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Abstract
In unsupervised combinatorial optimization
(UCO), during training, one aims to have continu-
ous decisions that are promising in a probabilistic
sense for each training instance, which enables
end-to-end training on initially discrete and non-
differentiable problems. At the test time, for each
test instance, starting from continuous decisions,
derandomization is typically applied to obtain the
final deterministic decisions. Researchers have de-
veloped more and more powerful test-time deran-
domization schemes to enhance the empirical per-
formance and the theoretical guarantee of UCO
methods. However, we notice a misalignment be-
tween training and testing in the existing UCO
methods. Consequently, lower training losses do
not necessarily entail better post-derandomization
performance, even for the training instances with-
out any data distribution shift. Empirically, we
indeed observe such undesirable cases. We ex-
plore a preliminary idea to better align training
and testing in UCO by including a differentiable
version of derandomization into training. Our
empirical exploration shows that such an idea in-
deed improves training-test alignment, but also
introduces nontrivial challenges into training.

1. Introduction
Combinatorial optimization (CO) problems are naturally
discrete. Typical examples include optimization problems
on graphs where we make binary yes-or-no decisions on
each node, and the objective is a function of the graph
structure and the binary decisions. CO problems have a
rich lineage in various research fields, including theoretical
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computer science (Arumugam et al., 2016) and operations
research (Modaresi et al., 2020), with real-world applica-
tions from network design (Cheng et al., 2006) to schedul-
ing (Hwang & Cheng, 2001) and bioinformatics (Bauer
et al., 2007). However, the discrete nature of CO problems
makes it non-trivial to apply typical machine learning meth-
ods that are based on differentiable optimization to them.

To overcome these challenges, researchers have explored
various strategies to effectively combine machine learning
with CO problems (Bengio et al., 2021). Early approaches
often involved supervised methods (Li et al., 2018) or re-
inforcement learning techniques (Kool et al., 2019; Berto
et al., 2025). However, these methods require labeled data or
extensive interaction, limiting their applicability and gener-
alizability in many real-world scenarios (Karalias & Loukas,
2020). Consequently, the field has seen a growing interest
in unsupervised approaches, resulting in the development of
unsupervised combinatorial optimization (UCO) methods.

The key idea of UCO is to (1) allow continuous decisions
and (2) evaluate the expected objective by interpreting the
continuous decisions as random variables, which gives a
fully differentiable process and enables end-to-end training.
At the test time, derandomization is typically applied to
continuous decisions to transform them into deterministic
decisions as the final output (Karalias & Loukas, 2020).

Over the course of time, UCO researchers have devel-
oped more and more powerful test-time derandomization
schemes, from naive random sampling (Karalias & Loukas,
2020), iterative rounding (Karalias & Loukas, 2020; Wang
et al., 2022), to greedy derandomization (Bu et al., 2024).
With the development of test-time derandomization, we have
witnessed the enhancement of the empirical performance as
well as the theoretical quality guarantee of UCO methods.

However, we notice a misalignment between training and
testing in the existing UCO methods: the training essentially
tries to optimize the expected quality of the output continu-
ous decisions assuming naive random sampling, while rather
sophisticated derandomization is actually used at the test
time. Therefore, even if we have lower training losses, we
cannot guarantee better post-derandomization performance
at the test time, even for the training instances (i.e., here we
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Algorithm 1 Iterative Rounding

Input: (1) Continuous decisions D̃ ∈ [0,1]n,
(2) Rounding sequence πn = (v1, . . . , vn)

Output: Final discrete decisions D ∈ {0,1}n
1: D ← D̃ ▷ Initialization
2: for j ← v1 to vn do ▷ Iteration following the sequence
3: for b ∈ {0,1} do
4: D′ ←D ▷ Copy
5: D′j ← b ▷Modify a single entry
6: ∆b ← f̃(D) − f̃(D′) ▷ Evaluation
7: end for
8: Dj ← argmaxb∈{0,1}∆b ▷ Rounding
9: end for

10: return D

are not discussing the training-test misalignment regarding
data distributions but regarding methodology). We indeed
empirically observe such undesirable cases.

