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Abstract
Maritime object detection is essential for navigation safety, surveillance, and
autonomous operations, yet constrained by two key challenges: the scarcity of
annotated maritime data and poor generalization across various maritime attributes
(e.g., object category, viewpoint, location, and imaging environment). To address
these challenges, we propose Neptune-X, a data-centric generative-selection frame-
work that enhances training effectiveness by leveraging synthetic data generation
with task-aware sample selection. From the generation perspective, we develop
X-to-Maritime, a multi-modality-conditioned generative model that synthesizes
diverse and realistic maritime scenes. A key component is the Bidirectional Object-
Water Attention module, which captures boundary interactions between objects
and their aquatic surroundings to improve visual fidelity. To further improve down-
stream tasking performance, we propose Attribute-correlated Active Sampling,
which dynamically selects synthetic samples based on their task relevance. To
support robust benchmarking, we construct the Maritime Generation Dataset, the
first dataset tailored for generative maritime learning, encompassing a wide range
of semantic conditions. Extensive experiments demonstrate that our approach sets
a new benchmark in maritime scene synthesis, significantly improving detection
accuracy, particularly in challenging and previously underrepresented settings.

1 Introduction

Object detection is a fundamental technology for maritime environmental perception, enabling the
identification of object categories and the localization of bounding boxes in images captured by
imaging systems deployed on various facilities, such as surface vessels, coastal infrastructure, and
aerial platforms. It plays a key role in a variety of maritime applications, including autonomous or
assisted navigation for surface ships [43], intelligent video surveillance for coastal facilities [40], and
autonomous inspection using Unmanned Aerial Vehicles (UAVs) [44].

Despite rapid advances in deep learning-based object detection [39, 37, 23], the generalization
capability of these models remains heavily dependent on the scale and diversity of annotated training
data. Specifically, maritime-specific object detection datasets face two core limitations. First, the
acquisition and annotation process is costly and labor-intensive. Different from land scenarios, data
collection from heterogeneous platforms such as ships, UAVs, and stationary coastal cameras requires
significant operational resources. In addition, the manual annotation of bounding boxes limits dataset
scalability. Second, existing datasets exhibit large disparities in training difficulty across multiple
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(a) X-to-Maritime Generation Results (b) Correlations between ATDFs and Detection Accuracy on Test Set

Figure 1: We introduce Neptune-X, a generation-selection framework for robust maritime object
detection. (a) It enables the first multi-modality-conditioned data generation, supporting diverse
and controllable maritime scene synthesis. (b) Our active selection strategy leverages the Attribute-
correlated Training Difficulty Factor (ATDF), which correlates with detection performance and guides
the selection of high-value synthetic samples to optimize downstream detector accuracy.

attributes, including imaging conditions, viewpoints, water environments, and object categories.
These imbalances are driven by uneven sample distributions and systematic biases in data collection,
resulting in poor generalization to rare or complex maritime scenarios.

To mitigate data limitations, traditional data augmentation techniques [51, 48, 47, 2] have been widely
adopted. These methods apply geometric transformations, color perturbations, and sample mixing
to increase training diversity. However, they operate only on existing samples and cannot generate
fundamentally new instances with novel semantics. As a result, they are insufficient for addressing
performance degradation caused by data scarcity and semantic imbalance.

Compared to GANs [10, 8, 49, 20], the diffusion models [30] achieve superior image quality and
training stability for more flexible text-conditioned image synthesis. Layout-to-Image techniques [21,
46, 41] further enhance controllability by conditioning on layout information, such as bounding
boxes, and have been explored to synthesize detection-specific training data [34]. However, applying
these methods directly to the maritime domain remains problematic. Maritime scenes demand an
explicit semantic understanding of the interaction between objects and their aquatic surroundings, as
objects and environmental context (e.g., sea states, reflections, lighting) are closely intertwined in
both appearance and meaning. Without modeling this relationship, generative models often produce
semantically inconsistent and physically implausible artifacts, such as ships floating unnaturally in
mid-air or disconnected from the water surface. Furthermore, existing approaches overlook the fact
that synthetic samples vary in training utility due to differences in category, viewpoint, and condition.
Failing to account for such disparities leads to suboptimal data selection and limited gains.

In this paper, we introduce Neptune-X2, a unified data generation-selection paradigm designed
to address the dual challenges of data scarcity and limited diversity in maritime object detection.
Our approach fuses multi-condition maritime scene generation with task-aware sample selection to
enhance both quantity and quality of training data. In the generation phase, we develop a controllable
generative framework that supports diverse input modalities and produces semantically rich maritime
scenes. A central innovation is the Bidirectional Object-Water Attention (BiOW-Attn) mechanism,
which explicitly models interactions between objects and their aquatic surroundings to improve the
realism and coherence of object placement. This enables the generation of visually plausible maritime
scenes with fine-grained spatial semantics (Fig. 1a).

For data selection, Neptune-X incorporates an Attribute-dependent Active Sampling (AAS) strategy
to prioritize training samples that are most beneficial for detection performance. This strategy is
guided by Attribute-related Training Difficulty Factors (ATDF), which estimate the learning difficulty
associated with different semantic attributes, such as viewpoint, object category, and environmental
condition. As illustrated in Fig. 1b, ATDF captures the relative training complexity across attributes
and informs the weighting of synthetic samples during selection. By aligning sample value with

2The model name “Neptune-X” integrates the marine symbolism of Neptune (Roman sea god) with multi-
modality conditional guidance (X).
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task difficulty, AAS enables more focused and efficient use of generated data, ultimately guiding the
detector to learn from challenging and underrepresented cases.

To support training and evaluation under diverse maritime conditions, we construct a new benchmark,
the Maritime Generation Dataset, which covers a broad range of scenarios with variations in object
category, viewpoint, environment, and location. Extensive experiments demonstrate the effectiveness
of Neptune-X in both synthetic scene quality and downstream detection performance, particularly in
challenging and underrepresented cases.

In summary, our main contributions are threefold:

• We present the X-to-Maritime generation framework for maritime scenes, featuring a Bidirectional
Object-Water Attention module that enhances realism by modeling object-water interactions under
multi-condition inputs.

• We propose an Attribute-dependent Active Sampling strategy that estimates training difficulty
across semantic dimensions and selects high-value samples through difficulty-aware weighting.

• We construct a Maritime Generation Dataset, the first generative benchmark for maritime detection.
Experiments show that our method improves both generation quality and detection performance in
challenging scenarios.

