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ABSTRACT

Inspired by the similar update pattern of softmax natural policy gradient and Hadamard
policy gradient, we propose to study a general policy update rule called ϕ-update, where
ϕ refers to a scaling function on advantage functions. Under very mild conditions on ϕ,
the global asymptotic state value convergence of ϕ-update is firstly established. Then we
show that the policy produced by ϕ-update indeed converges, even when there are multiple
optimal policies. This is in stark contrast to existing results where explicit regularizations
are required to guarantee the convergence of the policy. Since softmax natural policy gra-
dient is an instance of ϕ-update, it provides an affirmative answer to the question whether
the policy produced by softmax natural policy gradient converges. The exact asymptotic
convergence rate of state values is further established based on the policy convergence.
Lastly, we establish the global linear convergence of ϕ-update.

1 INTRODUCTION

As a basis model, Markov Decision Process (MDP) has been widely studied and applied in reinforcement
learning (RL). More precisely, an MDP model can be represented as a tuple M (S,A, P, r, γ), where S is
the state space, A is the action space, P is the state-transition model, r : S ×A → R is the reward function,
and γ ∈ [0, 1) is the discounted factor. With a policy π, after selecting an action at ∼ π(·|st) at a state st,
the agent receives a reward rt = r(st, at) and then transfers to another state st+1 based on the transition
model P (·|st, at). The state value function is defined as the expected discounted cumulative reward over
random trajectories induced by π,

V π(s) := E

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, π

]
.

The target of RL is to find an optimal policy which maximizes the following objective function

max
π

V π(µ) (1)

where V π(µ) := Es∼µ [V
π(s)] for some initial state distribution µ.

Policy optimization refers to a family of effective algorithms to solve (1). Compared with the classic dy-
namic programming approaches such as value iteration (VI) and policy iteration (PI) (Puterman, 1994; Sut-
ton & Barto, 2018), policy optimization searches in the policy space based on policy parameterization.
Policy gradient (PG (Sutton et al., 1999)) method is a basic policy optimization method which updates
policy parameter by gradient ascent directly. Some other important variants of PG include natural policy
gradient (NPG (Kakade, 2001)), policy mirror descent (PMD (Xiao, 2022)), trust region policy optimiza-
tion (TRPO (Shani et al., 2020)), proximal policy optimization (PPO (Schulman et al., 2017)), and deep
deterministic policy gradient (DDPG (Lillicrap et al., 2015)).
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1.1 RELATED WORKS

Recently, the analysis of policy optimization methods has received intensive investigations, especially in the
tabular setting. An exhaustive review towards this line of research is beyond the scope of this paper. Here
we only summarize the results of the exact policy gradient methods that are mostly related to our work.

Softmax PG In Agarwal et al. (2021), the asymptotic global convergence of softmax PG with sufficiently
small step-size is established, which is generalized to the case of any positive step-size in Liu et al. (2024b).
For non-asymptotic error bounds, the O(1/k) sublinear upper and lower bounds under small constant step-
size are provided in Mei et al. (2020b) by leveraging the smoothness and the gradient domination property of
the value function. These results are also extended to an arbitrary step-size in Liu et al. (2024b). In addition,
the linear convergence of softmax PG under adaptive step-size is established in Mei et al. (2021); Liu et al.
(2024b).

Escort PG and Hadamard PG Escort PG is proposed in Mei et al. (2020a) to overcome the limitation of
softmax PG. It is shown that with some adaptive step-size, escort PG converges at the rate of O(1/k) which
enjoys a better constant dependence of c2−2/p than c2 for softmax PG (Mei et al., 2020b), where c < 1 can
be extremely small. As a specific instance of escort PG, Hadamard PG is studied in Liu et al. (2023) and
proved to have a local linear convergence.

Softmax NPG and PMD As shown in Agarwal et al. (2021), softmax NPG enjoys a dimension-free
O(1/k) sublinear convergence rate. The local linear convergence rate of softmax NPG is established
in Khodadadian et al. (2021) by leveraging the contraction of non-optimal probability. The global linear
convergence is established for geometrically increasing step-sizes in Xiao (2022) and for adaptive step-sizes
in Khodadadian et al. (2021); Johnson et al. (2023). In Liu et al. (2024b), the global linear convergence of
softmax NPG under any constant step-size is established.

PMD can be viewed as an extension of softmax NPG. The O(1/k) sublinear convergence rate of softmax
NPG in Agarwal et al. (2021) is generalized to PMD in Xiao (2022), while the global linear convergence
with geometrically increasing step-sizes is also provided therein. PMD with regularization has been studied
in Lan (2021); Li et al. (2023b); Zhan et al. (2023), while PMD with function approximations has been
provided in Tomar et al. (2020); Yuan et al. (2023); Alfano et al. (2023).

1.2 MOTIVATION AND CONTRIBUTION

As already mentioned, softmax PG admits a strict O(1/k) sublinear convergence rate. In contrast, Hadamard
PG and softmax NPG can break this limitation and achieve linear convergence. The policy update rules of
these algorithms are listed below:

(Softmax PG) π+(a|s) ∝ π(a|s) · exp
(

η
1−γ d

π
µ(s)π(a|s)Aπ(s, a)

)
,

(Softmax NPG) π+(a|s) ∝ π(a|s) · exp (ηAπ (s, a)) ,

(Hadamard PG) π+(a|s) ∝ π(a|s) ·
(
1 + 2η

1−γ d
π
µ(s)A

π(s, a)
)2

,

where π+ is the updated policy, η is the step-size, the visitation measure dπµ is defined as

∀s ∈ S : dπµ(s) := (1− γ)

∞∑
t=0

γtPr
(
st = s

∣∣s0 ∼ µ, π, P
)
,

the advantage function Aπ is defined as

Aπ(s, a) := Qπ(s, a)− V π(s),

2
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and Qπ(s, a) := r(s, a) + γEs′∼P (·|s,a) [V
π(s′)] is the state-action value function. From the update rules

above, it can be observed that the policy update direction of softmax PG is influenced by the term π(a|s),
which slows down the convergence rate as shown in Li et al. (2023a). By contrast, the policy update direc-
tions of both softmax NPG and Hadamard PG are aligned with Aπ(s, a), which motivates us to study a class
of policy update methods called ϕ-update, taking the form of

(ϕ-update) ∀ s ∈ S, a ∈ A : π+(a|s) ∝ π(a|s) · ϕ (ηπsA
π(s, a)) .

Here ηπs is the step-size that can vary with the policy π and state s, and ϕ is some real-valued function.

The goal of this paper is to conduct a systematic convergence analysis of ϕ-update given the access to exact
policy gradients under the tabular setting. The main contributions of this paper are summarized as below:

Global convergence of ϕ-update We first show that ϕ-update converges globally to the optimal value
under very mild conditions on ϕ (Theorem 3.1). It is noted that the existing global convergence analysis is
not applicable for ϕ-update. For instance, the global convergence analysis of sofmax PG in Agarwal et al.
(2021) and Hadamard PG in Liu et al. (2023) explicitly utilizes the policy parameterization which is not
available for ϕ-update. In addition, the global convergence analysis of NPG and PMD in Xiao (2022) relies
on the three point descent lemma while ϕ-update does not enjoy such property in general. Therefore, new
techniques have been developed.

Policy convergence and exact asymptotic convergence rate A key contribution of this paper is the estab-
lishment of the policy convergence of ϕ-update even when there are multiple optimal policies (Theorem 3.3).
As an instance of ϕ-update, this implies that softmax NPG (without any regularizations) converges in the
policy domain, which is a new result for softmax NPG. To the best of our knowledge, this is the first policy
convergence result for vanilla policy gradient methods without regularizations. Based on the convergence of
the policy, the exact asymptotic convergence rate of state values is further established (Theorem 3.4), which
is also applicable for softmax NPG.

Global linear convergence By combining the local linear convergence result (Theorem 3.2) and the dy-
namic convergence result (Theorem 3.5), the global linear convergence of ϕ-update is also established (The-
orem 3.6).

2 NOTATIONS, SETTINGS AND ϕ-UPDATE

2.1 NOTATIONS AND SETTINGS

Recall that MDP is represented as a tuple M(S,A, P, r, γ). In this paper, we focus on the finite MDPs,
i.e., |S|, |A| < ∞. Without loss of generality, we assume the reward function is bounded in [0, 1], i.e.,
r(s, a) ∈ [0, 1] for all s and a.

Let ∆(A) be the probabilistic simplex on A. Given a policy π : S → ∆(A), the value function V π(s), action
value function Qπ(s, a), and advantage function Aπ(s, a) are defined above. In this work, we consider the
setting where the exact policy evaluation can be accessed. When a policy sequence {πk} is given, we use
V k, Qk, and Ak to represent V πk

, Qπk

, and Aπk

, respectively.

We let 1{·} be the indicator function. For an arbitrary vector V ∈ R|S|, the Bellman operator induced by π
is defined as

T πV (s) := Ea∼π(·|s)Es′∼P (·|s,a) [r(s, a) + γV (s′)] .

As is common in the analysis of policy optimization methods, we assume the initial distribution µ is bounded
away from zero (i.e., µ̃ := mins∈S µ(s) > 0). It follows immediately that dπµ(s) > 0 for all s ∈ S.
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It is well known that there exists an optimal policy which maximizes V π(s) (e.g. in Puterman (1994)),
denoted π∗ (may be non-unique). The corresponding optimal value function is denoted as V ∗. The optimal
action and advantage values Q∗ and A∗ are similarly defined.

Define the π-optimal action set at state s,

Aπ
s := argmax

a
Aπ(s, a),

and let πs (Aπ
s ) :=

∑
a∈Aπ

s
π(a|s). Similarly, when a policy sequence is given we use Ak

s to represent Aπk

s .
When π = π∗, we let A∗

s := Aπ∗

s be the optimal action set at state s. Let ∆ be the optimal advantage
function gap. That is,

∆ := min
s∈S̃,a̸∈A∗

s

|A∗(s, a)| ,

where S̃ := {s ∈ S : A∗
s ̸= A} is assumed to be non-empty.

2.2 ϕ-UPDATE AND ASSUMPTIONS

In this section, we give the formal definition of ϕ-update, as well as the assumptions required in the conver-
gence analysis.

Definition 2.1 (ϕ-update). Let ϕ : (−L,L) → R be a continuous scaling function, where 0 < L ≤ +∞. In
the k-th iteration, given step-size ηks > 0 such that

∣∣ηksAk(s, a)
∣∣ < L, the ϕ-update takes the form of

∀ k ∈ N, s ∈ S, a ∈ A : πk+1(a|s) =
πk(a|s) · ϕ

(
ηksA

k(s, a)
)

Zk
s

,

where Zk
s =

∑
a π

k(a|s) · ϕ
(
ηksA

k(s, a)
)

is the normalization factor.

Without further specification, we assume π0(a|s) > 0, ∀ s ∈ S, a ∈ A throughout this paper. Then it is
easy to verify that there holds πk(a|s) > 0 for any finite time k.

Assumptions. The following assumptions will be made on ϕ:

(I) ϕ is strictly monotonically increasing, i.e., ϕ(x) > ϕ(y) for all x > y,

(II) ϕ is strictly positive, i.e., ϕ(x) > 0 for all x,

(III) ϕ is differentiable around 0 and there exists some small δ > 0 and 0 < c < +∞ such that

d

dt
log ϕ(t) =

ϕ′(t)

ϕ(t)
≤ c

holds when t ∈ (−δ, δ).

