also, in our approach,
the policy is learned with conditional sequence modelling, whereas they use non-conditional non-
sequential models. We believe we can apply our relabelling approach to the weighted imitation
learning algorithms, and it is an exciting avenue for future work.

Data centric approach. Andrew Ng recently spoke about the importance of the training data to
achieve good performance from a machine learning model and suggests we should spend more of
our effort on data than on the model (Data-centric Approach) (Press, 2021). He said, ”In the Data-
centric Approach, the consistency of the data is paramount and using tools to improve the data
quality that will allow multiple existing models to do well.” Our method can be seen as Data-centric
Approach for offline RL, as we focus on improving the training data and using the existing models.
Our method provides a tool to improve data quality.
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5 EVALUATION

We investigate the performance of QDT relative to the offline RL algorithm with the Dynamic Pro-
gramming based approach as well as the reward conditioning approach. As QDT utilises the result
of CQL and it is considered as the state-of-art offline RL method, we pick CQL as the benchmark
for the Dynamic Programming based approach and DT for the reward conditioning approach for the
same reason. From the evaluations in this section, we would like to demonstrate the benefits and
weaknesses of the Dynamic Programming approach and the reward conditioning approach and how
our proposed approach (QDT) helps their weaknesses.

We start our investigation with a simple environment with sub-optimal trajectories. As it is a simple
environment, a Dynamic Programming approach (CQL) should work well, and as it uses sub-optimal
trajectories, the reward conditioning approach (DT) will struggle. It is interesting to see how much
QDT helps in the circumstance. We also evaluate them on Maze2D environments designed to test
the stitching ability with different levels of complexity. We expect that DT struggle whereas CQL
and QDT performs well on them. Then, we evaluate the algorithms on complex control tasks –
Open AI Gym MuJoCo environments with delayed (sparse) reward as per Chen et al. (2021). They
have zero rewards at all the non-terminal states and put the total reward at the terminal state. It
should make the Dynamic Programming approach (CQL) learning harder as it requires propagating
the reward from the terminal state all way to the initial state. Finally, we show the evaluation results
for Open AI Gym MuJoCo environments with the original dense reward setting for the reference.

Simple environment. To highlight the benefit of QDT, we evaluate our method in a simple envi-
ronment, which has 6-by-6 discrete states and eight discrete actions. The goal of the task is to find
the shortest path from the start to the goal state. We prepare an offline RL dataset with a hundred
episodes from a uniformly random policy and then remove an episode that achieves close to the
optimal total reward to make sure it only contains sub-optimal trajectories. Refer to Appendix B for
further details of the environment and the dataset.

Table 1 show the summary of the evaluation results. We also evaluate the performance of CQL,
which is used for relabeling. It shows vanilla DT fails badly, which indicates DT struggles to learn
from sub-optimal trajectories, whereas CQL performs well as it employs a Dynamic Programming
approach, which can pool information across trajectories and successfully figure out the near-optimal
policy. It shows QDT performs similar to CQL, which indicates that although QDT uses the con-
ditional policy approach, it overcomes its limitation and learns the near-optimal policy from the
sub-optimal data. Further details and results are available in Appendix B.

Table 1: Simple Environment Evaluation Results. Average and standard deviation scores are re-
ported over ten seeds.

CQL DT QDT
Total Reward 40.0± 0.0 15.9± 4.4 42.2± 6.3

Maze2D environments. Maze2D domain is a navigation task requiring an agent to reach a fixed
goal location. The tasks are designed to provide tests of the ability of offline RL algorithms to be able
to stitch together parts of different trajectories (Fu et al., 2020). It has four kinds of environments
– open, umaze, medium and large, and they are getting more complex mazes in the order (Fig. 3)
2. Also, it has two kinds of reward functions – normal and dense. The normal gives a positive
reward only when the agent reaches the goal, whereas the dense gives the rewards at every step
exponentially proportional to the negative distance between the agent and the goal. For the model,
we use the DT source code provided by the authors 3 and d3rlpy 4 (Imai & Seno, 2021) – offline RL
library for CQL, then build QDT by adding small code (replacing the return-to-go) to the DT source
code before its training.

Table 2 shows the summary of the results. All of the numbers in the table are the normalised total
reward (score) such that 100 represents an expert policy (Fu et al., 2020). CQL works well, espe-

2https://github.com/rail-berkeley/d4rl/wiki/Tasks
3https://github.com/kzl/decision-transformer
4https://github.com/takuseno/d3rlpy
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Figure 3: Four Maze2D
environment layouts (from
left to right: open, umaze,
medium and large).

