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Abstract—As autonomous systems become more complex and
integral in our society, the need to accurately model and safely
control these systems has increased significantly. In the past
decade, there has been tremendous success in using deep learning
techniques to model and control systems that are difficult to
model using first principles. However, providing safety assurances
for such systems remains difficult, partially due to the uncertainty
in the learned model. In this work, we aim to provide safety
assurances for systems whose dynamics are not readily derived
from first principles and, hence, are more advantageous to be
learned using deep learning techniques. Given the system of
interest and safety constraints, we learn an ensemble model of
the system dynamics from data. Leveraging ensemble uncertainty
as a measure of uncertainty in the learned dynamics model,
we compute a maximal robust control invariant set, starting
from which the system is guaranteed to satisfy the safety
constraints under the condition that realized model uncertainties
are contained in the predefined set of admissible model uncer-
tainty. We demonstrate the effectiveness of our method using a
simulated case study with an inverted pendulum and a hardware
experiment with a TurtleBot. The experiments show that our
method robustifies the control actions of the system against model
uncertainty and generates safe behaviors without being overly
restrictive.

I. INTRODUCTION

Autonomous systems are playing increasingly important
roles in the functioning of modern society. However, tra-
ditional modeling techniques, such as using first principles,
struggle to model these systems, given their increasing com-
plexities. Recent advances in deep learning have enabled the
modeling and control of systems with highly complex dy-
namics. While the methods have demonstrated strong control
performance for a number of autonomous systems, they can
lead to unsafe behaviors or even catastrophic failures due to
the predictive uncertainty in the neural network models.

In this work, we are interested in providing safety assur-
ances for systems whose dynamics are unknown and difficult
to model using first principles. Despite success in safety
analysis for models developed from first principles, it re-
mains difficult to provide safety assurances for systems with
unknown or uncertain dynamics. Many works have utilized
safety analysis frameworks, such as Control Barrier Function
(CBF) [2] and Hamilton-Jacobi (HJ) reachability analysis [5],
to provide safety assurances to systems with unknown or
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uncertain dynamics. One popular line of works seeks to reduce
model uncertainties to uncertainties in the CBF constraints,
which are used to synthesize safety-critical controls [8, 20, 19].
However, these methods rely on prior knowledge of the system
to construct the CBFs, and more critically assume the CBFs
constructed for the nominal model is valid for the actual sys-
tem. This assumption can be easily violated when the model
uncertainty is severe, and it is difficult to determine when the
assumption is no longer valid. Another family of approaches
is to generate safety guarantees for systems under the worst-
case model uncertainty using HJ reachability analysis. This
line of work is rooted in differential game theory and its
connection with the Hamilton-Jacobi-Isaacs partial differential
equation (HJI PDE) [6, 10]. A time-dependent HJI PDE [18]
is formulated to study the pursuer-evader game, a type of two-
person zero-sum differential game integral to HJ reachability
analysis, and this formulation has been applied to generate
safety assurances for system under dynamics uncertainties.
More specifically, the authors in [11, 14, 1] represent the
model uncertainty as a Gaussian Process (GP) and utilize the
predictive uncertainty of the GP to generate robust safety as-
surances online. However, the model uncertainties considered
in the works depend only on the state and not the control input.
Moreover, it is not immediately clear how similar techniques
can be used for neural network-based dynamics models that
does not predict uncertainties.

In its core, our method attempts to provide robust safety
assurances for systems with unknown dynamics against model
uncertainties. We first learn a nominal dynamics model of
the system along with a measure of model uncertainty. Then,
we compute robust safety assurances utilizing results from
HJ reachability analysis. More specifically, given a set of
undesirable states, our method computes the maximal robust
control invariant set and a controller that renders the set control
invariant for the model under bounded model uncertainty.
A critical aspect of our work is that model uncertainty is
both state and control-dependent. This control dependence
of model uncertainty is often ignored in prior works for
simplicity. Specifically, when the model uncertainty is control-
independent, the players in the two-person game do not
interact directly and renders the game much easier to solve.
Instead, we take this interplay between the control and model
uncertainty into account and systematically handle that under
the HJ reachability framework. This leads to a significantly
less conservative estimate of the safe set of the system. Fur-
thermore, we pay special attention to learned neural network
nominal models. Using an ensemble of neural networks with



control-affine architectures as the nominal model, we harness
the modeling power of neural networks and obtain a heuristic
measure of model uncertainty from the ensemble, with which
we provide robust safety assurances for the system.

