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Abstract

Training vision—-language models (VLMs) on
long, synthetic captions has been shown to in-
crease hallucination compared to using short,
human-written ones. Prior work attributes this
to errors in synthetic data, but confounds cap-
tion origin (human vs. synthetic) and caption
length. We disentangle these factors through
controlled experiments on three matched set
of captions: short human-written, long human-
written, and long synthetic ones. VLMs trained
on these datasets are evaluated using recent
advanced metrics, with a breakdown by ob-
jects, attributes, and relations. We find that
caption length is the main driver of hallucina-
tion, though synthetic origin also contributes,
particularly through object and attribute errors.

1 Introduction

Synthetic data generation has emerged as a power-
ful paradigm for distilling knowledge from large
language models (LLMs) into smaller ones (Peng
et al., 2023; Hsieh et al., 2023). In the space of
vision-language modeling, where short image cap-
tioning is giving way to the more complex task of
long image captioning (Onoe et al., 2024; Garg
et al., 2024), generative caption enrichment (GCE)
is proving very effective for creating relevant train-
ing data (Chen et al., 2023; Singla et al., 2024).

Yet, recent work has shown that while also im-
proving descriptiveness and object recall, GCE can
lead also to increased hallucination. In particu-
lar, Hirota et al. (2024) found that vision—language
models (VLMs) trained on long, synthetically en-
riched captions, such as those from the ShareGPT-
4V dataset (Chen et al., 2023), exhibit higher
hallucination rates in terms of the CHAIR met-
ric (Rohrbach et al., 2019), compared to models
trained on concise human-authored captions from
the COCO datatset (Lin et al., 2015). They at-
tributed this phenomenon to likely error propaga-
tion from the teacher model used to generate the
data to the student model, trained on it.

The experimental design in prior work overlooks
a key confound: caption length. As the length of
generated text increases, there is naturally more
room for errors. And as the level of detail described
becomes more fine-grained, the vision-language
alignment abilities of the model are strained. It is
thus unclear to what extent hallucination in models
trained with GCE is driven by the length of captions
or by their synthetic origin.

To resolve this confound, we conduct experi-
ments on three matched datasets, all using the
same 118k images annotated with different cap-
tions: short human-written (COCO), long human-
written (Pont-Tuset et al., 2020, Localized Narra-
tives), and long synthetic captions (ShareGPT-4V.)
We train three vision—language models and study
their hallucination behavior using two advanced
recent metrics: CAPTURE (Dong et al., 2024) and
HalFscore (Chen et al., 2025).

By analyzing object, attribute, and relation-level
correctness and coverage, we show how caption
properties shape model behavior. We find that the
shift from human-authored to synthetic data has
a smaller impact on hallucination rates than the
shift from short to long human-written captions, al-
though both contribute considerably. While the cor-
rectness of relations is not affected by the origin of
the data, hallucination in objects and attributes rise.

The field of image captioning has shifted from
short, generic descriptions to long-form captions
with richer visual grounding. Early datasets like
COCO (118K) (Lin et al., 2015) offered concise,
crowd-sourced captions but lacked detail. Local-
ized Narratives (849K) (Pont-Tuset et al., 2020)
addressed this by aligning spoken descriptions with
mouse traces over images from COCO, Flickr30k,
ADE20K, and Open Images (Lin et al., 2015; Plum-
mer et al., 2016; Zhou et al., 2017; Kuznetsova
et al., 2020). While effective, this annotation
method is costly to scale. To enable larger datasets,
synthetic captioning has emerged. ShareGPT-



4V (Chen et al., 2023) was created via a two-stage
process: GPT-4V generated captions for 100K
images, which were then used to train a Share-
Captioner for scalable generation (1.2M). Though
scalable, synthetic captions risk hallucinations due
to LLM errors.

Hallucination in VLMs. Hallucination refers to
models mentioning visual details not present in the
image (Rohrbach et al., 2019; Bai et al., 2025; Liu
et al., 2024). Benchmarks like CHAIR (Rohrbach
et al., 2019) and POPE (Li et al., 2023a) categorize
hallucinations at the object, attribute, and relation
levels, linking them to visual-text misalignment or
language priors.