The first two assumptions are sufficient for us to establish the global asymptotic convergence and global
linear convergence of ϕ-update, but we further need the third one to establish the policy convergence and the
exact asymptotic convergence rate. These three assumptions are indeed very mild and can even be satisfied
by non-convex functions such as ϕ(t) = (1+ exp(−t))−1 (sigmoid function) and ϕ(t) = tan(t) + 1 satisfy
all the three assumptions. In particular, softmax NPG is an instance of ϕ-update with ϕ(t) = exp(t) and
L = +∞, and Hadamard PG is is an instance of ϕ-update with ϕ(t) = (1 + 2t)2, L = 1/2.

4
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3 CONVERGENCE ANALYSIS OF ϕ-UPDATE

In this section we give a detailed analysis of ϕ-update. The main results and their relations are summarized
in Figure 1. We would like to emphasize again, in addition to the common convergence results such as the
global asymptotic convergence and local and global linear convergence, the policy convergence (without any
regularizations) and the exact asymptotic convergence rate have been established in this paper. The proof
details of this section are presented in Appendices C, D and E. For simplicity, here we only present the
convergence results under the constant step size, i.e. ηks = η > 0. It is worth noting that the convergence
results can be easily generalized to adaptive step sizes, with related results being presented in Appendix H.

Global Asymptotic Convergence

（Theorem 3.1）

Local Linear Convergence

（Theorem 3.2）

Policy Convergence

（Theorem 3.3）

Exact Asymptotic Linear

Convergence

（Theorem 3.4）

Global Linear Convergence

（Theorem 3.6）
Dynamic Convergence

（Theorem 3.5）

Figure 1: Main convergence results of ϕ-update and their relations.

3.1 GLOBAL ASYMPTOTIC CONVERGENCE

The key ingredient in the analysis is the improvement at each state s in each iteration k, represented as

T k+1V k(s)− V k(s) =
∑
a

πk+1(a|s)Ak(s, a).

We start from the following ascent property of ϕ-update. It can be proved by a direct computation, see
Appendix C.1.

Proposition 3.1. Suppose the assumptions (I), (II) hold. For any positive step-size η > 0, ϕ-update has
non-negative improvement at every state, i.e.,

∑
a π

k+1(a|s)Ak(s, a) ≥ 0 for any s and k. Furthermore, we
have V k+1(s) ≥ V k(s) for every s ∈ S.

As the value function is bounded (Lemma A.1 in the appendix), Proposition 3.1 implies that V ∞(s) :=
limk→∞ V k(s) exists for all s ∈ S . The following theorem establishes the global convergence of ϕ-update,
i.e. V ∞(s) = V ∗(s), ∀s ∈ S.

Theorem 3.1 (Global Asymptotic Convergence). Suppose the assumptions (I), (II) hold. For a positive
step-size η > 0, the value function generated by ϕ-update method converges to the optimal value, i.e.,
V ∞(s) = V ∗(s) for all the states.

Remark 3.1. It is worth noting that under the softmax policy parameterization, ϕ-update can be formulated
as θk+1

s,a = θks,a + log ϕ(ηksA
k(s, a)). Despite this, the proof carried out in the parameter space in Agarwal

et al. (2021) cannot be applied to ϕ-update with this parameter formulation. One of the key ingredients
therein for the proof is the property

∑
a θ

k
s,a =

∑
a θ

0
s,a, ∀k, which comes from the fact

∑
a

∂V π(s)
∂θs,a

= 0 and

5
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the parameter update form of θk+1
s,a = θks,a+ η ∂V k(s)

∂θk
s,a

. In general, such property is not satisfied for ϕ-update
under the same softmax parameterization. Instead, our proof is conducted completely in the policy space.

As already mentioned, the existing techniques (e.g. Agarwal et al., 2021; Liu et al., 2023; Xiao, 2022) are
not applicable since we only require very few assumptions on ϕ and there are no particular structures to use.
In contrast, our proof leverages the explicit policy update formula of ϕ-update to discuss the behavior of the
policy on different actions and compute the improvement. A contradiction is further constructed by showing
that the improvement is strictly positive based on the statistical decoupling technique. See Appendix C.2 for
the proof details.

3.2 POLICY CONVERGENCE AND EXACT ASYMPTOTIC LINEAR CONVERGENCE

Here we first establish the policy convergence of the ϕ-update, and then present the exact asymptotic con-
vergence rate. To this end, we need to first study the local convergence of ϕ-update. Note that, by the global
convergence result (Theorem 3.1), for an arbitrarily small ε > 0, there exists a time T (ε) such that

∀ k ≥ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤ ε.

In such an ε-sub-optimal region, we establish the following local linear convergence.
Theorem 3.2 (Local Linear Convergence). Suppose the assumptions (I), (II) hold. Define

ρ1(η,∆, ε) =
ϕ (−η(∆− ε))

ϕ (−ηε)
·
(
1− ε

∆

)−1

.

Let ε > 0 be a constant such that ρ1(η,∆, ε) < 1. Then the values generated by ϕ-update method satisfy

∀ k ≥ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤ ρ1 (η,∆, ε)

(k−T (ε))

(1− γ)2µ̃2
.

The proof is inspired by Khodadadian et al. (2021), which considers the policy ratio on sub-optimal actions.
Lemma B.1 in Appendix B shows that πk+1(a′|s)/πk(a′|s) ≤ ρ1(η,∆s, ε). Combining it with the per-
formance difference lemma (Lemma A.4 in Appendix A) gives the result. See Appendix D.1 for the proof
details.

Based on the global asymptotic convergence (Theorem 3.1) and the local linear convergence (Theorem 3.2),
we can establish the convergence of ϕ-update in the policy domain with an additional mild condition on ϕ.
Theorem 3.3 (Policy Convergence). Suppose the assumptions (I), (II), (III) hold. Then the policy generated
by ϕ-update converges to some optimal policy π∗, i.e. the sequence {πk(a|s)}k converges to some π∗(a|s)
for any s ∈ S and a ∈ A.

It suffices to show that πk(a∗|s) converges for all the optimal actions a∗ ∈ A∗
s , as πk(a′|s) vanishes

for all a ̸∈ A∗
s by the global convergence result (Theorem 3.1). This can be achieved by showing that{

log πk(a∗|s)
}
k

is a Cauchy sequence. To this end, we first bound the policy ratio on the optimal actions in
Lemma B.2 (see Appendix B). Further utilizing the local linear convergence result (Theorem 3.2) can show
that

∑∞
k=T (ε)

∣∣log πk+1(a∗|s)− log πk(a∗|s)
∣∣ ≲ ε. See Appendix D.2 for the proof details.

Remark 3.2. For softmax NPG, one has ϕ(t) = exp(t). Thus, it is easy to see that ϕ satisfies the assump-
tions (I), (II), (III). In addition, there holds

ϕ′(t)

ϕ(t)
≡ 1, ∀ t ∈ R.
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Remark 3.3. In Li et al. (2023b), it is shown that the policy produced by the homotopic policy mirror descent
method converges to a uniform policy when there are multiple optimal policies. However, it should be noted
that the analysis therein relies on the explicit entropy regularization in the algorithm. For vanilla policy
gradient methods without regularizations, Theorem 3.3 is the first policy convergence guarantee result, to
the best of our knowledge.

Based on the convergence of the policy, the following result can be further established.
Theorem 3.4 (Exact Asymptotic Linear Convergence). Suppose the assumptions (I), (II), (III) hold. Then
one has

lim
k→∞

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

ϕ(−η∆)

ϕ(0)
.

The key of the proof is the observation that the policy probability on non-optimal actions concentrates on the
action set A′

s0 where s0 ∈ argmins ∆s, and the proof is to verify that the value error ratio is asymptotically
equal to the policy ratio on A′

s0 . See Appendix D.3 for the proof details.
Remark 3.4. It can be observed that the exact asymptotic rate does not depend on γ explicitly (but γ may
affect ∆). To interpret it intuitively, first note that we have Ak ≈ A∗ when the policy generated by ϕ-update
is nearly optimal. In such case, the problem can be roughly viewed as a bandit problem. That is, at each
state, we just need to find the actions with the largest advantage, i.e. argmaxa A∗(s, a). As the bandit
problem is an MDP with γ = 0, it is natural that the asymptotic rate does not explicitly rely on γ.
Remark 3.5. To obtain a more intuitive understanding of ϕ(−η∆)/ϕ(0), consider a bandit problem (i.e.
only one state s and γ = 0) where there are only two actions a1, a2. Assume r(s, a1) = r > 0, r(s, a2) = 0.
Then it is clear that the optimal action is a1, the non-optimal action is a2, and ∆ = r. By the performance
difference lemma and the explicit formula of ϕ-update there holds

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

πk+1(a2|s)
πk(a2|s)

=
ϕ
(
ηAk(s, a2)

)
πk(a1|s)ϕ (ηAk(s, a1)) + πk(a2|s)ϕ (ηAk(s, a2))

.

By the global convergence (Theorem 3.1), we have πk(a1|s) → 1, πk(a2|s) → 0, Ak(s, a1) → A∗(s, a1) =
0 and Ak(s, a2) → A∗(s, a2) = −∆. Hence the asymptotic rate ϕ(−η∆)/ϕ(0) is observed.
Remark 3.6. Theorem 3.4 shows that the exact asymptotic convergence rate of softmax NPG is exp(−η∆),
which is also a new result for softmax NPG. Note that the O(e−(1−1/λ)η∆) upper bound and and the
O(e−η(∆+ε)) lower bound for local linear convergence of softmax NPG have been established in Kho-
dadadian et al. (2021) and Liu et al. (2024b) respectively, where λ and ε are certain constants. It is worth
noting that the exact asymptotic rate in this paper cannot be obtained directly from these two local bounds,
but requires a different technique for proof.

3.3 GLOBAL LINEAR CONVERGENCE

Finally, we present the global linear convergence of the value function generated by ϕ-update. The overall
analysis idea is inspired by Liu et al. (2024b). First the following lemma in Liu et al. (2024b) shows linear
contraction can be achieved when the improvement has an Ω(maxa A

k(s, a)) lower bound.
Lemma 3.1 (Lemma 2.12 (Liu et al., 2024b)). Assume

∑
a π

k+1(a|s)Ak(s, a) ≥ Ck maxa A
k(s, a) holds

for some Ck ∈ [0, 1] and all s ∈ S, then∥∥V ∗ − V k+1
∥∥
∞ ≤ (1− (1− γ)Ck)

∥∥V ∗ − V k
∥∥
∞ .

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

The following improvement lower bound can be established for ϕ-update.
Lemma 3.2 (Improvement Lower Bound). Suppose the assumptions (I), (II) hold. With positive step-size
η > 0, the ϕ-update improvement of state s satisfies∑

a

πk+1(a|s)Ak(s, a) ≥

1− 1

1 + πk
s (Ak

s)
(
∆k

ϕ,s(η)− 1
)
 ·max

a
Ak(s, a),

where

∆k
ϕ,s(η) :=

ϕ
(
ηmaxa A

k(s, a)
)

Ea′∼ξk(·|s) [ϕ (ηAk(s, a′))]
with ξk(a|s) =

{
0 if a ∈ Ak

s ,

πk(a|s)/(1− πk
s (Ak

s)) if a ̸∈ Ak
s .

