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PaCEr: Network Embedding From Positional to Structural
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ABSTRACT

Network embedding plays an important role in a variety of social
network applications. Existing network embedding methods, ex-
plicitly or implicitly, can be categorized into positional embedding
(PE) methods or structural embedding (SE) methods. Specifically,
PE methods encode the positional information and obtain simi-
lar embeddings for adjacent/close nodes, while SE methods aim
to learn identical representations for nodes with the same local
structural patterns, even if the two nodes are far away from each
other. The disparate designs of the two types of methods lead to
an apparent dilemma in that no embedding could perfectly cap-
ture both positional and structural information. In this paper, we
seek to demystify the underlying relationship between positional
embedding and structural embedding. We first point out that the
positional embedding can produce the structural embedding with
simple transformations, while the opposite direction cannot hold.
Based on this finding, a novel network embedding model (PaCEr)
is proposed, which optimizes the positional embedding with the
help of randomwalk with restart (RWR) proximity distribution, and
such positional embedding is then used to seamlessly obtain the
structural embedding with simple transformations. Furthermore,
two variants of PaCEr are proposed to handle node classification
task on homophilic and heterophilic graphs. Extensive experiments
on 17 datasets show that PaCEr achieves comparable or better
performance than the state-of-the-arts.

KEYWORDS

Positional embedding; Structural embedding; Link prediction; Node
classification.

1 INTRODUCTION

In the age of big data and AI, networks emerge in a variety of high-
impact domains, including item recommendation in e-commerce
[49], academic co-author recommendation [43], fake news detec-
tion [56] and many more. As a pivotal role in these real-world
applications, network embedding based approaches aim to map
nodes or the whole graph into low dimensional vectors by encod-
ing the topological and attribute information, and have achieved
strong empirical performance. Early works [25, 39] utilize matrix
factorization to obtain a low-rank representation of the graph. In-
spired byWord2Vec [26], DeepWalk [32] and node2vec [14] propose
to perform random walks on graph, which are analogous to the
sampled positive context in Word2Vec [26]. Metapath2vec [8] and
HIN2Vec [11] extend randomwalks on homogeneous graph tometa-
paths to learn the node representations for heterogeneous graph.
Recently, graph convolutional network (GCN) [19] has become a
powerful graph representation learning paradigm, which embraces
the message-passing mechanism to aggregate features from ad-
jacent nodes. Rooted in this message passing mechanism, more
advanced GCN architectures have been proposed to strengthen the
node representations. To name a few, GraphSAGE [15] randomly
samples nodes from two-hop neighbors for feature aggregation,

PE methods SE methods

MF based RW based SS based GCN based

EVD [1]
NetMF [33]

GF [2]

DeepWalk [32]
node2vec [14]

SEGK [28]
struct2vec [34]
GraphWave [9]

GCN [19]
GIN [55]
GAT [46]

Table 1: Some representative positional embedding methods

and structural embedding methods. MF represents matrix

factorization, RW is the abbreviation for random walk and

SS denotes structural similarity.

GAT [46] introduces the attention mechanism [45] to calculate the
weights of connected nodes and APPNP [21] leverages personalized
PageRank [29] to capture the information from distant nodes.

Explicitly or implicitly, existing network embedding methods
fall into the following two categories [35, 62], including (1) po-
sitional embedding (PE) methods, and (2) structural embedding
(SE) methods. Positional embeddings obtained by PE methods are
expected to seize the relative distance/position information w.r.t.
specific nodes (e.g., direct connection, shortest path distance or
proximity score). Typical PE methods includes matrix factorization,
DeepWalk, node2vec, methpath2vec, etc.1 On the other hand, SE
methods aim to learn similar embeddings for nodes with similar
local structural patterns. Struct2vec [34] and most message-passing
based GCNs [58, 59] belong to this category. In Table 1, we list some
representative PE and SE methods.

However, given the disparate objectives of PE and SE methods,
we inevitably encounter the following dilemma in network embed-
ding: there does not exist an embedding that can perfectly capture
both positional and structural information simultaneously. For an
intuitive illustration, we utilize the example in Figure 1. On the one
hand, node 𝑢0 and 𝑢6 have identical topological structure (i.e., they
are isomorphic). Consequently, we can obtain same embeddings for
node 𝑢0 and 𝑢6 according to structural information. On the other
hand, from the perspective of positional information, 𝑢0 is directly
connected to 𝑢1, while 𝑢6 is far away from 𝑢1, which forces node
𝑢0 and 𝑢6 to have divergent embeddings.

Hence, the following two fundamental questions arise, Q1: How
to resolve the dilemma caused by the disparate targets of positional

embedding and structural embedding? and, furthermore, Q2: What

is the underlying relationship between positional embedding and

structural embedding?

To answer Q1, existing studies have made tremendous efforts to
integrate positional information and structural information in the
proposed algorithms. For instance, PGNN [59] constructs anchor
node sets and combines the shortest path distance information with
message-passing based GCN architectures. Cui et al. [7] explore
various positional features (e.g., eigenvector of graph Laplacian and
the output of DeepWalk [32]) and structural features (e.g., degree
and pagerank score), and integrate them into GraphSAGE [15].
PEG [48] uses different channels to leverage the original node
features and the positional features. However, most, if not all, of

1According to [33], RW based methods can be regarded as implicit matrix factorization.
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Figure 1: An intuitive example to illustrate the dilemma: 𝑢0
and 𝑢6 are isomorphic node pair. The structural embedding

requires that the corresponding embeddings are the same,

i.e., 𝑓 (𝑢0) = 𝑓 (𝑢6). However, since 𝑢0 is connected to 𝑢1 but 𝑢6
is distant from 𝑢1, the embeddings of nodes 𝑢0 and 𝑢6 should
be dissimilar from the perspective of positional embedding.

No matter what link prediction function ℎ(·, ·) is adopted,
we will always have ℎ(𝑓 (𝑢0), 𝑓 (𝑢1)) = ℎ(𝑓 (𝑢6), 𝑓 (𝑢1)), which

means that it is difficult to predict the existence of the link

between 𝑢0 and𝑢1, and the non-existence of the link between

𝑢1 and 𝑢6.

these works follow a presumption that positional features and
structural features are two distinct types of information, and have
to be combined together. 2

In this paper, we first thoroughly investigate the relation be-
tween positional embedding and structural embedding (Q2). To
be specific, we do not particularly isolate the two types of embed-
dings and reveal that positional embedding can be transformed to
structural embedding with simple operations, while the opposite
direction does not hold. Namely, the information encoded in the
structural embedding is redundant given informative positional
embedding, and we are therefore motivated to obtain informative
positional embedding and perform appropriate transformations to
generate the corresponding structural embedding (Q1). The key
insight is that each row of the normalized adjacency matrix serves
as a distribution vector representing the pairwise node proximity
(e.g., 𝑝 (𝑢𝑖 → 𝑢 𝑗 )), and we can obtain the positional embedding
and the structural embedding by conducting factorization over the
distribution and sorting the distribution, respectively.

By further generalizing the above analysis to a distribution ma-
trix defined by node proximity, we propose a novel network embed-
ding algorithm, PaCEr, which can (1) learn high-quality positional
embedding, and (2) utilize the learned positional embedding to
obtain a corresponding structural embedding in plain networks.3
The learned positional embedding and structural embedding can
be applied to downstream tasks such as link prediction and node
classification. Concretely, we first exploit random walk with restart
(RWR) [44] to obtain the proximity distribution, serving as the tar-
get distribution to be approximated by the product of positional em-
beddings. Specially, we prove that sorting the RWR proximity distri-
bution in the ascending/descending order will derive the structural
embeddings, which has expressive power that is lower-bounded
by the Weisfeiler-Lehman (WL) test [51]. Then, the positional em-
bedding is optimized by minimizing the KL-divergence between its
reconstructed distribution and the input distribution. Subsequently,

2In [41], the authors prove that positional embedding is equivalent to multi-node set

level structural embedding, which refers to the structural embedding of a multi-node
set and is different from the single-node level structural embedding we want to study
in this paper.
3A plain network refers to a graph whose nodes and edges do not possess attributes.

