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Abstract
Training vision–language models (VLMs) on001
long, synthetic captions has been shown to in-002
crease hallucination compared to using short,003
human-written ones. Prior work attributes this004
to errors in synthetic data, but confounds cap-005
tion origin (human vs. synthetic) and caption006
length. We disentangle these factors through007
controlled experiments on three matched set008
of captions: short human-written, long human-009
written, and long synthetic ones. VLMs trained010
on these datasets are evaluated using recent011
advanced metrics, with a breakdown by ob-012
jects, attributes, and relations. We find that013
caption length is the main driver of hallucina-014
tion, though synthetic origin also contributes,015
particularly through object and attribute errors.016

1 Introduction017

Synthetic data generation has emerged as a power-018

ful paradigm for distilling knowledge from large019

language models (LLMs) into smaller ones (Peng020

et al., 2023; Hsieh et al., 2023). In the space of021

vision-language modeling, where short image cap-022

tioning is giving way to the more complex task of023

long image captioning (Onoe et al., 2024; Garg024

et al., 2024), generative caption enrichment (GCE)025

is proving very effective for creating relevant train-026

ing data (Chen et al., 2023; Singla et al., 2024).027

Yet, recent work has shown that while also im-028

proving descriptiveness and object recall, GCE can029

lead also to increased hallucination. In particu-030

lar, Hirota et al. (2024) found that vision–language031

models (VLMs) trained on long, synthetically en-032

riched captions, such as those from the ShareGPT-033

4V dataset (Chen et al., 2023), exhibit higher034

hallucination rates in terms of the CHAIR met-035

ric (Rohrbach et al., 2019), compared to models036

trained on concise human-authored captions from037

the COCO datatset (Lin et al., 2015). They at-038

tributed this phenomenon to likely error propaga-039

tion from the teacher model used to generate the040

data to the student model, trained on it.041

The experimental design in prior work overlooks 042

a key confound: caption length. As the length of 043

generated text increases, there is naturally more 044

room for errors. And as the level of detail described 045

becomes more fine-grained, the vision-language 046

alignment abilities of the model are strained. It is 047

thus unclear to what extent hallucination in models 048

trained with GCE is driven by the length of captions 049

or by their synthetic origin. 050

To resolve this confound, we conduct experi- 051

ments on three matched datasets, all using the 052

same 118k images annotated with different cap- 053

tions: short human-written (COCO), long human- 054

written (Pont-Tuset et al., 2020, Localized Narra- 055

tives), and long synthetic captions (ShareGPT-4V.) 056

We train three vision–language models and study 057

their hallucination behavior using two advanced 058

recent metrics: CAPTURE (Dong et al., 2024) and 059

HalFscore (Chen et al., 2025). 060

By analyzing object, attribute, and relation-level 061

correctness and coverage, we show how caption 062

properties shape model behavior. We find that the 063

shift from human-authored to synthetic data has 064

a smaller impact on hallucination rates than the 065

shift from short to long human-written captions, al- 066

though both contribute considerably. While the cor- 067

rectness of relations is not affected by the origin of 068

the data, hallucination in objects and attributes rise. 069

The field of image captioning has shifted from 070

short, generic descriptions to long-form captions 071

with richer visual grounding. Early datasets like 072

COCO (118K) (Lin et al., 2015) offered concise, 073

crowd-sourced captions but lacked detail. Local- 074

ized Narratives (849K) (Pont-Tuset et al., 2020) 075

addressed this by aligning spoken descriptions with 076

mouse traces over images from COCO, Flickr30k, 077

ADE20K, and Open Images (Lin et al., 2015; Plum- 078

mer et al., 2016; Zhou et al., 2017; Kuznetsova 079

et al., 2020). While effective, this annotation 080

method is costly to scale. To enable larger datasets, 081

synthetic captioning has emerged. ShareGPT- 082
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4V (Chen et al., 2023) was created via a two-stage083