2 Related Work

Diffusion-based Image Generation. Diffusion models [14] have demonstrated strong cross-modal
generation capabilities and have been widely adopted for image synthesis tasks. Early works such
as DALL-E 2 [26] employed hierarchical diffusion guided by CLIP text encoders [25] to achieve
text-to-image generation, while Imagen [31] further improves generation quality by leveraging
the language understanding power of large-scale language models. Stable Diffusion (SD) [30]
made this technology more accessible by introducing latent space compression, enabling efficient
high-resolution synthesis. However, text-only conditioning often lacks fine-grained spatial and
attribute-level control. To address this, recent layout-to-image (L2I) methods incorporate auxiliary
conditions for more precise generation. For example, LayoutDiff [50] integrates bounding box
constraints into the diffusion process. GLIGEN [18] introduces gated self-attention to fuse layout
and textual conditions in a pre-trained SD model, while RC-L2I [5] employs regional cross-attention
to enhance instance-level controllability. However, these methods generally treat object regions
independently and overlook interactions with complex scene contexts, limiting their effectiveness in
domains like maritime environments.

Data Augmentation for Object Detection. Early data augmentation strategies such as Mixup [48],
CutMix [47], and Mosaic [2] primarily rely on pixel-level rearrangements to increase visual diversity.
While effective in remixing existing patterns, these methods are limited in their ability to produce
novel samples that extend beyond the original training distribution. This constraint has driven recent
interest in generative augmentation, where image synthesis models are used to create new samples
with richer semantics and structural variability. For instance, DA-Fusion [36] employs a diffusion
model to enhance dataset diversity, while Fang et al. [11] introduce a visual prior-guided controllable
diffusion framework for object detection. AeroGen [34] further explores layout-conditioned diffusion
to generate synthetic remote sensing imagery based on rotated bounding boxes. However, most
existing generative augmentation methods focus solely on generation and overlook the importance of
evaluating the training utility of synthesized samples, which makes it difficult to prioritize data that
maximally benefits downstream learning.

Active Learning for Object Detection. Active learning for object detection aims to boost model
performance with minimal labeling effort by selecting the most informative unlabeled samples.
Early methods [32, 45, 1] adapt classification-based strategies but often ignore the localization task.
To address this, later works introduce uncertainty-based approaches. For example, Choi et al. [7]
modeled joint uncertainties using Mixture Density Networks, while PPAL [42] combines difficulty-
calibrated uncertainty sampling with diversity-based selection. In our setting, although synthetic
images exhibit semantic diversity, their impact on detector training varies. To improve efficiency, we
draw on active learning principles to design a sample selection strategy tailored for generated data.
Unlike conventional methods, which rely on human annotation, our approach leverages known labels
from the generation process, avoiding annotation costs while enabling difficulty-aware selection.
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Figure 2: Architecture of our X-to-Maritime generator. BiOW-Attn serves as the core component for
integrating object and water surface conditions.

3 Neptune-X

This section introduces two key components of the proposed Neptune-X, including X-to-Maritime
Generation and High-quality Data Generation.

3.1 X-to-Maritime Generation

Latent Diffusion Model. As a state-of-the-art approach for text-to-image generation, SD [30]
establishes itself as an effective framework for generative modeling. In this paper, we adopt SD as
the foundational architecture due to its demonstrated effectiveness in conditional image generation.
To be specific, SD is a classic Latent Diffusion Model (LDM), comprising two parts:

• Latent Space Projection: A Variational Auto-Encoder (VAE) learns bidirectional mappings
between pixel-level images I ∈ RH×W×3 in RGB space and compressed latent codes z ∈ Rh×w×c,
where c denotes the number of channels, while h = H/m and w = W/m denote the reduced
spatial dimensions through a compression factor m. This dimensionality reduction enables
computationally efficient diffusion processes while preserving essential visual features.

• Conditional Diffusion Process: SD employs text-conditioned diffusion training through caption
embeddings C, implementing a Markov chain that gradually denoises latent representations across
T timesteps. The denoising operator gθ, parameterized by θ, is optimized to estimate noise
components through a noise prediction objective, which can be given by

L = Ez,t,ϵ∼N (0,I)

[
∥ϵ− gθ(zt, t, C)∥22

]
, (1)

where zt represents the noisy latent at timestep t. This formulation enables stable SD training
through gradient updates while maintaining semantic alignment between the caption conditions
and generated images.

Multi-Condition Guidance. Despite extensive training in the SD model and its remarkable efficacy
in text-to-image synthesis, effectively incorporating layout conditions to jointly guide the maritime
scenario generation process remains challenging. To address this limitation, we design a novel
domain-specific model (named Neptune-X) for the generation of maritime images, as shown in
Fig. 2a. In particular, we propose a well-designed Bidirectional Object-Water Attention (BiOW-Attn)
module to integrate additional layout conditions from the water surface targets and the water body
itself, thereby enhancing the generative capability and controllability in maritime scenarios. To enable
multi-condition guidance, we thus extend the denoising objective in Eq. (1) as

L = Ez,t,ϵ∼N (0,I)

∥ϵ− gθ(zt, t, C, {Cio,Mi
o}Oi=1︸ ︷︷ ︸

object conditions

, {Cw,Mw}︸ ︷︷ ︸
water surface condition

)∥22

 , (2)
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Figure 3: Data generation flowchart of Neptune-X. AAS holistically integrates both detection accuracy
and training difficulty through introducing the attribute-related training difficulty factors as weights
to select high-value samples generated by X-to-Maritime.

where O denotes the number of total objects, Cio andMi
o represent the i-th object’s feature embedding

and binary spatial mask, respectively, and Cw andMw denote the water surface feature embedding
and corresponding binary mask.

Layout Condition Embedders. Inspired by GLIGEN [18], our module employs an identical
embedding strategy to transform both conditional types into token representations. For the i-th
object with class label Li

o and spatial coordinates P i
o , we first encode the coordinates through Fourier

embedding Φ to obtain positional features eio = Φ(P i
o). Simultaneously, the textual label Li

o is
encoded by a CLIP text encoder ξ into semantic tokens tio = ξ(Li

o). The final feature embedding of
the i-th object Cio is then derived through channel-wise concatenation [ · ; · ] and MLP projection, i.e.,

Cio = MLP
([
eio; t

i
o

])
. (3)

Similarly, we obtain the water surface embedding Cw following the same procedure as object
embedding, where we replace Li

o with a water surface description Lw and P i
o with the minimum

enclosing rectangle Pw of the water mask.

