
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INVARIANT CONVOLUTIONAL LAYERS FOR TIME SE-
RIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning for time series has recently garnered considerable attention. In-
deed, automatically extracting meaningful representations from large and complex
time series data is becoming imperative for several real-world applications. Neu-
ral architectures tailored to time series are often built upon sequential modules,
such as convolutional, commonly employed in text or vision. Unfortunately, the
potential of standard layers in capturing invariant properties of time series remains
relatively underexplored. For instance, convolutional layers often fail to capture
underlying patterns in time series inputs that encompass strong deformations, such
as linear trends. However, invariances to some deformations may be critical for
solving complex time series tasks, such as classification, while guaranteeing good
generalization properties. To address these challenges, we mathematically for-
mulate and technically design efficient invariant convolutions for specific group
actions applicable to the case of time series. We construct these convolutions by
considering two sets of deformations commonly observed in time series, including
(i) offset shift and scaling and (ii) linear trend and scaling. We further combine
the proposed invariant convolutions with standard (or variant) convolutions in a
single embedding layer of an example architecture, the so-called INVCONVNET
method, and showcase the layer capacity to capture complex invariant time series
properties. Finally, INVCONVNET is experimentally proven to achieve superior
performance against common baselines in relevant time series tasks, including
classification and anomaly detection.

1 INTRODUCTION

Time series data lies at the core of important real-world applications, spanning multiple scientific and
engineering fields, such as energy, transportation, health monitoring and others. Recently, there has
been a growing interest in applying machine learning to time series data, with the aim of facilitating
several tasks, including prediction, classification, and clustering. However, time series, contrary to
other well-structured categories of data, such as images and text, may include variables of different
modalities (e. g., weather data consisting of temperature and wind speed measurements) as well as
significant noise levels and distribution shifts.

Machine learning for time series has gradually moved from classical statistical methods, e. g., au-
toregressive models for forecasting (Box et al., 2015) and dictionary-based approaches for classifi-
cation (Middlehurst et al., 2019), to neural networks. Notable time series neural architectures are
built upon recurrent layers, convolutional layers and more recently transformers. Recurrent neural
networks (RNNs), originally proposed for sequences and exploited in text-related tasks, suffer from
gradient-vanishing problems, especially when modeling long-range dependencies. Attention-based
modules, incorporated in transformer architectures, offer a computationally efficient alternative to
recurrent architectures, lately achieving state-of-the-art performance in forecasting (Liu et al., 2023;
Zhang & Yan, 2022). Nevertheless, it has been shown experimentally that attention modules suffer
from optimization issues, e. g., training instability under noisy inputs, which is prominent for the
data scarcity of time series. On the other hand, convolutional neural networks (CNNs) have been
traditionally applied to extract features from various data sources, including time series. Convolu-
tional layers are also often incorporated in recurrent and attention-based models as initial feature
extractors, enhancing the expressiveness of representations for a given task. Indeed, CNNs have
been proven consistently successful in tasks including time series classification and clustering (Is-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Kernel Electrocardiogram

C n
or

m
al

C L
T

Figure 1: Top right: Segment of a electrocardiogram (ECG) from the MIT-BIH dataset Goldberger
et al. (2000); Moody & Mark (2001). Top left: The convolutional kernel is the first heartbeat. Mid-
dle: With the normal convolution, individual heartbeats are not identifiable as they are blurred by
the trend. Bottom: With linear trend invariant convolution, all heartbeat occurrences are identifiable
as they are positively correlated with the kernel, minimizing deformations induced by the trend.

mail Fawaz et al., 2019; Tonekaboni et al., 2021), while offering interpretability by visualizing
feature’s influence through kernel weights.

To address the overfitting issues of standard neural architectures, e. g., transformers (Liu et al., 2020),
when dealing with raw time series, significant efforts are focused on the introduction of general-
purpose pre-training tasks (Zhang et al., 2024) that incorporate structure in the learning process to
overcome data scarcity. For instance, self-supervised contrastive learning for time series, considers
transformations of the input to introduce augmentations, and treat them as invariant, via customiz-
able losses (Franceschi et al., 2019; Eldele et al., 2021). Yet, the selection of views within the time
series collection to contrast, as well as the types of transformations to consider (e. g., scaling, shift-
ing) are often arguable within the research community (Yue et al., 2022). Notably, soft invariances in
place of hard ones, are shown to be experimentally more suitable for capturing complex time series’
properties (Lee et al., 2023). However, we need to emphasize here that contrastive learning consti-
tutes an implicit way of introducing invariances into learning rather than via an explicit architectural
design choice.

Studying the design of neural layers to be invariant or equivariant to action groups is a notable field
in deep learning (Gens & Domingos, 2014; Kondor & Trivedi, 2018). For instance, translation in
CNNs and permutation in graph neural networks (GNNs) are two extensively explored properties
in network design, among others (Bietti & Mairal, 2019; Horie et al., 2020). Relevant applications
range across sets, images, point clouds and graphs (Zaheer et al., 2017; Keriven & Peyré, 2019).
Nevertheless, incorporating invariances inside neural layers has not been mathematically formulated
and experimentally tested particularly for the case of time series. Indeed, time series representations
that are invariant to specific deformations could be advantageous. For instance, in Figure 1, we
showcase how a standard convolution with a fixed kernel, selected to match a specific segment
(heartbeat) of an ECG series, fails to capture the underlying patterns. On the contrary, a convolution
that locally removes the linear trend identifies all underlying heartbeats.

In this work, we aim to mathematically formulate and design convolutional layers that are invariant
to certain group actions, specifically tailored to time series data. The main contributions of our study
and the proposed layers are summarized as follows:

• We provide theoretical definitions of time series deformations in terms of group actions and
introduce the notion of invariance under these actions in Section 3. Based on our theoretical
framework, we design a locally invariant embedding to some deformations, e. g., scaling,
offset shift, and linear trend, extracted via convolutions. We also propose a strategy that
restricts, by learning, the convolutional layer to the relevant invariances for a given task.

• We experimentally test the performance of the proposed layers, by incorporating them in
the so-called INVCONVNET model, for time series classification and anomaly detection
in Section 4. We perform comparisons with several state-of-the-art baselines, including
CNN-based variants of different design choices, e. g., depth, kernel sizes. Furthermore, we
provide extensive ablations on the contribution of the different parts of the proposed model,
including variant and invariant ones, to synthetic and real-world datasets under different
deformations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Deep Learning for Time Series. Dominant deep learning frameworks for time series leverage
multi-layer perceptrons (MLPs) (Oreshkin et al., 2019), convolutional networks (CNNs) (Bai et al.,
2018) and recurrent ones (RNNs) (Salinas et al., 2020), as well as transformer-based networks (i. e.,
built upon the attention mechanism) (Wen et al., 2022). Convolutional kernels have traditionally
dominated feature extraction in time series, from shapelets (Ye & Keogh, 2011) to the recently
successful ROCKET (Dempster et al., 2020), that exploits several random kernels. Additionally,
convolutional layers of different kernel sizes, often stacked in deep architectures (Ismail Fawaz
et al., 2019), with increased receptive fields, such as INCEPTIONTIME (Ismail Fawaz et al., 2020)
and RESNET (Wang et al., 2017), are prominent for time series classification. Similarly, TIMES-
NET (Wu et al., 2022) model capitalizes on convolutional layers to capture variations of multiple
periodicities of 2D transformed multivariate time series, to solve multiple time series tasks. Beyond
standard CNNs for time series, T-WaveNet (Minhao et al., 2021) is a tree-structured wavelet neu-
ral network that decomposes the input signal into various frequency subbands with similar energies
based on the dominant frequency range. Another recent hierarchical CNN-based model for time se-
ries forecasting, SCINET (Liu et al., 2022), repeatedly downsamples and convolves the input to en-
able information sharing at several resolutions. Furthermore, leveraging the success of the attention
mechanism in text, transformer-based architectures have lately proven successful in capturing tem-
poral interactions between multivariate time series inputs, mainly in time series forecasting (Zhou
et al., 2021; 2022; Woo et al., 2022; Liu et al., 2021). For instance, AUTOFORMER (Wu et al., 2021)
combines decomposition modules with an auto-correlation in place of self-attention, while CROSS-
FORMER (Zhang & Yan, 2022) capitalizes on 2D vector array embeddings that preserve temporal
and channel information, followed by temporal and channel-wise cross-attention modules. Finally,
several recent works, evaluate forecasting architectures also on the anomaly detection (Xu, 2021),
by reformulating the task to point-wise reconstruction, with reconstruction error being the anomaly
criterion. To overcome the sensitivity of transformers in overfitting, recent simple MLP-based archi-
tectures have showcased superior performance in forecasting, e. g., TSMIXER (Chen et al., 2023),
FRETS (Yi et al., 2024), with several studies challenging the overall effectiveness of such complex
architectures for time series (Zhang et al., 2022; Zeng et al., 2023).

Invariances for Time Series Modeling. Besides the supervised setting described above, multi-
ple modern methods emphasize self-supervised techniques for extracting representations from time
series data, before the downstream task. Inspired by other domains (He et al., 2022), masked au-
toencoders trained to reconstruct missing time points across samples form a common choice for
unsupervised pre-training, with primary applications in forecasting (Nie et al., 2022; Dong et al.,
2024). In the same category of unsupervised approaches, but focusing on incorporating knowledge
about similarities between representations, lies contrastive self-supervised learning. Specifically,
invariance is often achieved by applying transformations (e. g., scaling, shifting, or noise injection)
to the input and training the model to recognize that these altered versions should map to the same
underlying representation (Chen et al., 2020). Typically, CNNs constitute basic blocks for various
time series augmentation-based contrastive frameworks, such as TS-TCC (Eldele et al., 2021) and
TIMECLR (Yang et al., 2022). Except for building augmented views solely with transformations,
samples are also contrasted with some sampled subseries (Franceschi et al., 2019), with adjacent
segments (Tonekaboni et al., 2021), or a combination of both along with transformations (Yue et al.,
2022). Unlike deep learning, invariances in time series data have long been a central focus in clas-
sical time series data mining approaches (Esling & Agon, 2012). For instance, local time warping
invariance (Ding et al., 2008) can be tackled by dynamic time warping (DTW). Additionally, am-
plitude and offset invariances are accomplished by Z-normalizing the data (Paparrizos et al., 2020).
Finally, LT-normalized distance (Germain et al., 2024) extends Z-normalized distance by being in-
variant to linear trend in addition to amplitude and offset shifts, facilitating similarity search and
motif set discovery applications.