process: GPT-4V generated captions for 100K084

images, which were then used to train a Share-085

Captioner for scalable generation (1.2M). Though086

scalable, synthetic captions risk hallucinations due087

to LLM errors.088

Hallucination in VLMs. Hallucination refers to089

models mentioning visual details not present in the090

image (Rohrbach et al., 2019; Bai et al., 2025; Liu091

et al., 2024). Benchmarks like CHAIR (Rohrbach092

et al., 2019) and POPE (Li et al., 2023a) categorize093

hallucinations at the object, attribute, and relation094

levels, linking them to visual-text misalignment or095

language priors.096

Hirota et al. (2024) fine-tune BLIP-2 on COCO097

and ShareGPT-4V and evaluate hallucination us-098

ing CHAIR on the COCO validation set. They099

find that models trained on synthetic captions hal-100

lucinate more. However, CHAIR only measures101

object-level hallucination, and comparing COCO102

(which omits many present objects) to ShareGPT-103

4V (which is longer and more detailed) introduces104

two variables, caption origin and length, making it105

unclear whether hallucination increases due to syn-106

thetic data or verbosity. Since COCO captions aver-107

age 10 words and ShareGPT-4V captions 143, this108

mismatch increases the likelihood of false positives109

from correctly grounded but unannotated objects.110

In contrast, we isolate the effects of length and111

origin, and evaluate objects, attributes, and rela-112

tions using LLM- and graph-based metrics.113

2 Methodology and Experimental Design114

Our methodology was designed to systematically115

evaluate the impact of caption length and origin116

on hallucination in vision-language models. We117

established a controlled experimental framework118

with three key components: (1) a dataset curation119

with multiple caption types for the same images,120

(2) a vision-language model architecture designed121

to minimize pre-existing biases, and (3) a com-122

prehensive evaluation pipeline that measures both123

coverage and hallucination.124

2.1 Datasets125

The training data is based on the 118,000 im-126

ages shared between COCO, Localized Narratives127

and ShareGPT-4V. For every image we thus have128

a short, human-written caption, a long, human-129

written caption, and long, model-generated one.130

We fine-tune VLMs separately on each set of cap-131

tions, with images being matched across experi- 132

ments, to isolate the effects of caption types. 133

The captions between the three datasets vary sub- 134

stantially in length: COCO captions averaged 10 135

words, Localized Narratives around 42 words, and 136

ShareGPT-4V captions, approximately 143 words 137

per image. While the latter two were intentionally 138

chosen to be longer than COCO, between them- 139

selves, they differ both in origin and also in length. 140

We thus truncated the ShareGPT-4V captions to 141

include only the first three sentences. This re- 142

duced their average length to 52 words, bringing 143

them closer to Localized Narratives, while preserv- 144

ing their grammaticality and coherence. The final 145

length distribution of the training data is visualized 146

in Figure 7 in the Appendix and an example of a 147

training sample can be seen in Figure 8 (Appendix). 148

2.2 Model Architecture and Training 149

A SigLIP vision encoder (Zhai et al., 2023) 150

is paired with a Qwen-2.5 (3B) language de- 151

coder (Qwen et al., 2025), using a 2-layer MLP 152

projector. The model is trained in two stages to 153

support the gradual learning of fine-grained cross- 154

modal alignment. In the first stage, we train only 155

the visual projection layer on COCO, to establish 156

initial visual-textual alignment.1 In the second 157

stage, we independently train three models on each 158

dataset. Here, all model parameters are updated. 159

Each training run uses the same 118,000 images, 160

differing only in the caption source, to ensure con- 161

trolled comparisons. The details on optimisation 162

and computational resources are in in Appendix F. 163

2.3 Evaluation Pipeline 164

Evaluation is based on the Visual Genome (VG) 165

dataset (Krishna et al., 2016), specifically the sub- 166

set of 2,186 images from it, which do not overlap 167

with the COCO training set. VG provides struc- 168

tured annotations of objects, attributes, and rela- 169

tions, as well as region-level descriptions. These 170

annotations serve as ground truth for computing 171

correctness and coverage in the evaluations below. 172

Following prior work (Hirota et al., 2024; Dong 173

et al., 2024), we adopt the terms correctness and 174

coverage, which extend the hard surface-level 175

matching precision and recall scores to semantic 176

matching, more appropriate in image captioning 177

evaluation: Correctness (C) measures the propor- 178

tion of concepts in the generated caption that are 179

1We found that without this step, the long-caption training
was not converging.
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HalFscore CAPTURE Length

Model Average Objects Attributes Relations Average Train Gen.