Hirota et al. (2024) fine-tune BLIP-2 on COCO
and ShareGPT-4V and evaluate hallucination us-
ing CHAIR on the COCO validation set. They
find that models trained on synthetic captions hal-
lucinate more. However, CHAIR only measures
object-level hallucination, and comparing COCO
(which omits many present objects) to ShareGPT-
4V (which is longer and more detailed) introduces
two variables, caption origin and length, making it
unclear whether hallucination increases due to syn-
thetic data or verbosity. Since COCO captions aver-
age 10 words and ShareGPT-4V captions 143, this
mismatch increases the likelihood of false positives
from correctly grounded but unannotated objects.

In contrast, we isolate the effects of length and
origin, and evaluate objects, attributes, and rela-
tions using LLM- and graph-based metrics.

2 Methodology and Experimental Design

Our methodology was designed to systematically
evaluate the impact of caption length and origin
on hallucination in vision-language models. We
established a controlled experimental framework
with three key components: (1) a dataset curation
with multiple caption types for the same images,
(2) a vision-language model architecture designed
to minimize pre-existing biases, and (3) a com-
prehensive evaluation pipeline that measures both
coverage and hallucination.

2.1 Datasets

The training data is based on the 118,000 im-
ages shared between COCO, Localized Narratives
and ShareGPT-4V. For every image we thus have
a short, human-written caption, a long, human-
written caption, and long, model-generated one.
We fine-tune VLMs separately on each set of cap-

tions, with images being matched across experi-
ments, to isolate the effects of caption types.

The captions between the three datasets vary sub-
stantially in length: COCO captions averaged 10
words, Localized Narratives around 42 words, and
ShareGPT-4V captions, approximately 143 words
per image. While the latter two were intentionally
chosen to be longer than COCO, between them-
selves, they differ both in origin and also in length.
We thus truncated the ShareGPT-4V captions to
include only the first three sentences. This re-
duced their average length to 52 words, bringing
them closer to Localized Narratives, while preserv-
ing their grammaticality and coherence. The final
length distribution of the training data is visualized
in Figure 7 in the Appendix and an example of a
training sample can be seen in Figure 8 (Appendix).

2.2 Model Architecture and Training

A SigLIP vision encoder (Zhai et al., 2023)
is paired with a Qwen-2.5 (3B) language de-
coder (Qwen et al., 2025), using a 2-layer MLP
projector. The model is trained in two stages to
support the gradual learning of fine-grained cross-
modal alignment. In the first stage, we train only
the visual projection layer on COCO, to establish
initial visual-textual alignment.! In the second
stage, we independently train three models on each
dataset. Here, all model parameters are updated.
Each training run uses the same 118,000 images,
differing only in the caption source, to ensure con-
trolled comparisons. The details on optimisation
and computational resources are in in Appendix F.

2.3 [Evaluation Pipeline

Evaluation is based on the Visual Genome (VG)
dataset (Krishna et al., 2016), specifically the sub-
set of 2,186 images from it, which do not overlap
with the COCO training set. VG provides struc-
tured annotations of objects, attributes, and rela-
tions, as well as region-level descriptions. These
annotations serve as ground truth for computing
correctness and coverage in the evaluations below.

Following prior work (Hirota et al., 2024; Dong
et al., 2024), we adopt the terms correctness and
coverage, which extend the hard surface-level
matching precision and recall scores to semantic
matching, more appropriate in image captioning
evaluation: Correctness (C) measures the propor-
tion of concepts in the generated caption that are

'We found that without this step, the long-caption training
was not converging.