Table 2: Maze2D Evaluation Results. Average and standard deviation scores are reported over
5 seeds. The result for each seed is obtained by evaluating the last learned model on the target
environment. The best average values are marked in bold.

Dataset CQL DT QDT

Sp
ar

se
R

ew
ar

d maze2d-open-v0 216.7± 80.7 196.4± 39.6 190.1± 37.8
maze2d-umaze-v1 94.7± 23.1 31.0± 21.3 57.3± 8.2
maze2d-medium-v1 41.8± 13.6 8.2± 4.4 13.3± 5.6
maze2d-large-v1 49.6± 8.4 2.3± 0.9 31.0± 19.8

D
en

se
R

ew
ar

d maze2d-open-dense-v0 307.6± 43.5 346.2± 14.3 325.7± 61.4
maze2d-umaze-dense-v1 72.7± 10.1 −6.8± 10.9 58.6± 3.3
maze2d-medium-dense-v1 70.9± 9.2 31.5± 3.7 42.3± 7.1
maze2d-large-dense-v1 90.9± 19.4 45.3± 11.2 62.2± 9.9

cially with the dense rewards. DT struggles in many cases due to the lack of stitching ability. (These
environments are designed to test the stitching ability.) QDT clearly improves DT performance,
especially where CQL performs well. It indicates that QDT brings the stitching capability to DT
approach. We discuss the performance gap between CQL and QDT in Section 6.

Open AI Gym MuJoCo environments with delayed (sparse) reward. We also evaluate our ap-
proach (QDT) on complex control tasks – Open AI gym MuJoCo environments with the D4RL
offline RL datasets (Fu et al., 2020). The Open AI gym MuJoCo environments consist of three
tasks Hopper, HalfCheetah and Walker2d. We test on medium and medium-replay v2 datasets. To
demonstrate the shortcoming of the Dynamic Programing approach (CQL), we follow Chen et al.
(2021) and evaluate the algorithms with a delayed (sparse) reward scenario in which the agent does
not receive any reward along the trajectory and receives the sum of the rewards at the final time
step. Again we use the DT and CQL models from the existing source code for the MuJoCo Gym
environments without any modifications and add extra code for the relabelling of the RTG values.

Table 3 shows the simulation results (scores) for the delayed reward case. We also copy the simula-
tion results from Chen et al. (2021) for DT and CQL for the reference. All of the numbers in the table
are the normalised total reward (score) such that 100 represents an expert policy (Fu et al., 2020).
As expected, CQL struggles to learn a good policy, whereas the DT shows good performance. Also,
QDT performs similar to DT even though they are using the results of CQL that performs badly. It
indicates that QDT successfully use the information from CQL where it is useful. One exception is
the medium-replay-walker2d result. QDT performs worse than DT here. Through some investiga-
tions, we found that the CQL algorithm overestimates the value function in the majority of the states
in the medium-replay-walker2d dataset. We touch the issue in the following discussion section.

Open AI Gym MuJoCo environments. We also evaluate our approach (QDT) on Open AI gym
MuJoCo environments with the original dense reward for the reference. As they have dense rewards
and contain reasonably good trajectories, both CQL and DT would work well.

Table 4 shows the summary of our simulation results for CQL, DT and QDT. We also copy the
simulation results from Chen et al. (2021) for DT and Emmons et al. (2021) for CQL for the refer-
ence. Firstly, we can see that our simulation results are aligned with the references except for the
medium-replay-hopper result. Because it has a relatively high variance, it is probably due to the
small number of samples (five random seeds). Secondly, CQL performs equal or better than DT
and QDT in this evaluation. It is understandable as they have dense rewards (they do not require
propagating value function in the trajectory). Finally, from the comparison between DT and QDT,
QDT performs the same as DT.
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Table 3: Open AI Gym MuJoCo with Delayed Reward Evaluation Results. Average and standard
deviation scores are reported with 5 seeds. Our simulation results are in the Results columns, best
average boldfaced. Ref.∗2 are the results copied from Chen et al. (2021). We are not sure which
version of dataset the authors used for Ref.∗2, and only Hopper results are available in the paper.