3 METHOD

In this section, we provide all the essential formulations for the introduction of our invariant con-
volutional layers and propose their incorporation as embedding layers in architectures, i. e., the
so-called INVCONVNET for time series modeling.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 INVARIANT EMBEDDING FOR TIME SERIES

We, next, develop a mathematical framework to create an embedding invariant to a predefined set
of deformations. Essentially, the embedding is expected to map a geometrical object or any of its
deformed versions to the same representative. In addition, we present some important properties
that should verify the embedding and tailor the proposed framework to the case of time series.

Deformations and group action. From a geometrical viewpoint, the notion of invariance depends
on the representation of deformations and the definition of the action of a deformation on a geomet-
rical object. A classical approach consists of representing a deformation as an element of a group
and its action by a group action:
Definition 3.1 (Group action). A group G with neutral e acts on the left on a set M, if there exists a
map a : G×M 7→ M that verifies:

1) a(e,m) = m, ∀m ∈ M

2) a(g, a(h,m)) = a(gh,m), ∀(g, h) ∈ G2,∀m ∈ M.

To simplify notation, the left action of g ∈ G on m ∈ M is denoted g ·m. For a group G that acts on
the left on a set M, the orbit of m ∈ M is the set of all its deformed versions [m] = {g ·m | g ∈ G}.
The set of independent orbits, denoted M/G, is called quotient space, and if this set is reduced to a
singleton, the action of G on M is said transitive, and it verifies that for any m ∈ M its orbit is the
whole set: [m] = M.

A group action for time series. Leveraging measure theory, we model the set of time series by
the Hilbert space L2(I,RD, µ) of functions defined on the closed interval I ⊂ R taking value in RD

and square-integrable for the Borel measure µ. The inner product on L2(I,RD, µ) is defined as:

⟨f, g⟩L =

∫
I

⟨f(t), g(t)⟩dµ(t) (1)

where ⟨., .⟩ is the dot product on RD. Let H be a finite dimensional vector subspace of L2(I,RD, µ),
we model the group of deformations as the set R∗

+ ⋉ H with the composition rule (λ2, h2) ×
(λ1, h1) = (λ2λ1, h2 + λ2h1). Finally, we model the group action by the application:

((λ, h), f) ∈ (R∗
+ ⋉ H)× L2(I,RD, µ) 7→ λf + h ∈ L2(I,RD, µ) (2)

This is a general group action that is not transitive as H is a finite-dimensional vector subspace of
L2(I,RD, µ). By convention, we refer to R∗

+ ⋉ H as the set of rigid deformations. The customiza-
tion of the group action depends on the choice of basis for the subspace H. For instance, the Z-
normalization (Paparrizos et al., 2020) is an invariant offset shift which corresponds to the subspace
of deformations {h : I 7→ c | c ∈ RD} with the basis {hi : I 7→ ei/

√
length(I) | i ∈ [1, . . . , D]}

where (ei)i∈[1,...,D] is the orthonormal basis of RD.

Invariant embedding. An embedding invariant to a group action is expected to map any element
of an orbit to the same representative, and it is defined as follows:
Definition 3.2 (Invariant & orbit-injective embedding). An embedding map L : M 7→ N is said
to be G-invariant, if for any (g,m) ∈ G × M, L(g · m) = L(m). Additionally, L is said to be
orbit-injective if the application L̃ : [m] ∈ M/G 7→ L(m) ∈ N is injective.

Note that an invariant embedding is meaningful in the case of a non-transitive group action. In
addition, if the embedding is orbit-injective, each orbit has a distinct representative.

For now, we focus on the action of the finite-dimensional subspace H of a Hilbert space M by the
usual vector addition: (h,m) ∈ H × M 7→ m + h ∈ M. The following proposition exhibits a
H-invariant embedding that is also orbit-injective.
Proposition 1. Let PH be the orthogonal projector on H, and Id be the identity map on M, the
embedding, L = Id − PH (the projector on H⊥) is H-invariant and orbit-injective.

Proof. See Appendix A.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Am
pl

itu
de

 sc
al

in
g

original
deformed

Of
fs

et
 sh

ift

time

Lin
ea

r t
re

nd
Normal

Offset Shift
& Scaling

Linear Trend
& Scaling

Kernel Input

Pool of Convolutions

Figure 2: Left: Different types of deformations applied to an example series, including amplitude
scaling, offset shift, and linear trend. Right: Visualization of the different kernel types employed on
an input signal inside the proposed invariant convolutional layer, including normal filters (in yellow),
filters invariant to offset shift (in red) and filters invariant to linear trend (in purple). The produced
embedding z is the result of concatenations of the different representations.

Remark 1. If (hi)i∈[[1,N ]] is an orthonormal basis of the finite dimensional vector subspace H, then
the orthogonal projector on H as an explicit formulation PH : m ∈ M 7→

∑N
i=1⟨m,hi⟩Lhi ∈ H.

Invariance to amplitude scaling can easily be incorporated in an embedding defined by the previous
proposition:

Proposition 2. Let L : M 7→ M be the H-invariant and orbit-injective embedding map induced by
the orthogonal projector on H as defined in proposition 1. The embedding map:

L̂ : m ∈ M 7→
{

L(m)/∥L(m)∥M if m ∈ M\H
0M else (3)

is (R∗
+ ⋉ H)-invariant and orbit-injective.

Proof. (R∗
+ ⋉ H)-invariance is due to the linearity and H-invariance of L, and the orbit-injectivity

in induced by the linearity and orbit-injectivity of L.

An example: the univariate Z-normalization. We are looking for an embedding invariant to
amplitude scale and offset shift in the case of univariate discrete time series. The set of time series
is modeled by L2([0, l],R, µ) where l ∈ N∗, µ =

∑l
i=1 δi and δi is the dirac measure at i. The

set offset shifts is the subspace generated by the unit norm function e : t ∈ [0, l] 7→ 1/
√
l ∈ R.

According to Proposition 2 the invariant embedding of a non-constant function f is the function:
(f − ⟨f, e⟩Le)/∥f − ⟨f, e⟩Le∥L which leads to (f(i) − µf )/(

√
lσf ) where µf = l−1

∑l
i=1 f(i)

and σ2
f = l−1

∑l
i=1(f(i)− µf )

2.

3.2 INVARIANT CONVOLUTION

CNNs have been successful in many applications related to time series, essentially becoming a key
building block of the latest deep neural networks. Their success comes from their ability to capture
local information in long time series. However, CNNs remain sensitive to some deformations like
amplitude scaling or offset shifts (Mallat, 2016). In this section, we propose a novel convolution
that is invariant to rigid deformations at a local scale while remaining computationally efficient.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The formalism. Let L2loc(R,RD, µ) be the set of signals, we assume that the signal in square
integrable on any compact of R. Let L2(I,RD, µ) be the set of kernels where I ⊂ R is a closed
interval. The classical convolution layer, named 1D-CNN, between a signal f and a kernel w is the
signal:

f ∗ w : u ∈ R 7→
∫
I

⟨f(u+ t), w(t)⟩dµ(t) ∈ R (4)

Let assume a group of rigid deformations G acting on L2(I,RD, µ), and L̂ the G-invariant embedding
map defined by Proposition 2. For any u ∈ R, we can define the operator KG

u that maps the
restriction of any signal f on the closed interval u+ I to its G-invariant representative:

KG
u : f ∈ L2loc(R,RD, µ) 7→ L̂ (t ∈ I 7→ f(t+ u)) ∈ L2(I,RD, µ) (5)

Leveraging these operators we define the G-invariant convolution between a signal f and a kernel w
as the signal:

f ∗G w : u ∈ R 7→
∫
I

⟨(KG
uf)(t), w(t)⟩dµ(t) ∈ R (6)

Fast computation. For a group of rigid deformations (R∗
+ ⋉ H) with (hi)i∈[[1,N ]] a basis of H,

thanks to Remark 1, the inner product between the invariant representation of f ∈ L2(I,RD, µ)

and w can be decomposed as follows: ⟨L̂(f), w⟩L = (⟨f, w⟩L −
∑N

i=1⟨f, hi⟩L⟨w, hi⟩L)/∥L(f)∥L.
Assuming discrete signals, the computation of ⟨L̂(f), w⟩L requires the computation of 2N + 2 dot
products. However, convolving a batch of B signals of length L with the kernel, the number of inner
products to compute drops from BL(2N + 2) to BL(N + 2) + N as the inner products between
the kernel and the basis are shared across signals and subsequences. It leads to the time complexity
O(BLNCW ) where C is the number of channels, W is the kernel size and assuming that N << L.
Invariant convolutions do not consider small-size kernels (2 or 3 timestamps) but rather large kernels
(30 or more). The traditional approach to convolution is not tractable in such a context. Instead, we
leverage the Fast Fourier transform (FFT) (Mathieu et al., 2013), which changes the time complexity
to O(BNCL log(L)). The computational time is identical for any window size, as the computation
with the FFT does not depend on the kernel size. In the experimental results, we indeed show that
our proposed invariant convolutions benefit from fast computation.