This lower bound is established by a direct computation. See Appendix E.2 for the proof details.
Remark 3.7. The ∆k

ϕ,s can be seemed as a dynamic measure of the ϕ-scaled advantage function gap at k-th
iteration, as ξk is the policy value conditioned on the non-optimal action set.

Together with Lemma 3.1, the following dynamic convergence result of ϕ-update can be obtained directly.
See Appendix E.3 for the proof.
Theorem 3.5 (Global Dynamic Convergence). Suppose the assumptions (I), (II) hold. With positive step-size
η > 0, the value function generated by ϕ-update satisfies

∀ k ∈ N+ :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

k−1∏
t=0

(
1− (1− γ)

[
1− 1

1 +Dt

])
,

where Dt := mins∈S̃t

{
πt
s (At

s)
(
∆t

ϕ,s(η)− 1
)}

and S̃t := {s ∈ S : At
s ̸= A}.

Remark 3.8. There exists a bandit example which shows the error bound in Theorem 3.5 is tight, see
Appendix E.4. Note that Dt is likely to be very small. Indeed, it is interesting to see whether there is a worst
case example which shows Dt can be exponentially small, as in Li et al. (2023a). It is also interesting to see
whether we can use the techniques in a recent work (Klein et al., 2024) to address this issue.

We are now ready to establish the global linear convergence of ϕ-update by combining Theorem 3.2 and
Theorem 3.5. See Appendix E.5 for the proof details.
Theorem 3.6 (Global Linear Convergence). Suppose the assumptions (I), (II) hold. Define

ρ(ε) = max {κ(ε), ρ1 (η,∆, ε)} , where κ(ε) = max
t≤T (ε)

{
1− (1− γ)

[
1− 1

1 +Dt

]}
.

There exists ε > 0 such that ρ(ε) < 1 and

∀ k ∈ N+ :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

(1− γ)µ̃2
· ρ(ε)k.

4 EMPIRICAL VALIDATIONS AND DISCUSSION

4.1 EMPIRICAL VALIDATIONS

We empirically validate Theorems 3.3 and 3.4 using ϕ(t) = exp(t) (corresponding to softmax NPG), ϕ(t) =
(1 + exp(−t))−1, and ϕ(t) = tan(t) + 1. The step size is set to η = 1, η = 1, and η = 0.1, respectively. It
can be easily verified the last two scaling functions also satisfy the assumptions (I), (II), (III).
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For Theorem 3.3, we use a simple 5 × 5 Grid World problem to test the policy convergence of ϕ-update.
The computational results are presented in Figure 2. The policy corresponding to the last iterate of ϕ-update
(denoted πlast) is presented in the second row of Figure 2. The plots in the first row display

∥∥πk − πlast
∥∥
1

against the number of iterations which clearly show the convergence of the policy for the three tested ϕ.

For Theorem 3.4, we use the random MDP to valid the exact asymptotic rate. The computational results
are presented in Figure 3. It can be observed from the plots that the theoretical asymptotic rate match the
empirical one very well.

In addition, more examples of ϕ-update have been tested, including extensions of softmax NPG and a family
of polynomial update, see Appendix F.

4.2 IMPLEMENTATION UNDER GENERAL POLICY PARAMETERIZATIONS

Though we focus on the convergence analysis of ϕ-update given the access to exact policy gradients in the
tabular setting, it is worth pointing out that ϕ-update can be implemented under general policy parameteri-
zations (e.g., artificial neural networks). As inspired by Tomar et al. (2020), we provide an overall idea of
the supervised learning implementation. More precisely, given a distribution over state space S and policy
parameters θk (or equivalently the policy πk) in the k-th iteration, denote by πk

ϕ the target policy generated
by ϕ-update given πk and ηk. One can solve for the new parameters θk+1 by minimizing the KL divergence
with πk

ϕ:

θk+1 ∈ argmin
θ

Es∼ν

[
KL
(
πθ (·|s) ||πk

ϕ (·|s)
)]

= argmin
θ

Es∼ν

[
Ea∼πk(·|s)

[
πθ (a|s)
πk (a|s)

[
log

πθ (a|s)
πk (a|s)

− log ϕ
(
ηkA

k (s, a)
)]]]

. (2)

It is worth noting that the normalization factor of ϕ-update is not an issue in this supervised learning frame-
work.

This idea can be implemented in both on-policy and off-policy scenarios for real problems. For instance,
one can use a critic network with parameter ω to fit the value function. Collecting on-policy rollouts D =
{(si, ai, ri, s′i)}

n
i=1 from current policy πk, methods such as GAE (Schulman et al., 2020) can be performed

to estimate the advantages Ak and the value targets V k
targ. Then the actor parameter θ and critic parameter ω

are updated simultaneously by optimizing the policy objective loss (Eq (2)) plus a value loss term. It is also
feasible to extend this procedure to the off-policy scenario by collecting reply buffer D, updating the critic
parameters ω with methods like Temporal-Difference learning (see Sutton & Barto (2018) for instance)
and optimizing Eq (2) to update the actor parameter θ with the estimated advantages. Some preliminary
results about the implementation of ϕ-update under the neural network parameterization have been reported
in Appendix G.

5 CONCLUSION AND FUTURE WORK

In this paper, we have investigated a class of policy optimization methods called ϕ-update. For a wide
family of scaling functions, we have presented a series of convergence results for ϕ-update. In particular, the
convergence of the policy is established even when the optimal policy is not unique. The exact asymptotic
linear convergence rate is further established based on this result.

It should be noted that this work has been primarily concerned with the case of exact policy evaluation.
As most of the RL applications are under stochastic settings, the generalization to the analysis of inexact
ϕ-update is one of the future works. Additionally, it is interesting to seek for more efficient ϕ in practice and
implement ϕ-update for real problems via deep neural networks.
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(a) ϕ(t) = exp(t)
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(b) ϕ(t) = (1+exp(−t))−1
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(c) ϕ(t) = tan(t) + 1

Figure 2: The simulation results on the a simple 5× 5 Grid World to test policy convergence. For each grid
except the green one, the agent can choose five actions (up, down, left, right, and stay) with no rewards. The
green grid is the terminal state. Once the agent steps in, it receives a +1 reward and the game is terminated.
The discount factor γ is set to 0.9, and we use a uniform policy as the initial policy. Note that there exists
multiple optimal policies for this Grid World problem. Indeed, except the first row and the first column, there
are two optimal actions for each grid (up and left). The ϕ-update is run for a sufficiently number of iterations
such that V ∗(ρ)−V k(ρ) ≤ 10−16 (ρ is the uniform distribution over S), and the policy corresponding to the
last iterate (denoted πlast) is presented in the second row. The oblique arrows in the plot essentially mean
that the optimal policy produced by the ϕ-update has non-zero probability on every optimal action. The plots
in the first row display

∥∥πk − πlast
∥∥
1

against the number of iterations.
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(a) ϕ(t) = exp(t), η = 1
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(b) ϕ(t) = (1 + exp(−t))−1, η = 1
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(c) ϕ(t) = tan(t) + 1, η = 0.1

Figure 3: The simulation results on the random MDP with |S| = 50, |A| = 10 and γ = 0.7. The reward
r(s, a) and transition probability P (s′|s, a) are uniformly generated from [0, 1] (P is further normalized to
be a probability matrix). The initial state distribution µ is uniform on S. Blue curve is the log-value-error
and the red line corresponds to the theoretical convergence rate in Theorem 3.4.
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Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, and Dale Schuurmans. Leveraging non-uniformity in
first-order non-convex optimization. In International Conference on Machine Learning, 2021.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley Series in
Probability and Statistics, 1994.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arxiv:1506.02438, 2020.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global conver-
gence and faster rates for regularized MDPs. In AAAI Conference on Artifical Intelligence, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In Advances in neural information processing systems,
1999.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy opti-
mization. arxiv:2005.09814, 2020.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning Research, 23
(282):1–36, 2022.

Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of natural
policy gradient methods with log-linear policies. In The Eleventh International Conference on Learning
Representations, 2023.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy mirror descent
for regularized reinforcement learning: A generalized framework with linear convergence. SIAM Journal
on Optimization, 33(2):1061–1091, 2023.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Appendix

A Useful lemmas 13

B Bounds of policy ratio 14

C Proofs of results in Section 3.1 17

C.1 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Proofs of results in Section 3.2 20

D.1 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.2 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.3 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E Proofs of results in Section 3.3 27

E.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.2 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.3 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E.4 A bandit example for the tightness of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . 28

E.5 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F More examples of ϕ-update 29

F.1 Variants of softmax NPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F.2 Polynomial update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

G Preliminary numerical results on ϕ-update under neural network parameterization 30

H Convergence results for non-constant step size 32

A USEFUL LEMMAS

In this section we introduce several lemmas which are useful in our further analysis. The proofs are omitted
as these lemmas can be verified easily or can be found in previous works.
Lemma A.1. Under the assumption of r(s, a) ∈ [0, 1], for arbitrary π ∈ Π, s ∈ S. a ∈ A we have

V π(s) ∈
[
0,

1

1− γ

]
, Qπ(s, a) ∈

[
0,

1

1− γ

]
, Aπ(s, a) ∈

[
− 1

1− γ
,

1

1− γ

]
.

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Lemma A.2. For any policy π:

∥A∗ −Aπ∥∞ ≤ ∥V ∗ − V π∥∞ .

In this paper we use two metrics for the value error, V ∗(µ) − V π(µ) and ∥V ∗ − V π∥∞. The following
lemma says that these two metrics can be bounded by each other.
Lemma A.3. For any policy π,

µ̃ · ∥V ∗ − V π∥∞ ≤ V ∗(µ)− V π(µ) ≤ ∥V ∗ − V π∥∞ .

Lemma A.4 (Performance difference lemma (Kakade & Langford, 2002)). Let ∆(S) be the probabilistic
simplex on S. Given two policies π1 and π2 and arbitrary ρ ∈ ∆(S), there holds

V π1(ρ)− V π2(ρ) =
1

1− γ
Es∼d

π1
ρ

[T π1V π2(s)− V π2(s)]

=
1

1− γ
Es∼d

π1
ρ

[∑
a∈A

π1(a|s)Aπ2(s, a)

]
.

Denoting by bπs the probability on non-optimal actions

bπs := πs (A \ A∗
s) =

∑
a̸∈A∗

s

π(a|s),

the following lemma from Liu et al. (2024a) provides a lower bound of the value error based on bπs .
Lemma A.5 (Lemma 2.5 (Liu et al., 2024a)). For any policy π and ρ ∈ ∆(S),

Es∼ρ [b
π
s ] ≤

V ∗(ρ)− V π(ρ)

∆
.

At last we invoke two useful results from Liu et al. (2024b).
Lemma A.6. For any random variable X and two real-valued functions f , g, there holds

Cov (f(X), g(X)) =
1

2
EX,Y [(f(X)− f(Y )) (g(X)− g(Y ))] ,

where Y is an i.i.d. copy of X .
Lemma A.7. For any random variable X and two monotonically increasing functions f and g, there holds

Cov (f(X), g(X)) ≥ 0.