CQL DT QDT
Dataset Results Ref.∗2 Results Ref.∗2 Results

M
ed

iu
m Hopper-v2 23.3± 1.0 5.2 57.3± 2.4 60.7± 4.5 50.7± 5.0

HalfCheetah-v2 1.0± 1.0 − 42.2± 0.2 − 42.4± 0.5
Walker2d-v2 0.0± 0.4 − 69.9± 2.0 − 63.7± 6.4

M
ed

iu
m

R
ep

la
y Hopper-v2 7.7± 5.9 2.0 50.8±14.3 78.5± 3.7 38.7±26.7

HalfCheetah-v2 7.8± 6.9 − 33.0± 4.8 − 32.8± 7.3
Walker2d-v2 3.2± 1.7 − 51.6±24.6 − 29.6±15.5

Table 4: Open AI Gym MuJoCo Evaluation Results. Average and standard deviation scores are
reported over 5 seeds. Our simulation results are in Results columns. The best average values are
marked in bold. Ref.∗1 is the results copied from Emmons et al. (2021). Ref.∗2 is the results copied
from Chen et al. (2021).

CQL DT QDT
Dataset Results Ref.∗1 Results Ref.∗2 Results

M
ed

iu
m Hopper-v2 69.4±13.1 64.6 60.3± 5.5 67.6± 1.0 66.5± 6.3

HalfCheetah-v2 49.2± 0.5 49.1 42.1± 0.5 42.1± 0.1 42.3± 0.4
Walker2d-v2 83.0± 0.6 82.9 73.3± 2.5 74.0± 1.4 67.1± 3.2

M
ed

iu
m

R
ep

la
y Hopper-v2 96.2± 7.9 97.8 63.7±12.2 82.7± 7.0 52.1±20.3

HalfCheetah-v2 49.8± 0.5 47.3 34.1± 1.1 36.6± 0.8 35.6± 0.5
Walker2d-v2 76.5±21.1 86.1 60.2±13.9 66.6± 3.0 58.2± 5.1

6 DISCUSSION

Stitching ability. To demonstrate the stitching ability, we evaluate the performance of each algo-
rithm with varying degrees of the sub-optimal dataset. We pick the medium-replay dataset for the
MuJoCo Gym environment as it contains trajectories generated by various agent levels and removes
the best X% of the trajectories. As X is increased, more good trajectories are removed from the
dataset. Thereby moving further away from the optimal setup. Fig. 4 shows the CQL, DT and QDT
results as well as the best trajectory return in the dataset. It shows that CQL offers better results
than the best trajectory within the dataset except X = 0, where the trajectory contains the best
score; hence it can not be better than that. In contrast, DT fails to exceed the best trajectory, which
indicates DT fails to stitch the sub-optimal trajectories. QDT performs better than DT and becomes
close to the CQL results at X = 40 and 50 (in the regime with 60− 50% bottom trajectories).

Figure 4: Evaluation results (scores) for
CQL, DT and QDT with the hopper-
medium-replay-v2 dataset removed top
X% trajectories. The shaded area shows
one standard deviation range of the re-
sults. It also has the maximum score in
the dataset as a reference. CQL results are
generally better than the maximum score,
which indicates CQL successfully stitches
sub-optimal trajectories, whereas DT fails
to do so. QDT improves DT through re-
labelling, being better than the maximum
score on the right-hand side of the plot.
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Performance gap between QDT and CQL. Although QDT improves DT on the sub-optimal
dataset scenario (Fig. 4), QDT does not perform as well as CQL for the range of small X . The
results from Emmons et al. (2021) indicate that DT can perform as well as CQL when plenty of
good trajectories are available (medium-expert dataset). It implies that there is still room for im-
provements for DT and QDT approaches with datasets that contain far from optimal trajectories. To
address this, we are considering using a Q-learning algorithm specific to QDT approach, but this is
left for the future work.

Conservative weight. CQL has a hyperparameter called conservative weight, denoted by α in
Eq. 2. It weights the regulariser term, where the higher value, the more conservative are the value
function estimations. Ideally, we would like to set it as small as possible so that the estimated
value function becomes a tighter lower bound; however, too small conservative weight might break
the lower bound guarantee, and the learned value function might give a higher value than the true
value (Kumar et al., 2021). Empirically, we discovered that this is exactly what happens in our
delayed reward experiment (Table 3) for the medium-replay-waker2d dataset example. The value
function learned by CQL in the dataset has higher values than the corresponding true value in many
states, and it causes the wrong relabelling of RTG and, subsequently, a worse QDT performance. We
evaluated it with higher α values – increased from 5.0 to 100. Though this improves the QDT result
from 30.3 ± 16.2 to 46.9 ± 13.8, it is still worse than DT. This is left for future work for further
investigation. In this paper, we assume we have access to the environment in order to optimise
the hyperparameters. However, this should be done purely offline for a proper offline RL setting.
Although there are some proposals (Paine et al., 2020; Fu et al., 2021; Emmons et al., 2021), this is
still an active research area.