Our method is shown to provide significant benefits as
it explicitly incorporates state and control-dependent model
uncertainty in safety analysis and, as a result, provides more
robust, but not overly conservative controllers for the system.
To summarize, the key contributions of this work are two-
fold: 1) We propose a framework for providing robust safety
assurances to systems with unknown dynamics by incorpo-
rating state and control-dependent model uncertainty in HJ
reachability analysis. We also provide a closed-form solution
to the two-player zero-sum differential game between the
control and disturbance player, in order to accommodate the
state and control-dependent nature of the model uncertainty,
and 2) We provide a concrete instantiation of our framework
by modeling the system with an ensemble of neural networks
and solving a robust optimal control problem to safeguard the
learned model against bounded model uncertainty.

II. PROBLEM FORMULATION

In this work, we are interested in providing safety assur-
ances for systems with unknown but deterministic control-
affine dynamics, as many practical systems are control-affine
[16], governed by ordinary differential equation

dx

dt
= ẋ = f(x, u) = f1(x) + f2(x)u (1)

where x ∈ X ⊆ Rnx and u ∈ U ⊆ Rnu are the state and
control of the system, and f1(x) and f2(x) are matrices of
appropriate sizes. Given a set of states F ⊂ X , which we
refer to as the failure set, that the system must avoid (e.g.,
obstacles for a mobile robot), our goal is ensuring the system
f does not enter the failure set F for predefined time horizon
[0, T ]. More formally as stated in Prob. 1.

Problem 1 (Safety Problem for System f ). Given a failure set
F and time horizon [0, T ], obtain a safe set S ⊆ X , along with
a state-feedback controller π, such that the system f starting
within S implies that f does not enter F for [0, T ] using
controls provided by π. A safe set is the maximal safe set,
denoted by S∗, if it contains all other safe sets as subsets.

Because we do not have access to the system dynamics
f , we further limit the scope of the problem to employing a
model-based approach - first model the system of interest, then
provide safety assurances on the system against any bounded
model uncertainty d ∈ D, where D is the set of admissible
model uncertainty. We state the proposed safety assurance
problem as follows:

Problem 2 (Safety Assurance under Model Uncertainty).
Given a failure set F and time horizon [0, T ], obtain a set
R ⊆ X , along with a state-feedback controller πR, such that
under the condition that all realized model uncertainties are
contained within D, system f starts within R implies that

f does not enter F for [0, T ] using controls from πR, or
equivalently, R ⊆ S∗.

Definition 1. (Robust Safe Set) A solution to Problem 2, R ⊆
X , is referred to as a robust safe set. A robust safe set is the
maximal robust safe set, denoted as R∗, is the robust safe set
that contains any robust safe set as subsets.

III. BACKGROUND

In this section, we provide a brief overview of Hamilton-
Jacobi (HJ) reachability analysis, an approach that can help
solve Prob. 2. Let g be a system described by dynamics ẋ =
g(x, u, d), where x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu , and d ∈
D ⊆ Rnd are the state, control, and disturbance of the system.
Disturbance d, in the interest of this work, describes the model
uncertainty. We use u : [0, T ] → U and d : [0, T ] → Rnd

to denote the control and disturbance signals. Furthermore,
we denote the state trajectory starting from state x at time t
evolved with control and disturbance signals u(·) and d(·) as
ξu,dx,t . With a slight abuse of the notation, we use ξu,dx,t (τ) to
denote the state at time τ ≥ t along the trajectory ξu,dx,t .

Suppose g(x, u, d) is uniformly continuous, bounded, and
Lipschitz continuous in x for fixed u and d. We further assume
that U and D are compact, and u(·) as well as d(·) are
measurable. Let l(x) be the signed distance function to F . We
can obtain R∗ by solving the following robust optimal control
problem (Prob. 3) with initial condition x = x0 ∀x0 ∈ X and
t = 0. In robust control literature, Prob. 3 is posed as a two-
player zero-sum differential game between the control u and
disturbance d, who uses only nonanticipative strategies [18].
Let Γ(t) be the set of nonanticipative strategies, and U(t) be
the set of admissible control signals.