B BOUNDS OF POLICY RATIO

This section provides bounds for the policy ratio

πk+1(a|s)
πk(a|s)

.
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We first provide bounds for policy ratio over non-optimal actions. Let A′
s := argmaxa′ ̸∈A∗

s
A∗(s, a) and

∆s := mina ̸∈A∗
s
|A∗(s, a)| for s ∈ S̃. For an arbitrarily small ε > 0, recall that T (ε) is the time such that∥∥V ∗ − V k

∥∥
∞ ≤ ε for all k ≥ T (ε). In such an ε-sub-optimal local region, we give the following bounds

for non-optimal actions.
Lemma B.1. Suppose the assumptions (I), (II) hold. For small enough ε > 0, when k ≥ T (ε) we have

∀ s ∈ S̃, a′ ̸∈ A∗
s :

πk+1(a′|s)
πk(a′|s)

≤ ϕ (−η(∆s − ε))

ϕ (−ηε)
·
(
1− ε

∆

)−1

:= ρ1(η,∆s, ε) , (3)

and

∀ s ∈ S̃, a′ ∈ A′
s :

πk+1(a′|s)
πk(a′|s)

≥ ϕ (−η(∆s + ε))

ϕ (ηε)
:= ρ2(η,∆s, ε) . (4)

Remark B.1. The action set A′
s represents “the best non-optimal actions at state s”. Eq (3) shows that the

policy on all non-optimal actions converges to zero with rate of ρ1 after k ≥ T (ε), and Eq (4) gives the
lower bound of the convergence rate of policy on A′

s.
Remark B.2. For softmax NPG, there has been dimension-free convergence results (see Agarwal et al.
(2021); Xiao (2022) for instance) due to the good property of its mirror descent form. Thus a concise upper
bound of T (ε) can be computed (Khodadadian et al., 2021). However, it is difficult to estimate T (ε) for
general ϕ-updates, since such concise convergence result does not hold.

Proof. From
∥∥V ∗ − V k

∥∥
∞ ≤ ε we have

∥∥A∗ −Ak
∥∥
∞ ≤ ε by Lemma A.2. Recalling the definition of ∆s,

one has

∀a′ ̸∈ A∗
s : Ak(s, a′) ≤ A∗(s, a′) + ε ≤ −∆s + ε,

∀a′ ∈ A′
s : Ak(s, a′) ≥ A∗(s, a′)− ε ≥ −∆s − ε,

∀a ∈ A∗
s : −ε ≤ Ak(s, a) ≤ ε,

−ε ≤ max
a

Ak(s, a) ≤ ε.

Note that

∀a′ : πk+1(a′|s)
πk(a′|s)

=
ϕ
(
ηAk(s, a′)

)
Ea∼πk(·|s) [ϕ (ηAk(s, a))]

.

By Lemma A.5, for any ρ ∈ ∆(S) and s ∈ S,

∆ · Es∼ρ[b
k
s ] ≤

∥∥V ∗ − V k
∥∥
∞ ≤ ε.

Considering ρ as the one-point distribution on s, one has

bks ≤ ε

∆
. (5)

Hence for sufficiently small ε,

Ea∼πk(·|s)
[
ϕ
(
ηAk (s, a)

)]
≥
∑
a∈A∗

s

πk (a|s)ϕ
(
ηAk (s, a)

)
≥ ϕ (−ηε)

∑
a∈A∗

s

πk (a|s)

=
(
1− bks

)
ϕ (−ηε)

≥
(
1− ε

∆

)
ϕ (−ηε) ,
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and for any a′ /∈ A∗
s

ϕ
(
ηksA

k (s, a)
)
≤ ϕ (−η (∆s − ε))

which yields the result. On the other hand, it is evident that

∀a′ ∈ A′
s :

πk+1(a′|s)
πk(a′|s)

≥ ϕ (−η (∆s + ε))

ϕ (ηε)
,

which completes the proof.

Next, we derive bounds for policy ratio over optimal actions.

Lemma B.2. Suppose the assumptions (I), (II) hold. Denote εk =
∥∥V ∗ − V k

∥∥
∞. For any s ∈ S and the

optimal action a∗ ∈ A∗
s , when εk < ∆ we have

πk+1(a∗|s)
πk(a∗|s)

≥ ϕ(−ηεk)

ϕ(ηεk) +
εk
∆

ϕ(−η(∆− εk))
,

and

πk+1(a∗|s)
πk(a∗|s)

≤ ϕ(ηεk)(
1− εk

∆

)
ϕ(−ηεk)

.

Proof. By the formular of ϕ-update:

πk+1(a∗|s)
πk(a∗|s)

=
ϕ(ηAk(s, a∗))

Ea∼πk [ϕ(ηAk(s, a))]

=
ϕ(ηAk(s, a∗))∑

a∗∈A∗
s
πk(a∗|s)ϕ(ηAk(s, a∗)) +

∑
a′ ̸∈A∗

s
πk(a′|s)ϕ(ηAk(s, a′))

. (6)

We have
∥∥A∗ −Ak

∥∥
∞ ≤

∥∥V ∗ − V k
∥∥
∞ = εk, thus by the monotonicity of ϕ there holds

ϕ(−ηεk) ≤ ϕ(ηAk(s, a∗)) ≤ ϕ(ηεk),

(1− bks)ϕ(−ηεk) ≤
∑

a∗∈A∗
s

πk(a∗|s)ϕ(ηAk(s, a∗)) ≤ (1− bks)ϕ(ηεk),

and

0 ≤
∑

a′ ̸∈A∗
s

πk(a′|s)ϕ(ηAk(s, a′)) ≤ bks · ϕ(−η(∆− εk)).

Plugging them into Eq (6) and using 0 ≤ bks ≤ εk/∆ (Eq (5)) yield the results.
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C PROOFS OF RESULTS IN SECTION 3.1

C.1 PROOF OF PROPOSITION 3.1

The first claim follows directly from (we use Ak
s,a to represent Ak(s, a) for short)∑

a

πk+1(a|s)Ak
s,a =

Ea∼πk(·|s)
[
Ak

s,aϕ(ηA
k
s,a)
]

Ea∼πk(·|s)
[
ϕ(ηAk

s,a)
]

=
Cova∼πk(·|s)

(
Ak

s,a, ϕ
(
ηAk

s,a

))
+ Ea∼πk(·|s)

[
Ak

s,a

]
Ea∼πk(·|s)

[
ϕ(ηAk

s,a)
]

Ea∼πk(·|s)
[
ϕ(ηAk

s,a)
]

=
Cova∼πk(·|s)

(
Ak

s,a, ϕ
(
ηAk

s,a

))
Ea∼πk(·|s)

[
ϕ(ηAk

s,a)
] ≥ 0, (Lemma A.7)

where the last line leverages the monotonicity and strict positivity assumptions of ϕ. The second claim
follows directly from the performance difference lemma (Lemma A.4).

C.2 PROOF OF THEOREM 3.1

Additional notations By Proposition 3.1, we know that the value function V k is monotonically increasing.
Since V k is bounded (Lemma A.1), it’s easy to know that limit value function exists. We define

(1)V ∞ := lim
k→+∞

V k, (2)Q∞ := lim
k→+∞

Qk, (3)A∞ := lim
k→+∞

Ak.

For any state s ∈ S, we follow Agarwal et al. (2021) to define the following three sets:

(1) I+s := {a ∈ A : A∞ (s, a) > 0} ,
(2) I0s := {a ∈ A : A∞ (s, a) = 0} ,
(3) I−s := {a ∈ A : A∞ (s, a) < 0} .

Finally, for some action set Â ∈
{
I+s , I0s , I

−
s

}
, we define

lks

(
Â
)
:=
∑
a∈Â

πk (a|s)ϕ
(
ηAk (s, a)

)
,

and

πk
s

(
Â
)
:=
∑
a∈Â

πk(a|s).

Proof sketch Similar to Agarwal et al. (2021), the overall proof idea is to show that maxa A
∞(s, a) ≤ 0

for all s ∈ S , then the global convergence is given by the performance difference lemma (Lemma A.4). By
the definition of I+s , it suffices to prove that I+s is empty for any s ∈ S.

• We use contradiction and assume there exists a state s0 where I+s0 is not empty. We prove a lemma
to show that infk πk

s

(
I+s0
)
> 0 and infk π

k
s

(
I−s0
)
> 0 (Lemma C.1).

• Noting that V k+1(µ)− V k(µ) → 0, one can show that
∑

a π
k+1(a|s)Ak(s, a) → 0 for all state s.

• With Lemma C.1, a direct computation shows that there exists a time T0 such that∑
a π

k+1(a|s)Ak(s, a) > c with some positive constant c holds for all k ≥ T0. It contradicts∑
a π

k+1(a|s)Ak(s, a) → 0 so the proof is completed.
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In Agarwal et al. (2021), the contradiction is performed by discussing the limits of softmax parameters.
Hence the proof cannot directly apply in our case, where ϕ-update is performed in the policy space.
Lemma C.1. For any s ∈ S, if I+s is non-empty, then inf

k
πk
s (I

+
s ) > 0 and inf

k
πk
s (I

−
s ) > 0.

Proof. According to the definition of ϕ-update, one has

πk+1
s

(
I+s
)
=
∑
a∈I+

s

πk (a|s)
ϕ
(
ηAk (s, a)

)∑
a′∈A πk (a′|s)ϕ (ηAk (s, a′))

=
lks (I

+
s )

lks
(
I+s
)
+ lks (I

0
s ) + lks

(
I−s
) . (7)

By the definitions of I+s , I0s and I−s , it is obvious that there exists a time T0 ∈ N and a constant ε > 0 such
that for all k ≥ T0 (Ak

s,a is short for Ak(s, a)):

(1)∀ a ∈ I+s : Ak
s,a > ε, (2) ∀ a ∈ I0s :

∣∣Ak
s,a

∣∣ < ε

2
, (3)∀ a ∈ I−s : Ak

s,a < −ε. (8)

By the monotonicity assumption of ϕ and equation (8),

lks
(
I+s
)
≥ πk

s

(
I+s
)
· ϕ (ηε) ,

lks
(
I0s
)
≤ πk

s

(
I0s
)
· ϕ
(
η
ε

2

)
< πk

s

(
I0s
)
· ϕ (ηε) ,

lks
(
I−s
)
≤ πk

s

(
I−s
)
· ϕ (−ηε) < πk

s

(
I−s
)
· ϕ (ηε) .

Plugging it into (7) yields that

πk+1
s

(
I+s
)
≥ πk

s (I
+
s ) · ϕ (ηε)

πk
s

(
I+s
)
· ϕ (ηε) + lks (I

0
s ) + lks

(
I−s
)

≥ πk
s (I

+
s ) · ϕ (ηε)(

πk
s

(
I+s
)
+ πk

s (I
0
s ) + πk

s

(
I−s
))

· ϕ (ηε)

= πk
s

(
I+s
)
.