Reproducing results for benchmarking. There have been many attempts to establish a benchmark
for the offline RL approaches by building datasets (Fu et al., 2020; Agarwal et al., 2020), sharing
their source code, as well as producing a library focusing on offline RL (Imai & Seno, 2021). How-
ever, we still found some conflicting results between papers. The leading cause of the issue is the
requiring a vast amount of effort and computational power to reproduce the other researcher’s re-
sults. As a result, most authors have no choice but to re-use the original results from state-of-the-art
papers in the literature to establish a comparison. However, this leads to conflicting results due to
the difficulties of reproducing all the details involved in these very diverse experimental setups. For
example, many offline RL papers use D4RL MuJoCo datasets to evaluate their algorithms and com-
pare them against other approaches. In this case, the datasets have three versions – namely, v0, v1
and v2. While not always clearly stated, most papers use version v0. However, some use version v2,
which causes some of the conflicting results. For example, Chen et al. (2021) appears to evaluate
their model with the v2 dataset while referencing other papers’ results that use v0. A second issue
with benchmarking the results in this manner is the usual insufficient number of simulations. As the
simulations require large processing power, it is not feasible to run a large number of simulations.
Most authors (including us) evaluate only three random seeds, which is often insufficient to compare
the results. In this paper, we emphasise and analyse carefully the results from the simple environ-
ment, as they helps demonstrate the characteristics of the algorithm. The more complex and realistic
environments are still helpful; however, the estimated variance suggest that several cases should be
handled with care when extracting conclusions.

7 CONCLUSIONS

We proposed Q-learning Decision Transformers, bringing the benefits of Dynamic Programming
(Q-learning) approaches to reward conditioning sequence modelling methods to address some of
their well-known weaknesses. Our approach provides a novel framework for improving offline
reinforcement learning algorithms. In this paper, to illustrate the approach, we use existing state-of-
the-art algorithms for both Dynamic Programming (CQL) and reward conditioning modelling (DT).
Our evaluation shows the benefits of our approach over existing offline algorithms in line with the
expected behaviour. Although the results are encouraging, there is room for improvement. For
example, the QDT results for Maze2D (Table 2) are better than DT but still not as good as CQL. On
the other hand, the QDT results for Gym MuJoCo delayed reward (Table 3) are significantly better
than CQL but not as good as DT in the walker2d environment. These need further investigation. We
are also interested in trying different Dynamic Programming and reward conditioning algorithms in
the proposed framework.
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ber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Richard S Sutton and Andrew G Barto. Reinforcement Learning. The MIT Press, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31,
2018.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34, 2021.

11



Under review as a conference paper at ICLR 2023

Appendices

A SIMPLE ENVIRONMENT EXAMPLE TRAJECTORY DATA AND ITS
COMPUTATION

This section describes the trajectory data and some computation details for the simple example
shown in Fig. 1. We bring the figure here and added the state IDs in the circle (Fig. 5). The two

Figure 5: A simple example demonstrates the decision transformer approach’s issue (lack of stitch-
ing ability) – fails to find the shortest path to the goal. In contrast, Q-learning finds the shortest
path.

trajectories of training data are:

trajectory1 = [s0=S, a0=up, r0=−1,
s1=1, a1=down, r1=−1,
s2=2, a2=right, r2=−1,
s3=G, a3=N/A, r3=0]

trajectory2 = [s0=S, a0=right, r0=−11,
s1=2, a1=down, r1=−10,
s2=F, a2=N/A, r2=0].

(3)

We compute the return-to-go (RTG) from the reward rt as Eq. 4.

Rt =

T∑
τ=0

rτ , (4)

where Rt is RTG at time step t and T is the episode length. The trajectories with the RTGs becomes
as follows:

trajectory1 = [s0=S, a0=up, r0=−1, R0=−3,
s1=1, a1=down, r1=−1, R1=−2,
s2=2, a2=right, r2=−1, R2=−1,
s3=G, a3=N/A, r3=0, R3=0]

trajectory2 = [s0=S, a0=right, r0=−1, R0=−11,
s1=2, a1=down, r1=−10, R1=−10,
s2=F, a2=N/A, r2=0, R2=0].