Problem 3 (Robust Safety Optimal Control Problem).

inf
d(·)∈Γ(t)

sup
u(·)∈U(t)

J(x, t,u,d) = min
τ∈[t,T ]

l(ξu,dx,t (τ))

s.t. ẋ = g(x, u, d)

Let us define the value function V (x, t) to take on the optimal
value of Prob. 3 at state x and time t:

V (x, t) = inf
d(·)∈Γ(t)

sup
u(·)∈U(t)

J(x, t,u,d)

= inf
d(·)∈Γ(t)

sup
u(·)∈U(t)

min
τ∈[t,T ]

l(ξu,dx,t (τ))
(2)

Then, R∗ can be characterized using V (x, t):

R∗ = {x ∈ X |V (x, 0) > 0} (3)

HJ reachability analysis provides a tractable means to com-
pute the value function V (x, t). It has been shown that V (x, t)
is the unique viscosity solution of the Hamilton-Jacobi-Isaacs
Variational Inequality (HJI-VI) [17, 18]:

min{DtV +H(x, t,∇V ), l(x)− V (x, t)} = 0

V (x, T ) = l(x), for t ∈ [0, T ]
(4)

H(x, t,∇V ) = maxu mind⟨∇V, g(x, u, d)⟩ is the Hamilto-
nian. DtV and ∇V denote the temporal derivative and the



spatial gradients of V (x, t). It is important to note that HJ
reachability analysis also provides a state-feedback controller
πR∗ that renders R∗ control-invariant:

πR∗(x, t) = argmax
u∈U

min
d∈D

⟨∇V (x, t), g(x, u, d)⟩ (5)

IV. SAFETY ASSURANCES FOR LEARNED DYNAMICS

At the heart of our framework is solving a robust optimal
control problem (Prob. 3) to provide safety assurances for
system f , by incorporating the worst-case model uncertainty
in the safety analysis. We obtain the maximal robust safe set
R∗ that safeguards the system against model uncertainty by
solving the HJI-VI (4) for V (x, t). In this section, we first
introduce the notion of uncertain model and use it to set up
the robust optimal control problem. Then, we show R∗ does
in fact confer safety assurance to f . Finally, we present a
concrete instantiation of our framework with f modeled by
an ensemble of neural networks, and we discuss a method to
quantify the model uncertainty from the ensemble.

A. Model Representation and Hamiltonian Formulation

Given a deterministic, continuous-time, control-affine sys-
tem f(x, u), we learn a nominal model f̄(x, u) = f̄1(x) +
f̄2(x)u of f . We assume there are bounded, state-dependent
model uncertainties d1(x) ∈ D1(x) ⊆ Rnx and d2(x) ∈
D2(x) ⊆ Rnx×nu , arising from errors of model approximation
and unmodeled dynamics additive to f̄1(x) and f̄2(x). Hence,
the uncertain model f̂(x, u, d1, d2) can be written as

f̂(x, u, d1, d2) = f̄1(x) + d1(x) + (f̄2(x) + d2(x))u (6)

We refer to D1(x) and D2(x) as the model uncertainty bounds
on f̄1(x) and f̄2(x) at state x, respectively. The Hamiltonian
H(x, t,∇V ) formulated using f̂(x, u, d1, d2) is given in (7),
where u∗, d∗1, and d∗2 are the solutions to the maximin game
in the RHS of (7a).

H(x,t,∇V (x, t)) = max
u∈U

min
d1∈D1(x)

min
d2∈D2(x)

〈
∇V (x, t),

f̄1(x) + d1 +
(
f̄2(x) + d2

)
u
〉 (7a)

=
〈
∇V (x, t), f̄1(x) + d∗1 +

(
f̄2(x) + d∗2

)
u∗
〉

(7b)

The maximin game in (7a) does not generally have a closed-
form solution since u and d2 are multiplied together. We make
the following assumptions to enable tractable computation of
(7a): 1) D1(x) and D2(x) are hypercubes containing the origin
in their respective spaces Rnx and Rnx×nu , and 2) the set of
admissible controls U is a hypercube containing the origin
in Rnu . Under the assumptions, we can obtain closed-form
solutions for u, d1 and d2.