HalFscore CAPTURE Length
Model Average Objects Attributes Relations Average Train Gen.
C 1% C 1% C 1% C 1% C 1%
COCO 61.04 38.60 85.6 26.0 76.0 19.0 64.5 334 754 26.1 10 11
Loc. Narratives 584812_23 424393_79 81.34_3 39.7]3_7 7549()_1 19.9()_9 59.25_3 38465_2 72413_3 32~76.6 42 33
ShareGPT-4V 56.83 1.98 43.190_30 78.72_(, 34.35_4 73.82_[ 39.1 19.2 59.4()_2 36. 12_5 70.6[_5 36-53_8 56 34

Table 1: HalFscore on full test set and CAPTURE on subset of 307 images. C: correctness, V: coverage. Right:
CAPTURE scores broken down by objects, attributes, relations, and their average. The subscripts indicate the
change from the number above, with red indicating a drop and green indicating an increase. “Train” and “Gen.” list
the mean lengths of the training and generated captions, respectively.

Model Constraint Objects Attributes  Relations Average Length
C 1% v C 1% C Y  Train Gen.

Localized Narratives Constrained 81.0 383 762 204 59.8 38.1 723 323 42 33
v Unconstrained 79.0 41.2 752 222 57.6 394 706 343 42 37

Constrained 783 348 735 392 588 364 702 368 56 34

ShareGPT-4V Unconstrained 762 402 713 443 576 404 684 416 56 49

Table 2: CAPTURE evaluation on the 487 intersected captions that contain attributes.

higher average within each model pair.

present in the image; higher values indicate fewer
hallucinations. Coverage (}) measures the propor-
tion of ground truth concepts from the image that
are successfully captured in the caption.

HalFscore Chen et al. (2025) relies on GPT-40
to extract triplets of concepts (objects, attributes,
relations) from both generated and ground-truth
(GT) captions, and uses binary LLM decisions to
match these when computing correctness and cov-
erage. In our evaluations, GT captions are built by
concatenating all region-level descriptions for an
image from our VG test set. The resulting score
is highly reliable, as we manually observe that the
extracted objects, attributes and relations as well as
their matching, is largely correct. The final score
coarsely indicates the overall correctness and cov-
erage, with no per-type breakdown.

CAPTURE Dong et al. (2024) evaluates ground-
ing by aligning generated captions with Visual
Genome scene graphs to compute correctness and
coverage for objects, attributes, and relations. In its
original setup, both generated and reference cap-
tions are parsed into scene graphs using the FAC-
TUAL parser (Li et al., 2023b). In our version, we
use ground-truth triplets from Visual Genome for
the reference and parse only the generated captions,
enabling per-type evaluation via soft matching (ex-
act match, synonym expansion, and SBERT simi-
larity). However, reliance on FACTUAL to extract

Bolded values mark the

triplets from generated captions can miss elements,
limiting reliability. Implementation details for both
metrics are in Appendix C.

3 Results and Discussion

Effect of Caption Length To investigate our first
research question, we compare captions generated
by models fine-tuned on short human captions from
the COCO dataset versus longer ones from Local-
ized Narratives (LN).

We begin with a coarse-grained analysis using
HalFscore on overall concept correctness and cov-
erage. As shown in Table 1, models trained on
shorter COCO captions achieve the highest correct-
ness scores, meaning they include fewer halluci-
nated concepts. However, their coverage is lower,
as many relevant concepts are omitted. This re-
flects a correctness—coverage trade-off introduced
by verbosity: longer captions improve coverage but
are more prone to hallucination (Appendix A).

For fine-grained analysis, we use CAPTURE. In
our initial evaluation, most captions from COCO-
and LN-finetuned models lacked attributes and re-
lations, focusing almost exclusively on objects. As
a result, average correctness scores were skewed
by zero-valued entries (Appendix B). To better as-
sess model behavior when these concept types are
present, we restrict CAPTURE evaluation to a fil-
tered subset of captions mentioning at least one
attribute and one relation. In this subset (Table 1),



COCO: Aman in a shirt holding a Wii
remote..

Localized Narratives: I can see a man is
standing and holding a remote in his hand. I
can see he is wearing a shirt and a tie. [ can
see colour of his shirt is blue .
ShareGPT-4V: A man is standing in a room
with a rustic charm. He's wearing a blue shirt
that has a green star on it, adding a pop of
color to his attire.

COCO: A truck on a snowy street next to a
house.