(5)

DT (the reward-conditioned approach) is trained to predict actions from the state and RTG, so it
takes [st, Rt] as the input and outputs at. (Here, we assume the context length K = 1 for DT
for simplicity.) For example, in the t = 0 case, the DT agent is trained to predict a = up from
[s=S,R=−3] (trajectory 1) and a = right from [s=S,R=−11] (trajectory 2). For the evaluation,
we set the RTG the best value (−2 in this case) at t = 0, and then the agent predicts the action
from [s=S,R=−2]. Because the input [s=S,R=−2] is closer to [s=S,R=−3] (trajectory 1) than
[s=S,R=−11] (trajectory 2), the agent predict a = up (trajectory 1) despite the optimal action is
a = right (trajectory 2).
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B SIMPLE ENVIRONMENT EVALUATION DETAILS

B.1 ENVIRONMENT

The environment has 6-by-6 discrete states and eight discrete actions as shown in Fig. 6. The goal
of the task is to find the shortest path from the start to the goal state. Each time step gives -10 reward
and +100 reward at the goal. The optimal policy gives +50 total reward (= 100 − 10 ∗ 5). We also
remap the action so that the same action index is not always optimal. The mapping differs for each
state but is fixed across the episodes.

Figure 6: A simple 2D maze environment, which has 6-by-6 grid world and eight actions for moving
eight directions. -10 reward at each time step and +100 reward for the goal. The optimal trajectory
keeps moving up-right to the goal, which has total reward +50 (= 100 − 10 ∗ 5). The action is
remapped so that the same action index is not always the optimal action. The mapping differs for
each state, but fixed across the episodes.

B.2 DATASET

We prepare an offline RL dataset with a hundred episodes from a uniformly random policy and then
remove an episode that achieves a positive total reward to make sure it only contains sub-optimal
trajectories. As a result, the dataset used in this evaluation has one hundred episodes and 4,454 time
steps. The maximum return of the hundred episodes is -10.0, the minimum return is -490 as we
terminate the episode at 50 time step, and the average return is -415.5.

B.3 CQL MODEL DETAILS

We build the CQL model for the simple environment based on Double Q-learning (Hasselt, 2010)
and employ an embedding lookup table module to convert the discrete state to continuous high
dimensional embedding space. The detailed model parameters are in Table 5.

Table 5: Simple Enviornment CQL Model Parameters
Parameter Value
State embedding dimension 32
DQN type fully connected
DQN number of layers 2
DQN number of units 32
Optimizer Adam
Optimizer betas 0.9, 0.999
Optimizer learning rate 5.0e-4
Target network update rate 1.0e-2
Batch size 128
Number of training steps 1000 updates
Conservative weight (α) 0.5

13



Under review as a conference paper at ICLR 2023

B.4 DT AND QDT MODEL DETAILS

Our DT and QDT model for the simple environment is constructed based on minGPT open-source
code5. The detailed model parameters are in Table 6.

Table 6: Simple Environment DT/QDT Model Parameters
Parameter Value
Number of layers 4
Number of attention heads 4
Embedding dimension 64
Nonlinearity function ReLU
Batch size 64
Context length K 2
return-to-go conditioning 50
Dropout 0.1
Learning rate 4.0e-4

B.5 FURTHER EVALUATION RESULTS FOR SIMPLE ENVIRONMENT

The following tables have the simple environment results for all ten seeds. Table 7 shows the reward
for the highest value during the training period. Table 8 shows the reward with the model at the end
of training. DT and QDT have more significant differences between these two tables than the CQL
results, which indicates that DT and QDT have overfitting issues and unstable learning behaviour.

Table 7: Simple Environment Full Results (Best). The results from the best performing model during
the training.

CQL DT QDT

re
su

lts
fo

rt
en

ra
nd

om
se

ed
s

40.0 18.2 43.6
40.0 20.4 42.0
40.0 11.2 49.2
40.0 13.8 42.6
40.0 12.6 39.2
40.0 8.4 27.8
40.0 19.6 47.2
40.0 21.2 47.4
40.0 14.4 37.4
40.0 18.8 46.0

mean 40.0 15.9 42.2
std. 0.0 4.4 6.3

C OPEN AI GYM MUJOCO AND MAZE2D EVALUATION DETAILS

C.1 CQL MODEL DETAILS

For MuJoCo Gym CQL evaluation, we use d3rlpy library (Imai & Seno, 2021). It provides a script
to run the evaluation (d3rlpy/reproduce/offline/cql.py), and it uses the same hyperparameters as

5https://github.com/karpathy/minGPT
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Table 8: Simple Environment Full Results (Last). The results from the model at the end of the
training.

CQL DT QDT

re
su

lts
fo

rt
en

ra
nd

om
se

ed
s

40.0 -39.2 13.8
40.0 8.6 35.8
40.0 -25.4 46.6
40.0 -20.8 16.6
30.0 -50.2 29.2
40.0 -26.0 19.6
40.0 9.4 44.0
30.0 -35.0 47.4
40.0 -10.2 23.2
40.0 7.8 35.0

mean 38.0 -18.1 31.1
std. 4.2 21.3 12.5

Kumar et al. (2020). For Mazed2d simulations, we re-use the same d3rlpy script with the same
hyperparameter settings.