We explore a preliminary idea to better align training and
testing in UCO by including a differentiable version of
derandomization into training. By our empirical exploration,
we validate that such an idea indeed can improve training-
test alignment. However, we also observe that including
such additional soft derandomization schemes into training
increases the difficulty of training, i.e., we may not be able
to have the training losses stably decrease during training.
Our analysis suggests that the future development of UCO
methods may need to find a balance between training-test
alignment and the ease of training.

Reproducibility. The code and datasets are available in the
online appendix (Bu & Shin, 2025).1

2. Preliminaries and Background
2.1. Combinatorial Optimization (CO)

We consider CO problems with n binary decisions, where
n is a positive integer. A CO problem aims to find the
optimal decisions Dopt inside a feasible set C such that Dopt ∈
C ⊆ {0,1}n, to minimize an objective f ∶ C ↦ R (i.e.,
Dopt = argminD∈C f(D)).

2.2. Unsupervised Combinatorial Optimization (UCO)

Based on the probabilistic method (Erdős & Spencer, 1974),
Karalias & Loukas (2020) proposed the UCO framework
with the high-level idea to (1) apply continuous relaxation to
the objective f and its domain, to obtain f̃ ∶ [0,1]n → R and
enable end-to-end training, and (2) apply derandomization
at the test time to obtain the final output decisions Dout ∈ C.

1https://github.com/bokveizen/uco derand

Algorithm 2 Greedy Rounding

Input: Continuous decisions D̃ ∈ [0,1]n
Output: Final discrete decisions D ∈ {0,1}n

1: D ← D̃ ▷ Initialization
2: repeat
3: for j ∈ {1, . . . , n} and b ∈ {0,1} do
4: D′ ←D ▷ Copy
5: D′j ← b ▷Modify a single entry
6: ∆j,b ← f̃(D) − f̃(D′) ▷ Evaluation
7: end for
8: (j∗, b∗)← argmaxj,b∈[n]×{0,1}∆j,b ▷ Best choice
9: Dj∗ ← b∗ ▷ Rounding with the best choice

10: until ∆j∗,b∗ ≤ 0 ▷ Until local minimum
11: return D

Continuous relaxation. Each D̃ ∈ [0,1]n is interpreted
as a distribution (typically, an independent multivariate
Bernoulli distribution) on {0,1}n, and we aim to con-
struct a differentiable f̃ such that f̃(D̃) ≈ ED∼D̃[f(D)] +
βPrD∼D̃[D ∉ C] with constraint coefficient β > 0. The
key points are (1) now we are able to conduct end-to-
end training with this differentiable surrogate f̃ instead
of the originally discrete non-differentiable f , and (2)
when f̃ is minimized, it is guaranteed that the optimal
D̃opt = argminD̃∈[0,1]n f̃(D̃) corresponds to the optimal
Dopt for the original objective f .

Derandomization. At the test time, for each test instance,
derandomization is used to obtain the final output discrete
decisions. Researchers have considered various derandom-
ization schemes for UCO, including (let D̃output ∈ [0,1]n
be the initial continuous output for the test instance):

• Naive random sampling (Karalias & Loukas, 2020): We
sample Dout from the distribution represented by D̃output;

• Iterative rounding (Karalias & Loukas, 2020; Wang
et al., 2022): We fix a sequence πn = {v1, v2, . . . , vn},
iterate for i = 1,2, . . . , n while rounding for vi to the one
between 0 and 1 that gives lower f̃ , and obtain Dout after
rounding all the n entries (see Algorithm 1);

• Greedy rounding (Bu et al., 2024): Repeatedly, we con-
sider all the n × 2 possible rounding possibilities (first
choose an entry i ∈ [n] and then decide to round it to 0 or
1) and greedily pick the one that gives the lowest value
for f̃ , until no further rounding can improve f̃ , i.e., when
reaching a local minimum (see Algorithm 2).