PaCEr sorts the reconstructed proximity distribution for each node
and yields the structural embedding. In addition, to deal with graphs
where nodes have attributes, we present two variants of PaCEr:
PaCEr-A targets at homophilic graph where connected nodes tend
to own similar attributes/features, while PaCEr-H is designed for
heterophilic graph where connected nodes may not have similar
attributes/features. Through extensive empirical evaluations on 17
real-world datasets in the following four tasks, including (1) link
prediction, (2) structural node classification [7] 4, (3) homophilic
node classification, and (4) heterophilic node classification, we cor-
roborate the high quality of the obtained positional and structural
embeddings from PaCEr,

To summarize, our contributions are threefold:
• Theoretical Analysis. Through analysis on the relation be-

tween positional embedding and structural embedding, we find
that the positional embedding can actually induce the structural
embedding with simple transformations.

• Novel Algorithms. Based on the theoretical analysis, we pro-
pose a network embedding model PaCEr, which innovatively
generates positional embeddings with RWR proximity distribu-
tion and utilizes the positional embedding to obtain the struc-
tural embedding. In addition, we propose two variants of PaCEr:
PaCEr-A and PaCEr-H to solve node classification task on ho-
mophilic and heterophilic graphs respectively.

• Experimental Results.We conduct extensive experiments on
17 datasets and empirically find that the proposed PaCEr achieves
comparable or better performance than the state-of-the-arts in
four representative graph learning tasks, which demonstrates the
superiority of PaCEr.

2 PROBLEM DEFINITION

In this section, we introduce the definitions of positional embedding
and structural embedding. We first summarize the main symbols
used in this paper. We adopt bold uppercase letters for matrices (e.g.,
A), bold lowercase letters for vectors (e.g., v), calligraphic letters for
sets (e.g., A) and lowercase letters for scalars (e.g., 𝑎). In addition,
we follow the convention in Matlab to represent the 𝑢-th row of
matrix A as A(𝑢, :), the 𝑣-th column as A(:, 𝑣), the (𝑢, 𝑣)-th entry
as A(𝑢, 𝑣) and the transpose of matrix A as A⊤.

Next, we give the formal definitions of node permutation, node
isomorphism and permutation invariant function, followed by the
definitions of structural embedding and positional embedding. We
mainly consider an undirected graphwithout node attributes, which
can be represented as 𝐺 = (V, E,A), where V is the node set,
E ⊂ V × V is the edge set, and A is the adjacency matrix. [41,
61] define node permutation, node isomorphism and permutation

invariant function as follows:

Definition 1. Node Permutation. Let 𝜋 represent the node index

permutation, which is a bijective mapping from V to V . All possible

permutations form the permutation group

∏
𝑛 , where 𝑛 = |V|. If 𝜋

acts on a node subset S ofV , it is denoted as 𝜋 (S) = {𝜋 (𝑢𝑖 ) |𝑢𝑖 ∈ S}.

Definition 2. Node Isomorphism. For two nodes 𝑢𝑖 and 𝑢 𝑗
belonging toV , given a non-negative integer hop number 𝑘 ∈ N , the

4Structural node classification targets at classifying nodes according to their local
structural patterns.
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𝑘-hop subgraphs starting from𝑢𝑖 and𝑢 𝑗 are denoted as𝐺
(𝑘 )
𝑢𝑖 = (S (𝑘 )

𝑢𝑖 ,

E (𝑘 )
𝑢𝑖 ,A(𝑘 )

𝑢𝑖 ) and 𝐺 (𝑘 )
𝑢 𝑗

= (S (𝑘 )
𝑢 𝑗

, E (𝑘 )
𝑢 𝑗

,A(𝑘 )
𝑢 𝑗

). We call that nodes 𝑢𝑖

and 𝑢 𝑗 are 𝑘-hop isomorphic (otherwise 𝑘-hop non-isomorphic), if

∃𝜋 ∈ ∏
𝑛 such thatS (𝑘 )

𝑢𝑖 = 𝜋 (S (𝑘 )
𝑢 𝑗

) andA(𝑘 )
𝑢𝑖 = 𝜋 (A(𝑘 )

𝑢 𝑗
). If∀𝑘 ∈ N ,

𝑢𝑖 and 𝑢 𝑗 are 𝑘-hop isomorphic, we call them isomorphic.

Definition 3. Permutation Invariant Function. A function 𝑓

defined on S𝑢𝑖 (𝑖 = 1, 2, . . . , 𝑛) is permutation invariant if ∀𝜋 ∈ ∏
𝑛 ,

𝑓 (S𝑢𝑖 ,A) = 𝑓 (𝜋 (S𝑢𝑖 ), 𝜋 (A)).

With the above definitions of node permutation, node isomor-

phism and permutation invariant function, we give the formal defi-
nition of the structural embedding as the following:

Definition 4. Structural Embedding. The 𝑘-hop structural

embedding of node 𝑢𝑖 can be defined as a function 𝑓 (𝑘 ) (·) on S (𝑘 )
𝑢𝑖 ,

where 𝑓 is permutation invariant. When 𝑘 → ∞, we use 𝑓 (𝑢𝑖 ) to
denote the structural embedding of node 𝑢𝑖 in the entire graph 𝐺 .

From the definition of structural embedding, we can see that the
𝑘-hop structural embeddings of two 𝑘-hop isomorphic nodes𝑢𝑖 and
𝑢 𝑗 should be identical (i.e., 𝑓 (𝑘 ) (𝑢𝑖 ) = 𝑓 (𝑘 ) (𝑢 𝑗 )). In addition, the
structural embedding should not be affected by the node indexing
because it is obtained by a permutation invariant function on S (𝑘 )

𝑢𝑖 .
We give the definition of positional embedding as follows [22]:

Definition 5. Positional Embedding. The positional embed-

ding of node 𝑢𝑖 can be denoted as 𝑔(𝑢𝑖 ), which is used to encode the

positional information 𝜙 (𝑙𝑢𝑖 ,𝑢 𝑗
) from 𝑢𝑖 to any 𝑢 𝑗 ∈ V . Here 𝜙 (·) is

an encoding function and 𝑙𝑢𝑖 ,𝑢 𝑗
= (W(𝑢𝑖 , 𝑢 𝑗 ), . . . ,W𝑘 (𝑢𝑖 , 𝑢 𝑗 ), . . . )

is the positional information, whereW = D−1A is one hop random

walk matrix and D is the degree matrix.

According to [22], 𝜙 (·) can be implemented with various en-
coding strategies. For example, if the output of 𝜙 is the index 𝑘

of the first non-zero element in 𝑙𝑢𝑖 ,𝑢 𝑗
, 𝜙 (·) represents the short-

est path distance, while it corresponds to a 𝑘-step random walk if
𝜙 (𝑙𝑢𝑖 ,𝑢 𝑗

) = W𝑘 (𝑢𝑖 , 𝑢 𝑗 ).