C.2 DT AND QDT MODEL DETAILS

For DT simulations, we use the code provided by the original paper authros6 for both MuJoCo Gym
and Maze2D environments. For QDT simulations, we added extra code to relabelling the return-to-
go to the DT script (decision-transformer/gym/experiment.py). The relabelling code is described in
Algorithm 1 and 2.

C.3 EVALUATION PROCESS

CQL We train the CQL model with five random seeds for 500,000 updates with 256 batch size,
then evaluate the model at the end of the training with 10 episode roll-outs. We inherit these CQL
settings from d3rlpy offline RL library (Imai & Seno, 2021).

DT We train the DT model with five random seeds for 100,000 updates with 64 batch size, then
evaluate the model at the end of the training with 100 episode roll-outs. We inherit these DT settings
from the source code provided by the DT paper authors7 (Chen et al., 2021).

QDT We train the QDT model with five random seeds, each of them employing its own trained
CQL model to relabel the dataset. QDT model is trained for 100,000 updates for MuJoCo Gym and
150,000 updates for maze2d with 64 batch size, then evaluate the model at the end of the training
with 100 episode roll-outs – same as DT.

C.4 HYPER PARAMETER SEARCH

We use the same hyper-parameter settings as the original papers (Kumar et al., 2020; Chen et al.,
2021). However, we did some hyper-parameter searches for the conservative weight (α). It is
because the optimal conservative weight value could be different for CQL and QDT.

For MuJoCo Gym environments, we start with α = 10.0 for medium dataset and α = 5.0 for
medium-replay dataset. We take these values from the CQL paper. Then, reduce these values to
see if the performance of CQL and QDT varies. Table 9 and Table 10 shows CQL and QDT results

6https://github.com/kzl/decision-transformer
7https://github.com/kzl/decision-transformer
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respectively. These results show that α = 10.0 for medium dataset and α = 5.0 for medium-replay
dataset perform well for QDT and do not degrade performance significantly for CQL. Also, they are
the same values as the original paper, so we decide to keep them the same as the paper.

Table 9: CQL results for Open AI Gym MuJoCo with conservative weight parameter (α) sweep.
Average and standard deviation scores are reported over three seeds.

CQL
Dataset α = 10.0 α = 5.0 α = 2.5 α = 1.25

M
ed

iu
m Hopper-v2 68.7± 16.4 72.5± 9.5 83.6± 3.8

HalfCheetah-v2 48.9± 2.4 51.8± 2.4 57.0± 1.1
Walker2d-v2 83.3± 0.5 86.2± 0.5 43.5± 43.6

M
ed

iu
m

R
ep

la
y Hopper-v2 95.4± 11.6 87.5± 24.7 90.7± 14.5

HalfCheetah-v2 49.9± 2.9 51.8± 2.7 54.3± 0.2
Walker2d-v2 88.9± 3.7 50.6± 36.3 16.8± 14.2

Table 10: QDT results for Open AI Gym MuJoCo with conservative weight parameter (α) sweep.
Average and standard deviation scores are reported over three seeds.

QDT
Dataset α = 10.0 α = 5.0 α = 2.5 α = 1.25

M
ed

iu
m Hopper-v2 68.6± 7.5 65.3± 1.3 57.5± 6.6

HalfCheetah-v2 42.2± 0.5 42.2± 0.05 42.1± 0.4
Walker2d-v2 65.9± 3.6 70.1± 2.4 68.8± 6.9

M
ed

iu
m

R
ep

la
y Hopper-v2 55.3± 28.0 40.2± 5.9 64.0± 22.9

HalfCheetah-v2 35.7± 0.6 35.5± 0.4 33.0± 0.5
Walker2d-v2 59.1± 2.8 64.3± 5.9 45.2± 39.5

For maze2d environment, we start with α = 10.0 which is the value used in the CQL paper for
MuJoCo Gym environments medium datasets. Then, reducing these values to see if the performance
of CQL varies. Table 11 shows the simulation results. We pick α = 1.0 as it performs the best. It is
possible that even lower values might perform better. We see QDT shows good improvement over
DT with α = 1.0, so we use the value for this paper. We would like to try further optimisation in the
future.

Table 11: CQL results for Maze2D with conservative weight parameter (α) sweep. Average and
standard deviation scores are reported over three seeds.