Pool of convolutions. The choice of invariances is often related to the application (Yue et al.,
2022), and setting the invariances by hand requires a good understanding of the nature of the sig-
nals. In the absence of such knowledge, one possible strategy consists of decomposing the space
of deformations H =

⊕K
i=1 Hi in the direct sum of subspaces such that the cumulative sums,

∅ ⊂ H1 ⊂ H1+H2 ⊂ . . . ⊂ H, represent sets of deformations of increasing order of complexity. We
represent a layer as the concatenation of nj (

⊕j
i=1 Hi)-invariant convolutions for j ∈ (1, . . . ,K)

and n0 standard convolutions. In the experiments that follow, we show that the decomposition of
invariances in subspaces enables the learning of application-specific invariances while dropping ir-
relevant ones. Note that other strategies, are possible, notably the use of attention mechanisms, and
this is let for future work.

In the following experiments, the most complex deformations considered are the linear trends: H =
{t ∈ I 7→ at + b ∈ RD | (a, b) ∈ RD × RD}. This vector space can be decomposed in the action
of the offset shifts H1 = {t ∈ I 7→ b | b ∈ RD} and the purely linear deformations H2 = {t ∈
I 7→ at | a ∈ RD}. Therefore, we consider layers composed of standard convolutions, convolutions
invariant to offset shift and amplitude scaling, and finally, convolutions invariant to linear trend and
amplitude scaling.

Figure 2 (Left) shows the basic deformations considered, i. e., amplitude scaling, offset shift, and lin-
ear trend, whereas Figure 2 (Right) provides a visualization of the proposed invariant convolutional
layer, which incorporates three different kernel types, to capture the invariances. Additional details
about the construction of the embedding layers for different time series tasks built upon invariant
convolutions can be found in the Appendix A.2. For any task, the embedding module is identical,
and it is a single layer (of depth 1) of invariant convolutions with kernels of potentially different
sizes capturing features of different scales. The embedding module is followed by a task-specific

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Classification performance for the considered time series datasets. Average accuracy (%)
is mentioned for all combinations of models and datasets. Accuracy is averaged for all datasets in
UEA repository. Higher is better, best methods in bold, second best underlined.

INVCONVNET TIMESNET PATCHTST CROSSFORMER TSLANET DLINEAR INCEPTION RESNET CNN ROCKET
Datasets (ours) (2022) (2022) (2022) (2024) (2023) (2020) (2017) (2018) (2020)

UEA (26 datasets) 71.81 ± 0.80 66.87 ± 1.72 66.18 ± 1.26 66.37 ± 1.35 68.70 ± 1.19 61.51 ± 1.05 62.86 ± 1.96 67.37 ± 1.59 65.67 ± 1.64 71.29± 0.90

UCIHAR 96.63 ± 0.49 91.66 ± 0.62 85.74 ± 0.50 93.43 ± 0.56 94.71 ± 0.66 57.47 ± 0.73 95.26 ± 0.55 96.04 ± 0.48 95.78 ± 0.20 92.06 ± 0.15
Sleep-EDF 84.95 ± 0.39 74.64 ± 0.73 78.53 ± 0.28 79.82 ± 0.89 84.98 ± 0.43 36.15 ± 0.21 84.06 ± 0.39 85.62 ± 0.13 82.41 ± 0.56 83.88 ± 0.09
Epilepsy 98.43 ± 0.04 97.62 ± 0.20 98.01 ± 0.05 98.23 ± 0.12 98.23 ± 0.05 82.26 ± 0.06 97.65 ± 0.20 98.16 ± 0.04 97.61 ± 0.28 98.38 ± 0.02

final module. For classification, the final module is an average-pooling layer followed by a linear
layer. For tasks trained by reconstruction, the final module refines the embedding output with a
standard CNN to capture multiple scale dependencies. The decoder that follows takes as input the
refined embedding as well as the coefficients from the signal decomposition on the invariant basis.

4 EXPERIMENTAL EVALUATION

We next perform an extended experimental evaluation for the proposed INVCONVNET model, built
upon the previously defined invariant convolutions. We focus on setups that can benefit from invari-
ances, such as those concerning scale offset and linear trends. Intuitively, those naturally arise in
time series classification and anomaly detection, presented in Section 4.1 and Section 4.2.

4.1 CLASSIFICATION

To evaluate the proposed invariant convolutional layers, we first focus on the long-standing problem
of classification, including univariate and multivariate time series across different applications.

4.1.1 EXPERIMENTAL SETTING

Datasets. We evaluate INVCONVNET on the 26 multivariate UEA data repository (Bagnall et al.,
2018), coming with a standard train/test split. We train our INVCONVNET on the raw inputs, which
are padded for the case of non-equal length series, while for the baselines, each variable is nor-
malized independently using Z-normalization. We also consider 3 additional datasets, the UCIHAR
(Anguita et al., 2013) human activity recognition (HAR) dataset, the Sleep-EDF dataset (Goldberger
et al., 2000) for sleep stage classification of EEG signals, and finally the Epilepsy dataset (Andrzejak
et al., 2001), which is an epileptic seizure recognition dataset. For all three datasets, we follow the
exact same preprocessing with (Eldele et al., 2021), deriving train/validation/test sets of 60 : 20 : 20
ratio. For the synthetic experiment involving added invariances, we selected the four largest datasets
from the UCR repository (Dau et al., 2019). Finally, we perform a transfer learning experiment
using 4 different source and target domains of the Fault-Diagnosis dataset (Lessmeier et al., 2016).
Additional details about the datasets can be found in the Appendix A.3.

Baselines. We select nine state-of-the-art models for time series classification from the relevant
literature. The CNN-based model TIMESNET (Wu et al., 2022), the transformer-based methods
PATCHTST (Nie et al., 2022) and CROSSFORMER (Zhang & Yan, 2022) and the MLP-based archi-
tecture DLINEAR (Zeng et al., 2023) are derived from the Time-Series-Library (Wang et al., 2024).
Additionally, we perform comparisons with the CNN-based backbone of the self-supervised method
TSLANET (Eldele et al., 2024), which replaces attention with a Fourier-based spectral block and
interactive 1D CNNs for capturing temporal variations. We also consider 3 powerful CNN archi-
tectures capturing different depths and receptive fields, including INCEPTION (Ismail Fawaz et al.,
2020) and RESNET (Wang et al., 2017), which are constructed using standard convolutional layers
with varying filter sizes organized into successive blocks with residual connections, and the simpler
CNN (Ismail Fawaz et al., 2018) that employs several stacked convolutional layers of a fixed kernel
size with varying hidden dimensions. As a powerful machine learning baseline for time series, we
incorporate ROCKET (Dempster et al., 2020). Finally, for the proposed INVCONVNET, we select
for each dataset among the 3 introduced variants, i. e., the standard one with one convolutional layer,
the inception-like, and the multi-scale one, as presented in Appendix A.2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Study on the effect of the different kernel
types of INVCONVNET in classification accuracy,
including solely normal (or variant) kernels (-N),
or offset-invariant kernels (-O), or trend-invariant
kernels (-T).

INVCONVNET INVCONVNET-N INVCONVNET-O INVCONVNET-T
Datasets (ours) - normal - - offset - - trend -

UEA (26 datasets) 71.81 ± 0.80 68.04 ± 1.76 67.70 ± 1.21 66.61 ± 2.58

UCIHAR 96.63 ± 0.49 96.13 ± 0.34 95.75 ± 0.51 95.43 ± 0.13
Sleep-EDF 84.95 ± 0.39 84.70 ± 0.39 83.73 ± 0.13 83.14 ± 0.13
Epilepsy 98.43 ± 0.04 98.09 ± 0.13 98.26 ± 0.04 98.25 ± 0.09

1.8 2.0 2.2 2.4 2.6
Training Time per Epoch (sec)

64

66

68

70

72

74

76

78

A
cc

ur
ac

y 
(%

)

InvConvNet
(1.90s, 199.4K)

TimesNet
(2.60s, 895.4K)

PatchTST
(2.41s, 1.18M)

Crossformer
(2.64s, 3.20M)

TSLANet
(2.22s, 3.11M)

DLinear
(1.82s, 378.3K)

Inception
(2.02s, 133.4K)

ResNet
(2.07s, 538.6K)

CNN
(2.00s, 728.1K)

Accuracy vs Computational Cost
Model Size

200K
1M
3M

Figure 3: Cost comparisons on Heartbeat.

4.1.2 RESULTS

Performance comparisons. We present in Table 1 the classification performance of the proposed
INVCONVNET along with the eight considered deep learning-based baselines and one classical
convolutional-based machine learning algorithm, ROCKET. All algorithms, are evaluated on the 26
UEA datasets and 3 additional data sources, i. e., UCIHAR, Sleep-EDF and Epilepsy. All models
are trained and tested for 3 runs with random seeds and we reported the average accuracy along with
its standard deviation. We observe that on UEA repository, INVCONVNET has the best average test
classification accuracy, followed closely by ROCKET, and both algorithms outperform the other con-
sidered deep learning approaches. Full classification results per dataset on UEA can be found in the
Appendix A.5. Indeed, ROCKET employs thousands of randomly initialized convolutional kernels to
efficiently extract diverse features from the time series inputs that are then fed into a ridge regression
classifier. This high number of random kernels explains the robustness of ROCKET on the smaller
UEA classification datasets. On the three remaining datasets, INVCONVNET also shows a superior
performance in terms of accuracy, proving again the advantage of invariant CNN-based approaches
in classification. For Sleep-EDF, RESNET is slightly better than the proposed INVCONVNET, which
can be attributed to the depth of the method in capturing complex dependencies between the time se-
ries inputs. Finally, transformer-based methods are significantly outcompeted by CNN-based ones,
and the MLP-based DLINEAR scores the worst, failing to capture the class-dependent temporal
dynamics in this task. Additionally, the proposed INVCONVNET built upon a single layer of con-
volutional kernels shows significant advantage in terms of time and memory cost (time per epoch,
number of model parameters), as presented in Figure 3 for the Heartbeat dataset from UEA.