3 THE PACERMODEL

In this section, we reveal the underlying relationship between posi-
tional embedding and structural embedding, and present the pro-
posed model PaCEr. We start with the observation and our analysis
of row-normalized adjacency matrix, which inspires us to come up
with the key idea that the positional embedding can generate a pair-
wise proximity distribution, and sorting the proximity distribution
for each node can produce a structural embedding (Subsection 3.1).
Motivated by this idea, we first exploit random walk with restart
(RWR) [44] to acquire the target proximity distribution matrix, and
prove that the structural embedding can be obtained by simply
sorting each row of the proximity distribution matrix. Particularly,
the vanilla structural embeddings obtained by RWR have expres-
sive power not worse than the WL-test [51]. Based on this target
proximity distribution, we adopt the KL-divergence to optimize the
positional embedding (Subsection 3.2). Next, we demonstrate that
via some straightforward transformations (i.e., multiplication and
sorting), the positional embedding can be successfully transformed
into the corresponding structural embedding in PaCEr with the
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Figure 2: The left graph is the toy example from Figure 1,

where 𝑢0 has links connected to 𝑢1 and 𝑢3 in the spatial do-

main. The right graph is the augmented graph constructed

by Â, where 𝑢0 has links connected to the remaining nodes

(e.g., 𝑢5) with weight 0 marked with dashed lines.

help of the intermediate reconstructed proximity distribution. In ad-
dition, we propose two variants of PaCEr: PaCEr-A and PaCEr-H,
which generalize the structural embedding to attributed structural

embedding on both homophilic and heterophilic graphs (Subsec-
tion 3.3). Finally, we analyze the complexity of PaCEr and have a
brief discussion about the relationship between PaCEr and exist-
ing works from different research lines, which demonstrates that
PaCEr could act as a bridge between these different research lines
(Subsection 3.4).

3.1 Analysis and Key Idea

In this subsection, we present the key insight of the proposed PaCEr:
positional embedding can be transformed into structural embedding

by viewing each row of the row-normalized adjacency matrix as a

proximity distribution.
Given the adjacencymatrix of a graph (i.e.,A), the row-normalized

adjacency matrix (Â) is calculated by dividing each entry in the orig-
inal A by the degree of corresponding node: Â(𝑢𝑖 , 𝑢 𝑗 ) =

A(𝑢𝑖 ,𝑢 𝑗 )
𝑑𝑢𝑖

,
where 𝑑𝑢𝑖 is the degree of node 𝑢𝑖 . The row-normalized adjacency
matrix is widely used in many powerful graph algorithms like GCN
[19] and PageRank [29]. Usually, Â is interpreted in the spatial
domain. For example, Â functions as one hop random walk in Deep-
Walk [32] or one hop message-passing in GCN [19] for neighbor
nodes.

Here, we interpret the row-normalized adjacencymatrix from the
proximity distribution perspective rather than the spatial domain.
Taking the graph in Figure 1 as an example, 𝑢0 is linked to 𝑢1
and 𝑢3, and Â(𝑢0, :) = [0, 12 , 0,

1
2 , 0, 0, 0, 0]. By regarding Â(𝑢0, :) =

[0, 12 , 0,
1
2 , 0, 0, 0, 0] as a proximity distribution, we can construct a

new augmented graph for𝑢0 as shown in Figure 2(b). The difference
between the augmented graph in Figure 2(b) and the original graph
in Figure 2(a) is that node 𝑢0 is connected to nodes 𝑢2, 𝑢4, 𝑢5, 𝑢6, 𝑢7
with 0 weighted edges in the augmented graph, while in Figure 2(a),
𝑢0 has no edges linked to these nodes in the spatial domain.

With the augmented graph and proximity distribution, we de-
mystify the relation between the positional embedding and the
structural embedding. First, according to [20, 33, 41], the key idea
of most PE methods, including random-walk based methods [33],
graph auto-encoder (GAE) [20] and eigen-decomposition [41], is
to conduct matrix factorization on specific matrices. Among these
matrices, the row-normalized adjacency matrix (i.e., Â) is a widely
used one. From the view of proximity distribution, conducting
matrix factorization over Â and optimizing the positional embed-
ding is equivalent to approximating the proximity distribution, e.g.,

3
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minimizing ∥ℎ(𝑔(𝑢𝑖 ), 𝑔(𝑢 𝑗 )) −𝑝 (𝑢𝑖 → 𝑢 𝑗 )∥, where 𝑔(𝑢𝑖 ), 𝑔(𝑢 𝑗 ) rep-
resent positional embeddings, ℎ(·) is the pairwise function over
node embeddings such as dot product, and 𝑝 (𝑢𝑖 → 𝑢 𝑗 ) = Â(𝑢𝑖 , 𝑢 𝑗 )
is the proximity score (probability). We hence observe that the po-
sitional embedding is used to reconstruct the proximity distribution
matrix (i.e., Â) with the help of pairwise function ℎ(·, ·).

Furthermore, we investigate the relation between the proximity
distribution and structural embedding. By simply sorting each row
of Â, we notice that (1) node 𝑢1 and node 𝑢7 have identical sorted
vectors, i.e., [ 12 ,

1
2 , 0, 0, 0, 0, 0, 0], and (2) the sorted vectors for node

𝑢2 and node 𝑢4 are the same, i.e., [ 13 ,
1
3 ,

1
3 , 0, 0, 0, 0, 0]. According to

Definition 2 of node isomorphism, node pair (𝑢1, 𝑢7) and (𝑢2, 𝑢4) are
1-hop isomorphic respectively, i.e., owning the same degree. From
this example, we can see that with a sorting operation, the proximity
distribution can be transformed into a structural embedding, which
has the expressive power of testifying whether two nodes are 1-hop
isomorphic.

By incorporating the relation between proximity distribution
and structural/positional embedding, we introduce the key idea of
the proposed PaCEr as follows. In the ideal case, the positional em-
bedding is sufficiently informative to fully reconstruct the proximity
distribution matrix (e.g., Â) in the first step. In the second step, we
can acquire the structural embedding by a sorting operation 𝑅(·)
on the reconstructed proximity distribution. This reveals the rela-
tion between positional embedding and structural embedding: we
can utilize the positional embedding to produce the structural em-
bedding correspondingly. However, for the opposite direction, the
structural embedding cannot generate the positional embedding.
For example, 𝑅(Â(𝑢0, :)) is the structural embedding and it cannot
restore the original Â(𝑢0, :), i.e., we are unable to restore the original
proximity distribution [0, 12 , 0,

1
2 , 0, 0, 0, 0] from [ 12 ,

1
2 , 0, 0, 0, 0, 0, 0]

after permutation.
The relationship between positional embedding and structural

embedding can also be explained in an intuitive manner: the row-
normalized adjacency matrix Â contains all information to learn
the positional embedding and the structural embedding. If the posi-
tional embedding is informative enough to reconstruct Â, it has no
loss on the topological information, while the structural embedding
is unable to re-establish Â and bears topological information loss.
This also highlights the fundamental difference between PaCEr and
previous works: we point out that all the information captured by
the structural embedding is implicitly contained by an informative

positional embedding. This suggests that it might be unnecessary
to employ redundant channels or modules to incorporate the struc-
tural information into the positional embedding [7, 48]. Therefore,
the proposed PaCEr instead focuses on training an informative

positional embedding and construct an intermediate proximity dis-
tribution matrix, based on which the structural embedding can be
obtained.

Nevertheless, the row-normalized adjacency matrix Â is not
an ideal choice of the proximity distribution matrix for the po-
sitional embedding to approximate due to the following reasons.
First, Â is too coarse to capture positional information because
𝑝 (𝑢𝑖 → 𝑢 𝑗 ) ≠ 0 only when 𝑢𝑖 and 𝑢 𝑗 are directly connected. This
means that nodes outside 1 hop distance are treated equally with
𝑝 (𝑢𝑖 → 𝑢 𝑗 ) = 0 (e.g., 𝑝 (𝑢1 → 𝑢3) = 𝑝 (𝑢1 → 𝑢7) = 0). Second, the

structural embedding built upon Â merely possesses the expressive
power to test whether two nodes are 1-hop isomorphic, which is
insufficient for 𝑘-hop isomorphism problem, where 𝑘 > 1. How can
we find a proximity distribution matrix which is capable of (1) ac-
curately documenting the positional information, and (2) obtaining
better structural expressive power as the target distribution to be
approximated?