CQL
Dataset α = 10.0 α = 2.0 α = 1.0

maze2d-umaze-v1 27.3± 12.2 66.1± 9.8 96.0± 32.2
maze2d-medium-v1 −3.5± 1.3 36.6± 3.7 35.9± 15.3
maze2d-large-v1 −2.5± 0.0 40.8± 6.0 53.2± 7.0

D JUSTIFICATION OF REPLACING RTG WITH THE LEARNED VALUE
FUNCTION

Define the optimal state value function as V ∗(st), the learned lower bound of the value function as
V̂ (st) and the corresponding return-to-go value as Rt. We show that when V̂ (st) > Rt, the error in
V̂ (st) is smaller than the error in Rt. We start from the condition,

V̂ (st) > Rt

V ∗(st)− V̂ (st) < V ∗(st)−Rt.
(6)
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As V̂ (st) is the lower bound of V ∗(st), V ∗(st) ≥ V̂ (st). Hence both sides of the above equation
are non-negative. We can take the absolute of both terms, and we get,

|V ∗(st)− V̂ (st)| < |V ∗(st)−Rt|. (7)

This indicates that the error in V̂ (st) is smaller than the error in Rt.

E FURTHER DISCUSSIONS

E.1 WHY CQL OUTPERFORMS DT/QDT ON MAZE2D, BUT FAILS ON MUJOCO GYM
DELAYED REWARD?

It is because maze2d are simpler environments and have shorter episodes than the MuJoCo control
tasks. Table 12 shows that the action dimension, the state (observation) dimension and the episode
length averaged over the top 5% returns in the dataset. It can be seen that MuJoCo tasks have
higher action/state dimensions and longer episode lengths than Maze2d. Also, the evaluation results
for the Sparse maze2d-medium and -large show some notable performance loss against the Dense
counterparts, which is aligned with the fact that their episode lengths are longer than the maze2d-
open and -umaze.

Table 12: MuJoCo Gym and Maze2D environments comparison. The table shows that the action di-
mension, the state (observation) dimension and the episode length averaged over the top 5% returns
in the dataset.

Environment Action
Dimension

State
Dimension

Good Episode
Average Length

hopper 3 11 708.2
halfcheetah 6 17 1000.0
walker2d 6 17 996.7
maze2d-open 2 4 49.8
maze2d-umanze 2 4 128.6
maze2d-medium 2 4 224.1
maze2d-large 2 4 314.6

E.2 WHY QDT OUTPERFORMS DT ON MAZE2D WHEREAS IT DOES NOT ON GYM DESPITE
BOTH HAVING DENSE REWARDS?

It is due to the difference in the training data. maze2d dataset is designed to test the stitching ability;
hence it only has sub-optimal trajectories, whereas the MuJoCo Gym dataset has some optimal
trajectories. If the dataset has some optimal trajectories, DT will perform well. On the other hand,
if the dataset has only suboptimal trajectories, DT will struggle, and QDT improves such cases by
utilising the information in CQL.

As maze2d only has suboptimal trajectories, DT struggles with them, and QDT can perform better
than DT. For MuJoCo Gym cases, the dataset has some optimal trajectories; hence DT performs
well, and so as QDT.

Strictly speaking, there are some exceptions. MuJoCo halfcheetah-medium and halfcheetah-
medium-replay dataset does not have an optimal trajectory, still QDT performs similarly to DT.
It is because even CQL struggles to achieve good performance on these datasets. (CQL only per-
forms similarly to DT even though CQL can stitch the suboptimal trajectories.) As CQL struggled,
QDT could not get much help from CQL.

The other exception is maze2d-open and maze2d-open-dense. These datasets have good trajectories.
It is actually aligned with our evaluation results. The results for maze2d-open and maze2d-open-
dense show good performance with DT.

Table 13 shows the maximum, 95 percentile and 90 percentile values of the normalised returns
(score) in the dataset. As we discussed above, Maze2d has suboptimal trajectories (except open
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and open-dense), and MuJoCo Gym has (near) optimal trajectories – a score close to 100 (except
halfcheetah).

Table 13: Scores in MuJoCo Gym and Maze2D datasets. This table shows that maximum score, 95
percentile score and 90 percentile score values for each dataset.

Dataset max. score 95 pct. score 90 pct. score
maze2d-open-v0 232.4 130.7 116.2
maze2d-open-dense-v0 188.9 128.4 117.4
maze2d-umaze-v1 21.1 13.2 10.3
maze2d-umaze-dense-v1 -1.4 -11.7 -18.3
maze2d-medium-v1 12.8 6.8 4.9
maze2d-medium-dense-v1 8.9 4.0 0.3
maze2d-large-v1 16.9 6.5 -2.5
maze2d-large-dense-v1 14.6 7.9 -2.4
hopper-medium-v2 99.5 63.2 57.0
hopper-medium-replay-v2 98.6 46.4 31.5
halfcheetah-medium-v2 45.0 43.0 42.5
halfcheetah-medium-replay-v2 42.4 39.9 39.2
walker2d-medium-v2 92.0 83.4 82.4
walker2d-medium-replay-v2 89.9 66.6 42.5

E.3 WHY QDT PERFORMS CLOSE TO DT, NOT CQL IN FIG. 4 (GYM HOPPER)?