Note 1. The total model uncertainty is given by d(x, u) =
d1(x) + d2(x)u, and hence the representation of d is state
and control-dependent.

Let d∗1i(x) and ∇Vi(x, t) denote the ith component of
d∗1(x) ∈ Rnx and ∇V (x, t) ∈ Rnx , respectively. Since D1(x)

is a hypercube containing the origin of Rnx , we can write
the uncertainty bound on the ith component of f̄1(x) by an
interval

[
d1i(x), d1i(x)

]
. Then, d∗1(x) is given by

d1i(x) =

{
d1i(x) if ∇Vi(x, t) < 0

d1i(x) if ∇Vi(x, t) ≥ 0
(8)

We now derive u∗(x), the optimal safety controller given
in (9). Let us denote the jth component of u∗ ∈ Rnu and
the jth column of f̄2(x) by u∗

j and f̄2j(x). Since U is a
hypercube in Rnu , the bound on the jth component of u

is given by an interval
[
uj , uj

]
. Again, since D2(x) is a

hypercube in Rnx×nu , the model uncertainty bound on the
ijth component of f̄2(x) is an interval

[
d2ij(x), d2ij(x)

]
.

Let d+2 (x) ∈ Rnx×nu and d−2 (x) ∈ Rnx×nu be the “best
effort” d2(x) that intuitively try to decrease the Hamiltonian
for positive or negative u, respectively. We denote the jth

column of d+2 (x) and d−2 (x) by d+2j(x) and d−2j(x). More
precisely, the ith component of d+2j(x) ∈ Rnx is given by
d2ij when ∇Vi < 0, d2ij when ∇Vi ≥ 0. The ith component
of d−2j(x) ∈ Rnx is given by d2ij when ∇Vi ≥ 0, d2ij when
∇Vi < 0. u∗ is then given in (9).

u∗
j (x) =


uj , if ∇V (x, t)⊤

(
f̄2j(x) + d+2j(x)

)
> 0

uj , if ∇V (x, t)⊤
(
f̄2j(x) + d−2j(x)

)
< 0

0, otherwise

(9)

Lastly, we provide d∗2(x). Let us denote the ijth component
of d∗2(x) ∈ Rnx×nu by d∗2ij(x). d

∗
2(x) is given below in (10).

d∗2ij(x) =

{
d2ij(x) if u∗

j (x)∇Vi(x, t) < 0

d2ij(x) if u∗
j (x)∇Vi(x, t) ≥ 0

(10)

We solve the HJI-VI (4), with the Hamiltonian (7b) for-
mulated for f̂ , to obtain V (x, t) and the maximal robust safe
set R∗ as well as its corresponding safety controller πR∗ .
Following directly from the definition of the value function
(2), R∗ and πR∗ confer safety assurances to system f , if for
any state x ∈ X , the realized model uncertainties at state x are
contained within D1(x) and D2(x). This result is formalized
in Lemma. 1.

Lemma 1. Given a control-affine system f(x, u) = f1(x) +
f2(x)u and its nominal model f̄(x, u) = f̄1(x) + f̄2(x)u, let
δ1(x) = f1(x) − f̄1(x) and δ2(x) = f2(x) − f̄2(x) be the
realized model uncertainties. If δ1(x) ∈ D1(x) and δ2(x) ∈
D2(x) ∀x ∈ X , then R∗ ⊆ S∗.

B. Ensemble Dynamics Representation

Although our framework is agnostic to how the nominal
model f̄ or the model uncertainties d1 and d2 are obtained, in
this subsection, we introduce one method to jointly obtain f̄ ,
d1, d2, and their corresponding bounds D1 and D2.