& Localized Narratives: In the image we can see
a car which is of red color and a person wearing
white color dress is standing near the car and at
the background of the image there are some
houses, trees, snow and a clear sky.
ShareGPT-4V: a red pickup truck is parked on
the side of a street. The truck, facing away from
us, is equipped with a white utility sled attached
to its back.

Figure 1: Captions generated by different models for
the same image; hallucinations are marked in red.

the same trend holds: COCO-trained models yield
higher correctness, while LN-trained ones achieve
higher coverage. This supports the hypothesis that
increased caption length introduces hallucination
across objects, attributes, and relations. See Ap-
pendix G for a comparison of how CAPTURE and
HalFscore handle hallucinated concepts.

Effect of Caption Origin To investigate our sec-
ond research question, we compare captions gener-
ated by models fine-tuned on human-written versus
synthetic data. Both models, one trained on Local-
ized Narratives (LN) and the other on ShareGPT-
4V (SG-4V), were constrained to produce captions
of similar average lengths (33 vs. 34 tokens).

Coarse-grained results from HalFscore show
that, despite similar lengths, LN-trained models
achieve higher correctness, while SG-4V-trained
models yield higher coverage, suggesting synthetic
captions are more detailed but also more prone to
hallucination.

Fine-grained CAPTURE results (Table 1) rein-
force these findings. The LN-finetuned model at-
tains higher correctness for objects and attributes
(fewer hallucinations), whereas relation correct-
ness is comparable with the SG-4V trained model.
These results suggest that while the model trained
on synthetic captions tends to have slightly lower
correctness on average, its performance in rela-
tion correctness remains competitive with human-
trained models.

We also find that SG-4V trained model achieves
higher average coverage across all concept types
due to a significant increase in attribute coverage,
but LN trained model performs better on object

and relation coverage. This reflects the nature of
each dataset (Figure 8): LN tends to list most scene
objects and their spatial relations, while SG-4V
emphasizes stylistic detail for prominent entities.
These trends are reflected in the qualitative exam-
ple in Figure 1. The LN caption captures more of
the scene than COCO and maintains correctness
overall, but hallucinates a box. SG-4V adds fur-
ther details, including stylistic and attribute-rich
descriptions, but hallucinates objects like fork and
knife (marked in red). Appendix H provides ad-
ditional examples, and Appendix I offers further
analysis of how scores vary with object count.

Overall, we find that while Hirota et al. (2024)
attribute increased hallucination to synthetic data,
reporting a rise when switching from human writ-
ten COCO to LLM-generated SG-4V captions, our
controlled setup shows caption length also plays a
significant role. In both metrics, moving from short
COCO captions to longer ones (LN) increased hal-
lucination by 3.3 points, while switching from LN
to SG-4V (at similar length) caused a smaller 1.5-
point increase. This suggests that length, not just
origin, is a key driver of hallucination.

Analysis of Constrained and Unconstrained
Generation A complementary analysis using CAP-
TURE in Table 2 compares the effect of length
control within the same dataset, i.e., constrained
and unconstrained generations from models fine-
tuned on both LN and SG-4V. In both cases, we
observe a consistent trend across all concept types,
objects, attributes, and relations. Restricting the
caption length leads to a drop in coverage but a no-
ticeable improvement in correctness. This further
reinforces the role of verbosity as a key factor in
hallucination.

4 Conclusion and Future Work

Our results show that both caption length and ori-
gin influence hallucination and coverage in vi-
sion—language models. Longer captions consis-
tently improve coverage but also increase halluci-
nation, while synthetic captions tend to describe
more attributes and relations but with slightly lower
correctness than human-written ones. These trends
hold across both fine- and coarse-grained evalua-
tions. Future work should explore training and de-
coding strategies that balance correctness with cov-
erage, and develop evaluation methods that better
account for semantic nuance across concept types.