C V C V C V C V C V

COCO 61.04 38.60 85.6 26.0 76.0 19.0 64.5 33.4 75.4 26.1 10 11
Loc. Narratives 58.812.23 42.393.79 81.34.3 39.713.7 75.90.1 19.90.9 59.25.3 38.65.2 72.13.3 32.76.6 42 33
ShareGPT-4V 56.831.98 43.190.80 78.72.6 34.35.4 73.82.1 39.119.2 59.40.2 36.12.5 70.61.5 36.53.8 56 34

Table 1: HalFscore on full test set and CAPTURE on subset of 307 images. C: correctness, V: coverage. Right:
CAPTURE scores broken down by objects, attributes, relations, and their average. The subscripts indicate the
change from the number above, with red indicating a drop and green indicating an increase. “Train” and “Gen.” list
the mean lengths of the training and generated captions, respectively.

Model Constraint Objects Attributes Relations Average Length

C V C V C V C V Train Gen.

Localized Narratives
Constrained 81.0 38.3 76.2 20.4 59.8 38.1 72.3 32.3 42 33
Unconstrained 79.0 41.2 75.2 22.2 57.6 39.4 70.6 34.3 42 37

ShareGPT-4V
Constrained 78.3 34.8 73.5 39.2 58.8 36.4 70.2 36.8 56 34
Unconstrained 76.2 40.2 71.3 44.3 57.6 40.4 68.4 41.6 56 49

Table 2: CAPTURE evaluation on the 487 intersected captions that contain attributes. Bolded values mark the
higher average within each model pair.

present in the image; higher values indicate fewer180

hallucinations. Coverage (V) measures the propor-181

tion of ground truth concepts from the image that182

are successfully captured in the caption.183

HalFscore Chen et al. (2025) relies on GPT-4o184

to extract triplets of concepts (objects, attributes,185

relations) from both generated and ground-truth186

(GT) captions, and uses binary LLM decisions to187

match these when computing correctness and cov-188

erage. In our evaluations, GT captions are built by189

concatenating all region-level descriptions for an190

image from our VG test set. The resulting score191

is highly reliable, as we manually observe that the192

extracted objects, attributes and relations as well as193

their matching, is largely correct. The final score194

coarsely indicates the overall correctness and cov-195

erage, with no per-type breakdown.196

CAPTURE Dong et al. (2024) evaluates ground-197

ing by aligning generated captions with Visual198

Genome scene graphs to compute correctness and199

coverage for objects, attributes, and relations. In its200

original setup, both generated and reference cap-201

tions are parsed into scene graphs using the FAC-202

TUAL parser (Li et al., 2023b). In our version, we203

use ground-truth triplets from Visual Genome for204

the reference and parse only the generated captions,205

enabling per-type evaluation via soft matching (ex-206

act match, synonym expansion, and SBERT simi-207

larity). However, reliance on FACTUAL to extract208

triplets from generated captions can miss elements, 209

limiting reliability. Implementation details for both 210

metrics are in Appendix C. 211

3 Results and Discussion 212

Effect of Caption Length To investigate our first 213

research question, we compare captions generated 214

by models fine-tuned on short human captions from 215

the COCO dataset versus longer ones from Local- 216

ized Narratives (LN). 217

We begin with a coarse-grained analysis using 218

HalFscore on overall concept correctness and cov- 219

erage. As shown in Table 1, models trained on 220

shorter COCO captions achieve the highest correct- 221

ness scores, meaning they include fewer halluci- 222

nated concepts. However, their coverage is lower, 223

as many relevant concepts are omitted. This re- 224

flects a correctness–coverage trade-off introduced 225

by verbosity: longer captions improve coverage but 226

are more prone to hallucination (Appendix A). 227

For fine-grained analysis, we use CAPTURE. In 228

our initial evaluation, most captions from COCO- 229

and LN-finetuned models lacked attributes and re- 230

lations, focusing almost exclusively on objects. As 231

a result, average correctness scores were skewed 232

by zero-valued entries (Appendix B). To better as- 233

sess model behavior when these concept types are 234

present, we restrict CAPTURE evaluation to a fil- 235

tered subset of captions mentioning at least one 236

attribute and one relation. In this subset (Table 1), 237
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Figure 1: Captions generated by different models for
the same image; hallucinations are marked in red.