Bidirectional Object-Water Attention. As shown in Fig. 2b, we propose BiOW-Attn to enable the
targeted generation of maritime scenarios, which comprises two stages, i.e., conditional integration
and bidirectional feature interaction. In the first stage, cross-attention modules independently process
each object and water embeddings through identical operations applied to the input feature and each
embedding, generating conditionally augmented features as defined mathematically by

Cross-Att(Q,Kk, Vk) = Softmax
(
Q ·K⊤

k

λ

)
Vk, k ∈ {Cio, Cw}, (4)

where λ is a scaling factor. Q denotes the query vector computed from input features, while {Kk, Vk}
corresponds to the key-value pairs projected from water and object embeddings.

For the object cross attention module in Fig. 2b.1, the enhanced features {f i
o}Oi=1 guided by each

object are summed to produce the output. The aggregated output is then masked using the union of all
object masks {Mi

o}Oi=1, while non-object regions are filled with a learnable null object embedding
nullobj to stabilize spatial localization. Mathematically, the output Fo can be generated by

Fo =

(
O∑
i=1

f i
o

)
⊙M+ nullobj⊙(1−M), where M =

O⋃
i=1

Mi
o. (5)

In contrast, the water cross attention module in Fig. 2b.2 follows an identical architecture to obtain
the output Fw, with M replaced by the water-specific maskMw and nullobj substituted by the water
null embedding nullwat.

The second stage processes Fo and Fw generated from the previous step through bidirectional
cross attention in Fig. 2b.3 by exchanging the input sources of query vectors and key-value pairs.
This module significantly improves the object-water boundary interaction of generated images,
thereby generating more physically plausible water surface targets. The final output is produced by a
Feed-Forward Network (FFN).
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3.2 High-quality Data Generation

Fig. 3 shows the data generation process of Neptune-X. Building upon the X-to-Maritime generation
model constructed in Sec. 3.1, we employ random transformations (including randomly sampling
image and water surface descriptions, and resizing or flipping annotated bounding boxes, etc.) on the
existing training set labels to enhance the diversity of generated data. Subsequently, we apply a filter
inspired by AeroGen [34] to eliminate low-quality data. This filter evaluates the generated data from
two perspectives: 1) semantic consistency assessed by a CLIP model, and 2) layout accuracy verified
by a pre-trained ResNet classifier (ensuring alignment between generated objects in bounding boxes
and their actual label categories). Finally, we pre-train a detector model on the small-scale training
dataset and employ it for active sampling on the filtered data to automatically select the final samples
with high value. Notably, this process incorporates a specially designed active sampling mechanism
(named AAS) by introducing Attribute-correlated Training Difficulty Factors (ATDF) to optimize
downstream detector accuracy.

Attribute-correlated Training Difficulty Factors. The proposed ATDF can prompt the detector
to select more challenging samples, thereby balancing training difficulty. Specifically, the ATDF is
computed during the detector’s pretraining phase. We measure each box’s accuracy against ground
truth, aggregate attribute-specific difficulties, and perform intra-dimensional normalization. In this
process, the accuracy of each predicted bounding box is calculated using the method proposed in [4],
which can be defined as

Acc(b, b̂) = p̂γ · IoU(b, b̂)1−γ . (6)

Here, γ donates a hyper-parameter, b̂ and b are the predicted box and the corresponding ground
truth, p̂ ∈ [0, 1] is the prediction confidence of b̂, the notation IoU(b, b̂) ∈ [0, 1] represents the
Intersection-over-Union (IoU) metric calculation between b and b̂.

Based on the defined bounding box prediction accuracy, we compute the ATDF across all attributes
in four dimensions3. Each predicted box inherits the extra three specified attributes from its image’s
category label. Ultimately, each predicted box’s accuracy is assigned to the specified attributes across
all four dimensions. For the j-th evaluation iteration, let N j

s be the number of predicted boxes
possessing the s-th attribute. Its initial training difficulty djs can be expressed as

djs =
1

N j
s

Nj
s∑

n=1

(1− Accn). (7)

Then, we employ Exponential Moving Average (EMA) to update the ATDF for each attribute,
enabling it to characterize the difficulty discrepancy across the entire training and validation sets.
Specifically, the final ATDF of the s-th attribute in the j-th iteration is obtained by weighting the
initial ATDF with the previous timestep’s ATDF, expressed as

djs ← mj−1
s dj−1

s + (1−mj−1
s )djs, (8)

with mj−1
s being the attribute-wise momentum at the previous moment. The momentum term for the

current iteration mj
s is updated based on object presence/absence, formalized as

mj
s =

{
mj−1

s , If N j
s > 0,

m0
s ·mj−1

s , If N j
s = 0,

(9)

where m0
s being the initial momentum. This adaptive momentum mechanism accelerates update rates

for rare samples, thereby mitigating update speed disparities caused by sample imbalance within the
same dimension [42]. Finally, the ATDFs of all attributes within the same dimension are transformed
into a probability distribution via the softmax function, which can represent the training difficulty
of each attribute in the entire pretraining phase. Note that higher probability values indicate higher
training difficulty.

Attribute-dependent Active Sampling. We design the AAS to actively select high-value samples
from the data pool generated by X-to-Maritime to optimize downstream detection tasks. Specifically,
taking the original train set as Xtrain, the filtered generative dataset pool is defined as Xgen. The core
objective of AAS is to select high-value samples Xsel ⊂ Xgen using a detector D pre-trained on Xtrain.

3Besides the category, we add three additional dimensions, i.e., viewpoint, location, and imaging environment.
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Figure 4: Comparison of image generation on MGD. The red, green, and yellow bounding boxes
indicate low-quality/incorrect generation, missed generation, and unexpected generation, respectively.

Subsequently, both Xtrain and Xsel are utilized to fine-tune D further. Specifically, each predicted
box is first used to calculate accuracy with its corresponding ground truth label according to Eq. 6.
The ATDF values serve as weights for the detection accuracy scores, producing a composite training
difficulty measure per image. For a given image with viewpoint, location, and imaging environment
ATDFs defined as dview, dloc, and denv, respectively, and with class-wise ATDFs {dncls}Nn=1 of N
objects, the image’s training difficulty d is computed as

d = δ
∏
α∈A

dα ·
1

N

N∑
n=1

dncls · (1− Accn), (10)

where A = {view, loc, env} and δ is a tunable parameter. Finally, all samples are ranked by d, and
the top-k highest-difficulty instances are selected to form the Xsel.

4 Experiments

4.1 Experimental Settings
Table 1: Data source of MGD.

Source Imaging Viewpoint Num.