To conclude, over the course of time, more and more power-
ful derandomization schemes have been proposed, and we
have observed that such schemes improve both theoretical
guarantees and empirical performance in UCO.
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Trial 1 2 3 4 5 Average

Iterative 1968 (39.8%) 1826 (36.9%) 1957 (39.5%) 2094 (42.3%) 1549 (31.3%) 1878.8 (38.0%)
Greedy 1958 (39.6%) 2252 (45.5%) 2299 (46.4%) 1974 (39.9%) 1321 (26.7%) 1960.8 (39.6%)

Table 1: Empirically, there are many “bad” pairs where the surrogate objective and the final post-derandomization
objective give different relative ordering. For each derandomization scheme (iterative or greedy rounding), we report the
number of “bad” pairs among all the 4950 pairs in each random trial, as well as the average number over all trials.

3. Observation: Training-Test Misalignment
Although more powerful derandomization schemes enable
better theoretical guarantees and empirical performance,
we identify a training-test misalignment issue in existing
UCO. In this section, we shall discuss the issue from a
methodological perspective and provide empirical evidence.

3.1. Methodological Misalignment

In training, the surrogate objective f̃ ≈ ED∼D̃[f(D)] +
βPrD∼D̃[D ∉ C] essentially evaluates the expected objec-
tive (plus penalty on the probability of violating the con-
straints) when we obtain D by naive random sampling from
D̃. However, at the testing time, existing UCO methods
have actually used much more sophisticated derandomiza-
tion schemes (iterative or greedy rounding).

Although the construction of f̃ guarantees that the optimal
D̃opt for f̃ corresponds to the optimal Dopt for the original
objective f , in principle we cannot guarantee the training ac-
tually finds the optimum due to the complexity of objective
in many CO problems, many of which are even NP-hard.

Therefore, in practice, when the surrogate objective
f̃ improves during training, i.e., we obtain new con-
tinuous decisions D̃new that are better than old ones
D̃old with f̃(D̃new) < f̃(D̃old), the corresponding post-
derandomization decisions Dnew and Dold may not satisfy
f(Dnew) < f(Dold). That is, a better surrogate objective
does not necessarily give better final test-time performance,
even for the training instance without any distribution shift,
resulting in an undesirable training-test misalignment.

3.2. Empirical Evidence: Toy Example

Below, we provide empirical evidence for the method-
ological misalignment discussed above. We consider a
toy example of quadratic functions. Specifically, we con-
sider the objective f ∶ {0,1}n ↦ R in the form of
f(D) = ∑n

i,j=1 αijdidj , where D = (d1, d2, . . . , dn). We
consider the simplistic CO problem with objective f and
without any constraints (i.e., C = {0,1}n). We can con-
struct the exact expectation f̃ ∶ [0,1]n ↦ R of f , which is
f̃(D̃) = ∑n

i,j=1 αij d̃id̃j , where D̃ = (d̃1, d̃2, . . . , d̃n).
Now, we use n = 50, sample random αij’s from i.i.d. nor-

Orig =10.0 =1.0 =0.1 =0.01 =0.001
0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f "
ba

d"
 p

ai
rs

Iterative
Greedy

Figure 1: Our preliminary idea of including soft deran-
domization improves training-test alignment. As the soft
temperature τ decreases, “bad” pairs reduces.

mal distributions, and also sample 100 random D̃(k)’s for
k = 1,2, . . . ,100, where each D̃(k) follows an independent
multivariate uniform distribution between 0 and 1 (i.e., each
entry in D̃(k) follows an i.i.d. uniform distribution 0 and 1).
For each D̃(k), we compute its surrogate objective f̃ (k) ∶=
f̃(D̃(k)), its corresponding outputs D(k)iter,D

(k)
grd ∈ {0,1}n af-

ter iterative rounding and greedy rounding respectively, and
the corresponding test-time objective f (k)iter ∶= f(D

(k)
iter) and

f (k)grd ∶= f(D(k)grd). We have 4950 pairs of (D̃(k1), D̃(k2))’s
in total, and we say a pair (D̃(k1), D̃(k2)) is “bad” if
(f̃ (k1) − f̃ (k2))(f (k1) − f (k2))) < 0, i.e., if the surrogate
objective and the final post-derandomization objective give
different relatively ordering.

We repeat the above process in five independent random
trials, and report the number of “bad” pairs when we use
iterative rounding or greedy rounding. As shown in Ta-
ble 1, there are many “bad” pairs, even for such a simplistic
CO problem where we do not have constraints and we can
construct the exact expectation as the surrogate objective,
which provides empirical evidence to the methodological
misalignment discussed in Section 3.1.