the same trend holds: COCO-trained models yield238

higher correctness, while LN-trained ones achieve239

higher coverage. This supports the hypothesis that240

increased caption length introduces hallucination241

across objects, attributes, and relations. See Ap-242

pendix G for a comparison of how CAPTURE and243

HalFscore handle hallucinated concepts.244

Effect of Caption Origin To investigate our sec-245

ond research question, we compare captions gener-246

ated by models fine-tuned on human-written versus247

synthetic data. Both models, one trained on Local-248

ized Narratives (LN) and the other on ShareGPT-249

4V (SG-4V), were constrained to produce captions250

of similar average lengths (33 vs. 34 tokens).251

Coarse-grained results from HalFscore show252

that, despite similar lengths, LN-trained models253

achieve higher correctness, while SG-4V-trained254

models yield higher coverage, suggesting synthetic255

captions are more detailed but also more prone to256

hallucination.257

Fine-grained CAPTURE results (Table 1) rein-258

force these findings. The LN-finetuned model at-259

tains higher correctness for objects and attributes260

(fewer hallucinations), whereas relation correct-261

ness is comparable with the SG-4V trained model.262

These results suggest that while the model trained263

on synthetic captions tends to have slightly lower264

correctness on average, its performance in rela-265

tion correctness remains competitive with human-266

trained models.267

We also find that SG-4V trained model achieves268

higher average coverage across all concept types269

due to a significant increase in attribute coverage,270

but LN trained model performs better on object271

and relation coverage. This reflects the nature of 272

each dataset (Figure 8): LN tends to list most scene 273

objects and their spatial relations, while SG-4V 274

emphasizes stylistic detail for prominent entities. 275

These trends are reflected in the qualitative exam- 276

ple in Figure 1. The LN caption captures more of 277

the scene than COCO and maintains correctness 278

overall, but hallucinates a box. SG-4V adds fur- 279

ther details, including stylistic and attribute-rich 280

descriptions, but hallucinates objects like fork and 281

knife (marked in red). Appendix H provides ad- 282

ditional examples, and Appendix I offers further 283

analysis of how scores vary with object count. 284

Overall, we find that while Hirota et al. (2024) 285

attribute increased hallucination to synthetic data, 286

reporting a rise when switching from human writ- 287

ten COCO to LLM-generated SG-4V captions, our 288

controlled setup shows caption length also plays a 289

significant role. In both metrics, moving from short 290

COCO captions to longer ones (LN) increased hal- 291

lucination by 3.3 points, while switching from LN 292

to SG-4V (at similar length) caused a smaller 1.5- 293

point increase. This suggests that length, not just 294

origin, is a key driver of hallucination. 295

Analysis of Constrained and Unconstrained 296

Generation A complementary analysis using CAP- 297

TURE in Table 2 compares the effect of length 298

control within the same dataset, i.e., constrained 299

and unconstrained generations from models fine- 300

tuned on both LN and SG-4V. In both cases, we 301

observe a consistent trend across all concept types, 302

objects, attributes, and relations. Restricting the 303

caption length leads to a drop in coverage but a no- 304

ticeable improvement in correctness. This further 305

reinforces the role of verbosity as a key factor in 306

hallucination. 307

4 Conclusion and Future Work 308

Our results show that both caption length and ori- 309

gin influence hallucination and coverage in vi- 310

sion–language models. Longer captions consis- 311

tently improve coverage but also increase halluci- 312

nation, while synthetic captions tend to describe 313

more attributes and relations but with slightly lower 314

correctness than human-written ones. These trends 315

hold across both fine- and coarse-grained evalua- 316

tions. Future work should explore training and de- 317

coding strategies that balance correctness with cov- 318

erage, and develop evaluation methods that better 319

account for semantic nuance across concept types. 320

4



5 Limitations321

This study focuses on caption-level grounding and322

relies on automated tools for evaluation, which in-323

troduces two key limitations. First, our use of FAC-324

TUAL and GPT-4o for triplet extraction depends325

on the accuracy of these parsers. While they sup-326

port large-scale evaluation, they may occasionally327

overlook or misclassify fine-grained concepts, par-328

ticularly in visually complex scenes. Second, our329

analysis is limited to image captioning and does not330

extend to downstream tasks such as visual question331

answering or retrieval. Exploring how hallucina-332

tion affects these applications remains an important333

avenue for future research.334
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A Visualization of Correctness-Coverage455

Tradeoff456

Figure 2: Correctness vs. Coverage plot for overall
Concepts using HalFscore

Figure 3: Correctness vs. Coverage for object grounding
using Capture

Figure 4: Correctness vs. Coverage for attribute ground-
ing using Capture

Figure 5: Correctness vs. Coverage for relation ground-
ing using Capture

B Attribute and Relation Metrics 457

(Non-Zero Subset) 458

We report detailed grounding performance for at- 459

tributes and relations on the full set of 1,872 Visual 460

Genome images, which we get from the pipeline 461

in Appendix C, used during evaluation. However, 462
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many captions, particularly those from models fine-463