Ablation study. Table 2 contains the results of an ablation study that compares the proposed IN-
VCONVNET with its standalone main components on the same classification experiments. More
specifically, the standard INVCONVNET combines three types of convolutions: the normal ones
(similar to conventional convolutions), those invariant to offset shift, and those invariant to lin-
ear trend. In this experiment, we compare INVCONVNET with other configurations of the net-
work that conserve the same architecture but consider only one type of convolution: normal
for INVCONVNET-N, offset shift invariant for INVCONVNET-O, and linear trend invariant for
INVCONVNET-T. For INVCONVNET, the number of kernels per convolution type is identical, and
in all cases, the total number of kernels remains the same. As depicted in Table 2 INVCONVNET
shows the highest performance on all datasets. It is followed by INVCONVNET-N that only con-
siders conventional convolution, which proves the significance of including invariant convolutions
within the pools of convolutions for classification. Additionally, the solely invariant configurations
-B, -C, surpass most baselines on all datasets, and even CNN-based ones (such as INCEPTION,
CNN), despite being shallow compared to the latter deep architectures.

Synthetic experiment. We also conduct a synthetic experiment on the 4 larger datasets from the
UCR archive (Dau et al., 2019), following the same setup as the ablation study. We deformed each
dataset according to 5 scenarios: (i) no deformations, (ii) the addition of random offset, sampled
from uniform distribution between specific ranges, as well as (iii) the addition of random trend with
slope and intercept values sampled again with uniform probability, (iv) combination of added ran-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Robustness study of INVCONVNET and its standalone declinations, i. e., -N (normal), -O
(offset) or -T (trend), on the 4 larger UCR datasets under 4 scenarios of synthetic deformations: (i)
no deformations, (ii) the addition of random offset (off.) (iii) the addition of random linear trend
(LT), (iv) combination of added random offset and linear trend (off., LT) and (v) combination of
added random offset and smooth random walk (off., RW). Higher is better, best methods in bold.

INVCONVNET INVCONVNET-N INVCONVNET-O INVCONVNET-T
Datasets (ours) - normal - - offset - - trend -

HandOutlines

Normalized 74.80 80.60 72.70 69.82
+ off. 71.20 (-4.8%) 68.70 (-14.8%) 71.60 (-1.5%) 70.18 (+0.5%)
+ LT 74.00 (-1.1%) 72.90 (-9.6%) 71.70 (-1.4%) 70.18 (+0.5%)
+ off., LT 71.70 (-4.1%) 70.70 (-12.3%) 70.20 (-3.4%) 71.71 (+2.7%)
+ off., RW 65.68 (-12.2%) 61.89 (-23.2%) 67.83 (-6.7%) 66.22 (-5.2%)

UWaveGestureLibraryAll

Normalized 83.40 85.00 75.60 71.50
+ off. 81.10 (-2.8%) 79.00 (-7.0%) 70.10 (-7.3%) 69.40 (-2.9%)
+ LT 82.40 (-1.2%) 83.80 (-1.4%) 74.20 (-1.9%) 71.30 (-0.3%)
+ off., LT 81.40 (-2.4%) 79.00 (-7.0%) 70.00 (-7.4%) 68.10 (-4.8%)
+ off., RW 74.04 (-11.2%) 68.90 (-18.9%) 68.76 (-9.0%) 68.79 (-3.8%)

StarLightCurves

Normalized 96.00 96.50 95.40 93.40
+ off. 97.30 (+1.4%) 94.70 (-1.9%) 94.10 (-1.4%) 90.00 (-3.6%)
+ LT 97.30 (+1.4%) 95.20 (-1.3%) 94.50 (-0.9%) 91.90 (-1.6%)
+ off., LT 97.50 (+1.6%) 92.30 (-4.4%) 95.10 (-0.3%) 90.10 (-3.5%)
+ off., RW 93.21 (-2.9%) 81.61 (-15.4%) 90.98 (-4.6%) 90.80 (-2.8%)

MixedShapesRegularTrain

Normalized 95.30 94.50 87.40 92.60
+ off. 94.20 (-1.2%) 87.30 (-7.6%) 90.60 (+3.7%) 91.92 (-0.7%)
+ LT 94.60 (-0.7%) 92.40 (-2.2%) 89.10 (+1.9%) 92.10 (-0.5%)
+ off., LT 91.80 (-3.7%) 86.60 (-8.4%) 86.20 (-1.4%) 92.40 (-0.2%)
+ off., RW 90.89 (-4.6%) 72.62 (-23.2%) 88.16 (+0.9%) 87.46 (-5.6%)

Table 4: Classification Accuracy (%) on a Transfer Learning experiment on Fault-Diagnosis for the
supervised INVCONVNET and INVCONVNET-N (normal) and two self-supervised methods.

Train −→ Test
Methods A −→ B A −→ C A −→ D B −→ A B −→ C B −→ D C −→ A C −→ B C −→ D D −→ A D −→ B D −→ C Avg. Acc. (%)
TS-TCC (FT) 55.33 ± 1.44 52.52 ± 4.55 62.13 ± 1.39 48.05 ± 3.32 71.50 ± 1.83 100.0 ± 0.0 40.76 ± 2.22 98.25 ± 1.22 99.34 ± 0.50 46.98 ± 0.65 100.0 ± 0.0 74.28 ± 2.77 70.76 ± 1.66
TS2VEC (FT) 54.11 ± 1.46 54.07 ± 1.91 52.54 ± 1.89 55.06 ± 0.17 88.72 ± 0.47 100.0 ± 0.0 57.81 ± 2.18 78.30 ± 3.80 78.41 ± 4.39 60.37 ± 1.95 99.97 ± 0.02 86.82 ± 0.54 72.18 ± 1.57
INVCONVNET (Sup.) 55.90 ± 0.42 55.93 ± 0.34 53.41 ± 0.14 85.10 ± 0.63 78.54 ± 0.17 99.05 ± 0.08 70.75 ± 1.32 85.04 ± 0.13 85.12 ± 0.15 70.91 ± 0.73 100.0 ± 0.0 78.49 ± 0.38 76.52 ± 0.37
INVCONVNET-N (Sup.) 60.55 ± 0.88 55.50 ± 1.82 53.50 ± 0.85 60.26 ± 2.01 77.30 ± 0.60 93.50 ± 0.90 64.93 ± 0.48 84.87 ± 0.23 84.46 ± 0.51 59.98 ± 0.98 99.96 ± 0.0 77.14 ± 0.14 72.66 ± 0.78

dom offset and trend and (v) combination of random offset shift and smooth random walk. For the
last deformation, the added synthetic trend is a random walk generated from a Gaussian distribution
and smoothed by a rolling mean. In Table 3, we display the classification accuracy for each pair
of dataset/scenario and networks with different convolution pool configurations: INVCONVNET-N
only normal, INVCONVNET-O only offset shift invariant, INVCONVNET-T only linear trend in-
variant, INVCONVNET all 3 types. We also mention inside parenthesis the percentage increase
(in blue) or decrease (in red) of accuracy with respect to the one achieved on the plain data (sce-
nario (i)) for each configuration. Interestingly, we observe that for the synthetic deformations, our
model INVCONVNET maintains relatively high performance and outcompetes, in most cases, the
INVCONVNET-N configuration that solely considers conventional convolutions.

Transfer Learning Experiment. We evaluate the generalization properties of the proposed IN-
VCONVNET model on a transfer learning experiment compared to the popular self-supervised meth-
ods TS-TCC (Eldele et al., 2021) and TS2VEC (Yue et al., 2022). Additionally, we show results for
the INVCONVNET-N configuration built upon only normal (not invariant) filters. More specifically,
all models are trained and tested on different source and target domains, referring to the different A,
B, C, and D sub-datasets of Fault-Diagnosis. The self-supervised methods are pre-trained and fine-
tuned (FT) on each source domain dataset by leveraging contrastive learning. Results in terms of
accuracy are demonstrated in Table 4. Interestingly, the supervised INVCONVNET model built upon
invariant convolutions significantly outperforms both unsupervised methods and its normal config-
uration (-N), offering accuracy improvements of at least 4% with a small variance in performance.

4.2 ANOMALY DETECTION

Anomaly detection identifies unusual patterns in time series. Reconstruction-based models learn to
reconstruct the input, and the error is the anomaly criterion based on a chosen threshold.

4.2.1 EXPERIMENTAL SETTING

Datasets. We evaluate the proposed model in unsupervised anomaly detection for time series, aim-
ing to identify anomalous time points. To achieve this, we choose five common time series anomaly

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Anomaly Detection results for several datasets. Performance mentioned in terms of the
F1-score (%) for all combinations of models and datasets. Higher is better, best methods in bold,
second best underlined.