MaSTr1325 [3] ship view 800
USVInland [6] ship view 1000
MIT Sea Grant [9] ship view 100
SMD [24] shore and ship view 400
Seaships [33] shore view 1500
Seagull [29] aerial view 2996
Fvessel [12] shore view 1500
LaRS [52] shore, ship, and aerial view 1973
Others shore, ship, and aerial view 1631

MGD shore, ship, and aerial view 11900

Implementation Details. The Neptune-X
framework is implemented in PyTorch 1.13
(Python 3.8) and executed on a PC with 2
Intel(R) Xeon(R) Silver 4410Y CPUs and
4 NVIDIA 5880 Ada GPUs. In the training,
we employ the AdamW optimizer with an
initial learning rate of 5×10−5 for 100, 000
iterations (requiring ∼ 100 training hours),
while we apply the standard data augmenta-
tion techniques, including random horizon-
tal flipping and scale resizing. The patch
size and batch size are 512× 512 and 8 for
model training. Notably, we reduce train-
ing costs and preserve the base model’s generative capabilities by freezing the SD weights while only
updating layout condition embedders and BiOW-Attn modules.
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Table 2: FID, CAS, and YOLO Score comparisons of different methods on image generation. The
best and second-best results are highlighted in bold and underlined.

Methods Conditions Venue & Year FID ↓ CAS ↑ YOLO Score ↑
mAP/mAP50/mAP75

SD1.5 [30] Text CVPR2022 27.65 – –

LayoutDiff [50] Box CVPR2023 18.17 63.77 0.83/2.68/0.29
GLIGEN [18] Text + Box CVPR2023 20.02 77.06 12.74/30.36/8.99
InstDiff [38] Text + Box + Mask CVPR2024 19.43 76.65 12.46/29.73/9.07
RC-L2I [5] Text + Box + Mask NeurIPS2024 25.63 74.84 8.75/22.99/5.48
Ours Text + Box + Mask NeurIPS2025 18.05 79.34 17.08/39.14/13.52

Table 3: mAP and mAP50 comparison with/without
generated data.

Model mAP ↑ mAP50 ↑
YOLOv10 [37] 39.99 61.13

+Gen Data 43.62 (+9.08%) 65.50 (+7.15%)

YOLOv11 [16] 41.29 62.51
+Gen Data 44.43 (+7.60%) 66.15 (+5.82%)

YOLOv12 [35] 39.06 60.53
+Gen Data 42.91 (+9.86%) 63.85 (+5.48%)
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Figure 5: YOLOv11 accuracy improvement
visualization across various attributes.

Ship Generation Dataset. To advance research on image generation and object detection in maritime
scenarios, we propose MGD, a comprehensive maritime image generation dataset. As shown in
Table 1, MGD consists of 11,900 samples collected from multiple benchmark datasets and images we
captured using various imaging devices, including coastal surveillance systems, UAVs, smartphones,
and DSLR cameras. Each sample contains image with corresponding caption, water surface mask,
and bounding box annotation, covering five object categories (ship, buoy, person, floating object,
and fixed object), three viewpoints (shore-based, shipboard, and aerial), four locations (sea, river,
harbor, and lake), and six imaging environments (sunny, cloudy, foggy, rainy, dawn/dusk, and night).
Furthermore, MGD is split into training (7,140 samples), validation (2,380 samples), and test sets
(2,380 samples) in a 3:1:1 ratio, with the validation and test sets combined for image generation
evaluation. More details about MGD are provided in the supplementary materials.

Evaluation Metrics. For the image generation evaluation, we use the Frechet Inception Distance
Score (FID) [13] for evaluating image generation quality, Classification Score (CAS) [28], and YOLO
Score [19] for assessing generated object accuracy. For the data augmentation experiment, the mean
Average Precision (mAP) and mAP50 are utilized.

4.2 Image Generation Experiments

As shown in Table 2, our method demonstrates superior performance across all three evaluation
metrics. While LayoutDiff achieves competitive FID scores, its significantly inferior YOLO Score
demonstrates limited practical applicability. Notably, our method achieves significant improvements
in both CAS (+2.28) and YOLO Score (+4.34/8.78/4.45), the two key metrics evaluating controlled
generation capability, substantially outperforming current SOTA approaches. Furthermore, Fig. 4
presents several generated instances of controllable diffusion methods for maritime image generation.
These SOTA competitors frequently exhibit missing, erroneous, and unrealistic generation. In contrast,
our method achieves superior controllable object generation through the BiOW-Attn module, which
enhances object-water interactions to produce more harmonious and realistic maritime scenes.

4.3 Data Augmentation Experiments

Effectiveness on Traditional Detectors. In this section, we validate the effectiveness of the proposed
Neptune-X. Specifically, three advanced object detectors (i.e., YOLOv10 [37], 11 [16], and 12
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[35]) were selected for evaluation. Quantitative results on the test set are presented in Table 3.
Notably, all detectors demonstrate significant performance improvements by adding generated data
as training samples, achieving mAP gains of 7-10% and mAP50 improvements of 5-8%. Meanwhile,
Fig. 5 demonstrates the detection accuracy improvement of YOLOv11 across all attributes in four
dimensions before and after data augmentation. All metrics show improvement, with particularly
significant gains observed for attribute categories that originally had lower detection accuracy (The
mean increased by 13.77% and the variance decreased by 6.39%)4. These results demonstrate the
superiority of our proposed generation-selection paradigm for marine object detection, achieving
significant accuracy improvement while mitigating cross-attribute training difficulty disparities.

Table 4: mAP and mAP50 comparison with/without
generated data. † denotes fine-tuned on our dataset.

Model mAP ↑ mAP50 ↑
Grounding DINO 8.42 12.60
Grounding DINO† 65.03 86.12

+Gen Data 68.04 (+4.63%) 89.86 (+4.34%)

Effectiveness on Open-Vocabulary De-
tectors. The proposed data augmentation
method demonstrates broad applicability
and can be integrated with various types
of detectors, including open-vocabulary de-
tectors. To validate its generalization ca-
pability, additional experiments were con-
ducted using Grounding DINO [22]. The
experimental results, as shown in Table 4,
indicate that the proposed method significantly enhances the detection performance, with notable im-
provements observed in both mAP and mAP50 metrics. These findings suggest that the method is not
only compatible with common YOLO-series detectors but also effectively improves the performance
of open-vocabulary detectors.

Table 5: Ablation study of different generation configurations.