5 Limitations

This study focuses on caption-level grounding and
relies on automated tools for evaluation, which in-
troduces two key limitations. First, our use of FAC-
TUAL and GPT-4o for triplet extraction depends
on the accuracy of these parsers. While they sup-
port large-scale evaluation, they may occasionally
overlook or misclassify fine-grained concepts, par-
ticularly in visually complex scenes. Second, our
analysis is limited to image captioning and does not
extend to downstream tasks such as visual question
answering or retrieval. Exploring how hallucina-
tion affects these applications remains an important
avenue for future research.

References

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2025. Hallucination of multimodal large language
models: A survey. Preprint, arXiv:2404.18930.

Cong Chen, Mingyu Liu, Chenchen Jing, Yizhou Zhou,
Fengyun Rao, Hao Chen, Bo Zhang, and Chunhua
Shen. 2025. Perturbollava: Reducing multimodal hal-
lucinations with perturbative visual training. arXiv
preprint arXiv:2503.06486.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang,
Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023. Sharegpt4v: Improving large multi-
modal models with better captions.  Preprint,
arXiv:2311.12793.

Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang,
Yuan Zhang, and Haoyuan Guo. 2024. Benchmark-
ing and improving detail image caption. Preprint,
arXiv:2405.19092.

Roopal Garg, Andrea Burns, Burcu Karagol Ayan,
Yonatan Bitton, Ceslee Montgomery, Yasumasa
Onoe, Andrew Bunner, Ranjay Krishna, Jason
Baldridge, and Radu Soricut. 2024. Imagein-
words: Unlocking hyper-detailed image descriptions.
Preprint, arXiv:2405.02793.

Yusuke Hirota, Ryo Hachiuma, Chao-Han Huck Yang,
and Yuta Nakashima. 2024. From descriptive rich-
ness to bias: Unveiling the dark side of generative im-
age caption enrichment. Preprint, arXiv:2406.13912.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8003-8017,
Toronto, Canada. Association for Computational Lin-
guistics.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei-Fei Li. 2016. Vi-
sual genome: Connecting language and vision using
crowdsourced dense image annotations. Preprint,
arXiv:1602.07332.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
Tom Duerig, and Vittorio Ferrari. 2020. The open
images dataset v4: Unified image classification, ob-
ject detection, and visual relationship detection at
scale. International Journal of Computer Vision,
128(7):1956-1981.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023a. Eval-
uating object hallucination in large vision-language
models. Preprint, arXiv:2305.10355.

Zhuang Li, Yuyang Chai, Terry Yue Zhuo, Lizhen
Qu, Gholamreza Haffari, Fei Li, Donghong Ji, and
Quan Hung Tran. 2023b. Factual: A benchmark for
faithful and consistent textual scene graph parsing.
Preprint, arXiv:2305.17497.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol-
lar. 2015. Microsoft coco: Common objects in con-
text. Preprint, arXiv:1405.0312.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng
Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun
Li, and Wei Peng. 2024. A survey on halluci-
nation in large vision-language models. Preprint,
arXiv:2402.00253.

Yasumasa Onoe, Sunayana Rane, Zachary Berger,
Yonatan Bitton, Jaemin Cho, Roopal Garg, Alexan-
der Ku, Zarana Parekh, Jordi Pont-Tuset, Garrett
Tanzer, Su Wang, and Jason Baldridge. 2024. Docci:
Descriptions of connected and contrasting images.
Preprint, arXiv:2404.19753.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. Preprint, arXiv:2304.03277.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2016. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. Preprint, arXiv:1505.04870.

Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo,
Radu Soricut, and Vittorio Ferrari. 2020. Connect-
ing vision and language with localized narratives.
Preprint, arXiv:1912.03098.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,


https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2311.12793
https://arxiv.org/abs/2311.12793
https://arxiv.org/abs/2311.12793
https://arxiv.org/abs/2405.19092
https://arxiv.org/abs/2405.19092
https://arxiv.org/abs/2405.19092
https://arxiv.org/abs/2405.02793
https://arxiv.org/abs/2405.02793
https://arxiv.org/abs/2405.02793
https://arxiv.org/abs/2406.13912
https://arxiv.org/abs/2406.13912
https://arxiv.org/abs/2406.13912
https://arxiv.org/abs/2406.13912
https://arxiv.org/abs/2406.13912
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.17497
https://arxiv.org/abs/2305.17497
https://arxiv.org/abs/2305.17497
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2404.19753
https://arxiv.org/abs/2404.19753
https://arxiv.org/abs/2404.19753
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1505.04870
https://arxiv.org/abs/1912.03098
https://arxiv.org/abs/1912.03098
https://arxiv.org/abs/1912.03098

Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2019. Ob-
ject hallucination in image captioning. Preprint,
arXiv:1809.02156.