3.2 Positional Embedding Module

In this subsection, we introduce the positional embeddingmodule of
PaCEr. We choose the transpose of randomwalk with restart (RWR)
[44] to build the initial proximity distributionmatrix: r𝑢𝑖 = 𝑐Â⊤r𝑢𝑖 +
(1−𝑐)e𝑢𝑖 , where r𝑢𝑖 denotes the node proximity vector for node 𝑢𝑖 ,
1 − 𝑐 is the restart probability and e𝑢𝑖 represents a one-hot starting
vector with the 𝑢𝑖 -th element equal to 1 and all the remaining
elements equal to 0. From the above equation, we can obtain the
closed-form solution of r𝑢𝑖 as follows: r𝑢𝑖 = (1−𝑐)∑∞

𝑘=0 (𝑐Â
⊤)𝑘e𝑢𝑖 ,

where 𝑘 is the hop number. We can also derive the matrix form as
R = (1 − 𝑐)∑∞

𝑘=0 (𝑐Â
⊤)𝑘 I, where each column of R represents the

RWR vector, e.g., r𝑢𝑖 . We then choose the transpose of the RWR
matrix R⊤ as the target proximity distribution matrix.

Compared to the row-normalized matrix Â, R⊤ enjoys the fol-
lowing two strengths in building positional embedding and struc-
tural embedding. First, we can observe that r𝑢𝑖 can seize the dis-
tance/positional information for all nodes within 𝑘 hops (𝑘 ∈ N )
rather than only one hop neighborhood as in Â. In addition, R⊤
extends the proximity in Â from discrete values to continuous
values between [0,1], which are more accurate and contain more
detailed information regarding node-wise proximity. Second, re-
garding structural embedding, as mentioned in Subsection 3.1, Â
possesses the expressive power of testing whether two nodes are
1-hop isomorphic or not. A natural question arises: how is the expres-

sive power of 𝑅(R⊤ (𝑢𝑖 , :))? To answer this, we have the following
proposition regarding the expressive power of 𝑅(R⊤ (𝑢𝑖 , :)):

Proposition 1. 𝑅(R⊤ (𝑢𝑖 , :)) is permutation invariant and its

expressive power is not worse than the expressive power of 1-WL test.

Proof. See Appendix 7.1. □

Similar to WL-test [51], 𝑅(R⊤ (𝑢𝑖 , :)) and 𝑅(R⊤ (𝑢 𝑗 , :)) can also
be used to verify whether two nodes 𝑢𝑖 and 𝑢 𝑗 are isomorphic or
not. We have the following node isomorphism test algorithm with
𝑅(R⊤ (𝑢𝑖 , :)) in Algorithm 1. Note that Algorithm 1 can test whether
two nodes 𝑢𝑖 and 𝑢 𝑗 are non-isomorphic but can not ensure these
are definitely isomorphic, like the WL-test.5

Equipped with the two strengths of R⊤, we propose PaCEr for
bridging positional embedding and structural embedding, which is
composed of two modules (1) positional embedding module and (2)
structural embedding module. The overview of PaCEr is presented
in Figure 3. Specifically, for the positional embedding module, we
first calculate the transpose of the RWR matrix (R⊤). Then, given
node 𝑢𝑖 , we follow [14, 32] and randomly initialize a vector as the
positional embedding 𝑔(𝑢𝑖 ) of node 𝑢𝑖 (i.e., 𝑔(𝑢𝑖 ) = u𝑖 ), which
is to be optimized by PaCEr. The proximity distribution matrix

5Since the isomorphism problem is NP hard, the best output of any method is “possible-
isomorphic” under polynomial time complexity.
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Eq. (2)
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Eq. (5)
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PACER

PACER-A

PACER-H

Figure 3: Framework of PaCEr, which includes (1) the positional embedding module (the green box) and (2) the structural

embedding module (the purple box).

Algorithm 1 Node Isomorphism Test Algorithm by 𝑅(R⊤ (𝑢𝑖 , :))
and 𝑅(R⊤ (𝑢 𝑗 , :)) .
Input: (1) The adjacency matrix A for the graph 𝐺 ; (2) the restart-

ing probability 1− 𝑐 ; (3) two nodes to be tested: 𝑢𝑖 and 𝑢 𝑗 ; (4) the
maximum iteration (i.e., the maximum hop number) 𝑘max.

Output: Return "non-isomorphic" and the 𝑘first if 𝐺
(𝑘 )
𝑢𝑖 and 𝐺 (𝑘 )

𝑢 𝑗

are isomorphic for 𝑘 < 𝑘first but are non-isomorphic when
𝑘 = 𝑘first or "possible-isomorphic" when 𝐺

(𝑘max )
𝑢𝑖 and 𝐺

(𝑘max )
𝑢 𝑗

are isomorphic.
Calculate the row-normalized adjacency matrix Â with A;
while 𝑘 ≤ 𝑘max do

Calculate R⊤ (𝑢𝑖 , :) (r⊤𝑢𝑖 ) and R⊤ (𝑢 𝑗 , :) (r⊤𝑢 𝑗
);

Sort the proximity score within R⊤ (𝑢𝑖 , :) and R⊤ (𝑢𝑖 , :) in a
descending order to obtain 𝑅(R⊤ (𝑢𝑖 , :)) and 𝑅(R⊤ (𝑢 𝑗 , :));

if 𝑅(R⊤ (𝑢𝑖 , :)) ≠ 𝑅(R⊤ (𝑢𝑖 , :)) then
return "non-isomorphic" and 𝑘first = 𝑘 .

end if

𝑘 = 𝑘 + 1;
end while

return "possible-isomorphic".

R⊤ is asymmetric (i.e., R⊤ (𝑢𝑖 , 𝑢 𝑗 ) ≠ R⊤ (𝑢 𝑗 , 𝑢𝑖 )), hence directly
applying the dot product ℎ(𝑢𝑖 , 𝑢 𝑗 ) = u⊤

𝑖
u𝑗 (one single value) to

approximate both R⊤ (𝑢𝑖 , 𝑢 𝑗 ) and R⊤ (𝑢 𝑗 , 𝑢𝑖 ) (two different values)
is not feasible. Therefore, we conduct a column-wise split on the
positional embedding u𝑖 , which can be divided into the left half
uleft
𝑖

and the right half uright
𝑖

:

u𝑖 = CONCAT(uleft𝑖 , uright
𝑖

). (1)

Based on Eq. (1), we denote the positional embedding of the
graph 𝐺 as U = CONCAT(Uleft,Uright). Thus, the reconstructed
proximity distribution P(𝑢𝑖 , :) can be calculated as:

P(𝑢𝑖 , :) = Softmax(Uleft (𝑢𝑖 , :)Uright⊤), (2)

where Softmax(·) [5] is utilized to normalize the vector as a proba-
bility distribution.

Ultimately, we leverage KL-divergence to optimize the positional
embedding by minimizing the distance between the reconstructed
proximity distribution and the target proximity distribution as
follows:

𝐿𝑝𝑒 =
∑︁

𝑢𝑖 ∈V
KL(R⊤ (𝑢𝑖 , :), P(𝑢𝑖 , :)) . (3)

3.3 Structural Embedding Module

In this subsection, we present the structural embedding module of
PaCEr. In addition, we propose two variants of PaCEr for attributed
graphs where node attributes are available, including PaCEr-A for
homophilic graphs and PaCEr-H for heterophilic graphs.