ObjCA WatCA BiCA FID ↓ CAS ↑ YOLO Score ↑
mAP/mAP50/mAP75Obj2WatCA Wat2ObjCA

✓ 21.44 76.23 10.69/26.01/6.99
✓ ✓ 19.57 78.15 13.37/29.60/10.78
✓ ✓ ✓ 18.35 78.00 12.52/27.58/10.06
✓ ✓ ✓ 18.37 78.68 15.60/36.13/12.09
✓ ✓ ✓ ✓ 18.05 79.34 17.08/39.14/13.52

4.4 Ablation Study

Table 6: Ablation study of different sam-
pling strategies.

Methods Number mAP ↑ mAP50 ↑
N/O 0 39.99 61.13

Random 5,000 41.48 63.19
10,000 43.31 64.95

AAS 5,000 43.11 64.70
10,000 43.62 65.50

Effectiveness of Generation Modules. In this sub-
section, we systematically evaluate different cross-
attention (CA) components for maritime scene gen-
eration, including Object CA (ObjCA), Water CA
(WatCA), and the bidirectional CA (BiCA) that con-
sists of Water-to-Object CA (Wat2ObjCA) and Object-
to-Water CA (Obj2WatCA). As quantitatively demon-
strated in Table 5, our experiments reveal several key
findings. The basic ObjCA alone yields unsatisfactory
performance in both overall image quality (evaluated
by FID) and target generation accuracy (assessed by
the other two metrics) for maritime scenario generation. While introducing water conditions sig-
nificantly enhances generation capability (notably reducing FID by 1.87), the simple usage fails
to properly model object-water interactions, resulting in unrealistic scene-target relationships that
limit YOLO Score improvement despite decent CAS results. The bidirectional attention mechanism
provides a comprehensive solution. Specifically, Wat2ObjCA effectively improves CAS and YOLO
Score by enhancing object features based on water context, while Obj2WatCA further refines water
characteristics using object conditions. The full integration of all modules achieves state-of-the-art
performance, highlighting the importance of our innovative dual-path modeling that simultaneously
ensures high-quality scene generation and physically plausible object-water interactions.

4It is worth noting a counterintuitive observation: detection performance under sunny conditions was lower,
likely due to intense sunlight causing water surface glare, which is uncommon in typical training data.
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Figure 6: Correlation between detection accu-
racy and the number of generated samples used.

Effectiveness of AAS. To evaluate the effective-
ness of the proposed Attribute-correlated Active
Sampling (AAS) strategy, we conducted compara-
tive experiments using YOLOv10 as the baseline
detector. As shown in Table 6, the results demon-
strate AAS’s clear advantages over random sam-
pling through two key observations. First, AAS
achieves superior performance. The mAP and
mAP50 obtained using 5,000 AAS-selected sam-
ples match that of 10,000 randomly sampled in-
stances, while significantly higher than the ver-
sion of 5,000 randomly sampled instances. Second,
while random sampling shows substantial perfor-
mance gains when increasing from 5,000 to 10,000
samples (∆mAP=1.83 and ∆mAP50=1.76), AAS
exhibits minimal improvement (∆mAP=0.51 and ∆mAP50=0.80) in this range. This difference
stems from AAS’s targeted selection mechanism, which effectively identifies and prioritizes high-
value samples in the sampling phase, leading to faster convergence and reduced need for additional
samples. To thoroughly validate this and determine the appropriate number of training samples,
this section conducted relevant experiments. As shown in Fig. 6, a significant saturation effect in
detection performance improvement was observed when the data volume increased from 10,000 to
20,000 samples. This phenomenon indicates that the AAS method achieves performance gains by
pre-screening the most valuable generated samples. For lower-ranked samples, since the model has
already learned relevant features from previous high-value samples, the information contained in these
samples is no longer novel to the model. Therefore, further increasing such samples does not lead
to significant performance improvements. The active selection strategy of the AAS method enables
rapid performance gains with a smaller data volume while significantly reducing computational costs
and additional training overhead. This stands in sharp contrast to traditional methods that rely on
large amounts of data. To sum up, these results collectively confirm the efficiency and practicality of
the AAS method in maritime scene object detection tasks.

5 Conclusion, Limitation, and Future Work

In this paper, we have presented a data generation-selection paradigm (Neptune-X) to reduce the
cost of data collection and annotation while addressing cross-attribute training difficulty caused by
limited sample diversity. Our method intends to enhance maritime scene generation through attention
to object–water interaction and improve training efficiency via an attribute-aware sample selection
strategy that considers both predicted accuracy and difficulty priors. We have also constructed a
new dataset to support maritime image generation. Extensive experiments have demonstrated the
effectiveness of our approach in both image synthesis and data augmentation, significantly boosting
the detection performance.

While our method demonstrates significantly better performance, it currently relies on a fixed set of
predefined attribute categories (e.g., viewpoint, lighting condition, object type) to estimate training
difficulty. This discrete formulation may limit the granularity of difficulty modeling and adaptation.
Future work should explore the framework extension to support continuous or hierarchical attribute
spaces, allowing for more nuanced difficulty estimation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in Sec. 1. Also see Sec. 4 and
Appendix A for more theoretical and experimental evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Sec. 5 for limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14



Justification: This paper does not include theoretical contribution.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the implementation details in the paper for result repro-
ducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use the publicly accessible dataset in Table 1. Once the blind review period
is finished, we’ll open-source all codes, instructions, and model checkpoints.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Sec. 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiment is computationally intensive thus we only report the average
number on the testing set.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is not related to any private or personal data, and there are no
explicit negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not foresee any high risk for misuse of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code, data, and models are open-sourced by the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new dataset will be released if the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The paper does not involve LLMs in the design of ideas or methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix / Supplemental Material

A.1 Overview

This supplement provides more data and method details as well as experimental results, including:

• We provide detailed information about the Maritime Generated Dataset (MGD).

• We offer more details about the proposed Neptune-X.

• We conduct more experiments to verify the effectiveness and superiority of the proposed method.

Maritime
Generation
Dataset

Figure 7: The percentages of various dimensions
and attributes in our MGD dataset.

Table 7: Sample numbers and percentages of
various dimensions and attributes.