Vasu Singla, Kaiyu Yue, Sukriti Paul, Reza Shirka-
vand, Mayuka Jayawardhana, Alireza Ganjdanesh,
Heng Huang, Abhinav Bhatele, Gowthami Somepalli,
and Tom Goldstein. 2024. From pixels to prose:
A large dataset of dense image captions. Preprint,
arXiv:2406.10328.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. Preprint, arXiv:2303.15343.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler,
Adela Barriuso, and Antonio Torralba. 2017. Scene
parsing through ade20k dataset. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5122-5130.

A Visualization of Correctness-Coverage
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Figure 2: Correctness vs. Coverage plot for overall
Concepts using HalFscore
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Figure 3: Correctness vs. Coverage for object grounding
using Capture
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Figure 4: Correctness vs. Coverage for attribute ground-
ing using Capture
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Figure 5: Correctness vs. Coverage for relation ground-
ing using Capture

B Attribute and Relation Metrics
(Non-Zero Subset)

We report detailed grounding performance for at-
tributes and relations on the full set of 1,872 Visual
Genome images, which we get from the pipeline
in Appendix C, used during evaluation. However,
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many captions, particularly those from models fine-
tuned on COCO and Localized Narratives, omit at-
tributes or relations entirely, focusing primarily on
object mentions. As a result, many entries receive
zero scores for these concepts, inflating variance
and reducing the reliability of comparisons.

This issue is evident in the wider confidence
intervals for attribute correctness (e.g., 2.02 for
LN-C), especially compared to more stable object-
level scores. To mitigate this, we report results on
a filtered subset of 307 captions containing at least
one attribute and one relation (Section 3). This
controlled evaluation enables a fairer and more
meaningful comparison across models.

Notably, the SG-4V-finetuned model shows sub-
stantially higher attribute coverage, with attribute
mentions in nearly all captions (1857/1872), while
the LN-finetuned model includes them in only
922/1872. However, when attributes are present,
the LN model achieves higher correctness, as
shown in Table 1, suggesting a trade-off between
correctness and coverage. This aligns with broader
stylistic differences across datasets: SG-4V cap-
tions tend to be more verbose and descriptive, while
LN captions are more selective and concise.

Table 3 presents full correctness and coverage
scores with 95% confidence intervals across all
concept types, computed on the entire 1,872-image
set.

C Evaluation Pipelines

The Capture Evaluation Pipeline The Capture
evaluation pipeline consists of the following steps:

1. Ground-truth extraction: We extract ob-
jects, attributes, and relations from Visual
Genome annotations.

2. Ground-truth cleaning: To ensure high-
quality reference data, we apply a filtering
step that removes samples with fewer than 10
distinct objects or that contain no attributes
or relations. During this process, all concept
types are normalized using the same prepro-
cessing applied to the generated captions: low-
ercasing, lemmatization, stop-word removal,
and deduplication. This reduces noise and
prevents false positives when evaluating hallu-
cination. After filtering, the number of usable
images from Visual Genome decreased from
2,186 to 1,872. This filtering step was neces-
sary for Capture evaluation, which relies on

objects, attributes and relations. In contrast,
the HalFscore evaluation used the region de-
scriptions which did not require such filtering.
As aresult, all 2,186 images were retained in
HalFscore. Full data statistics after filtration
are provided in Appendix E.

3. Caption generation: Each fine-tuned model
generates one caption per test image.

4. Scene graph parsing: Captions are converted
into scene graphs that capture mentioned enti-
ties and their relations.

5. Preprocessing: Concept types in the gen-
erated scene graphs undergo the same nor-
malization as the ground truth: lowercasing,
lemmatization, deduplication, and stop-word
removal.