As mentioned in Subsection 3.1, PaCEr is able to learn an infor-

mative positional embedding, and this positional embedding can be
manipulated to generate the corresponding structural embedding.
Similar to the analysis on the proximity distribution matrix (i.e.,
R⊤), PaCEr sorts the reconstructed proximity distribution P(𝑢𝑖 , :)
after 𝐿𝑝𝑒 converges to obtain the structural embedding for 𝑢𝑖 as:

𝑓 (𝑢𝑖 ) = 𝑅(P(𝑢𝑖 , :)), (4)

where 𝑓 (𝑢𝑖 ) is the structural embedding of node 𝑢𝑖 and 𝑅(·) is the
sorting operation.

However, the structural embedding in Eq. (4) does not encode
the node attribute information (i.e., X ∈ R𝑛×𝑑𝑥 ), where 𝑑𝑥 is the
dimension of node attribute X(𝑢𝑖 , :). To address this, we further
propose two variants of PaCEr, named PaCEr-A and PaCEr-H.
PaCEr-A. For homophilic graphs where close nodes tend to pos-
sess similar attributes and labels, we propose PaCEr-A. We notice
that P(𝑢𝑖 , 𝑢 𝑗 ) measures the proximity score between node 𝑢𝑖 and
𝑢 𝑗 , and P(𝑢𝑖 , :) represents a distribution. Therefore, we can directly
employ P(𝑢𝑖 , 𝑢 𝑗 ) as the probability of propagating feature/attribute
from 𝑢𝑖 to 𝑢 𝑗 (𝑝 (𝑢𝑖 → 𝑢 𝑗 )):

𝑓 (𝑢 𝑗 ) =
∑︁
𝑢𝑖

P(𝑢𝑖 , 𝑢 𝑗 )X(𝑢𝑖 , :) . (5)

We can observe that Eq. (5) is very similar to the one-layer
GCN’s message-passing on the augmented graph in Figure 2(b).
As shown in Figure 2(b), compared to the augmented graph from
the row-normalized matrix Â where non-zero edge weights only
exist for one-hop neighborhood, the graph obtained from the prox-
imity distribution matrix (i.e., P(𝑢𝑖 , 𝑢 𝑗 )) can capture more detailed
information between nodes regardless of connectivity.
PaCEr-H. Heterophilic graphs refer to networks where topological
closeness does not mean positive correlations w.r.t. node attributes
and labels between nodes. To tackle this challenge, we propose
the second variant of PaCEr: PaCEr-H. Different from PaCEr-
A, PaCEr-H does not directly assume that proximity P and the
node attributes are positively correlated to each other, and does not
employ Eq. (5) to calculate 𝑓 (𝑢𝑖 ). Therefore, PaCEr-H exploits a
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neural network architecture, i.e., multilayer perceptron (MLP) [16],
to automatically learn such complex correlations. Specifically, we
concatenate the topological information (i.e., P(𝑢𝑖 , :)) and the at-
tribute information (i.e., X(𝑢𝑖 , :)) and feed it to the neural network.
Mathematically, we compute the structural embedding as follows:

𝑓 (𝑢𝑖 ) = MLP(CONCAT(P(𝑢𝑖 , ; ),X(𝑢𝑖 , :))) . (6)

3.4 Complexity Analysis and Discussions

In this subsection, we have a brief complexity analysis on PaCEr
and discuss the relation between PaCEr and existing works from
different research lines.
Complexity Analysis. The time complexity of the vanilla imple-
mentation of PaCEr can be divided into the following parts: (1)
Calculating R⊤ (𝑢𝑖 , :) has the complexity of 𝑂 (𝑘max · |E |), where
|E | is the number of edges in the graph and 𝑘max is the maxi-
mum iterations or hops; (2) the time complexity for computing the
P(𝑢𝑖 , :) matrix and the KL-divergence between P(𝑢𝑖 , :) and R⊤ (𝑢𝑖 , :)
is𝑂 (𝑛 · 𝑑

2
𝑝

4 +𝑛), where 𝑑𝑝 is the dimension of positional embedding;
(3) Sorting P(𝑢𝑖 , :) needs 𝑂 (𝑛 · log(𝑑𝑠 )), where 𝑑𝑠 is the dimension
of the structural embedding;6 (4) Obtaining 𝑓 (𝑢 𝑗 ) in Eq. (5) needs
𝑂 (𝑛 · 𝑑𝑥 ).
Discussion. Here, we discuss the connections and the differences
between PaCEr and existingworks from the following three aspects.
First, PaCEr primarily focuses on studying the relations between
positional embeddings and structural embeddings [7, 41, 48]. Sec-
ond, if we replace P with the initial R⊤, we observe that PaCEr-A
becomes PPNP in APPNP [13]. Actually, P can be generalized to dif-
ferent proximity distribution matrices. For example, using Â as the
proximity distribution matrix leads to the classical GCN [19], and
iteratively updating the proximity distribution matrix with atten-
tion mechanism results in the key component in GAT [46]. Third,
under the assumption that the correlation between the positional
information and the attribute is unknown in heterophilic graphs,
PaCEr-H directly uses an MLP to learn such correlation. This is
consistent with the prior findings in [24] that simply concatenating
the original adjacency matrix A and the attribute matrix X, and
applying an MLP to this concatenation can achieve significant per-
formance on node classification task on heterophilic graphs. All
in all, PaCEr can act as an intermediate bridge to connect various
lines of existing works.

4 EXPERIMENT

In this section, we evaluate the proposed PaCEr from the following
aspects:

• How effective is the positional embedding obtained by PaCEr?
(Effectiveness of PaCEr in link prediction)

• How effective is the structural embedding obtained by PaCEr?
(Effectiveness of PaCEr in structural node classification)

• To what extent can PaCEr be generalized to attributed graphs?
(Effectiveness of PaCEr-A and PaCEr-H in attributed node classifi-

cation on homophilic graphs and heterophilic graphs)

6We usually choose the largest 𝑑𝑠 values of P(𝑢𝑖 , :) as the structrual embedding in
implementation.

4.1 Experimental Setup

In this subsection, we introduce the datasets, metrics, and baselines
used for four tasks: (1) link prediction, (2) structural node classi-
fication, (3) homophilic node classification, and (4) heterophilic
node classification in our experiments. In addition, we detail the
parameter settings of PaCEr in different tasks.
Datasets. In the experiments, we adopt 17 commonly used real-
world datasets in total to evaluate the proposed PaCEr for the
above four tasks. The statistics of all datasets are listed in Table 2.
The detailed descriptions and splits of the datasets are attached in
Appendix 7.2 due to page limit.

Dataset Task Nodes Edges Features Classes
NS [27]

Link Prediction

1,589 2,742 - -
Ecoli [40] 1,805 14,660 - -
USAir [47] 322 2,126 - -

Celegans [50] 297 2,148 - -
Citeseer [57] 7 3,327 9,104 - -

Cora [57] 2,708 10,556 - -
Brazil [34] Structural

Node Classification

131 1,038 - 4
Europe [34] 399 5,995 - 4
USA [34] 1,190 13,599 - 4
Cora [57]

Homophilic
Node Classification

2,708 10,556 1,433 7
Citeseer [57] 3,327 9,104 3,703 6
Pubmed [57] 19,717 88,648 500 3

Computers [38] 13,752 491,722 767 10
Photo [38] 7,650 238,162 745 8
CS [38] 18,333 163,788 6,805 15
DBLP [4] 17,716 105,734 1,639 4

Squirrel [36] Heterophilic
Node Classification

5,201 396,846 2,089 5
Actor [31] 7,600 30,019 932 5

Cornell5 [24] 18,660 1,581,554 4,735 2
Table 2: Dataset statistics.