Dimensions Attributes Number Proportion

Category

ship 29313 72.44%
buoy 5326 13.16%
person 4843 11.97%
floating obj. 618 1.53%
fixed obj. 366 0.90%

View
shore 6042 50.77%
ship 2459 20.66%
aerial 3399 28.56%

Location

sea 5829 48.98%
river 5531 46.48%
harbor 282 2.37%
lake 258 2.17%

Imaging
Environment

sunny 6491 54.55%
cloudy 2794 23.48%
foggy 1225 10.29%
rainy 515 4.33%
dawn/dusk 583 4.90%
night 292 2.45%

A.2 Maritime Generation Dataset

We constructed the Maritime Generation Dataset (MGD), the first generation dataset for maritime
scenarios. In particular, the MGD contains 11,900 samples covering diverse semantic scenes. Fig. 7
and Table 7 illustrate the numbers and percentages of samples of MGD in terms of viewpoint, location,
imaging environment, and object category. Furthermore, each image sample contains visual images
with corresponding labels, including water surface mask, object bounding boxes, and multi-level
descriptions of the entire image, water surface, and objects. More specifically, the flowchart of data
labelling is shown in Fig. 8, which contains two steps: data collection and data annotation.

Data Collection. The data collection process involves the utilization of imaging devices deployed
across multiple platforms. During this phase, we strategically selected and leveraged multiple open-
source maritime benchmarks while employing diverse imaging equipment, including surveillance
cameras, DSLR cameras, and smartphone cameras, to gather large-scale raw data. The collected
datasets exhibit significant variations in geographical capture locations, temporal acquisition param-
eters, meteorological conditions, water surface characteristics, and surface target typologies. This
systematic diversity guarantees the comprehensive data richness, thereby enabling generative models
to synthesize highly diversified maritime scenarios.

Data Annotation. To optimize annotation efficiency, we employed state-of-the-art image detectors,
segmenters, and vision-language models for assisted annotation, with human annotators performing
calibration and verification of the generated labels. In the first stage, the T-Rex2 [15] and SAM2
[27] models are utilized to generate target bounding boxes and water surface masks, respectively.
This semi-automated process requires manual input: exemplar images for T-Rex initialization and
point prompts for SAM2 segmentation. All model outputs undergo secondary human verification
to ensure annotation accuracy. The second stage leverages the state-of-the-art LLaVA-Next [17]
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Figure 8: Flowchart of data labelling.

Algorithm 1 BiOW-Attn

Input: Input features fin, object’s embeddings {Cio}Oi=1, objects’ masks {Mi
o}Oi=1, water sur-

face embedding Cw, water surface maskMw, learnable null object/water surface embeddings
{nullobj,nullwat}, learnable object/water surface gated scaler {βo, βw}.

1: fin = reshape(Fin).
2: Take Cio and fin as inputs and calculate the object-guided feature f i

o via Eq. (4).
3: Take {f i

o}Oi=1, {Mi
o}Oi=1, and nullobj as inputs and get final object-guided feature Fo via Eq. (5).

4: Take Cw and fin as inputs and calculate the water surface-guided feature fw via Eq. (4).
5: Take fw,Mw, and nullwat as inputs and get final water surface-guided feature Fw via Eq. (5).
6: Perform bidirectional attention to obtain F

′

o and F
′

w.
7: fout = fin + tanh(βo) · F

′

o + tanh(βw) · F
′

w.
8: Fout = reshape(MLP(fout)).
9: return Fout.

vision-language model for multi-scale scene understanding. Through tailored text prompts, the model
analyzes three distinct levels of visual features:

• Image Description includes shooting scenarios, camera perspectives, timestamps, weather condi-
tions, and lighting.

• Water Surface Description contains surface calmness, color properties, and wave patterns.

• Object Description documents color attributes and detailed category features (e.g., specific ship
classifications)5.

A.3 More Details of Neptune-X

Bidirectional Object-Water Attention. The detailed process of the proposed BiOW-Attn module is
shown in Algorithm 1. Specifically, we first reshape the input features Fin to facilitate cross-attention
computation (line 1). We then perform spatially masked cross-attention operations via Eq. (4) and (5)
to obtain object-conditioned feature Fo and water-conditioned feature Fw respectively (lines 2-5). A
bidirectional cross-attention module subsequently models interaction relationships between the water
surface object and the aquatic surrounding, followed by gated residual fusion (lines 6-7). During
initial training, we set βo = βw = 0 to ensure fine-tuning stability. Finally, a Feed-Forward Network
(FFN) processes the fused features, with output obtained through final reshaping (lines 8-9).

5Note that these fine-grained object features are extracted for more controllable image generation. Thus, this
type of label is excluded from the data generation pipeline to promote randomness in the generated objects.
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Algorithm 2 Data Sampling

Input: X-to-Maritime generator G, text condition C, object conditions {Cio,Mi
o}Oi=1, water surface

condition {Cw,Mw}, number of samples N , selected sample collection Xsel, ResNet classifier
ζ, CLIP text/visual encoder {ξ, ξv}, pre-trained detetcor D.

1: for n = 1, ..., N do
2: Igen = G(C, {Cio,Mi

o}Oi=1, {Cw,Mw}).
3: Calculate layout accuracy Accl between ζ(Igen) and category labels cls corresponding to
{Cio}Oi=1.

4: Calculate semantic accuracy Accs between ξv(Igen) and ξ(cls).
5: if Accl > τl and Accs > τs then
6: Get the predicted bounding boxes via D(Igen).
7: Calculate the training difficulty dn of n-th samples via Eq. (10).
8: end if
9: end for

10: Sort by d and get the sorted sample set.
11: Select the top-k samples and put them into Xsel.
12: return Xsel

High-quality Data Generation. During the data generation phase, we enrich the generated samples
by combining layout conditions and text caption conditions, ultimately producing 100,000 generated
images. Subsequently, we perform data filtering through two key evaluation metrics: layout similarity
and semantic similarity.

For layout similarity assessment, we train a ResNet-based classifier on the MGD dataset to evaluate
the generated samples. Meanwhile, we employ the CLIP model to compute the cosine similarity
between each image and its corresponding textual object descriptions as the semantic similarity
metric. For example, if the image contains a ship and a person, then the description is ‘an image of a
ship and a person’.

In the active sampling stage, we first use the pre-trained detector to identify objects in the images and
calculate accuracy by comparing them with the bounding boxes specified in the layout conditions.
We then introduce the attribute-related training difficulty factors (ATDFs) as weighting coefficients.
Finally, we rank the results and filter underperforming samples into a training pool for iterative model
optimization. The detailed flowchart is illustrated in Algorithm 2.

A.4 Experiments Results

Evaluation Metrics. This section introduces the mAP metric used in object detection and three other
indicators (FID, CAS, and YOLO Score) used in image generation.