tuned on COCO and Localized Narratives, omit at-464

tributes or relations entirely, focusing primarily on465

object mentions. As a result, many entries receive466

zero scores for these concepts, inflating variance467

and reducing the reliability of comparisons.468

This issue is evident in the wider confidence469

intervals for attribute correctness (e.g., ±2.02 for470

LN-C), especially compared to more stable object-471

level scores. To mitigate this, we report results on472

a filtered subset of 307 captions containing at least473

one attribute and one relation (Section 3). This474

controlled evaluation enables a fairer and more475

meaningful comparison across models.476

Notably, the SG-4V-finetuned model shows sub-477

stantially higher attribute coverage, with attribute478

mentions in nearly all captions (1857/1872), while479

the LN-finetuned model includes them in only480

922/1872. However, when attributes are present,481

the LN model achieves higher correctness, as482

shown in Table 1, suggesting a trade-off between483

correctness and coverage. This aligns with broader484

stylistic differences across datasets: SG-4V cap-485

tions tend to be more verbose and descriptive, while486

LN captions are more selective and concise.487

Table 3 presents full correctness and coverage488

scores with 95% confidence intervals across all489

concept types, computed on the entire 1,872-image490

set.491

C Evaluation Pipelines492

The Capture Evaluation Pipeline The Capture493

evaluation pipeline consists of the following steps:494

1. Ground-truth extraction: We extract ob-495

jects, attributes, and relations from Visual496

Genome annotations.497

2. Ground-truth cleaning: To ensure high-498

quality reference data, we apply a filtering499

step that removes samples with fewer than 10500

distinct objects or that contain no attributes501

or relations. During this process, all concept502

types are normalized using the same prepro-503

cessing applied to the generated captions: low-504

ercasing, lemmatization, stop-word removal,505

and deduplication. This reduces noise and506

prevents false positives when evaluating hallu-507

cination. After filtering, the number of usable508

images from Visual Genome decreased from509

2,186 to 1,872. This filtering step was neces-510

sary for Capture evaluation, which relies on511

objects, attributes and relations. In contrast, 512

the HalFscore evaluation used the region de- 513

scriptions which did not require such filtering. 514

As a result, all 2,186 images were retained in 515

HalFscore. Full data statistics after filtration 516

are provided in Appendix E. 517

3. Caption generation: Each fine-tuned model 518

generates one caption per test image. 519

4. Scene graph parsing: Captions are converted 520

into scene graphs that capture mentioned enti- 521

ties and their relations. 522

5. Preprocessing: Concept types in the gen- 523

erated scene graphs undergo the same nor- 524

malization as the ground truth: lowercasing, 525

lemmatization, deduplication, and stop-word 526

removal. 527

6. Semantic matching: Caption and ground- 528

truth elements are aligned using a combina- 529

tion of exact matching, synonym expansion, 530

and SBERT-based similarity. 531

7. Metric computation: We compute correct- 532

ness and coverage separately for objects, at- 533

tributes, and relations. 534

The HalFcore Evaluation Pipeline The HalFs- 535

core evaluation pipeline is as follows: 536

1. Caption generation: Each image is cap- 537

tioned once by the model under evaluation. 538

2. Entity-relation extraction: We use GPT-4o 539