Thus the sequence
{
πk
s (I

+
s ) : k ≥ T0

}
is monotonically increasing, and one has

inf
k

πk
s

(
I+s
)
= min

k≤T0

πk
s

(
I+s
)
> 0

as πk(a|s) > 0 for any finite k. It’s obvious that inf
k

πk
s (I

−
s ) > 0. If not, as πk(a|s) > 0, one has

lim inf
k→+∞

πk
s (I

−
s ) = 0 and then

lim inf
k→+∞

{∑
a

πkAk (s, a)

}
= lim inf

k→+∞

∑
a∈I+

s

πkAk (s, a) +
∑
a∈I0

s

πkAk (s, a) +
∑
a∈I−

s

πkAk (s, a)


= lim inf

k→+∞

∑
a∈I+

s

πkAk (s, a)


> 0

which contradicts ∀k ∈ N :
∑

a π
k(a|s)Ak (s, a) = 0.

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

Proof of Theorem 3.1. As V k is monotonically increasing and V ∞ = limk→∞ V k exists, we have

lim
k→∞

V k+1(µ)− V k(µ) = 0. (9)

By the performance difference lemma (Lemma A.4),

V k+1(µ)− V k(µ) =
1

1− γ

∑
s

dkµ(s)
∑
a

πk+1(a|s)Ak(s, a).

As dkµ(s) > 0 and
∑

a π
k+1(a|s)Ak(s, a) ≥ 0, it can be verified that equation (9) implies

∀ s ∈ S :
∑
a

πk+1(a|s)Ak(s, a) → 0. (10)

In the following, we will show that if there exists a state s0 ∈ S such that I+s0 is non-empty, then the condition
equation (10) is violated, hence there must be I+s = ∅ for all s.

By Lemma C.1, we know that

c1 := inf
k

πk
s0

(
I+s0
)
> 0 and c2 := inf

k
πk
s0

(
I−s0
)
> 0,

Recalling the definition of T0, ε and lks0 , for all k ≥ T0,∑
a∈A

πk+1(a|s0)Ak (s0, a) =
1

Zk
s0

Ea∼πk(·|s0)
[
ϕ
(
ηAk (s0, a)

)
Ak (s0, a)

]
=

1

Zk
s0

Cova∼πk(·|s0)
(
ϕ
(
ηAk (s0, a)

)
, Ak (s0, a)

)
.

Let a′ be an i.i.d. copy of a. Then by Lemma A.6,∑
a∈A

πk+1(a|s0)Ak(s0, a)

=
1

2Zk
s0

Ea∼πk(·|s0),a′∼πk(·|s0)
[(
Ak (s0, a)−Ak (s0, a

′)
) (

ϕ
(
ηAk (s0, a)

)
− ϕ

(
ηAk (s0, a

′)
))]

≥ 1

2Zk
s0

∑
a∈I+

s0

∑
a′∈I−

s0

πk (a|s0)πk (a′|s0)
[(
Ak (s0, a)−Ak (s0, a

′)
) (

ϕ
(
ηAk (s0, a)

)
− ϕ

(
ηAk (s0, a

′)
))]

≥ 1

2Zk
s0

∑
a∈I+

s0

∑
a′∈I−

s0

πk (a|s0)πk (a′|s0)
[
(ε− (−ε))

(
ϕ
(
ηAk (s0, a)

)
− ϕ (−ηε)

)]
=

ε

Zk
s0

∑
a∈I+

s0

∑
a′∈I−

s0

πk (a|s0)πk (a′|s0)
(
ϕ
(
ηAk (s0, a)

)
− ϕ (−ηε)

)
=

ε

Zk
s0

∑
a∈I+

s0

πk (a|s0)
(
ϕ
(
ηAk (s0, a)

)
− ϕ (−ηε)

)
πk
s0

(
I−s0
)

≥ c2ε

Zk
s0

∑
a∈I+

s0

πk (a|s0)
(
ϕ
(
ηAk (s0, a)

)
− ϕ (−ηε)

)
=

c2ε

Zk
s0

(
lks0
(
I+s0
)
− πk

s0

(
I+s0
)
ϕ (−ηε)

)
.
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In the derivation above
(
Ak (s0, a)−Ak (s0, a

′)
) (

ϕ
(
ηAk (s0, a)

)
− ϕ

(
ηAk (s0, a

′)
))

≥ 0 for any a, a′

by the monotonicity of ϕ. Now notice that

Zk
s0 = lks0

(
I+s0
)
+ lks0

(
I0s0
)
+ lks0

(
I−s0
)
.

Thus for k ≥ T0,

∑
a∈A

πk+1(a|s0)Ak (s0, a) ≥ ε · c2 ·
1−

πk
s0

(
I+s0
)
ϕ (−ηε)

lks
(
I+s0
)

1 +
lks
(
I0s0
)

lks
(
I+s0
) + lks

(
I−s0
)

lks
(
I+s0
)

≥ ε · c2 ·
1−

πk
s0

(
I+s0
)
ϕ (−ηε)

πk
s0

(
I+s0
)
ϕ (ηε)

1 +
lks
(
I0s0
)

lks
(
I+s0
) + lks

(
I−s0
)

lks
(
I+s0
)

≥ ε · c2 ·
1− ϕ (−ηε)

ϕ (ηε)

1 +
πk
s0

(
I0s0
)
ϕ
(
ηks ε
)

πk
s0

(
I+s0
)
ϕ (ηks ε)

+
πk
s0

(
I−s0
)
ϕ
(
ηks ε
)

πk
s0

(
I+s0
)
ϕ (ηks ε)

= ε · c2 ·
1− ϕ (−ηε)

ϕ (ηε)

1 +
πk
s0

(
I0s0
)

πk
s0

(
I+s0
) + πk

s0

(
I−s0
)

πk
s0

(
I+s0
)

= ε · c2 · πk
s0

(
I+s0
)
·
(
1− ϕ (−ηε)

ϕ (ηε)

)
≥ ε · c1 · c2 ·

(
1− ϕ (−ηε)

ϕ (ηε)

)
> 0,

which contradicts equation (10). Thus for all s ∈ S, one has max
s,a

A∞ (s, a) ≤ 0 and the global convergence

can be obtained by Lemma A.4 easily.

D PROOFS OF RESULTS IN SECTION 3.2

D.1 PROOF OF THEOREM 3.2

Combining Theorem 3.1 and Lemma B.1 we know that there exists a time T (ε) ∈ N such that

∀ k ≥ T (ε) , s ∈ S̃, a ̸∈ A∗
s : πk (a|s) ≤ ρ1(η,∆s, ε)π

k−1 (a|s)
≤ ρ1(η,∆, ε)πk−1 (a|s)
≤ ...

≤ ρ1 (η,∆, ε)
(k−T (ε)) · πT (ε) (a|s) .
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By Lemma A.4, for all k ≥ T (ε),

V ∗ (µ)− V k (µ) ≤ 1

1− γ

∑
s∈S

dkµ (s)
∑
a

πk (a|s) |A∗ (s, a)|

=
1

1− γ

∑
s∈S̃

dkµ(s)
∑
a̸∈A∗

s

πk(a|s) |A∗(s, a)| (A∗(s, a) = 0 for s ̸∈ S̃)

≤ ρ1 (η,∆, ε)
(k−T (ε))

1− γ
·
∑
s∈S̃

dkµ (s)
∑
a/∈A∗

s

πT (ε) (a|s) |A∗ (s, a)|

=
ρ1 (η,∆, ε)

(k−T (ε))

1− γ
·
∑
s∈S̃

dkµ (s)

d
T (ε)
µ (s)

dT (ε)
µ (s)

∑
a/∈A∗

s

πT (ε) (a|s) |A∗ (s, a)|

≤ ρ1 (η,∆, ε)
(k−T (ε))

1− γ
·
∑
s∈S̃

1

(1− γ) µ̃
· dT (ε)

µ (s)
∑
a/∈A∗

s

πT (ε) (a|s) |A∗ (s, a)|

=
ρ1 (η,∆, ε)

(k−T (ε))

(1− γ) µ̃
·
(
V ∗ (µ)− V T (ε) (µ)

)
.

≤ ρ1 (η,∆, ε)
(k−T (ε))

(1− γ) µ̃
·
∥∥∥V ∗ − V T (ε)

∥∥∥
∞

.

By Lemma A.3,

∀ k ≥ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤ 1

µ̃

(
V ∗ (µ)− V k (µ)

)
≤ ρ1 (η,∆, ε)

(k−T (ε))

(1− γ) µ̃2
·
∥∥∥V ∗ − V T (ε)

∥∥∥
∞

(11)

≤ ρ1 (η,∆, ε)
(k−T (ε))

(1− γ)
2
µ̃2

.

D.2 PROOF OF THEOREM 3.3

Proof sketch By the global asymptotic convergence result (Theorem 3.1), the policy value of sub-optimal
actions vanish, i.e. πk(a′|s) → 0 for all s and a′ ̸∈ A∗

s . Thus it suffices to show that πk(a∗|s) converges for
any state s ∈ S and optimal action a∗ ∈ A∗

s . Denote εk :=
∥∥V ∗ − V k

∥∥
∞.

• Recall that Lemma B.2 characterizes the contraction rate of πk(a∗|s) in the local region (i.e. εk is
small). It is shown that

ϕ(−ηεk)

ϕ(ηεk)
≲

πk+1(a∗|s)
πk(a∗|s)

≲
ϕ(ηεk)

ϕ(−ηεk)
.

• The crucial part is to show that
{
log πk(a∗|s)

}
is a Cauchy sequence. Fix a sufficiently small ε.

By Lemma B.2 and the assumption (III) for ϕ, it can be shown that∣∣∣log πT (ε)+t+1(a∗|s)− log πT (ε)+t(a∗|s)
∣∣∣ ≲ εT (ε)+t.
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By the local linear convergence we have εT (ε)+t ≲ ρt1 · ε. Basing it we show that

∞∑
k=T (ε)

∣∣log πk+1(a∗|s)− log πl(a∗|s)
∣∣ ≲ ε

which verifies the Cauchy property.

• As log πk(a∗|s) converges, we know that log πk(a∗|s) > −∞, thus πk(a∗|s) also converges. For
the sub-optimal actions a′ ̸∈ A∗

s , there holds πk(a′|s) → 0 indeed. Hence the policy convergence
is established.

Proof. As we have established the global asymptotic convergence (i.e. V k → V ∗, Theorem 3.1), we can
conclude that πk(a′|s) → 0 for all s ∈ S and a′ ̸∈ A∗

s . Thus it suffices to show that πk(a∗|s) converges for
all s ∈ S and optimal actions a∗ ∈ A∗

s .

First note that πk(a|s) > 0 for all k. Thus, log πk(a|s) is properly defined. Additionally, it is not hard to
see that ρ1(η,∆, ε) decreases as ε decreases, thus there exists a ε0 such that for any 0 < ε ≤ ε0 we have
ρ1(η,∆, ε) ≤ ρ1(η,∆, ε0) < 1. Now we are going to show that

{
log πk(a∗|s)

}
is a Cauchy sequence. For

arbitrary ε > 0 which is small enough to satisfy ε ≤ min {δ/η, ∆/2, ε0}, there exists a time T (ε) such that

∀ k ≥ T (ε) : εk :=
∥∥V ∗ − V k

∥∥
∞ ≤ ε.

Furthermore, by the local convergence rate result (Eq (11)) we have

∀ k ≥ T (ε) : εk ≤ ε

(1− γ)µ̃2
ρ1(η,∆, ε)k−T (ε). (12)

Now we consider the summation

∞∑
k=T (ε)

∣∣log πk+1(a∗|s)− log πk(a∗|s)
∣∣ .