• mAP and mAP50: Mean Average Precision (mAP) serves as the core evaluation metric for object
detection tasks. The calculation process involves four key steps. First, True Positives (TP) and
False Positives (FP) are determined based on the Intersection-over-Union (IoU) threshold. Then,
detection results are sorted by confidence scores to plot the Precision-Recall (P-R) curve. The area
under the P-R curve is computed to obtain Average Precision (AP) for each class. Finally, the
mean of AP values across all classes yields the mAP. The PASCAL VOC benchmark employs a
fixed IoU threshold of 0.5 (denoted as mAP50), while the COCO dataset adopts averaged results
across IoU thresholds ranging from 0.5 to 0.95 (denoted as mAP). Compared to mAP50, mAP
imposes more stringent localization accuracy requirements. These two metrics comprehensively
reflect a model’s detection stability across categories and its localization precision.

• Fréchet Inception Distance (FID): FID [13] is a basic metric for generative model evaluation,
measuring the statistical distribution discrepancy between generated images and ground truth in
the latent space. In particular, this process can be divided into two steps, i.e, feature extraction
and distribution distance calculation. FID first extracts the latent feature vectors fgen, fgt of
generated and real images by Inception-v3, and calculates the mean {µgen, µgt} and covariance
matrix {Σgen,Σgt}. Finally, the FID distance can be calculated by

FID = ∥µgen − µgt∥2 + Tr
(
Σgen +Σgt − 2(ΣgenΣgt)

1/2
)
, (11)
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Figure 9: Image generation cases on shore viewpoints.

where ∥ · ∥2 denotes the squared Euclidean norm, Tr(·) is the matrix trace operator.
• Classification Score (CAS): CAS [28] serves as a critical metric for evaluating the generation

quality within bounding box-based object constraints. To compute CAS, we first train a ResNet-101
classifier on our MGD for 100 epochs. The trained model is then used to evaluate classification
accuracy by comparing the categories predicted by ResNet-101 on generated images against the
ground-truth categories specified in the input object conditions.

• YOLO Score: YOLO Score [19] is used to evaluate the location and category accuracy of the
generated objects. In particular, we utilize a YOLOv10 model trained on our MGD for 100
epochs. This trained detector evaluates generated samples by computing three standard object
detection metrics, i.e., mAP (averaged over IoU thresholds from 0.5 to 0.95), mAP50 (using 0.5
IoU threshold), and mAP75 (using 0.75 IoU threshold), which collectively form the YOLO Score.

More Generation Results. To fully demonstrate the powerful image generation capabilities of our
proposed X-to-Maritime framework, we present more visualization results. As shown in Figs. 9
and 10, we display generated maritime scenes from shore, ship, and aerial perspectives, respectively.
Notably, our model demonstrates accurate comprehension of input multi-modality conditions. The
generation process is jointly guided by both textual caption conditions (for scene description) and
layout conditions (for controlling object and water surface position and content). Most significantly,
the framework faithfully reproduces hydrodynamic interactions between water surface objects and
their aquatic surroundings while maintaining strict physical plausibility. This capability directly
stems from our novel bidirectional object-water cross-attention mechanism, which effectively models
the mutual influences between maritime entities and their environment.

In addition, Fig. 11 presents two cases with different random seeds and the removal of text conditions
only. The results demonstrate that under identical input settings, both the generated objects and the
overall background exhibit rich diversity. This further validates the diversity of the generated results
produced by the proposed model, an advantage primarily attributed to the rich semantic features
encompassed in the constructed MGD maritime generation dataset.

More Results of Different Generation Configurations. As shown in Fig. 12, we compare the
generation quality of models under different configurations. It can be clearly observed that using only
the ObjCA module, while providing effective object control, fails to account for aquatic environments,
leading to unsatisfactory generation results. Representative examples include unrealistic water-object
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Figure 10: Image generation cases on ship and aerial viewpoints.

‘An image of a river scene 
taken from a shore angle 
during the daytime. The 
weather appears to be clear 

with ample sunlight, 
suggesting good visibility. 
The water surface is calm 

with a light blue-green hue, 

reflecting the sky above.‘
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(a) Visualization of Different Random Seed Generation Results

(b) Visualization of Text-Free Conditional Generation Results

Figure 11: Image generation cases using (a) different random seeds and (b) only removing text
conditions. The main reason for the scene similarity in (a) is that the text specifies background and
hydrological conditions, while the unspecified objects exhibit diversity.

interactions in the second case and ships floating mid-air in the third generated sample. In contrast,
introducing water surface conditions significantly alleviates these abnormal generation cases. The
Obj2WatCA module enhances generation quality by improving water realism through object-to-water
influence. However, the object control precision becomes reduced. This trade-off is visible in the first
case, where objects with inaccurate positions appear in the generated results. Meanwhile, using only
Wat2ObjCA improves visual target generation quality but still produces build failures. Ultimately,
by integrating the advantages of all modules, our method demonstrates superior performance in
simulating realistic object-water interactions while maintaining high-fidelity generation.

Comparison of Different Generators in Data Augmentation. This section aims to validate the
effectiveness of the proposed X-to-Maritime framework in maritime object detection by comparing
the performance improvements achieved through different generated data. The generated data were
then combined with training data to fine-tune object detection models. Specifically, all generative
models utilized identical conditional inputs to generate expanded data. These data, along with original
data, were used for fine-tuning the detectors to ensure fairness and comparability of experimental
results. In the experiments, YOLOv10 [37] was employed as the object detection model, with mAP
and mAP50 serving as evaluation metrics.
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Figure 12: Comparison of different configurations in image generation.

Table 8: Comparison of different data generation meth-
ods on YOLOv10 detection accuracy.

Methods Venue & Year mAP ↑ mAP50 ↑
w/o 39.99 61.13

LayoutDiff [50] CVPR2023 40.03 61.01
GLIGEN [18] CVPR2023 41.54 62.85
InstDiff [38] CVPR2024 41.32 62.57
RC-L2I [5] NeurIPS2024 41.48 63.26
Ours NeurIPS2025 43.62 65.50

Table 9: Comparison of different sampling
methods on YOLOv10 detection accuracy.

Methods mAP ↑ mAP50 ↑
w/o 39.99 61.13

Entropy 42.62 64.40
Variance 42.42 64.17
Margin 42.87 64.55
Greedy K-Center 42.24 63.90
K-Means Corset 42.27 63.79
AAS 43.62 65.50

The experimental results, shown in Table 8, indicate that existing generative methods perform poorly
in maritime scenarios. Due to their failure to adequately account for the unique characteristics
of maritime environments, such as complex interactions between water bodies and objects, the
synthetic data generated by these methods exhibit significant shortcomings in realism and detail
fidelity. In contrast, the proposed X-to-Maritime framework incorporates a Bidirectional Object-
Water Attention (BiOW-Attn) module to model the water-object interaction. This module effectively
captures the influence of water on object appearance and the feedback effects of objects on water,
thereby generating high-quality results. Experimental results demonstrate that the generated data
produced by the X-to-Maritime framework significantly enhance detection accuracy.