4. Empirical Exploration and Analysis
Now that we have identified and empirically observed this
training-test misalignment in UCO, how can we improve
UCO methods to have better alignment? Below, we dis-
cuss our empirical exploration and analysis, including a
preliminary idea to improve training-test alignment in UCO,
empirical results, and the challenges we encountered.
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(b) Greedy rounding

Figure 2: The curves of training loss and test objective (both
lower the better) with soft derandomization using different
temperatures τ on the facility location problem.

4.1. Preliminary Idea: Soft Derandomization

Recall the methodological misalignment we identified in
Section 3.1. The key issue is that the surrogate objective f̃ ≈
ED∼D̃[f(D)] + βPrD∼D̃[D ∉ C] essentially assumes naive
random sampling for training, while more sophisticated
derandomization schemes (iterative or greedy rounding) are
actually used at the test time.

Therefore, we propose a preliminary and straightforward
idea to improve training-test alignment in UCO, which in-
cludes (a soft and differentiable version of) the test-time
derandomization scheme also in the training. Specifically,
we replace the discrete argmax in both iterative round-
ing (Algorithm 1) and greedy rounding (Algorithm 2) with
a soft differentiable softmax. It is easy to see that such
soft versions are expected to make training and test phases
methodologically more similar, and they approach the origi-
nal derandomization schemes as the temperature decreases.

4.2. Toy Example

We first revisit the quadratic-function toy example in Sec-
tion 3.2. Now, for each continuous D̃, we first apply the
soft version of iterative or greedy rounding to it, before
evaluating it with f̃ . We keep all the other settings the
same as in Section 3.2, with different softmax temperatures
τ ∈ {10.0,1.0,0.1,0.01,0.001}.
As shown in Figure 1, we see that the soft version of round-
ing indeed improves the training-test alignment and reduces
the “bad” pairs, and lower temperatures give better align-
ment, validating the correctness of our preliminary idea.

4.3. Typical CO Problem: Facility Location

Although our preliminary idea can indeed improve training-
test alignment, that is not all we need. Specifically, we need
both (1) training-test alignment, i.e., test performance im-
proves as training objective improves, and (2) that training
objective actually improves during training. Therefore, now
the question is about the second point: With soft derandom-
ization, does the objective improve during training?

We study a typical CO problem used in UCO literature,
facility location (Drezner & Hamacher, 2004), where we
are given a set of locations and we aim to pick a subset of
centers to minimize the total distance from each location
to its closest picked center. We follow the experimental
settings by (Bu et al., 2024), but only check the training and
test on the same instance, because we are studying training-
test (mis)alignment regarding methodology instead of data
distributions, as mentioned in Section 1.

In Figure 2, we show the curves of training surrogate objec-
tives and test performance with soft derandomization using
different softmax temperatures. When the temperature τ
is too high (e.g., τ = 10.0), soft derandomization is weak
and has negligible effects. On the other hand, when τ is too
low (e.g., τ = 0.01 or 0.001), the loss surface has higher
curvature and less smooth gradients, and the training losses
almost do not decrease. On the positive side, we do observe
better test performance in some cases with soft derandom-
ization included (see, e.g., the curves for τ = 0.1).

5. Discussion
In this work, we study training-test (mis)alignment in unsu-
pervised combinatorial optimization (UCO). We identify a
methodological misalignment issue in existing UCO meth-
ods, provide empirical evidence for the issue, and propose a
preliminary idea for it. Our idea of including soft derandom-
ization into training appears to be a promising direction for
further exploration. Our analysis suggests that the future de-
velopment of UCO may need to achieve better training-test
alignment while maintaining stable training.

Beyond UCO, other machine learning methods for combina-
torial optimization have also raised discussions on test-time
post-processing (Xia et al., 2024). We believe researchers
should be more careful about test-time post-processing in
general, especially that they should be aware of the potential
danger that too powerful test-time post-processing (com-
pared to the training process) might make the training less
relevant. Especially, before addressing generalization re-
garding data distribution shift (Luo et al., 2023), researchers
may need to first address the training-test methodological
misalignment to ensure meaningful training.
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