By Lemma B.2, for any k ≥ T (ε) one has∣∣log πk+1(a∗|s)− log πk(a∗|s)
∣∣

≤ logmax

ϕ(ηεk) +
εk
∆

ϕ(−η(∆− εk))

ϕ(−ηεk)
,

ϕ(ηεk)(
1− εk

∆

)
ϕ(−ηεk)


≤ log

ϕ(ηεk) +
εk
∆

ϕ(−η(∆− εk))

ϕ(−ηεk)
+ log

ϕ(ηεk)(
1− εk

∆

)
ϕ(−ηεk)

.
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For the first term, noting εk ≤ ε ≤ ∆/2 one has

∞∑
k=T (ε)

log
ϕ(ηεk) +

εk
∆

ϕ(−η(∆− εk))

ϕ(−ηεk)
≤

∞∑
k=T (ε)

log

[
ϕ(ηεk)

ϕ(−ηεk)
+

εk
∆

]

≤
∞∑

k=T (ε)

log

[(
1 +

εk
∆

) ϕ(ηεk)

ϕ(−ηεk)

]

=

∞∑
k=T (ε)

log
[(

1 +
εk
∆

)]
+

∞∑
k=T (ε)

log

[
ϕ(ηεk)

ϕ(−ηεk)

]

≤ 1

∆

∞∑
k=T (ε)

εk +

∞∑
k=T (ε)

log
ϕ(ηεk)

ϕ(−ηεk)
.

By the assumption (III) and ε ≤ δ/η, we have

log
ϕ(ηεk)

ϕ(−ηεk)
= log ϕ(ηεk)− log ϕ(−ηεk) = (2ηεk) ·

d

dt
log ϕ(ξk) ≤ 2cηεk (13)

where ξk ∈ [−ηεk, ηεk]. Using Eq (10) and Eq (12) we get (noting that ϕ(η,∆, ε) < 1)

∞∑
k=T (ε)

log
ϕ(ηεk) +

εk
∆

ϕ(−η(∆− εk))

ϕ(−ηεk)
≤
(

1

∆
+ 2cη

) ∞∑
k=T (ε)

εk

≤
1
∆ + 2cη

(1− γ)µ̃2

ε

1− ρ1(η,∆, ε)
.

For the second term, one has
∞∑

k=T (ε)

log
ϕ(ηεk)(

1− εk
∆

)
ϕ(−ηεk)

=

∞∑
k=T (ε)

log
ϕ(ηεk)

ϕ(−ηεk)
−

∞∑
k=T (ε)

log
(
1− εk

∆

)

≤
∞∑

k=T (ε)

log
ϕ(ηεk)

ϕ(−ηεk)
+

1

∆

∞∑
k=T (ε)

εk

≤
1
∆ + 2cη

(1− γ)µ̃2

ε

1− ρ1(η,∆, ε)
,

where the first inequality uses εk ≤ ∆/2 and the fact that

∀ 0 ≤ x ≤ 1/2 : − log(1− x) ≤ x.

Putting them together yields
∞∑

k=T (ε)

∣∣log πk+1(a∗|s)− log πk(a∗|s)
∣∣ ≤ 1

∆ + 2cη

(1− γ)µ̃2

2ε

1− ρ1(η,∆, ε)

≤
1
∆ + 2cη

(1− γ)µ̃2

2ε

1− ρ1(η,∆, ε0)
:= C0ε.

Therefore, after a variable substitution, it has shown that {log πk(a∗|s)} is a Cauchy sequence. Hence
πk(a∗|s) converges for any s ∈ S and a∗ ∈ A∗

s .
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D.3 PROOF OF THEOREM 3.4

Proof sketch We can assume that S̃ = S without loss of generality. Recall the state set S0 = argmins ∆s

and action set A′
s = argmaxa′ ̸∈A∗

s
A∗(s, a′).

• We first prove Lemma D.1, which tells that when k → +∞, the policy probability on the non-
optimal actions is concentrated on πk(a0|s0) where s0 ∈ S0 and a0 ∈ A′

s0 .

• Then we directly expand V ∗(µ) − V k+1(µ) and V ∗(µ) − V k(µ) to the weighted summation of
|A∗(s, a)| by the performance difference lemma (Lemma A.4).

• We consider the case that dkµ, Ak and πk are all in local regions, which can be acheived by large
enough k. By direct calculation, we show that the convergence rate is bounded by ζ1 and ζ2. As
k → +∞, both ζ1 and ζ2 converge to ϕ(−η∆)/ϕ(0), so as well as the local convergence rate.

Lemma D.1. Consider the ϕ-update with constant step size ηks = η > 0. For any s ∈ S ,a ∈ A such that
|A∗ (s, a)| > ∆, one has

lim
k→∞

πk(a|s)∑
s0∈S0

∑
a0∈A′

s0

πk(a0|s0)
= 0.

Proof. Using the same procedure as in the proof of Lemma B.1, one can easily show that for sufficiently
small c > 0, there exists a time T (c) such that for all k ≥ T (c):

∀ s ∈ S, a /∈ A∗
s :

∣∣∣∣∣
(
πk+1(a|s)
πk(a|s)

/
ϕ (−η |A∗ (s, a)|)

ϕ (0)

)
− 1

∣∣∣∣∣ ≤ c.

Then for all k ≥ T (c),

πk (a|s)∑
s0∈S0,a0∈A′

s0

πk (a0|s0)
≤

πT (c) (a0|s0) ·
(

ϕ(−η|A∗(s,a)|)
ϕ(0) (1 + c)

)k−T (c)

∑
s0∈S0,a0∈A′

s0

πT (c) (a0|s0) ·
(

ϕ(−η∆)
ϕ(0) (1− c)

)k−T (c)

=
πT (c) (a0|s0)∑

s0∈S0,a0∈A′
s0

πT (c) (a0|s0)

 ϕ(−η|A∗(s,a)|)
ϕ(0)

ϕ(−η∆)
ϕ(0)

1 + c

1− c

k−T (c)

=
πT (c) (a0|s0)∑

s0∈S0,a0∈A′
s0

πT (c) (a0|s0)

(
ϕ (−η |A∗ (s, a)|)

ϕ (−η∆)

1 + c

1− c

)k−T (c)

.

For any s ∈ S and a ∈ A such that |A∗ (s, a)| > ∆, one has ϕ (−η |A∗ (s, a)|)/ϕ (−η∆) < 1. Thus it’s
trivial that

lim
k→+∞

πk (a|s)∑
s0∈S0,a0∈A′

s0

πk (a0|s0)
= 0

by sufficiently small c.
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Proof of Theorem 3.4. By Theorem 3.3, we have πk → π∗ for some optimal policy π∗, therefore dkµ → d∗µ.
Now, for arbitrary ε > 0, δ > 0, σ > 0, there exists a time T (ε, δ, σ) > 0 such that

∀ s ∈ S, k ≥ T (ε, δ, σ) :

∣∣∣∣∣dk+1
µ (s)

dkµ(s)
− 1

∣∣∣∣∣ ≤ δ,

∣∣∣∣∣ dkµ(s)

dk+1
µ (s)

− 1

∣∣∣∣∣ ≤ δ,

∥∥A∗ −Ak
∥∥
∞ ≤ ε,

πk(a|s)
Ck

≤ σ,

where (s, a) ∈ {(s, a) : |A∗(s, a)| > ∆}. By the performance difference lemma (Lemma A.4),

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

∑
s d

k+1
µ (s)

∑
a′ ̸∈A∗

s
πk+1(a′|s) |A∗(s, a′)|∑

s d
k
µ(s)

∑
a′ ̸∈A∗

s
πk(a′|s) |A∗(s, a′)|

=

∑
s d

k+1
µ (s)

∑
a′ ̸∈A∗

s

πk+1(a′|s)
Ck

|A∗(s, a′)|∑
s d

k
µ(s)

∑
a′ ̸∈A∗

s

πk(a′|s)
Ck

|A∗(s, a′)|
.

By Lemma B.1,

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)

≤
(
1− ε

∆µ̃

)−1

·

∑
s d

k+1
µ (s)

∑
a′ ̸∈A∗

s

πk(a′|s)
Ck

|A∗(s, a′)|
(

ϕ(η(−∆s+ε))
ϕ(−ηε)

)
∑

s d
k
µ(s)

∑
a′ ̸∈A∗

s

πk(a′|s)
Ck

|A∗(s, a′)|
.

By expanding the summation on numerator and dropping out some summation terms in denominator we get

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)

≤
(
1− ε

∆µ̃

)−1

·

∑
s̸∈S0

dk+1
µ (s)

∑
a′ ̸∈A∗

s

πk(a′|s)
Ck

|A∗(s, a′)|
(

ϕ(η(−∆s+ε))
ϕ(−ηε)

)
∑

s0∈S0
dkµ(s0)

∑
a0∈A′

s0

πk(a0|s0)
Ck

|A∗(s0, a0)|

+

(
1− ε

∆µ̃

)−1

·

∑
s0∈S0

dk+1
µ (s0)

∑
a′ ̸∈(A∗

s0
∪A′

s0
)

πk(a′|s)
Ck

|A∗(s, a′)|
(

ϕ(η(−∆+ε))
ϕ(−ηε)

)
∑

s0∈S0
dkµ(s0)

∑
a0∈A′

s0

πk(a0|s0)
Ck

|A∗(s0, a0)|

+

(
1− ε

∆µ̃

)−1(
ϕ(η(−∆+ ε))

ϕ(−ηε)

)
·

∑
s0∈S0

dk+1
µ (s0)

∑
a0∈A′

s0

πk(a0|s0) · |A∗(s0, a0)|∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0) · |A∗(s0, a0)|
.
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Noting that |A∗(s0, a0)| = ∆, dk+1
µ (s0) ≤ dkµ(s0) + δ, πk(a′|s)/Ck ≤ σ, and |A∗(s, a′)| ≤ 1/(1 − γ), it

follows that:
V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)

≤
(
1− ε

∆µ̃

)−1

·
∑

s̸∈S0
dk+1
µ (s)

∑
a′ ̸∈A∗

s

σ
1−γ · ϕ(η(−∆s+ε))

ϕ(−ηε)∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

+

(
1− ε

∆µ̃

)−1

·

∑
s0∈S0

dk+1
µ (s0)

∑
a′ ̸∈(A∗

s0
∪A′

s0
)

σ
1−γ · ϕ(η(−∆+ε))

ϕ(−ηε)∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

+

(
1− ε

∆µ̃

)−1(
ϕ(η(−∆+ ε))

ϕ(−ηε)

)
·

∑
s0∈S0

(
dkµ(s0) + δ

)∑
a0∈A′

s0

πk(a0|s0) ·∆∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0) ·∆
.

Noting that∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆ =

∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)∆∑
s0∈S0

∑
a0∈A′

s0

πk(a0|s0)
∈ [(1− γ)µ̃∆,∆] ,

one has,

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
≤
(
1− ε

∆µ̃

)−1
ϕ(η(−∆+ ε))

ϕ(−ηε)

(
σ|A|

(1− γ)2µ̃∆
+

δ∆
∑

s0∈S0

∑
a0∈A′

s0

πk(a0|s0)

∆
∑

s0∈S0
dkµ(s0)

∑
a0∈A′

s0

πk(a0|s0)
+ 1

)

≤
(
1− ε

∆µ̃

)−1
ϕ(η(−∆+ ε))

ϕ(−ηε)

(
σ|A|

(1− γ)2µ̃∆
+

δ

(1− γ)µ̃
+ 1

)

:= ζ1(ε, δ, σ).