The main reason is that QDT employs DT as its agent algorithm. The difference lays in its training
data. If the environment/dataset has specific characteristics that work against DT approach, those
also work against QDT. Some of these properties, such as dataset sub-optimality, are fixed/mitigated
by QDT. However, there may be other elements that are against DT and QDT, e.g., the environment
having a few critical states (Kumar et al., 2022). If this is also behind the gap between CQL and DT,
then it is possible QDT performs close/the same as DT.

Kumar et al. (2022) studied the Dynamic Programming approach and the imitation learning ap-
proach and compared the upper bounds of their sub-optimality (the difference between the return
from the optimal policy and the learned policy). They show that the Dynamic Programming ap-
proach is preferred over imitation learning when the environment has a few critical states – the
return of the episode mostly depends upon the actions in these states. The results in Kumar et al.
(2022) are based on theoretical analysis (sub-optimality upper bounds). Hence, it is possible that
the imitation learning approach (DT and QDT) can perform as well as or better than Dynamic Pro-
gramming approaches (such as CQL) in practice. Kumar et al. (2022) empirically shows that the
goal-conditioned approach remains competitive by selecting the right level of model capacity and
the goal. There are still many open and ongoing discussions regarding the comparison.

E.4 EXTRA RESULTS FOR REMOVING TOP X%

We run the same experiment as the Stitching ability subsection in Section 6 on the other two MuJoCo
Gym environments. The results (Fig. 7) do not show a clear benefit of QDT over DT. We think it is
because the cause of the gap between CQL and DT is not just the sub-optimality in the dataset (still
the sub-optimality can be the cause of the difference, but it is not the only cause in these cases.)

E.5 CONSISTENCY RELABELLING ABLATION EXPERIMENT

We have tried the ablation experiment for the consistency relabelling (Algorithm 2) on a subset of
environments. The results are summarised it in Table 14. We run ten random seeds for Simple
Environment and three for others. The Simple Environment result shows some benefits of using
Algorithm 2 in its average value, although it is not significant. For the other more complex environ-
ments, we do not see clear benefits of Algorithm2. We think this is because the changes applied by
Algorithm2 are relatively minor compared to the original RTG variations. We think it is better to
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Figure 7: Evaluation results (scores) for CQL, DT and QDT with the halfcheetah-medium-replay-v2
and walker2d-medium-replay-v2 dataset removed top X% trajectories. The shaded area shows one
standard deviation range of the results. It also has the maximum score in the dataset as a reference.

keep Algorithm 2, at least for now because the training data could have non-realistic (inconsistent)
samples without the algorithm.

Table 14: Scores in Simple Environment, MuJoCo Gym and Maze2D datasets. This table shows
QDT results and QDT without the consistency relabelling (Algorithm 2).

Dataset QDT QDT w/o
Alg.2

Simple Environment 42.2± 6.3 29.7± 13.8

hopper-medium-v2 65.3± 2.0 65.7± 3.9
halfcheetah-medium-v2 42.2± 2.3 42.4± 0.1
walker2d-medium-v2 71.3± 2.4 80.2± 10.8

maze2d-large-v1 35.0± 24.2 23.0± 5.0

E.6 AGGREGATED EVALUATION RESULTS

We compute the aggregated evaluation results for each group of environments (maze2d, MuJoCo
Gym delayed reward and MuJoCo Gym) with three different metrics – median, Interquantile mean
(IQM) and mean (Fig. 8). It uses 95% stratified bootstrapped confidence interval (Agarwal et al.,
2021).

The results support our conclusions 1) DT struggles in maze2d, but QDT improves DT performance
by getting help from CQL. 2) CQL fails in MuJoCo Gym delayed reward. 3) DT and QDT perform
similarly in MuJoCo Gym. Note that QDT has never failed in any of these groups of environments.
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Figure 8: Aggregated evaluation results (scores) for each group of environments (maze2d, MuJoCo
Gym delayed reward and MuJoCo Gym) with three different metrics – median, Interquantile mean
(IQM) and mean. The results support our conclusions 1) DT struggles in maze2d, but QDT improves
DT by getting help from CQL. 2) CQL fails in MuJoCo Gym delayed reward. 3) DT and QDT
perform similarly in MuJoCo Gym.
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