INVCONVNET TIMESNET PATCHTST TSLANET ETSFORMER FEDFORMER LIGHTTS DLINEAR AUTOFORMER PYRAFORMER INFORMER REFORMER
Datasets (ours) (2022) (2022) (2024) (2022) (2022) (2022) (2023) (2021) (2021) (2021) (2020)

SMD 84.05 ± 0.16 84.61 ± 0.56 84.15 ± 0.48 84.33 ± 0.17 79.69 ± 0.69 71.11 ± 0.02 83.04 ± 0.49 83.56 ± 0.14 71.16 ± 0.02 71.36 ± 0.01 71.17 ± 0.03 71.22 ± 0.01
MSL 80.68 ± 0.01 80.33 ± 0.79 78.67 ± 0.04 74.65 ± 0.78 75.98 ± 0.54 82.06 ± 0.14 80.39 ± 0.06 81.92 ± 0.01 82.08 ± 0.04 81.00 ± 0.08 82.02 ± 0.11 81.52 ± 0.08
SMAP 68.29 ± 0.07 69.18 ± 0.21 68.84 ± 0.01 80.26 ± 0.05 67.45 ± 0.74 68.71 ± 0.01 67.47 ± 0.02 67.32 ± 0.01 75.28 ± 1.64 67.76 ± 0.13 68.74 ± 0.12 73.30 ± 0.15
SWaT 92.82 ± 0.19 92.71 ± 0.04 88.38 ± 1.11 91.65 ± 0.27 92.67 ± 0.06 79.18 ± 0.01 92.75 ± 0.01 92.66 ± 0.01 79.18 ± 0.01 80.91 ± 0.38 79.75 ± 0.74 79.17 ± 0.01
PSM 96.34 ± 0.01 96.85 ± 0.27 96.12 ± 0.01 96.20 ± 0.03 95.23 ± 0.03 89.44 ± 0.88 95.50 ± 0.02 96.66 ± 0.01 88.25 ± 0.01 93.66 ± 0.13 90.55 ± 0.05 90.74 ± 0.09

Avg. F1 (%) 84.44 ± 0.09 84.74 ± 0.37 83.23 ± 0.33 85.42 ± 0.26 82.20 ± 0.41 78.10 ± 0.21 83.83 ± 0.12 84.42 ± 0.04 79.19 ± 0.65 78.94 ± 0.15 78.45 ± 0.21 79.19 ± 0.07

detection datasets; the SMD dataset (Su et al., 2019), the MSL and SMAP datasets (Hundman et al.,
2018), SWaT (Mathur & Tippenhauer, 2016) and PSM (Abdulaal et al., 2021), describing problems
of server monitoring, environmental exploration and monitoring, and critical infrastructure systems.
We follow standard preprocessing methods to extract successive non-overlapping sub-sequences and
split them into train/validation/test sets with a 70 : 10 : 20 ratio (Xu, 2021; Wu et al., 2022).

Baselines. Since we focus on reconstruction, we mainly deploy models commonly used in time
series regression. We select ten state-of-the-art models for time series from which most can be
found in the Time-Series-Library (Wang et al., 2024), including the CNN-based TIMESNET (Wu
et al., 2022), the transformer-based methods PATCHTST (Nie et al., 2022), ETSFORMER (Woo
et al., 2022), FEDFORMER (Zhou et al., 2022), AUTOFORMER (Wu et al., 2021), PYRAFORMER
(Liu et al., 2021), INFORMER (Zhou et al., 2021), REFORMER (Kitaev et al., 2020), and the MLP-
based architecture LIGHTTS (Zhang et al., 2022) and DLINEAR (Zeng et al., 2023), as well as the
recent CNN-based TSLANET (Eldele et al., 2024). For the proposed INVCONVNET, we use the
same embedding blocks as those used in classification. To perform reconstruction of the input, we
use linear layers for the temporal dimension and then for the channel dimension, as described in
the Appendix A.2. We utilize the same decoder also for the standard CNN-based architectures, i. e.,
INCEPTION, RESNET and CNN.

4.2.2 RESULTS

Table 5 displays anomaly detection scores in terms of F1-score (%) for the proposed model and the
baselines on the 5 anomaly detection datasets. We observe that the proposed INVCONVNET model
is the best-performing method on SWaT dataset, whereas overall, is the third in terms of average
performance for all datasets, slightly surpassed by the CNN-based TIMESNET model. This can be
attributed to the refinement of the CNN blocks in TIMESNET to account for multiple periodicities,
allowing finer granularities for reconstruction. Similarly, TSLANET is the best-performing model
in terms of average F1, and it leverages Fourier blocks prior to CNNs modules to capture features of
short and long dependencies simultaneously. Other types of architectures like the purely MLP-based
framework DLINEAR, and the transformer-based FEDFORMER also show competitive performances
for several datasets. Interestingly, INVCONVNET achieves strong performance across all datasets
while using a single layer of invariant convolutions with kernels of different sizes. This demon-
strates that leveraging invariances across multiple scales can be highly effective even in shallow
architectures for reconstruction-based anomaly detection. Finally, we provide in the Appendix A.5
performance comparisons between INVCONVNET and the simple CNN-based embedding modules
of INCEPTION, RESNET, CNN, stressing the importance of including invariances and their related
coefficients for the reconstruction task.

5 CONCLUSION

In this paper, we mathematically formulate the crucial modeling aspect of invariances when dealing
with time series data. We leverage this formulation to design invariant convolutions that we carefully
combined with conventional convolutions in a single network layer, and we propose an example ar-
chitecture, i. e., the INVCONVNET model. Experimental results show that our proposed invariant
embedding modules benefit from competitive performance in different tasks, while remaining com-
putationally attractive and shallow. Incorporating our modules in general-purpose architectures that
leverage layers of different types, e. g., attention, and unsupervised pre-training, e. g., via masking,
enabling additional applications, remains on our agenda for future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pp. 2485–2494, 2021.

Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Chris-
tian E Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series
of brain electrical activity: Dependence on recording region and brain state. Physical Review E,
64(6):061907, 2001.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3,
2013.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity of
deep convolutional representations. Journal of Machine Learning Research, 20(25):1–49, 2019.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454–1495, 2020.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying and
mining of time series data: experimental comparison of representations and distance measures.
Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
A simple pre-training framework for masked time-series modeling. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv
preprint arXiv:2106.14112, 2021.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. arXiv preprint arXiv:2404.08472, 2024.

Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys (CSUR), 45
(1):1–34, 2012.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32,
2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Robert Gens and Pedro M Domingos. Deep symmetry networks. Advances in neural information
processing systems, 27, 2014.

Thibaut Germain, Charles Truong, and Laurent Oudre. Linear-trend normalization for multivariate
subsequence similarity search. In 2024 IEEE 40th International Conference on Data Engineering
Workshops (ICDEW), pp. 167–175, 2024. doi: 10.1109/ICDEW61823.2024.00028.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Masanobu Horie, Naoki Morita, Toshiaki Hishinuma, Yu Ihara, and Naoto Mitsume. Isomet-
ric transformation invariant and equivariant graph convolutional networks. arXiv preprint
arXiv:2005.06316, 2020.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom.
Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Pro-
ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 387–395, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Evaluating surgical skills from kinematic data using convolutional neural networks. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st Interna-
tional Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV 11, pp. 214–
221. Springer, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917–963, 2019.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt,
Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Petit-
jean. Inceptiontime: Finding alexnet for time series classification. Data Mining and Knowledge
Discovery, 34(6):1936–1962, 2020.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International conference on machine learning, pp.
2747–2755. PMLR, 2018.

Seunghan Lee, Taeyoung Park, and Kibok Lee. Soft contrastive learning for time series. arXiv
preprint arXiv:2312.16424, 2023.

Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition mon-
itoring of bearing damage in electromechanical drive systems by using motor current signals of
electric motors: A benchmark data set for data-driven classification. In PHM Society European
Conference, volume 3, 2016.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. arXiv preprint arXiv:2004.08249, 2020.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz J
Király. sktime: A unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872, 2019.

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart
water networks (CySWater), pp. 31–36. IEEE, 2016.

Matthew Middlehurst, William Vickers, and Anthony Bagnall. Scalable dictionary classifiers for
time series classification. In Intelligent Data Engineering and Automated Learning–IDEAL 2019:
20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I 20,
pp. 11–19. Springer, 2019.

LIU Minhao, Ailing Zeng, LAI Qiuxia, Ruiyuan Gao, Min Li, Jing Qin, and Qiang Xu. T-wavenet:
A tree-structured wavelet neural network for time series signal analysis. In International Confer-
ence on Learning Representations, 2021.

George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE engi-
neering in medicine and biology magazine, 20(3):45–50, 2001.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

John Paparrizos, Chunwei Liu, Aaron J Elmore, and Michael J Franklin. Debunking four long-
standing misconceptions of time-series distance measures. In Proceedings of the 2020 ACM
SIGMOD international conference on management of data, pp. 1887–1905, 2020.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
neural networks: A strong baseline. In 2017 International joint conference on neural networks
(IJCNN), pp. 1578–1585. IEEE, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

Jiehui Xu. Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv
preprint arXiv:2110.02642, 2021.

Xinyu Yang, Zhenguo Zhang, and Rongyi Cui. Timeclr: A self-supervised contrastive learning
framework for univariate time series representation. Knowledge-Based Systems, 245:108606,
2022.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a novel technique that allows accurate,
interpretable and fast classification. Data mining and knowledge discovery, 22:149–182, 2011.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. Advances in Neural Information Processing Systems, 36, 2024.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y Zhang,
Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series anal-
ysis: Taxonomy, progress, and prospects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 INVARIANT EMBEDDING

Let M be a Hilbert space and H a finite dimensional vector subspace of M. We focus on the action
H on M by the usual vector addition: (h,m) ∈ H ×M 7→ m + h ∈ M. The following proposition
exhibits a H-invariant embedding that is also orbit-injective.

Proposition 3. Let PH be the orthogonal projector on H, and Id be the identity map on M, the
embedding, L = Id − PH (the projector on H⊥) is H-invariant and orbit-injective.

Proof. Existence of L: As H is a finite dimension vector space, it is a closed and convex subset of
the Hilbert space M; the orthogonal projector on H, denoted PH, exists. Therefore, L : m ∈ M 7→
m− PH(m) ∈ H is well defined.

H-invariance of L: Since H is closed, M = H ⊕ H⊥, and for any x ∈ M, we decompose m =
mH + fH⊥ . Thus, for any m ∈ M, and h ∈ H:

L(m+ h) = m+ h− PH(m+ h)
= m+ h− PH(mH⊥ +mH + h)
= m+ h− (mH + h) (projector on a closed vectorial subspace)
= m−mH

= L(m)

which proves the H-invariance of L.

Orbit-injectivity of L: For any m ∈ M, its orbits corresponds to:

[m] = {m+ h | h ∈ H}
= {L(m) + h′ | h ∈ H, h′ = PH(m) + h ∈ M}
= L(m) + H

Therefore, for any ([m], [m′]) ∈ M/H×M/H, such that [m]∩ [m′] = ∅ implies that L(m) ̸= L(m′)
proving the orbit-injectivity of L.