On the other hand, we have

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

∑
s d

k+1
µ (s)

∑
a′ ̸∈A∗

s

πk+1(a′|s)
Ck

|A∗(s, a′)|∑
s d

k
µ(s)

∑
a′ ̸∈A∗

s

πk(a′|s)
Ck

|A∗(s, a′)|
.

The denominator can be bounded as,∑
s

dkµ(s)
∑

a′ ̸∈A∗
s

πk(a′|s)
Ck

|A∗(s, a′)| =
∑
s̸∈S0

dkµ(s)
∑

a′ ̸∈A∗
s

πk(a′|s)
Ck

∣∣A∗
s,a′

∣∣
+
∑
s0

dkµ(s0)
∑

a′ ̸∈(A∗
s0

∪A′
s0
)

πk(a′|s0)
Ck

∣∣A∗
s0,a′

∣∣
+
∑
s0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

≤ σ|A|
1− γ

+
∑
s0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆.
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For the numerator, there holds∑
s

dk+1
µ (s)

∑
a′ ̸∈A∗

s

πk+1(a′|s)
Ck

|A∗(s, a′)| ≥
∑

s0∈S0

dk+1
µ (s0)

∑
a0∈A′

s0

πk+1(a0|s0)
Ck

∆

≥ ϕ(−η(∆ + ε))

ϕ(ηε)
·
∑

s0∈S0

(dkµ(s0)− δ)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆.

Consequently,

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)

≥
(
ϕ(−η(∆ + ε))

ϕ(ηε)

)
·

∑
s0∈S0

(dkµ(s0)− δ)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

σ|A|
1−γ +

∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

=

(
ϕ(−η(∆ + ε))

ϕ(ηε)

)
·

 ∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆

σ|A|
1−γ +

∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆
−

δ
∑

s0∈S0

∑
a0∈A′

s0

πk(a0|s0)
Ck

∆

σ|A|
1−γ +

∑
s0∈S0

dkµ(s0)
∑

a0∈A′
s0

πk(a0|s0)
Ck

∆


≥
(
ϕ(−η(∆ + ε))

ϕ(ηε)

)
·

 1
σ|A|

(1−γ)2µ̃∆ + 1
− δ∆

σ|A|
1−γ + (1− γ)µ̃∆


:= ζ2(ε, δ, σ).

As ε → 0, δ → 0, σ → 0, there holds ζ1(ε, δ, σ) → ϕ(−η∆)/ϕ(0) and ζ2(ε, δ, σ) → ϕ(−η∆)/ϕ(0). We
finally have

lim
k→∞

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

ϕ(−η∆)

ϕ(0)
,

which completes the proof.

E PROOFS OF RESULTS IN SECTION 3.3

E.1 PROOF OF LEMMA 3.1

The proof of Lemma 3.1 can be found in Lemma 2.12 of Liu et al. (2024b), so we omit the details here.

E.2 PROOF OF LEMMA 3.2

According to the definition of ϕ-update, it is obvious that∑
a

πk+1(a|s)Ak(s, a) =
Ea∼πk(·|s)

[
Ak(s, a)ϕ(ηAk(s, a))

]
Ea∼πk(·|s) [ϕ(ηAk(s, a))]

.
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From Ea∼πk(·|s)
[
Ak(s, a)

]
= 0 and the definition of ξk(·|s) in Lemma 3.2, we get

πk(Ak
s)max

a
Ak(s, a) +

(
1− πk

s

(
Ak

s

))
Ea′∼ξk(·|s)

[
Ak(s, a′)

]
= 0. (14)

For the numerator (we use Ak
s,a = Ak(s, a) for short),

Ea∼πk(·|s)
[
Ak

s,aϕ(ηA
k
s,a)
]

= πk
s (Ak

s)ϕ(ηmax
a

Ak
s,a)max

a
Ak

s,a +
(
1− πk

s (Ak
s)
)
Ea′∼ξk(·|s)

[
ϕ(ηAk

s,a′)Ak
s,a′

]
≥ πk

s (Ak
s)ϕ(ηmax

a
Ak

s,a)max
a

Ak
s,a +

(
1− πk

s (Ak
s)
)
Ea′∼ξk(·|s)

[
ϕ(ηAk

s,a′)
]
Ea′∼ξk(·|s)

[
Ak

s,a′

]
= πk(Ak

s)max
a

Ak
s,a

[
ϕ
(
ηmax

a
Ak

s,a

)
− Ea′∼ξk(·|s)

[
ϕ
(
ηAk

s,a′

)]]
,

where the second inequality is from Lemma A.7 and the last line comes from the equation (14). For the
denominator,

Ea∼πk(·|s)
[
ϕ
(
ηAk

s,a

)]
= πk

s

(
Ak

s

)
ϕ
(
ηmax

a
Ak

s,a

)
+
(
1− πk

s

(
Ak

s

))
Ea′∼ξk(·|s)

[
ϕ
(
ηAk

s,a′

)]
= πk

s

(
Ak

s

) [
ϕ
(
ηmax

a
Ak

s,a

)
− Ea′∼ξk(·|s)

[
ϕ
(
ηAk

s,a′

)]]
+ Ea′∼ξk(·|s)

[
ϕ
(
ηAk

s,a′

)]
.

Hence

∑
a

πk+1(a|s)Ak(s, a) ≥


1− 1

1 + πk
s (Ak

s)

 ϕ
(
η maxa A

k(s, a)
)

Ea′∼ξk(·|s)

(
ϕ
(
η Ak

s,a′

)) − 1




max

a
Ak(s, a)

=

1− 1

1 + πk
s (Ak

s)
(
∆k

ϕ,s(η)− 1
)
max

a
Ak(s, a).

E.3 PROOF OF THEOREM 3.5

Combining Lemma 3.1 and Lemma 3.2 together yields this result.

E.4 A BANDIT EXAMPLE FOR THE TIGHTNESS OF THEOREM 3.5

Consider the following bandit problem:

S = {s}, A = {a1, a2}, r(s, a1) = 1, r(s, a2) = 0.

Under this problem setting, it is clear that for any π (πai
is short for π(ai|s))

Qπ(s, a1) = 1, Qπ(s, a2) = 0, V π(s) = πa1
,

Aπ(s, a1) = 1− πa1 , Aπ(s, a2) = −πa1 .

It is also clear that a1 is the optimal action and V ∗(s) = 1.
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The ϕ-update on action a1 is given by (the subscript s in ηks is also omitted)

πk+1
a1

=
πk
a1
ϕ
(
ηk (1− πk

a1
)
)

Zk
,

where
Zk = πk

a1
ϕ
(
ηk (1− πk

a1
)
)
+ (1− πk

a1
)ϕ
(
−ηk πk

a1

)
.

It can be verified directly that(
V ∗(s)− V k+1(s)

)(
1 + πk

a1

(
ϕ(ηk(1− πk

a1
))

ϕ(−ηkπk
a1
)

− 1

))

=
(
1− πk+1

a1

)(
1 + πk

a1

(
ϕ(ηk(1− πk

a1
))

ϕ(−ηkπk
a1
)

− 1

))
= 1− πk

a1

= V ∗(s)− V k(s).

Consequently,

V ∗(s)− V k(s) =
(
V ∗(s)− V 0(s)

) k−1∏
t=0

[
1 + πt

a1

(
ϕ(ηt(1− πt

a1
))

ϕ(−ηtπt
a1
)

− 1

)]−1

.

Noting that γ = 0 and πt
s(At

s) = πt
a1

, it shows that the bound in Theorem 3.5 holds with equality for this
example.

E.5 PROOF OF THEOREM 3.6

For sufficiently small ε > 0, by Theorem 3.5 we have

∀ k ≤ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

k−1∏
t=0

(
1− (1− γ)

[
1− 1

1 +Dt

])
≤
∥∥V ∗ − V 0

∥∥
∞ κ(ε)k.

By Theorem 3.2 (see Eq (11)) we have

∀ k ≥ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤ 1

(1− γ)µ̃2

∥∥∥V ∗ − V T (ε)
∥∥∥
∞

· ρ1 (η,∆, ε)
k−T (ε)

.

Combining them we get

∀ k ∈ N+ :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

(1− γ)µ̃2
· [max {κ(ε), ρ1 (η,∆, ε)}]k

=

∥∥V ∗ − V 0
∥∥
∞

(1− γ)µ̃2
· ρ(ε)k.

F MORE EXAMPLES OF ϕ-UPDATE

F.1 VARIANTS OF SOFTMAX NPG

Recall that softmax NPG is a ϕ-update instance with ϕ = exp(·). It is natural to generalize it to an exponen-
tial family of ϕ. For instance, it is direct to consider the following exponential family ϕ:

ϕ(t) = exp(
q√
(t)p)
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for some positive and odd p, q1. When p ≥ q, it is clear ϕ(t) satisfies the assumptions (I), (II), (III). When
p < q, ϕ(t) is not differentiable around 0, so we consider the following piece-wise variant:

ϕ(t) =

{
exp(

q√
(t)p) if t ∈ (−∞,−δ] ∪ [δ,+∞),

exp(δp/q−1 · t) if t ∈ (−δ, δ)
(15)

with some small constant δ > 0. It can be easily verified that
d

dt
log ϕ(t) = δp/q − 1 when t ∈ (−δ, δ), thus

the assumptions (I), (II), (III) hold.

The convergence results of ϕ-update for difference p and q (when p < q, we use (15)) are presented in
Figure 4(a). The theoretical results of Theorem 3.4 and 3.6 imply that the convergence rate becomes smaller
when ϕ(t) changes rapidly around t = 0. Noting that when p < q and δ is small, ϕ(t) in the 0-neighbourhood
is “stretched”, and the stretch intensity becomes stronger as p/q and δ are smaller. The simulations show
that under the exact gradient, ϕ-update enjoys a better tail convergence than softmax NPG when p < q.

F.2 POLYNOMIAL UPDATE

Recall the policy update form of Hadamard PG, which is a special case of ϕ-update with ϕ(t) = (1 + 2t)2.
Thus it is natural to generalize it to a family of ϕ-updates (coined as polynomial update here and denoted by
Poly(p) for different p ∈ Z+) with ϕ being given by

ϕ(t) = (1 + pt)p.

It is clear that ϕ(t) satisfies (I), (II), (III) with L = 1/p. It can also be observed that ϕ(t) = (1 + pt)p

stretches around t = 0 as p increases.
Remark F.1. Recall the escort parameterization in Mei et al. (2020a) with hyperparameter p,

πθ(a|s) =
|θs,a|p∑
a |θs,a|p

=
|θs,a|p

∥θs∥pp
.