Metrics. For the link prediction task, we use the Area Under the
ROC and Precision-Recall Curves (i.e.,AUC-ROC and AUC-PR) as
the metrics to evaluate the performance of different methods. For
the remaining three tasks (i.e., (1) structural node classification, (2)
homophilic node classification and (3) heterophilic node classifica-
tion), we use the classification accuracy (ACC) as the metric. For
all baselines and PaCEr, we report the average AUC-ROC/AUC-
PR/ACC with the standard deviation in 5 runs.
Baselines. We compare PaCEr with 16 baselines. For the link
prediction task, we have the following 5 baselines: node2vec [14],
VGAE [20], GAT[46], ARGVA [30] and RWBGE [17]. For the struc-
tural node classification task, we have these baselines: GraphSAGE
[15], GCN [19], Union [23], Intersection [23], GAT [46], Demo-Net
[53], and GraphWave [9]. For both homophilic node classifcation
and heterophilic node classification, we use the following attrib-
uted node classification baselines: GCN [19], SGC [52], APPNP [13],
GPRGNN [6], FAGCN [3] and H2GCN [63].
Parameter Settings. The dimension for node embeddings in all
baselines are set as 128 and we set the dimension of uleft

𝑖
and uright

𝑖
as 64 (64 + 64 = 128) for a fair comparison. For the positional
embedding optimization module, we set the number of epochs as
5,000. The learning rate is set as 0.01. For the structural embedding
optimization module, including PaCEr-A and PaCEr-H, we set the
number of epochs as 2,000 and the learning rate as 0.001. The restart
probability in RWR is set as (1 − 𝑐) = 0.15. All experiments are run
on a Tesla-V100 GPU. We will release the code after publication.
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Models Cora Citeseer NS Ecoli USAir Celegans
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

node2vec 75.96±1.18 82.73±0.69 69.63±0.97 77.38±0.89 86.48±0.76 91.36±0.75 76.61±0.38 77.03±0.48 79.28±2.30 75.38±3.22 79.36±1.14 74.27±1.33
VGAE 78.28±0.53 81.07±0.59 72.58±0.74 78.00±0.40 86.45±0.95 89.99±0.58 90.94±0.22 93.30±0.23 89.74±1.56 90.55±1.56 77.78±1.39 73.50±2.38
GAT 76.48±0.77 78.90±1.03 71.79±1.40 76.04±1.18 85.89±0.84 88.47±1.92 90.32±0.55 92.73±0.45 88.67±1.28 89.85±1.48 74.16±4.33 71.21±1.69

ARGVA 75.99±0.97 78.11±1.14 71.96±1.10 74.74±0.59 88.55±1.12 90.32±1.36 91.02±0.51 93.31±0.33 89.13±1.59 90.39±1.78 77.04±1.71 71.29±2.42
RWBGE 79.33±0.95 83.11±0.86 73.89±1.11 77.48±1.30 83.98±4.21 88.77±2.77 77.69±0.27 86.30±0.20 66.70±3.28 76.46±2.48 74.65±4.54 72.07±3.70
PaCEr 78.77±1.02 84.77±0.31 73.63±1.20 79.55±0.96 87.98±0.57 91.83±0.21 94.87±0.28 95.10±0.33 89.98±0.67 87.63±1.50 85.01±1.13 79.21±1.40

Table 3: The AUC-ROC (±𝑠𝑡𝑑) and AUC-PR (±𝑠𝑡𝑑) of link prediction in plain networks (%).

4.2 Effectiveness of PaCEr in Link Prediction

In this subsection, we evaluate the effectiveness of PaCEr in the
link prediction task. The AUC-ROC and AUC-PR of PaCEr and
5 baselines on 6 datasets are presented in Table 3. First, for the
AUC-ROC metric, PaCEr achieves the best AUC-ROC on 3 datasets
(Ecoli, USAir and Celegans) and the second highest AUC-ROC on
Cora and Citeseer. RWBGE obtains the best AUC-ROC on Cora
(79.33%) and Citeseer (73.89%). Compared with RWBGE, PaCEr’s
AUC-ROCs on Cora and Citeseer are only 0.56% and 0.26% lower.
However, on the other two datasets USAir and Celegans, PaCEr
outperforms RWBGEwith a 23.28% and 10.36%margin in AUC-ROC.
Second, PaCEr has the best AUC-PR on 5 datasets (Cora, Citeseer,
NS, Ecoli and Celegans). In detail, VGAE gets the best AUC-PR
(78.00%) on Citeseer, node2vec accomplishes the best AUC-PR on
Celegans (74.27%) and ARGVA reaches the best AUC-PR on Ecoli
(93.31%) among all baselines. Compared with these methods, PaCEr
outperforms them by 79.55% AUC-PR on Citeseer, 79.21% AUC-PR
on Celegans and 95.10% AUC-PR on Ecoli. Overall, the experimental
results in Table 3 demonstrate the effectiveness of PaCEr in link
prediction, which shows that the positional embedding obtained
by PaCEr can capture the positional information better than the
embeddings produced by other baselines.

4.3 Effectiveness of PaCEr in Structural Node

Classification

In this subsection, we demonstrate the effectiveness of PaCEr in
structural node classification. As shown in Table 4, PaCEr achieves
the best ACC (72.0%) on the Brazil dataset and the second highest
ACC on both Europe (50.6%) and USA (64.2%). Although PaCEr’s
ACC is 1.8% lower than GraphWave on Europe, it has a significant
ACC improvement on Brazil (7.5%) and USA (13.9%) compared
with GraphWave. Similar observations can be seen in comparison
with Demo-Net: Demo-Net beats PaCEr by 1.7% ACC on USA,
while PaCEr outperforms Demo-Net by 10.6% on Brazil and 2.7%
on Europe. The results verify the key idea of PaCEr that simply
sorting the reconstructed proximity distribution matrix can lead a
structural embedding with great structural expressive power.

4.4 Effectiveness of PaCEr-A in Attributed

Node Classification on Homophilic Graphs

In this subsection, we present the effectiveness of PaCEr-A in attrib-
uted node classification on homophilic graphs. The experimental
results of PaCEr-A and different methods are shown in Table 5. We
can observe that PaCEr-A achieves the best accuracy on 4 datasets
(i.e., Cora, Photos, CS and DBLP) and gets the second place on
the Computers dataset. For the remaining two datasets Citeseer
and Pubmed, it still has close performance compared with other

baselines. Specially, compared with the classical GCN and SGC,
PaCEr-A outperforms them by 12% on Computers and over 6% on
Photo. These observations show that utilizing the reconstructed
proximity distribution matrix P to propagate features/attributes
is effective (Eq. (5)), which can retain critical information (i.e., at-
tribute) from distant nodes with a small weight P(𝑢𝑖 , 𝑢 𝑗 ) and obtain
better performance than only aggregating information from 1 or 2
hops’ neighbor nodes in GCN/SGC on most datasets.

4.5 Effectiveness of PaCEr-H in Attributed

Node Classification on Heterophilic Graphs

In this subsection, we demonstrate the performance of PaCEr-H
in attributed node classification on heterophilic graphs compared
with other baselines. As presented in Table 5, PaCEr-H has better
performance on all three datasets than all baselines. For example,
H2GCN [63] has the second best performance on the Cornell5
dataset (68.4%) and SGC [52] has the second best performance on
the Squirrel dataset (37.2%). Compared to these two baselines, the
proposed PaCEr-H has a 0.9% improvement on Squirrel and a 2.1%
improvement on Cornell5. The superior performance of PaCEr-H
can be explained from two aspects: first, the basic assumption in
existing GCNs that nodes adjacent to each other are more likely
to share similar attributes and labels does not hold. Consequently,
GCN designed based on this assumption forces close nodes to have
same labels in the classification, which in turn results in the poor
performance (e.g., 27.5% ACC on the Actor dataset). Second, since
the correlation between the topological information and the at-
tribute/label information is unknown, PaCEr-H introduces an MLP
module with the concatenation of the topological information and
the attribute information as the input. This succinct design success-
fully learns the correlation and optimizes PaCEr-H’s parameters
with the help of nodes in the training set, which is consistent with
the results in LINKX [24].