A.2 INVCONVNET: ARCHITECTURAL DETAILS

A.2.1 INVARIANT EMBEDDING MODULES

After mathematically formulating the characteristics of an invariant convolutional layer, which is
built upon a standard (or variant) kernel, a kernel invariant to offset shift and scaling, and a kernel
invariant to linear trend and scaling, we provide additional details for the design of the employed
embedding modules. We present visualizations of the embedding modules used for classification
and anomaly detection (i. e., reconstruction) in Figure 4.

Standard Module (Single-Layer): The simplest embedding module is a single invariant convolu-
tional layer for a specific kernel size W and hidden dimensions dn0 for the standard convolutional
part (in yellow), dn1 for the convolutional part invariant to offset shift and scaling (in red), and dn2

for the convolutional part invariant to linear trend and scaling (in purple).

Inception-like Module (Single-Layer): We also study inception-like design by employing several
kernel sizes, but without stacking the layers in increasing depths. The depth of the employed module
remains equal to one. As shown in Figure 4 (Left), in an inception-like embedding module, we
consider several kernel sizes, e. g., W1, W2, W3, that are applied in parallel to the input series, while
leveraging the three parts of the proposed pool of convolutions (including standard and invariant
ones). The produced representation for the different kernel sizes, i. e., z1, z2, z3 are concatenated in
the channel dimension producing embeddings of size (3 ∗

∑2
j=0 dnj

, L) for 3 selected kernel sizes.
The distinct kernel sizes as well as the hidden dimension for each part in the pool of convolutions,
are hyperparameters that we need to tune, as in every CNN-based architecture.

Multi-Scale Module (Multi-Layer): Additionally, we examine the capacity of a multi-scale em-
bedding module built upon invariant convolutions as presented in Figure 4 (Right), particularly for
the reconstruction task. Here the employed depth is equal to two. At the first level, an inception-like

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Single-Layer
(depth 1)

Multi-Layer
(depth 2)

(1) Pool of 
Convolutions

(2) Standard 
Convolutions

Pool of 
Convolutions

dilation rates:
kernel sizes:

Figure 4: Left: Single-layer embedding module, i. e., of depth 1, used in standard INVCONVNET
(for 1 chosen kernel width W ) and in inception-like INVCONVNET (for several chosen kernel
widths, e. g., 3 visualized in the figure). Right: Multi-layer embedding module, i. e., of depth 2,
used in multi-scale INVCONVNET (for several chosen kernel widths W ). In the second layer, for
each kernel size, we utilize multiple kernels whose total number sums up to the larger kernel size,
achieving multi-scale views.

layer is employed, with kernel sizes selected to be powers of two (deriving the maximum exponent
from the logarithm of half the series length and setting the minimum to four). The kernels, as de-
scribed above, are applied in parallel, and the produced representation for the different kernel sizes
is concatenated in the channel dimension. At the second level, a standard convolutional layer is
applied. We similarly employ several kernel sizes of size max(Wi)/Wi matching the picked kernel
sizes in the first layer Wi for i ∈ {1, . . . ,K}, where K the number of kernels with distinct sizes. For
each distinct kernel size in this second layer, a dilation factor is set as ri = Wi, thus equal to the ker-
nel size of the previous layer. This design enables capturing representations at different scales while
employing a shallow and computationally light architecture, that still benefits from invariant convo-
lutions. Experimentally, this module shows performance improvements for the anomaly detection
task, where reconstruction can benefit from capturing dependencies at different granularities.

Predict 
Linear
(FC)

Project 
Channels

(FC)

Embedding
Layer

Reconstruction

Normal

Offset Shift 
& Scaling

Linear Trend
& Scaling

Figure 5: Visualization of the architecture used in terms of reconstruction that leverages the output of
an embedding module built upon a pool of convolutions (including variant and invariant ones). The
representation of the embedding layer zN , zO, zT are passed from 2 fully connected linear layers
(FC), from which the first operates on the temporal dimension and the second on the channels. The
coefficients of each invariant operation are similarly projected with linear layers and combined with
the representation (with addition or multiplication) to produce the output.

A.2.2 TASK-SPECIFIC MODULES

The embeddings derived from the modules described above are further processed by standard layers
to produce the task-specific output.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

I. Classification. The embedding is passed by a Global Average Pooling (GAP) layer, applied to
the channel dimension, that averages over the time dimension to reduce the temporal features to a
single value per channel. The result of the GAP layer is followed by a linear layer that produces the
final class probabilities.

II. Anomaly Detection (Reconstruction). The multi-layer embedding module presented above is
used to capture dependencies at various scales. For the reconstruction of the input, the embedding is
followed by linear layers applied first on the temporal and then on the channel dimensions. The co-
efficients of the invariant kernels, i. e., (σf , µf ) for the offset-invariant part and (νf , αf , βf ) for the
trend-invariant part, are passed through linear layers to be mapped to the original time and channel
dimensions and are then combined with each part (one variant and two invariant) of the embed-
ding via addition and multiplication. More specifically, σf and νf refer to the norm of invariant
embeddings of the signal, µf refers to the means, αf and βf refers to the coefficients of the linear
trend. Combining the coefficients with the linearly projected embeddings adapts the level of the
series to the original one, enabling enhanced temporal resolution. Figure 5 presents details about the
reconstruction module and its relation with the embedding module.

A.3 DATASETS DETAILS

We focus our experimental evaluation on several real-world time series datasets, including univariate
and multivariate inputs, with significant applications in healthcare and medical diagnosis, wearable
technology, audio processing, and transportation, among others.

Classification Datasets. Details about the 26 multivariate derived from UEA data repository (Bag-
nall et al., 2018), that are employed in terms of this study in the classification experiment are pro-
vided in Table 6. More specifically, for each dataset we mention the number of channels, the length
of the multivariate series, as well as the number of classes and the number of instances in the prede-
fined train and test sets.

Table 6: Details of UEA datasets used for classification.

Dataset #Train #Test #Channels Length #Classes

ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
Cricket 108 72 6 1197 12
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
InsectWingbeat 30000 20000 200 78 10
JapaneseVowels 270 370 12 29 9
Libras 180 180 24 51 6
LSST 2459 2466 6 36 14
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PEMS-SF 267 173 963 144 7
PenDigits 7494 3498 2 8 10
PhonemeSpectra 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table 7 contains the same details for the additional datasets used for classification, i. e., the UCIHAR
(Anguita et al., 2013) dataset, the Sleep-EDF dataset (Goldberger et al., 2000), and the Epilepsy
dataset (Andrzejak et al., 2001). More specifically, UCIHAR data were collected by 30 volun-
teers performing various activities, including laying, standing, sitting, walking, walking downstairs,
and walking upstairs. Volunteers’ records were captured by a waist smartphone, including dis-
tinct measurements connected to acceleration and velocity signals. The Sleep-EDF dataset from the
PhysioBank database consists of PolySomnoGraphic sleep recordings containing EEG, among other

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Details of rest datasets used for classification.

Dataset #Train #Test #Channels Length #Classes

UCIHAR 7352 2947 9 128 6
Sleep-EDF 25612 8910 1 3000 5
Epilepsy 9200 2300 1 178 2
Fault-Diagnosis 8184 2728 1 5120 3

Table 8: Details of datasets used for anomaly detection.

Dataset #Train #Val #Test #Channels Length

SMD 566724 141681 708420 38 100
MSL 44653 11664 73729 55 100
SMAP 108146 27037 427617 25 100
SWaT 396000 99000 449919 51 100
PSM 105984 26497 87841 25 100

measurements. We consider only the EEG signals following previous studies (Eldele et al., 2021)
and performed sleep stage classification, including awake, rapid eye movement, and non-rapid eye
movements. Finally, the Epilepsy dataset consists of EEG brain activity measurements for epilep-
tic seizure classification. Following the preprocessing of (Eldele et al., 2021), we perform binary
classification after merging classes referring to non-epileptic seizure.

We also conduct a synthetic experiment on the 4 larger datasets from UCR repository (Dau et al.,
2019). Since many UCR datasets are already preprocessed using Z-normalization to achieve zero
mean and unit variance, they are not ideal for demonstrating the impact of our invariant layers on
classification performance. This is the primary reason for conducting a synthetic experiment on
these datasets rather than a conventional one with the whole repository. For the transfer learning
experiment, we utilized the Fault-Diagnosis dataset (Lessmeier et al., 2016), as preprocessed in (El-
dele et al., 2021), which comprises of measurements under 4 different working conditions, perceived
as different domains, and are assigned to 3 classes, including a healthy and two fault classes.

Anomaly Detection Datasets. Furthermore, we present in Table 8 the five employed anomaly
detection datasets after preprocessing them on non-overlapping subsequences of length 100, also
showing the number of channels and the size of the train, validation, and test splits. The SMD dataset
(Su et al., 2019) consists of data related to server machines collected at an internet company, while
the MSL and SMAP (Hundman et al., 2018) datasets comprise of telemetry data from spacecraft
monitoring systems. The SWaT (Mathur & Tippenhauer, 2016) dataset is a collection of sensor
data from the operations of a critical infrastructure system. Finally, the PSM (Abdulaal et al., 2021)
dataset contains measurements from application server nodes on an internet website.

Data Splits and Preprocessing. As mentioned already in the main paper, for the proposed method,
we do not normalize the data using Z-normalization for UEA and the rest 4 datasets used in classifi-
cation, while the datasets from UCR are used for the synthetic experiment are derived normalized by
the data source. On the contrary, all data are normalized for classification and the baselines, as well
as for anomaly detection and all considered models (including the proposed INVCONVNET). For
the UEA datasets, we do validation on the whole training set since the test sets are, in several cases,
quite large, and thus, a small subset of the train set picked for validation can be a misleading indica-
tor of performance. For the rest classification datasets, we perform a split into train/validation/test
sets with a 60 : 20 : 20 ratio, following (Eldele et al., 2021). Similarly, for the five anomaly detection
datasets, we split into train/validation/test sets with a 70 : 10 : 20 ratio (Xu, 2021).