6. Semantic matching: Caption and ground-
truth elements are aligned using a combina-
tion of exact matching, synonym expansion,
and SBERT-based similarity.

7. Metric computation: We compute correct-
ness and coverage separately for objects, at-
tributes, and relations.

The HalFcore Evaluation Pipeline The HalFs-
core evaluation pipeline is as follows:

1. Caption generation: Each image is cap-
tioned once by the model under evaluation.

2. Entity-relation extraction: We use GPT-40
with a structured prompt to convert each cap-
tion (GT and generated) into a set of struc-
tured triplets: (object, attribute) and

(object;, objecty, relation). These
represent visual concepts and their relation-
ships.

3. Hallucination detection: GPT-40 compares
the generated caption triplets against the GT
triplets to identify hallucinated concepts (i.e.,
objects, attributes, or relations not supported
by GT). To avoid double counting, any object
counted as hallucination is not counted again
if its repeated as there can be repeats it the re-
gion descriptions used to make the GT caption.
Moreover, any attribute or relation linked to
a hallucinated object is excluded from further
consideration.



Table 3: 95% confidence intervals for correctness (C) and coverage (V) across all concept types, computed over the

full 1,872 Visual Genome images.

Model Objects Attributes Relations Train Gen.
C 1% C % C % len len

COCO 84.15+£0.73 26.48+0.58 28.09+1.76 07.20+£0.58 60.64+1.06 31.95+0.66 10 11

LN-C 81.44+0.61 38.78+0.51 38.03£2.02 09.85+0.62 56.91+0.84 37.86+£0.61 42 33

SG-4V-C 77.95+0.67 35.31+£0.48 71.69+0.83 38.28+0.63 57.24+0.79 35.90+0.53 56 34

4. Omission detection: GPT-40 identifies con-
cepts present in the GT caption but missing
in the generated caption. As with hallucina-
tion, attributes or relations linked to omitted
objects are not counted again.

5. Metric computation: Precision, recall, and
HalFscore are computed from the counts of
hallucinated and omitted concepts (see be-
low).

This setup provides a granular understanding
of model behavior, allowing us to assess both the
factual accuracy and completeness of generated
captions.

D HalFscore Metric

Following triplet extraction and comparison using
an LLM, we compute the (HalFscore) from (Chen
et al., 2025) as follows:

1. Precision: Measures the proportion of cor-
rectly grounded concepts in the generated cap-
tion, this is equivalent to correctness score:

|Hallucinated Concepts|
|Generated Concepts|

Precision = 1 —

2. Recall: Measures the proportion of ground
truth concepts recovered by the model, this is
equivalent to coverage score:

|Omitted Concepts|

Recall =1 —
ecd |GT Concepts|

3. HalFscore: The harmonic mean of precision
and recall:

2 - Precision - Recall

HalFscore = —
Precision + Recall

This metric penalizes both hallucination and in-
completeness, encouraging models to generate cap-
tions that are both accurate and exhaustive. The

scoring is based on LLM reasoning, enabling se-
mantic matching rather than brittle string compar-
isons, and avoids double-counting by ignoring at-
tributes and relations connected to hallucinated or
omitted objects.

E Dataset Statistics

After applying our filtering and normalization steps
to the Visual Genome data (as described in Sec-
tion 2.3), we retained 1,872 high-quality examples
used for evaluation using CAPTURE metric. Fig-
ure 6 shows the distribution of object, attribute, and
relation counts per image using a shared density
plot. On average, images contain 18.35 objects
(median 18), 19.74 attributes (median 18.5), and
16.88 relations (median 16), indicating rich seman-
tic annotation across all concept types.
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Figure 6: Overlaid KDE plot showing the distribution
of object, attribute, and relation counts per image in the
cleaned Visual Genome subset.

Caption Length Distributions Across Datasets

Dataset
033 1 coco
Localized Narratives
=1 shareGPT-4v

0.05 /\

0 20 0 60 80 100
Caption Length (words)

Figure 7: Caption length across the training datasets.