4.6 Ablation Study of PaCEr

In this subsection, we conduct an ablation study on PaCEr to ana-
lyze the underlying reasons for its performance improvement over
baselines. The ablation study focuses on the proximity distribution
matrix, since it is the central component of the proposed PaCEr. In
detail, we compare the performance of adopting the reconstructed
proximity distribution matrix P in PaCEr and directly using the
proximity distribution matrix calculated by RWR (R⊤).8 The AUC-
PRs of utilizing P and R⊤ are displayed in Figure 4(a). We can find
that simply using the matrix R⊤ can already obtain good empirical

8We use (R⊤ (𝑢𝑖 ,𝑢 𝑗 ) + R⊤ (𝑢𝑖 ,𝑢 𝑗 )) or (P(𝑢𝑖 ,𝑢 𝑗 ) + P(𝑢 𝑗 ,𝑢𝑖 ) ) as the score for link
prediction.
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Models Brazil Europe USA
GraphSAGE 40.4±3.5 27.2±2.2 31.6±2.2

GCN 43.2±6.4 37.1±4.6 43.2±2.2
Union 46.6±0.6 41.8±0.2 58.2±0.0

Intersection 45.9±0.3 44.3±0.2 57.3±0.0
GAT 38.2±12.6 42.4±7.3 58.5±2.1

GraphWave 64.5±7.9 52.4±5.4 50.3±4.0
Demo-Net 61.4±6.9 47.9±6.4 65.9±2.0
PaCEr 72.0±1.8 50.6±1.7 64.2±2.2

Table 4: The accuracy (%) of

structural node classification.

Models Homophilic graphs Heterophilic graphs
Cora Citeseer Pubmed Computers Photo CS DBLP Squirrel Actor Cornell5

GCN 81.1±0.3 71.2±0.7 79.0±0.4 66.2±1.0 84.1±0.5 88.2±0.2 83.7±0.1 35.8±1.3 27.5±0.5 67.9±0.2
SGC 80.8±0.1 71.0±0.2 79.5±0.5 69.1±0.4 86.2±0.4 89.7±0.1 83.8±0.1 37.2±1.8 28.0±0.8 67.4±0.5

APPNP 82.1±0.1 71.8±0.1 79.8±0.5 66.7±1.1 83.4±1.2 87.8±0.1 83.8±0.2 29.5±0.9 32.8±0.8 68.3±0.5
GPRGNN 78.6±1.5 68.9±0.9 77.6±0.9 84.6±0.5 92.4±0.2 92.3±0.1 84.4±0.2 34.1±1.0 33.6±0.4 67.3±0.3
FAGCN 79.0±0.6 72.1±0.5 78.0±1.1 74.8±3.4 91.2±0.3 93.0±1.4 81.1±1.1 31.2±1.6 32.3±0.5 68.3±0.7
H2GCN 78.9±0.6 70.3±1.0 78.2±1.0 75.8±0.3 89.7±0.2 92.5±0.5 82.4±0.1 30.4±0.9 33.9±0.3 68.4±0.2

PaCEr-A/-H 82.1±0.9 70.6±0.9 79.1±1.1 81.5±0.7 92.9±0.1 93.6±0.2 84.6±0.5 38.1±0.9 34.5±1.5 70.5±0.4
Table 5: The accuracy (±𝑠𝑡𝑑) of node classification on homophilic graphs and heterophilic

graphs (%).

results such as 94.77% AUC-PR on the Ecoli dataset, which are bet-
ter than all baselines in Table 3. Through matrix factorization, using
the reconstructed proximity distribution matrix P can capture the
positional information better, and have further performance gains
over R⊤ (e.g., 3.83% AUC-PR on Citeseer). For the structural node
classification task (Figure 4(b)), 𝑅(R⊤) also performs well, which
verifies Proposition 1 that 𝑅(R⊤) (𝑢𝑖 , :) maintains a good structural
expressive power. PaCEr further boosts the accuracy of the struc-
tural node classification by about 8% on the Brazil dataset, which
demonstrates that compared with 𝑅(R⊤) (𝑢𝑖 , :), PaCEr can capture
structural information better.
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Figure 4: Ablation study on P vs. R⊤ in link prediction (a),

and 𝑅(P) vs. 𝑅(R⊤) in structural node classification (b).

5 RELATEDWORKS

NetworkEmbedding.Network embeddingmaps nodes, subgraphs
or the entire graph to low dimensional vectors. It can be traced back
to matrix factorization [25]. Since Word2Vec [26] emerges, Deep-
Walk [32] and node2vec [14] embrace a similar idea of conducting
a random walk on the graph to learn the node representations in
homogeneous networks. LINE [42] owns similar positional em-
bedding module to our proposed PaCEr, but it merely considers
first-order and second-order proximity and does not possess a struc-
tural embedding module. For heterogeneous networks or attributed
networks, metapath2vec [8] and DANE [12] integrate different
types of nodes or attributes into the random walk. Recently, graph
convolutional network (GCN) [19] has turned out to be a powerful
framework for graph representation learning and many GCN-based
methods have been proposed. For example, graph attention net-
work (GAT) [46] introduces the attention mechanism into GCN and
simple graph convolution (SGC) [52] removes the non-linear layer
in GCN. Geom-GCN [31], H2GCN [63], GPRGNN [6] and FAGCN
[3] are proposed to handle heterophilic graphs. More advanced
GCNs including APPNP [21] and GraphSAGE [15] can be found in
the survey by Wu et al. [54].

Positional Embedding vs. Structural Embedding. On the one
hand, struct2vec [34] notices that previous methods such as Deep-
Walk [32] and node2vec [14] tend to make the embeddings of con-
nected nodes similar. However, nodes with identical local structures
obtain different embeddings in DeepWalk and node2vec. On the
other hand, PGNN [59] points out that classical GCNs such as
GCN [19] can not distinguish isomorphic node pairs and capture
the positional information. GIN [55] proves that classical GCNs
are at most as powerful as the Weisfeiler-Lehman (WL) test [51].
Most works on positional embedding and structural embedding
focus on improving the expressive power of classical GCN and
integrating positional information. One direction to fulfill this goal
is to utilize augmented node features to make isomorphic nodes
become position-aware and distinguishable. For instance, GAE [20]
sets one-hot feature for each node, SEAL [60] and ID-GNN [58]
embrace identity (position)-aware labelling tricks. Another direc-
tion is to conduct positional encoding. For instance, PGNN [59]
builds anchor node sets and learns a distance-weighted aggrega-
tion scheme. Srinivasan et al. [41] propose that the eigenvectors
of graph Laplacian matrix can encode the positional information.
PEG [48] further aggregates the original node features and the po-
sitional features earned by eigen-decomposition, DeepWalk and
node2vec in different channels. For the relation between positional
embedding and structural embedding, Srinivasan et al. [41] prove
that positional embedding cannot capture more information than
multi-node set structural embedding. It is important to note that the
result in [41] does not contradict with our findings in this paper
because we focus on single-node level positional embedding and
structural embedding. Additional related works can be found in
[62].