Escort PG updates the parameters by

∀ s ∈ S, a ∈ A : θk+1
s,a = θks,a + η ·

∥∥θks∥∥2p · ∂V k(µ)

∂ θks,a
. (16)

Under escort parameterization, it can be verified that Poly(p) can be implemented by modifying (16) to

∀ s ∈ S, a ∈ A : θk+1
s,a = θks,a + η ·

∥∥θks∥∥pp · (θks,a)−(p−2) ·
(
sgn(θks,a)

)p · ∂V k(µ)

∂θks,a
,

where sgn(·) is the sign function. In Figure 4(b) we compare Poly(p) and escort PG with different selections
of p.

G PRELIMINARY NUMERICAL RESULTS ON ϕ-UPDATE UNDER NEURAL NETWORK
PARAMETERIZATION

We have conducted some preliminary numerical experiments on ϕ-update under the neural network parame-
terization for the exponential family presented in Section F.1. Three environments from MuJoCo are tested,

1We use q√
(·)p instead of (·)p/q to avoid the ambiguity of the power function. For instance p = 3, q = 5 and p = 6,

q = 10 are different under q√
(·)p but equivalent under (·)p/q .
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(a) Variants of softmax NPG
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Figure 4: Simulation results on random MDP problem (with the same setting to the experiments presented
in Figure 3). The step-size is set to be η = 1 for (a). For (b), the step-size is state-dependent following Mei
et al. (2020a) and set to be 0.01×

∥∥θks∥∥2p for escort PG, and is set to be 0.01 for Poly(p). Note that Poly(2)
is equivalent to Hadamard PG or escort PG with p = 2.
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(b) Hopper-v2
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(c) Walker-v2

Figure 5: Preliminary numerical results on ϕ-update under neural network parameterization.

and results are presented Figure 5. For each experiment, we compute the mean and the standard deviation of
the final accumulative reward across 10 different random seeds. The policy neural network is a two-layers
MLP with 64 units per layer, and the timesteps are 5 millions for each experiment.

Note that the numerical results here are only intended to illustrate implementation feasibility of ϕ-update,
rather that to claim its state-of-the-art results. In fact, comprehensive empirical evaluations of ϕ-update is
beyond the scope of this paper, especially on how to choose ϕ for difference problems, which will be left for
future work.
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H CONVERGENCE RESULTS FOR NON-CONSTANT STEP SIZE

In the following, we present the convergence results for the adaptive step size sequence {ηks }. The proofs
are overall similar to the case of constant step size (Appendix C, D, E). Thus, we do not provide complete
proof details, but only point out the proof differences.
Proposition H.1. Suppose the assumptions (I), (II) hold. For any positive step-size sequence

{
ηks
}
> 0,

ϕ-update has non-negative improvement at every state, i.e.,
∑

a π
k+1(a|s)Ak(s, a) ≥ 0 for any s and k.

Furthermore, we have V k+1(s) ≥ V k(s) for every s ∈ S.

Proof. The proof is the same with that for Proposition 3.1 as ηks > 0.

Theorem H.1 (Global Convergence). Suppose the assumptions (I), (II) hold. For a step-size sequence {ηks }
such that infs,k ηks > 0, the value function generated by ϕ-update method converges to the optimal value,
i.e., V ∞(s) = V ∗(s) for all state s.

Proof. First note that the proof of Lemma C.1 remains unchanged for non-constant step-sizes {ηks }.

Let c3 := infs0,k ηks0 > 0 where s0 is the state such that I+s0 is non-empty. By the same computation,∑
a∈A

πk+1(a|s0)Ak(s0, a)

≥ 1

2Zk
s0

∑
a∈I+

s0

∑
a′∈I−

s0

πk (a|s0)πk (a′|s0)
[(
Ak (s0, a)−Ak (s0, a

′)
) (

ϕ
(
ηks0A

k (s0, a)
)
− ϕ

(
ηks0A

k (s0, a
′)
))]

≥ 1

2Zk
s0

∑
a∈I+

s0

∑
a′∈I−

s0

πk (a|s0)πk (a′|s0)
[
(ε− (−ε))

(
ϕ
(
ηks0A

k (s0, a)
)
− ϕ (−c3ε)

)]
≥ c2ε

Zk
s0

∑
a∈I+

s0

πk (a|s0)
(
ϕ
(
ηks0A

k (s0, a)
)
− ϕ (−c3ε)

)
=

c2ε

Zk
s0

(
lks0
(
I+s0
)
− πk

s0

(
I+s0
)
ϕ (−c3ε)

)
.

Similarly, one has ∑
a∈A

πk+1(a|s0)Ak (s0, a) ≥ ε · c1 · c2 ·
(
1− ϕ (−c3ε)

ϕ (c3ε)

)
> 0,

which also raises an contradiction. Hence the proof of Theorem 3.1 can be proceeded for the non-constant
step-sizes provided infs,k ηks > 0.

Lemma H.1. Suppose the assumptions (I), (II) hold. For small enough ε > 0, when k ≥ T (ε) we have

∀ s ∈ S̃, a′ ̸∈ A∗
s :

πk+1(a′|s)
πk(a′|s)

≤
ϕ
(
−ηks (∆s − ε)

)
ϕ (−ηks ε)

·
(
1− ε

∆

)−1

:= ρ1(η
k
s ,∆s, ε) , (17)

and

∀ s ∈ S̃, a′ ∈ A′
s :

πk+1(a′|s)
πk(a′|s)

≥
ϕ
(
−ηks (∆s + ε)

)
ϕ (ηks ε)

:= ρ2(η
k
s ,∆s, ε) . (18)
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Proof. The proof remains the same with that for Lemma B.1.

Lemma H.2. Suppose the assumptions (I), (II) hold. Denote εk =
∥∥V ∗ − V k

∥∥
∞. For any s ∈ S and the

optimal action a∗ ∈ A∗
s , when εk < ∆ we have

πk+1(a∗|s)
πk(a∗|s)

≥ ϕ(−ηks εk)

ϕ(ηks εk) +
εk
∆

ϕ(−ηks (∆− εk))
,

and
πk+1(a∗|s)
πk(a∗|s)

≤ ϕ(ηks εk)(
1− εk

∆

)
ϕ(−ηks εk)

.

Proof. The proof remains the same with that for Lemma B.2.

Theorem H.2 (Local Linear Upper Bound). Suppose the assumptions (I), (II) hold. Assume that infs,k ηks >
0. Then there exists a small enough ε > 0 such that sups,k ρ1(η

k
s ,∆, ε) < 1, and a time T (ε) such that the

values generated by ϕ-update method satisfy

∀ k ≥ T (ε) :
∥∥V ∗ − V k

∥∥
∞ ≤

[
sups,k ρ1

(
ηks ,∆, ε

)](k−T (ε))

(1− γ)2µ̃2
.

Proof. By Lemma H.1, we have

∀ k ≥ T (ε) , s ∈ S̃, a ̸∈ A∗
s : πk (a|s) ≤ ρ1(η

k−1
s ,∆, ε)πk−1 (a|s)

≤ ...

≤

 k−1∏
t=T (ε)

ρ1(η
t
s,∆, ε)

 · πT (ε) (a|s)

≤
[
sups,k ρ1

(
ηks ,∆, ε

)](k−T (ε)) · πT (ε) (a|s) .

Then the proof in Theorem 3.2 can be proceeded similarly as the constant step size case.

Theorem H.3 (Policy Convergence). Suppose the assumptions (I), (II), (III) hold. With the step-size se-
quence {ηks } satisfying infs,k ηks > 0 and sups,k ηks < +∞, the policy generated by ϕ-update converges to
some optimal policy π∗, i.e. the sequence {πk(a|s)}k converges for any s ∈ S and a ∈ A.

Proof. Following the same procedure of the proof for Theorem 3.3, by selecting small enough ε and ε0 such
that sups,k ρ1(η

k
s ,∆, ε) ≤ sups,k ρ1(η

k
s ,∆, ε0) < 1, one can get

∞∑
k=T (ε)

∣∣log πk+1(a∗|s)− log πk(a∗|s)
∣∣ ≤ 1

∆ + 2c sups,k η
k
s

(1− γ)µ̃2

2ε

1− sups,k ρ1(η
k
s ,∆, ε0)

:= C̃0ε.

Hence {log πk(a∗|s)}k is still a Cauchy sequence, implying that πk(a∗|s) converges.
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Theorem H.4 (Exact Asymptotic Linear Convergence). Suppose the assumptions (I), (II), (III) hold. Assume
η∞s := limk ηks exists for all s ∈ S. Then

lim
k→∞

V ∗(µ)− V k+1(µ)

V ∗(µ)− V k(µ)
=

ϕ(−mins,a{η∞s |A∗(s, a)|})
ϕ(0)

.

Proof. One can follow the same procedure as in the proof of Theorem 3.4 to get this result by further
considering the local region of η∞s . That is, consider the following local region:

∀ s ∈ S, k ≥ T (ε, δ, σ, ξ) :

∣∣∣∣∣dk+1
µ (s)

dkµ(s)
− 1

∣∣∣∣∣ ≤ δ,

∣∣∣∣∣ dkµ(s)

dk+1
µ (s)

− 1

∣∣∣∣∣ ≤ δ,

∥∥A∗ −Ak
∥∥
∞ ≤ ε,

πk(a|s)
Ck

≤ σ,
∣∣ηks − η∞s

∣∣ ≤ ξ

where ε, δ, σ, ξ are all sufficiently small constants.

Lemma H.3 (Improvement Lower Bound). Suppose the assumptions (I), (II) hold. With positive step-size
sequence {ηks }, the ϕ-update improvement of state s satisfies∑

a

πk+1(a|s)Ak(s, a) ≥

1− 1

1 + πk
s (Ak

s)
(
∆k

ϕ,s(η
k
s )− 1

)
 ·max

a
Ak(s, a),

where

∆k
ϕ,s(η

k
s ) :=

ϕ
(
ηks maxa A

k(s, a)
)

Ea′∼ξk(·|s) [ϕ (ηksA
k(s, a′))]

with ξk(a|s) =
{
0 if a ∈ Ak

s ,

πk(a|s)/(1− πk
s (Ak

s)) if a ̸∈ Ak
s .

Proof. The proof remains the same with that for Lemma 3.2.

Theorem H.5. Suppose the assumptions (I), (II) hold. With positive step-size sequence {ηks }, the value
function generated by ϕ-update satisfies

∀ k ∈ N+ :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

k−1∏
t=0

(
1− (1− γ)

[
1− 1

1 +Dt

])
,

where Dt := mins∈S̃t

{
πt
s (At

s)
(
∆t

ϕ,s(η
t
s)− 1

)}
and S̃t := {s ∈ S : At

s ̸= A}.

Proof. The proof remains the same with that for Theorem 3.5.

Theorem H.6 (Global Linear Convergence). Suppose the assumptions (I), (II) hold. Assume that
infs,k ηks > 0. Define

ρ(ε) = max
{
κ(ε), sups,k ρ1

(
ηks ,∆, ε

)}
where

κ(ε) = max
k≤T (ε)

{
1− (1− γ)

[
1− 1

1 +Dt

]}
.

There exists ε > 0 such that ρ(ε) < 1 and

∀ k ∈ N+ :
∥∥V ∗ − V k

∥∥
∞ ≤

∥∥V ∗ − V 0
∥∥
∞

(1− γ)µ̃2
· ρ(ε)k.

Proof. Similar to the proof of Theorem 3.6, but instead use Theorem H.2 and Theorem H.5.
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