with a structured prompt to convert each cap- 540

tion (GT and generated) into a set of struc- 541

tured triplets: (object, attribute) and 542

(object1, object2, relation). These 543

represent visual concepts and their relation- 544

ships. 545

3. Hallucination detection: GPT-4o compares 546

the generated caption triplets against the GT 547

triplets to identify hallucinated concepts (i.e., 548

objects, attributes, or relations not supported 549

by GT). To avoid double counting, any object 550

counted as hallucination is not counted again 551

if its repeated as there can be repeats it the re- 552

gion descriptions used to make the GT caption. 553

Moreover, any attribute or relation linked to 554

a hallucinated object is excluded from further 555

consideration. 556
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Table 3: 95% confidence intervals for correctness (C) and coverage (V) across all concept types, computed over the
full 1,872 Visual Genome images.

Model Objects Attributes Relations Train Gen.

C V C V C V len len

COCO 84.15±0.73 26.48±0.58 28.09±1.76 07.20±0.58 60.64±1.06 31.95±0.66 10 11
LN-C 81.44±0.61 38.78±0.51 38.03±2.02 09.85±0.62 56.91±0.84 37.86±0.61 42 33
SG-4V-C 77.95±0.67 35.31±0.48 71.69±0.83 38.28±0.63 57.24±0.79 35.90±0.53 56 34

4. Omission detection: GPT-4o identifies con-557

cepts present in the GT caption but missing558

in the generated caption. As with hallucina-559

tion, attributes or relations linked to omitted560

objects are not counted again.561

5. Metric computation: Precision, recall, and562

HalFscore are computed from the counts of563

hallucinated and omitted concepts (see be-564

low).565

This setup provides a granular understanding566

of model behavior, allowing us to assess both the567

factual accuracy and completeness of generated568

captions.569

D HalFscore Metric570

Following triplet extraction and comparison using571

an LLM, we compute the (HalFscore) from (Chen572

et al., 2025) as follows:573

1. Precision: Measures the proportion of cor-574

rectly grounded concepts in the generated cap-575

tion, this is equivalent to correctness score:576

Precision = 1− |Hallucinated Concepts|
|Generated Concepts|

577

2. Recall: Measures the proportion of ground578

truth concepts recovered by the model, this is579

equivalent to coverage score:580

Recall = 1− |Omitted Concepts|
|GT Concepts|

581

3. HalFscore: The harmonic mean of precision582

and recall:583

HalFscore =
2 · Precision · Recall
Precision + Recall

584

This metric penalizes both hallucination and in-585

completeness, encouraging models to generate cap-586

tions that are both accurate and exhaustive. The587

scoring is based on LLM reasoning, enabling se- 588

mantic matching rather than brittle string compar- 589

isons, and avoids double-counting by ignoring at- 590

tributes and relations connected to hallucinated or 591

omitted objects. 592

E Dataset Statistics 593

After applying our filtering and normalization steps 594

to the Visual Genome data (as described in Sec- 595

tion 2.3), we retained 1,872 high-quality examples 596

used for evaluation using CAPTURE metric. Fig- 597

ure 6 shows the distribution of object, attribute, and 598

relation counts per image using a shared density 599

plot. On average, images contain 18.35 objects 600

(median 18), 19.74 attributes (median 18.5), and 601

16.88 relations (median 16), indicating rich seman- 602

tic annotation across all concept types. 603

Figure 6: Overlaid KDE plot showing the distribution
of object, attribute, and relation counts per image in the
cleaned Visual Genome subset.