6 CONCLUSION

In this paper, we investigate the relation between positional em-
bedding and structural embedding in network embedding. Specif-
ically, we find that with the help of the intermediate proximity
distribution matrix, we can acquire the corresponding structural
embedding by performing direct transformations on the positional
embedding. Based on this finding, we propose a novel network
embedding algorithm PaCEr, which adopts the RWR proximity
distribution matrix to optimize the positional embedding. Then, the
structural embedding is learned by sorting the reconstructed prox-
imity distribution. Furthermore, for attribute graphs, we propose
two variants of PaCEr, including PaCEr-A and PaCEr-H for ho-
mophilic and heterophilic graphs, respectively. Through extensive
empirical evaluations on four graph learning tasks, we corroborate
the effectiveness of PaCEr.
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7 APPENDIX

In the section, we include the proofs of propositions and the repro-
ducibility of this work.

7.1 Proofs

𝑢!

𝑢"

𝑢#

𝑢$ 𝑢%

𝑢&

𝑢'

𝑢( 𝑢)

𝑢*
𝑢!

𝑢"

𝑢#

𝑢$

𝑢%
𝑢&

𝑢'

𝑢( 𝑢)

𝑢*

(a) (b)

Figure 5: Two non-isomorphic graphs in Sato et al. [37] that

can not be discriminated by 1-WL test.

Proposition 1. 𝑅(R⊤ (𝑢𝑖 , :)) is permutation invariant and its

expressive power is not worse than the expressive power of 1-WL test.

Proof. We first prove that 𝑅(R⊤ (𝑢𝑖 , :)) is permutation invariant.
To prove this, we only need to prove 𝑅(R⊤ (𝑢𝑖 , :)) = 𝑅(R⊤ (𝜋 (𝑢𝑖 ), :)).
First, because the graph topology and the actual starting node
(𝑢𝑖 or 𝜋 (𝑢𝑖 )) has not changed in the graph under a node index
permutation, for any value appearing in the vector R⊤ (𝑢𝑖 , :), it
will also appear in the vector R⊤ (𝜋 (𝑢𝑖 ), :) and identical values
will have same times of appearances, and vice versa. Then, we
prove𝑅(R⊤ (𝑢𝑖 , :)) = 𝑅(R⊤ (𝜋 (𝑢𝑖 ), :)) by contradiction.We sort both
R⊤ (𝑢𝑖 , :) andR⊤ (𝜋 (𝑢𝑖 ), :) in a descending order. AssumeR⊤ (𝑢𝑖 , :) ≠
R⊤ (𝜋 (𝑢𝑖 ), :) and the first unequal value has index 𝑗 , which means
that 𝑅(R⊤ (𝑢𝑖 , :)) 𝑗 ≠ 𝑅(R⊤ (𝜋 (𝑢𝑖 ), :)) 𝑗 . Without loss of generality,
we can assume that 𝑅(R⊤ (𝑢𝑖 , :)) 𝑗 > 𝑅(R⊤ (𝜋 (𝑢𝑖 ), :)) 𝑗 . Due to the
descending order, 𝑅(R⊤ (𝑢𝑖 , :)) 𝑗 > 𝑅(R⊤ (𝜋 (𝑢𝑖 ), :))𝑘 for any 𝑘 >

𝑗 . This means that 𝑅(R⊤ (𝑢𝑖 , :)) 𝑗 has no corresponding value in
R⊤ (𝜋 (𝑢𝑖 ), :) and this leads to the contradiction. To prove that its
expressive power is not worse than the expressive power of 1-WL
test, following Dwivedi et al. [10], we only need to find a graph
pair that are non-isomorphic and can not be discriminated by the
1-WL test, but can be distinguished by 𝑅(R⊤ (𝑢𝑖 , :)). We adopt the
examples in Sato et al. [37] (shown in Figure 5). These two graphs
are non-isomorphic and have been proved by [37] that can not
be discriminated by 1-WL test. Now, we calculate the 𝑅(R⊤ (𝑢𝑖 , :))
for all nodes in both graphs. 𝑅(R⊤ (𝑢𝑖 , :))s for nodes in Figure 5(a)
and 𝑅(R⊤ (𝑢 𝑗 , :))s for nodes in Figure 5(b) are as the following with
10−2 base:

27.96 13.07 10.89 10.89 6.98 6.98 6.06 6.06 5.54 5.54
25.95 16.33 14.87 9.09 9.05 6.42 6.42 4.23 4.07 3.53
28.01 15.75 14.87 10.47 9.05 8.31 4.23 3.53 2.97 2.76
28.01 15.75 14.87 10.47 9.05 8.31 4.23 3.53 2.97 2.76
25.95 16.33 14.87 9.09 9.05 6.42 6.42 4.23 4.07 3.53
27.96 13.07 10.89 10.89 6.98 6.98 6.06 6.06 5.54 5.54
25.95 16.33 14.87 9.09 9.05 6.42 6.42 4.23 4.07 3.53
28.01 15.75 14.87 10.47 9.05 8.31 4.23 3.53 2.97 2.76
28.01 15.75 14.87 10.47 9.05 8.31 4.23 3.53 2.97 2.76
25.95 16.33 14.87 9.09 9.05 6.42 6.42 4.23 4.07 3.53


(7)



28.56 12.47 11.79 11.79 8.72 8.72 5.15 5.15 3.80 3.80
26.83 17.69 16.04 10.92 9.65 7.72 3.19 3.19 2.35 2.35
29.03 16.98 16.04 13.08 10.92 5.71 2.35 2.35 1.74 1.74
29.03 16.98 16.04 13.08 10.92 5.71 2.35 2.35 1.74 1.74
26.83 17.69 16.04 10.92 9.65 7.72 3.19 3.19 2.35 2.35
28.56 12.47 11.79 11.79 8.72 8.72 5.15 5.15 3.80 3.80
26.83 17.69 16.04 10.92 9.65 7.72 3.19 3.19 2.35 2.35
29.03 16.98 16.04 13.08 10.92 5.71 2.35 2.35 1.74 1.74
29.03 16.98 16.04 13.08 10.92 5.71 2.35 2.35 1.74 1.74
26.83 17.69 16.04 10.92 9.65 7.72 3.19 3.19 2.35 2.35


(8)

□

We can observe that ∀𝑢𝑖 in Figure 5 (a) and ∀𝑢 𝑗 in Figure 5 (b),
𝑅(R⊤ (𝑢𝑖 , :)) ≠ 𝑅(R⊤ (𝑢 𝑗 , :)). Therefore,𝑅(R⊤ (𝑢𝑖 , :)) can distinguish
these two graphs.

7.2 Reproducibility

Datasets. (1) For the link prediction task, we use 6 datasets: NS
[27], Ecoli [40], USAir [47], Celegans [50], Citeseer [57]9, and Cora
[57]. We randomly split edges in every dataset into 70/10/20% for
training, validation and test. Since the link prediction task also
needs negative edges, we randomly sample same amount of non-
existent edges for validation and test. (2) For the structural node
classification task, we use 3 benchmark airport datasets, includ-
ing Brazil, Europe and USA [34], which are commonly used in
the evaluation of structural embedding [18, 34, 53]. We follow the
split in DEMO-Net [53] with 33/33/34% nodes for training, vali-
dation, and test. (3) For the homophilic node classification task,
we use 7 benchmark datasets: Cora [57], Citeseer [57], Pubmed
[57], Computers [38], Photo [38], CS [38] and DBLP [4]. For these
3 datasets (Cora, Citeseer, Pubmed), we follow the standard split
in the GCN [19] paper. For the remaining 4 datasets, we randomly
split the them into 20/20/60% for training, validation and test. (4)
For the heterophilic node classification task, we use three datasets:
Squirrel [36], Actor [31], Cornell5 [24] and also adopt a 20/20/60%
training/validation/test split.

9The Citeseer dataset used in the link prediction task does not contain attributes.
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