A.4 IMPLEMENTATION DETAILS

All experiments presented in this study were conducted on an Nvidia Tesla V100 GPU, with 40
cores and 756 GB of memory. We utilized the Adam optimizer with a learning rate of lr = 0.001
for both classification and unsupervised anomaly detection tasks. We also adopted a linear cosine
annealing learning rate scheduler for INVCONVNET in classification. More specifically, the sched-
uler started the warmup phase with a learning rate equal to 0.001, linearly increasing the learning
rate over the first 10 epochs to 0.01. After the warmup, it gradually reduced the learning rate using
a cosine annealing schedule, down to 0.0001 by the end of training. For anomaly detection and the
rest methods, we utilized a learning rate scheduler of 0.5 decrease rate per epoch. To have better esti-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

mates for the generalization performance of all models and, most importantly, our proposed shallow
modules, we performed 3 runs with random seeds for all considered datasets and tasks. Additional
details for each task and the hyperparameters of the models are given below.

- Classification Task: We trained the models for 100 epochs for all UEA datasets, the 4 UCR
datasets and the Fault-Diagnosis dataset. We performed early stopping during training, after 20
epochs of no improvement in the validation accuracy for all models and kept the configuration of
weights that correspond to the best validation accuracy during training. The standard cross entropy
loss was optimized during training for classification. For the INVCONVNET model, we considered
the inception-like embedding module of Figure 4 (Left) for all datasets of UEA except for Epilepsy,
EthanolConcentration, Heartbeat that we selected the standard embedding module of single kernel
size. Finally, for FingerMovements, Handwriting, Libras and SelfRegulationSCP1 datasets, we
employed the multi-scale embedding layer of Figure 4 (Right). The type of the embedding layer,
as well as the hyperparameters for the convolutional layers, e. g., kernel size and hidden dimension,
were selected through random search and the best performance on the validation set. For the rest of
the classification datasets, i. e., the UCIHAR, the Sleep-EDF and the Epilepsy datasets, we trained
all models for 300 epochs with 20 epochs patience and considered the inception-like embedding
layer, since it was performing better on the validation set.

- Unsupervised Anomaly Detection Task: We trained the models for 10 epochs and stopped train-
ing if no improvements had been made in terms of validation loss for 3 epochs, saving the best
model weights on the validation set. We optimized the models using the mean squared error (MSE)
between the real input sequences and the reconstructed ones. For all five anomaly detection datasets,
we used the multi-scale embedding layer of Figure 4 (Right), followed by the reconstruction module
built upon linear layers in Figure 5.

- Hyperparameter Selection: We next provide more information about the selection of the kernel
sizes and hidden dimensions for the different embedding modules tested in terms of INVCONVNET.
For the standard pool of convolutions with one specific kernel size W , we chose the kernel size as
the minimum value between the value 50 and half of the length of the time series. For the inception-
like embedding module, we selected several kernel sizes, such as 51,75,101, and 125, or factors of
those values for which the length of the series is proportional. Finally, for the first layer (pool of
convolutions) of the multi-scale module, we computed the kernel sizes as powers of two, starting
from 16 up to a maximum of 128, based on the logarithmic scaling of half the series length. For all
modules, we tested hidden dimensions sizes for the pool of convolutions in {32, 64, 128, 256} doing
a split that enabled almost equal contribution for the three parts, i. e., normal, invariant to offset
shift and scaling, and invariant to linear trend and scaling. For instance for total hidden size equal
to 32 the different parts had (12, 10, 10) hidden dimensions respectively, for 64 the split became
(24, 20, 20) and so on.

For the common CNN-based baselines INCEPTION, RESNET, CNN, we tuned the number of con-
volutional layers, the kernel sizes, and the hidden size of each layer. We followed a random search
for a value between 2 and 6 for the number of blocks and {32, 64, 128, 256} for the hidden dimen-
sions, whereas for the kernel sizes, we used those proposed in the relevant papers (Ismail Fawaz
et al., 2020; Wang et al., 2017; Ismail Fawaz et al., 2018). All baselines’ implementations are de-
rived from the Time-Series-Library (Wang et al., 2024), with the configurations mentioned in the
respective papers, and the main code resources for performing the different tasks, e. g., classification
and anomaly detection were adopted. We also used ROCKET (Dempster et al., 2020) from sktime
Library (Löning et al., 2019), with 3000 random convolutional kernels. Finally, for the transfer
learning classification experiment, the self-supervised contrastive TS-TCC and TS2VEC methods
were trained with their default parameters for classification as proposed in the respective papers
(Eldele et al., 2021; Yue et al., 2022), for 50 epochs for each phase of pre-training and fine-tuning.

A.5 ADDITIONAL RESULTS

A.5.1 SYNTHETIC EXPERIMENT - VISUALIZATION OF FEATURE MAPS

In Figure 6, we provide visualizations of the feature maps produced for the example INVCONVNET
architecture and its INVCONVNET-N (normal) declination for particular cases of the synthetic ex-
periment presented in Table 3. Specifically, we consider one out of the 4 larger UCR datasets,
namely the MixedShapesRegularTrain dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700 800 900 1000
Sequence Length

0
10
20
30
40
50
60
70
80
90

100
110
120

H
id

de
n 

D
im

en
io

ns

Feature Map of InvConvNet (mixed)

0

1

2

3

4

5

6

7

(a) MixedShapesRegularTrain (Normalized)

0 100 200 300 400 500 600 700 800 900 1000
Sequence Length

0
10
20
30
40
50
60
70
80
90

100
110
120

H
id

de
n 

D
im

en
io

ns

Feature Map of InvConvNet (mixed)

0

1

2

3

4

5

6

7

8

(b) MixedShapesRegularTrain (+ Off., RW)

0 100 200 300 400 500 600 700 800 900 1000
Sequence Length

0
10
20
30
40
50
60
70
80
90

100
110
120

H
id

de
n 

D
im

en
io

ns

Feature Map of InvConvNet-N (normal)

0

2

4

6

8

10

12

14

16

(c) MixedShapesRegularTrain (Normalized)

0 100 200 300 400 500 600 700 800 900 1000
Sequence Length

0
10
20
30
40
50
60
70
80
90

100
110
120

H
id

de
n 

D
im

en
io

ns

Feature Map of InvConvNet-N (normal)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(d) MixedShapesRegularTrain (+ Off., RW)

Figure 6: Comparison of the feature maps produced in the synthetic classification experiment (Ta-
ble 3) on samples of MixedShapesRegularTrain dataset by the proposed convolutional layer before
average-pooling as generated by: (a) & (b) the proposed INVCONVNET (mixed) built upon differ-
ent types of invariances including (i) no invariance, (ii) filters invariant to offset shift and amplitude
scaling and (iii) filters invariant to linear trend and amplitude scaling, (c) & (d) INVCONVNET-N
(normal) built upon normal convolutional filters (non-invariant). We consider as inputs the plain
MixedShapesRegularTrain dataset, which is already normalized (in (a) and (c)), or the synthetically
deformed data with an added random offset and smooth random walk (in (b) and (d)).

For the considered dataset, we select one sample that is correctly classified for the first class for
both INVCONVNET (mixed) and INVCONVNET-N (normal). INVCONVNET (mixed) is built upon
three types of convolutions (normal, invariant to offset shift, and invariant to linear trend), and the
standalone declination INVCONVNET-N (normal) is solely built upon normal convolutional filters.
We recall here that each model configuration (i. e., INVCONVNET, INVCONVNET-N) has been
separately trained and tested for the plain data and each case of synthetically deformed data.

Extraction of Feature Maps. After passing the input series through the convolutional layer of
each model and the activation function (i. e., ReLU(.)), we extract the feature map for each filter (or
each hidden dimension) corresponding to the largest considered kernel size. We recall that for the
synthetic experiment on the 4 larger UCR datasets, we leveraged the inception-like embedding mod-
ule of Figure 4 (Left), built upon 4 different kernel sizes with each having an equal total number of
filters (or hidden dimensions equal to 128). Please note that averaging over all outputs produced by
the layer for the several distinct kernel sizes produces multi-scale representations that produce simi-
lar (in terms of activated regions) but smoother maps (in terms of intensity values). The construction
of the layer differs depending on the number of filters considered for each type of convolution, and
for the first two model configurations becomes as follows: INVCONVNET has (48, 40, 40) filters
respectively for each type of convolution (i. e., standard or non-invariant, invariant to offset shift
and invariant to linear trend) and the baseline case INVCONVNET-N has (128, 0, 0) filters, thereby
only considers 128 standard filters. The resulting feature maps, which are derived by the activated
outputs for the largest kernel size, are essentially 2D representations with dimensions equal to the
series length L and the 128 hidden dimensions.

We provide in Figure 6 the activated feature maps for a single sample for MixedShapesRegu-
larTrain dataset, extracted for the two considered model configurations (INVCONVNET (mixed),
INVCONVNET-N (normal) as heatmaps. Color in the heatmap plots corresponds to the magnitude of
the activation at a specific location of the series for each hidden dimension, with a lighter color (i. e.,
yellow) representing higher activations. Plots on the left column (sub-figures 6a, 6c) correspond to a

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

plain sample from the dataset without any added deformation (that is already Z-normalized) whereas
plots on the right column (sub-figures 6b, 6d) correspond to the same sample with added random
offset and smooth random walk generated trend (+ Off., RW).

Deformation-Specific Activation Maps for Different Types of Filters. The example INVCON-
VNET model, which combines three types of convolutions (standard, offset-invariant, and trend-
invariant), exhibits three distinct regions in its feature maps, each corresponding to one of these
convolution types. This is evident for the values of the activated feature maps for different hidden
dimensions, as shown in the first row of Figure 6 (i. e., the sub-figures 6a, 6b). Specifically, the
activated regions for the first 48 dimensions display a different morphology compared to the next
40 dimensions, which, in turn, differ from the final 40 dimensions. This highlights the unique con-
tribution of each convolution type (or invariance) to the model’s learned representations inside the
so-called pool of convolutions (introduced in Figure 2). On the contrary, INVCONVNET-N, which
is built solely upon normal convolutions, exhibits a distinct morphology of activated features that
appears more homogeneous across the various hidden dimensions (i. e., the sub-figures 6c, 6d).