Comparison of Different Sampling Methods in Data Augmentation. To comprehensively demon-
strate the advantages of the proposed AAS method, extensive comparative experiments were con-
ducted with five different active learning approaches. These methods include uncertainty-based
sampling strategies (Entropy, Variance, and Margin) and diversity-based sampling strategies (Greedy
K-Center and K-Means Corset). For the diversity-based methods, a 7-dimensional feature vector
was constructed, incorporating the number of detection boxes, average detection box area, stan-
dard deviation of detection box areas, average confidence score, standard deviation of confidence
scores, mean x-coordinate of detection boxes, mean y-coordinate of detection boxes, and the number
of object categories. The experimental results, presented in Tables 9, show that while traditional
active learning methods can improve object detection performance to some extent, the proposed
AAS method achieves significantly greater enhancement by comprehensively considering attributes
specific to maritime scenarios, such as water conditions, weather states, and viewpoint information.
This validates the effectiveness of AAS in selecting the most valuable synthetic samples through
the integration of multi-dimensional attribute factors, further demonstrating its superiority in visual
perception for maritime intelligent transportation systems.
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Table 10: Ablation study of different generation configurations on detection performance.

ObjCA WatCA BiCA mAP ↑ mAP50 ↑Obj2WatCA Wat2ObjCA

✓ 40.94 61.18
✓ ✓ 41.09 61.15
✓ ✓ ✓ 42.54 63.85
✓ ✓ ✓ 42.75 63.93
✓ ✓ ✓ ✓ 43.62 65.50

Table 11: Ablation study of ATDFs on detection performance.
Viewpoint Location Imaging Environment Object Category mAP ↑ mAP50 ↑

✓ 40.26 62.09
✓ ✓ 41.27 62.26
✓ ✓ ✓ 41.40 63.10
✓ ✓ ✓ ✓ 43.62 65.50

Ablation Study of Data Augmentation with Different Generation Configurations. This section
conducts an ablation study on each component of the BiOW-Attn module to quantitatively analyze
their individual contributions to the improvement of object detection performance, as shown in
Table 10. The experimental results demonstrate that solely introducing water conditions can enhance
object detection performance to some extent, but such improvement remains limited. In contrast,
the bidirectional attention module, by simulating the interactions between water bodies and objects,
more accurately reflects the physical characteristics of maritime scenarios, thereby achieving greater
performance gains in object detection.

‘An image of a river scene 
taken from a ship during 
the daytime. The weather is 
overcast with a cloudy sky, 
and the lighting is soft and 
diffused. The water surface 
is calm with gentle ripples.‘
<ship> A blue sailboat 
with a white sail.
<ship> A white and orange 
sailboat with a single sail.
<ship> A white and blue 
sailboat with a single sail.

‘An image of a sea scene 
taken from a shore angle 
during the daytime. The 
weather is clear with a blue 
sky and the lighting is 
bright, suggesting good 
visibility. The water surface 
exhibits a calm, blue-green 
color with minimal wave 
activity.‘
<ship> A cargo ship with a 
red hull.
<ship> A cargo ship with a 
blue hull.

‘An image of a river scene 
taken from a shore view 
during the daytime. The 
weather appears to be 
overcast with soft, diffused 
lighting. The water surface 
exhibits a calm, light blue-
green color with gentle 
ripples.‘
<ship> A blue fishing 
boat.

‘An image of a river scene 
taken from a shore during 
the daytime. The weather 
appears to be overcast with a 
soft, diffused lighting. The 
water surface is calm with a 
slight greenish hue.‘
<ship> A cargo ship 
carrying sand.

‘An image of a sea scene 
taken from a ship during 
the daytime. The weather is 
clear with bright sunlight. 
The water surface is calm 
with a slight ripple.‘
<ship> A white inflatable 
boat with a person in red 
clothes.

‘An image of a lake scene 
taken from an aerial view 
during the daytime. The 
weather appears to be clear 
with ample sunlight. The 
water surface is calm with a 
slight ripple effect.‘
<ship> 
<ship> A white and red 
motorboat with a canopy.
<ship> A white cruise ship 
with a pointed shape.
<ship> A white and red 
speedboat with a canopy.

ship
ship

ship ship
ship

ship ship
ship

ship
ship

ship

ship

Figure 13: Image generation cases via fine-grained object control.

Ablation Study of ATDFs. In maritime object detection tasks, the diversity and quality of samples
are crucial for the model’s generalization capability. To more effectively leverage generated data,
we propose an Attribute-correlated Active Sampling (AAS) strategy based on Attribute-correlated
Training Difficulty Factors (ATDFs). This strategy quantifies the importance of each sample across
different attribute dimensions and prioritizes the selection of samples that contribute most to improv-
ing object detection performance. To further investigate the role of ATDFs in sample selection, this
section validates the effectiveness of each dimensional ATDF in object detection tasks. As shown
in Table 11, the contributions of different attribute-dimensional factors to object detection perfor-
mance are presented. Each attribute-dimensional factor is associated with specific characteristics of
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maritime scenarios. The experimental results indicate that as more attribute-dimensional factors are
incorporated, the sample selection strategy becomes more precise in identifying the most valuable
samples for enhancing detection performance. Specifically, when only a single-dimensional factor
is used, the improvement in object detection performance is relatively limited. However, as the
number of dimensional factors increases, the accuracy of sample selection significantly improves,
and object detection performance demonstrates a gradual upward trend. This suggests that combining
multi-dimensional attribute factors can more comprehensively capture the complexity and diversity
of samples, thereby providing more valuable training data for detection models.

Discussion on More Controllable X-to-Maritime. In our data generation task, to enhance the
diversity of generated targets, we employed only the object category as the object embedding
feature. To explore more fine-grained control over the generated targets, including detailed category
specifications (e.g., ship types like sailboats, inflatable boats, cargo ships, fishing ships) and visual
attributes like color, we concatenate both the object category and its detailed description to form a
more controllable object embedding for model training. As demonstrated in Fig. 13, the trained model
exhibits clear awareness of multi-level textual descriptions (at the image level, water surface level,
and object level), while accurately simulating realistic maritime scenes according to layout conditions.
The generated samples convincingly show the model’s capability to respond to hierarchical textual
controls while maintaining photorealistic quality.
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