Figure 7: Caption length across the training datasets.
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F Optimiser Hyper-Parameters604

Both stages are trained with AdamW, using a learn-605

ing rate of 1 × 10−5 and a batch size of 32. The606

learning rate is linearly warmed up during the first607

10% of updates and then follows a cosine decay.608

The first stage runs for three epochs, and the sec-609

ond stage for one epoch. Experiments were run on610

2×A100-SXM4-40GB GPUs.611

G Comparison of CAPTURE and612

HalFscore Behavior613

It is worth noting that while HalFscore and CAP-614

TURE both avoid penalizing repeated mentions of615

the same hallucinated object, HalFscore also does616

not double-count hallucinated attributes or relations617

if their head object was already marked incorrect.618

This contrasts with CAPTURE, which treats each619

concept type independently and evaluates them re-620

gardless of their connection to hallucinated enti-621

ties. As such, attribute coverage is more stable in622

HalFscore, as the evaluation avoids over-penalizing623

missing attributes when the associated object was624

also incorrect hence why the complete scores using625

HalFscore in Table 1 are not skewed like those of626

CAPTURE in Table 3 in Appendix B.627

H Dataset Examples628

Figure 8 shows example images with captions from629

the three different datasets: COCO, Localized Nar-630

ratives, and ShareGPT-4V.631

COCO captions are short and concise, typically632

mentioning only the main objects and actions in633

the image. Localized Narratives aim for more ex-634

haustive coverage of the scene by referring to as635

many objects as possible and anchoring them spa-636

tially within the image. In contrast, ShareGPT-4V637

captions are generated by large language models638

and tend to be stylistically elaborate, often empha-639

sizing visual attributes, setting details, and scene640

composition. and Figure ?? shows more qualitative641

examples.642

I Object Mention Analysis by Caption643

Length644

Further insight comes from analyzing the relation-645

ship between caption length, the number of object646

mentions, and grounding performance. As shown647

in Figure 9, Localized Narratives exhibit a clear648

trade-off: longer captions mention more objects,649

which boosts coverage but leads to reduced correct- 650

ness. This pattern reflects an increase in hallucina- 651

tions as verbosity rises. 652

In contrast, Figure 10 shows that ShareGPT-4V 653

captions maintain a nearly constant number of ob- 654

ject mentions across caption lengths. This leads 655

to stable correctness and coverage, suggesting that 656

ShareGPT-4V avoids the precision–recall trade-off 657

by elaborating on existing entities rather than intro- 658

ducing new ones. 659

Figure 9: Analysis of object grounding behavior as
caption length increases. Localized Narratives show a
trade-off: longer captions increase object coverage but
reduce correctness by introducing more hallucinated
objects.

Figure 10: Analysis of object grounding behavior as
caption length increases. ShareGPT-4V (bottom row)
maintains stable correctness and coverage, as it tends to
elaborate on existing objects rather than introduce new
ones.
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COCO: an image of a cars driving on the highway.
.

Localized Narratives: This is a picture taken of the
outdoors. It is sunny. There are some vehicles moving
on the road. On the left side of the vehicles there is a
fence, electric poles, cables and some vehicles are
parked. On the right side of the vehicles there is a
fence, traffic cone and two cars are parked on the
path. In front of the vehicles there are a bridge, trees
and buildings.

ShareGPT-4V: The image captures a bustling intersection in Japan, teeming with life and
activity. From a high vantage point, we can see a multitude of cars, predominantly in shades
of white, orange, and blue, navigating their way through the intersection. The traffic lights,
glowing in hues of red and yellow, guide the flow of vehicles, adding a sense of rhythm to
the scene. The backdrop of the image is a blend of urban and natural elements. Buildings of
varying heights stretch into the distance, interspersed with trees that bring a touch of green
to the concrete jungle. The sky above is a clear blue, suggesting a bright and sunny day. The
image is a snapshot of everyday life in Japan, encapsulating the organized chaos that
characterizes its roads. It's a testament to the country's efficient traffic management system,
where every element has its place and purpose.

Figure 8: Example captions from the original datasets used for fine-tuning.
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