More specifically, we observe that the normal filters (i. e., first 48 hidden dimensions) of INVCON-
VNET model are more activated for a raw (normalized) sample in Figure 6a. When random offset
and a smooth random walk trend are added to the sample, the normal filters are less activated com-
pared to filters invariant to offset shift and linear trend in Figure 6b (hidden dimensions 48 − 88
and 88− 128 respectively). Importantly, activations remain quite similar for invariant filters (last 80
dimensions) between plain and deformed data (as shown in sub-figures 6a and 6b), as the kernels
are not locally affected by the deformations.

On the other hand, for the purely normal filters in INVCONVNET-N, the activated feature maps
exhibit very high values around specific time points, likely corresponding to abrupt changes or
hollowed areas in the time series input (as shown in sub-figure 6c). Notably, when a smooth random
walk trend is added as a deformation, the feature maps of normal filters in INVCONVNET-N become
smoother. This can be attributed to a localized reduction in the effect of abrupt changes (in sub-
figure 6d). Consequently, under the added deformation, INVCONVNET-N seems to struggle to
identify meaningful regions in the input signal, with the activated feature maps being dominated and
absorbed by the synthetic trend. On the contrary, for this particular added deformation, apart from
the less informative normal filters in the activated feature maps, offset-invariant and trend-invariant
filters are activated at several local levels of the input time series (as shown in sub-figure 6b).

A.5.2 CLASSIFICATION

We also provide in Table 9 the full classification results for the 26 considered UEA datasets that
correspond to the average of 3 runs for each combination of dataset and model. In the same table,
we include again the already presented in the main paper, average accuracy for the whole collection
of datasets as well as the number where each model scores first in the last row. The JapaneseVow-
els dataset is mentioned as out-of-time (‘OOT’) for not producing performance results since the
experiment did not run within the time limits (12 hours maximum for each dataset). From the
full classification results, we observe that the proposed INVCONVNET is, in several cases, slightly
outperformed by the classical ROCKET method, but on average, is among the first best-competing
models for most datasets, which explains its performance superiority in terms of average accuracy
for the whole UEA.

In several studies (Wu et al., 2022; Zhou et al., 2023), only a subset of 10 UEA datasets is consid-
ered, and we also present once again the results for this subset along with total the average accuracy
in 10. Similar observations can be made as those for Table 9, with the proposed INVCONVNET
scoring the best average accuracy of 73.22%, followed by ROCKET.

A.5.3 ANOMALY DETECTION

Finally, in Table 11, we perform additional comparisons, in terms of anomaly detection, including
the INVCONVNET model and the standard CNN-based variants, namely INCEPTION, RESNET and
CNN originally proposed for classification. All models have an identical reconstruction module,
with the exception of INVCONVNET, which also includes the signal decomposition coefficients on
the invariant basis.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Full Classification results for UEA datasets. Accuracy (%) is mentioned for all combina-
tions of models and datasets. Higher is better, best methods in bold, second best underlined.

Dataset INVCONVNET TIMESNET PATCHTST CROSSFORMER TSLANET DLINEAR INCEPTION RESNET CNN ROCKET

ArticularyWordRecognition 99.00 97.78 97.67 98.22 98.22 96.67 84.56 98.44 97.89 99.44
AtrialFibrillation 37.78 28.89 42.22 28.89 24.44 35.56 28.89 24.44 33.33 6.67
BasicMotions 100.00 95.00 70.83 91.67 100.00 81.67 87.50 100.00 100.00 100.00
Cricket 98.61 93.06 94.44 92.59 97.69 91.20 87.96 98.15 98.61 100.00
Epilepsy 95.89 89.61 97.34 87.44 96.86 51.45 92.27 94.44 92.27 98.55
EthanolConcentration 25.98 26.24 23.32 39.67 22.18 24.97 23.57 21.93 22.81 29.40
FaceDetection 64.71 67.50 64.77 65.26 56.59 62.97 63.88 54.82 52.75 59.13
FingerMovements 56.33 55.00 53.33 52.33 55.00 48.67 56.33 53.00 53.00 54.00
HandMovementDirection 40.99 64.41 47.75 57.21 45.50 59.01 31.08 36.04 29.28 44.59
Handwriting 53.14 28.67 26.98 26.39 48.71 18.71 17.22 37.10 36.20 56.27
Heartbeat 77.40 68.29 66.18 68.13 75.77 69.92 70.41 69.76 62.76 73.17
InsectWingbeat ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’
JapaneseVowels 97.66 91.71 94.68 96.76 96.85 93.33 91.80 98.83 98.38 97.39
Libras 88.70 79.07 76.11 86.30 84.81 50.19 57.04 94.07 88.70 91.11
LSST 55.04 12.77 48.35 11.21 10.41 31.85 35.71 8.99 9.37 60.76
MotorImagery 49.67 52.00 50.67 55.00 47.67 50.33 51.67 51.33 51.33 46.33
NATOPS 95.74 93.33 75.00 87.41 94.63 92.78 90.74 96.67 95.74 87.96
PEMS-SF 80.35 78.61 81.89 84.39 79.96 80.15 75.53 79.38 74.37 80.15
PenDigits 98.78 98.48 97.52 97.12 98.12 87.32 97.75 98.70 98.81 98.08
PhonemeSpectra 29.82 14.31 12.62 12.63 26.71 6.72 21.91 28.66 27.15 27.69
RacketSports 87.72 82.68 76.75 79.82 88.16 67.98 83.77 90.57 84.43 90.35
SelfRegulationSCP1 86.12 87.60 78.84 85.32 79.18 83.39 81.57 80.32 84.64 84.53
SelfRegulationSCP2 54.44 48.15 45.19 47.59 53.89 45.74 53.33 48.15 48.33 54.82
SpokenArabicDigits 99.47 98.83 97.92 98.67 99.58 95.85 98.50 99.23 98.98 99.56
StandWalkJump 28.89 33.33 51.11 24.44 48.89 33.33 26.67 40.00 31.11 48.89
UWaveGestureLibrary 92.92 86.35 83.02 84.69 87.71 77.92 61.77 81.35 71.56 93.33
Avg. Accuracy (%) 71.81 66.87 66.18 66.37 68.70 61.51 62.86 67.37 65.67 71.29

1st Count 4 3 2 3 2 0 1 5 2 8

Table 10: Full Classification results for a subset of 10 UEA datasets. Accuracy (%) is mentioned
for all combinations of models and datasets. Higher is better, best methods in bold, second best
underlined.

Dataset INVCONVNET TIMESNET PATCHTST CROSSFORMER TSLANET DLINEAR INCEPTION RESNET CNN ROCKET

EthanolConcentration 25.98 26.24 23.32 39.67 22.18 24.97 23.57 21.93 22.81 29.40
FaceDetection 64.71 67.50 64.77 65.26 56.59 62.97 63.88 54.82 52.75 59.13
Handwriting 53.14 28.67 26.98 26.39 48.71 18.71 17.22 37.10 36.20 56.27
Heartbeat 77.40 68.29 66.18 68.13 75.77 69.92 70.41 69.76 62.76 73.17
JapaneseVowels 97.66 91.71 94.68 96.76 96.85 93.33 91.80 98.83 98.38 97.39
PEMS-SF 80.35 78.61 81.89 84.39 79.96 80.15 75.53 79.38 74.37 80.15
SelfRegulationSCP1 86.12 87.60 78.84 85.32 79.18 83.39 81.57 80.32 84.64 84.53
SelfRegulationSCP2 54.44 48.15 45.19 47.59 53.89 45.74 53.33 48.15 48.33 54.82
SpokenArabicDigits 99.47 98.83 97.92 98.67 99.58 95.85 98.50 99.23 98.98 99.56
UWaveGestureLibrary 92.92 86.35 83.02 84.69 87.71 77.92 61.77 81.35 71.56 93.33
Avg. Accuracy (%) 73.22 68.20 66.28 69.69 70.04 65.30 63.76 67.09 65.08 72.78

As observed, our proposed method consistently outperforms all evaluated CNN-based variants,
proving once again the effectiveness of combining invariances with their related signal coefficients
for reconstruction.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Anomaly Detection results for INVCONVNET and vanilla CNN-based methods. Perfor-
mance mentioned in terms of the F1-score (%).

INVCONVNET INCEPTION RESNET CNN
Datasets + predict linear, project channels

SMD 84.05 ± 0.16 71.48 ± 0.11 76.20 ± 0.52 77.31 ± 0.91
MSL 80.68 ± 0.01 81.68 ± 0.08 81.25 ± 0.09 79.96 ± 0.20
SMAP 68.29 ± 0.07 68.63 ± 0.16 67.24 ± 0.65 67.00 ± 0.07
SWaT 92.82 ± 0.19 82.69 ± 0.70 80.93 ± 0.04 80.24 ± 0.95
PSM 96.34 ± 0.01 92.02 ± 0.35 92.30 ± 0.82 93.30 ± 0.58

Avg. F1 (%) 84.44 ± 0.09 79.30 ± 0.28 79.58 ± 0.42 79.56 ± 0.54

23


	Introduction
	Related Work
	Method
	Invariant embedding for time series
	Invariant convolution

	Experimental Evaluation
	Classification
	Experimental Setting
	Results

	Anomaly Detection
	Experimental Setting
	Results


	Conclusion
	Appendix
	Invariant embedding
	InvConvNet: Architectural Details
	Invariant Embedding Modules
	Task-Specific Modules

	Datasets Details
	Implementation Details
	Additional Results
	Synthetic Experiment - Visualization of Feature Maps
	Classification
	Anomaly detection