F Optimiser Hyper-Parameters

Both stages are trained with AdamW, using a learn-
ing rate of 1 x 107° and a batch size of 32. The
learning rate is linearly warmed up during the first
10% of updates and then follows a cosine decay.
The first stage runs for three epochs, and the sec-
ond stage for one epoch. Experiments were run on
2xA100-SXM4-40GB GPUs.

G Comparison of CAPTURE and
HalFscore Behavior

It is worth noting that while HalFscore and CAP-
TURE both avoid penalizing repeated mentions of
the same hallucinated object, HalFscore also does
not double-count hallucinated attributes or relations
if their head object was already marked incorrect.
This contrasts with CAPTURE, which treats each
concept type independently and evaluates them re-
gardless of their connection to hallucinated enti-
ties. As such, attribute coverage is more stable in
HalFscore, as the evaluation avoids over-penalizing
missing attributes when the associated object was
also incorrect hence why the complete scores using
HalFscore in Table 1 are not skewed like those of
CAPTURE in Table 3 in Appendix B.

H Dataset Examples

Figure 8 shows example images with captions from
the three different datasets: COCO, Localized Nar-
ratives, and ShareGPT-4V.

COCO captions are short and concise, typically
mentioning only the main objects and actions in
the image. Localized Narratives aim for more ex-
haustive coverage of the scene by referring to as
many objects as possible and anchoring them spa-
tially within the image. In contrast, ShareGPT-4V
captions are generated by large language models
and tend to be stylistically elaborate, often empha-
sizing visual attributes, setting details, and scene
composition. and Figure ?? shows more qualitative
examples.

I Object Mention Analysis by Caption
Length

Further insight comes from analyzing the relation-
ship between caption length, the number of object
mentions, and grounding performance. As shown
in Figure 9, Localized Narratives exhibit a clear
trade-off: longer captions mention more objects,

which boosts coverage but leads to reduced correct-
ness. This pattern reflects an increase in hallucina-
tions as verbosity rises.

In contrast, Figure 10 shows that ShareGPT-4V
captions maintain a nearly constant number of ob-
ject mentions across caption lengths. This leads
to stable correctness and coverage, suggesting that
ShareGPT-4V avoids the precision—recall trade-off
by elaborating on existing entities rather than intro-
ducing new ones.

Localized Narratives - Object Metrics vs. Caption Length
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Figure 9: Analysis of object grounding behavior as
caption length increases. Localized Narratives show a
trade-off: longer captions increase object coverage but
reduce correctness by introducing more hallucinated
objects.

ShareGPT-4V - Object Metrics vs. Caption Length
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Figure 10: Analysis of object grounding behavior as
caption length increases. ShareGPT-4V (bottom row)
maintains stable correctness and coverage, as it tends to
elaborate on existing objects rather than introduce new
ones.



COCO: an image of a cars driving on the highway.

Localized Narratives: This is a picture taken of the
& outdoors. It is sunny. There are some vehicles moving
on the road. On the left side of the vehicles there is a
fence, electric poles, cables and some vehicles are
parked. On the right side of the vehicles there is a
fence, traffic cone and two cars are parked on the
path. In front of the vehicles there are a bridge, trees
and buildings.

ShareGPT-4V: The image captures a bustling intersection in Japan, teeming with life and
activity. From a high vantage point, we can see a multitude of cars, predominantly in shades
of white, orange, and blue, navigating their way through the intersection. The traffic lights,
glowing in hues of red and yellow, guide the flow of vehicles, adding a sense of rhythm to
the scene. The backdrop of the image is a blend of urban and natural elements. Buildings of
varying heights stretch into the distance, interspersed with trees that bring a touch of green
to the concrete jungle. The sky above is a clear blue, suggesting a bright and sunny day. The
image is a snapshot of everyday life in Japan, encapsulating the organized chaos that
characterizes its roads. It's a testament to the country's efficient traffic management system,
where every element has its place and purpose.

Figure 8: Example captions from the original datasets used for fine-tuning.
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