In this work, we employ an ensemble of neural networks
to obtain uncertainty in learned dynamics, a popular ap-
proach in literature to quantify uncertainty in deep networks



[15, 9]. More specifically, given a deterministic, continuous-
time, control-affine dynamical system f(x, u), we learn an
ensemble of M fully connected feed-forward neural networks
with control-affine architectures, and we use the ensemble as
the nominal model f̄ . More explicitly, the ensemble is given
by

E = {NNk(x, u) = NNk
1 (x) +NNk

2 (x)u}
Nm

k=1 (11)

where NNk
1 and NNk

2 are neural networks. With a slight
abuse of notation, we denote the prediction of the ensemble
E by

E(x, u) =
1

Nm

Nm∑
k=1

NNk(x, u)

=

(
1

Nm

Nm∑
k=1

NNk
1 (x)

)
+

(
1

Nm

Nm∑
k=1

NNk
2 (x)

)
u

= f̄1(x) + f̄2(x)u = f̄(x, u)
(12)

We sometimes refer to E(x, u) as the mean dynamics, as we
are taking the mean prediction among the neural networks
within the ensemble.

Given the setup of the nominal model f̄(x, u) in (12), we
would like the model uncertainties d1 and d2 to intuitively
quantify the variations of outputs of the sub-nets NNk

1 and
NNk

2 within the ensemble. We bound d1(x) and d2(x) using
constant multiples of standard deviation of {NNk

1 (x)}
Nm

k=1

and {NNk
2 (x)}

Nm

k=1. Let us denote the extents of the ith

and ijth dimensions of D1(x) and D2(x) by D1i(x) and
D2ij(x), respectively. By assumption, D1(x) ⊆ Rnx and
D2(x) ⊆ Rnx×nu are hypercubes in their respective spaces,
and therefore D1i(x) and D2ij(x) are real intervals. More
precisely, the intervals are given by

D1i(x) = [−ασ1i(x), ασ1i(x)] (13a)

D2ij(x) = [−γσ2ij(x), γσ2ij(x)] (13b)

where σ1i(x) = StdDev
(
{NNk

1i(x)}
Nm

k=1

)
, σ2ij(x) =

StdDev
(
{NNk

2ij(x)}
Nm

k=1

)
, StdDev is a short hand for

“standard deviation”, NNk
1i(x) and NNk

2ij(x) denote the
ith and ijth outputs of the kth NN1 and NN2 sub-nets,
respectively.

Note 2. α and γ are tunable parameters that determine
conservativeness of the resulting safe set S. As α and γ
increase, the model uncertainty bounds D1(x) and D2(x)
increases ∀x ∈ X . Accordingly, the safe set S shrinks. For
all the experiments in this work, we use α = γ = 3.

V. EXPERIMENTS

A. Inverted Pendulum

In this example, we simulate an inverted pendulum with
state x = [θ, θ̇]⊤ and control u, and its dynamics is given by

ẋ =
[
θ̇, θ̈
]⊤

=

[
θ̇,

−bθ̇+ 1
2mgl sin θ−u

ml2

3

]⊤
, where l,m, g, and b

represents the length and mass of the pendulum, acceleration
of gravity, and the friction coefficient, respectively. For the
purposes of this case study, the analytical expression of the
dynamics is assumed to be unknown.

We first train an ensemble dynamics model, consisting
of 5 fully connected feed-forward neural networks with 3
hidden layers and 256 neurons per hidden layer, using dataset
{(xi, ui), ẋi}Mi=1 parsed from trajectory rollouts with ran-
dom controls. In this experiment, we want the pendulum
to avoid deviating from its unstable equilibrium for more
than 0.6π radians. Equivalently, the failure set is given by
F = {[θ, θ̇]⊤|θ > 0.6π} ∪ {[θ, θ̇]⊤|θ < −0.6π}.

Next, we compute the safe set S, or equivalently comple-
ment of the backward reachable tube (BRT) of the failure
set F , for a time horizon of 0.7 seconds, using the learned
ensemble dynamics model along with model uncertainties.
We also consider three baselines: 1) computing the safe set
using only the mean dynamics E(x, u) (Baseline 1 Mean
Dynamics), 2) computing the safe set with D1 and D2 cal-
culated using split conformal prediction with 5000 calibra-
tion samples and marginal coverage of 95% [3] (Baseline 2
Conformal Prediction), and 3) computing the safe set with
d2(x)u approximated as d3(x) ∈ Rnx (Baseline 3 Partial
Game). The purpose of Baseline 3 is to remove the interaction
of the control player u and the disturbance player d2, and
renders the model uncertainty control-independent, as the
action of the disturbance player d3 no longer depends on
that of the control player u. Furthermore, the Hamiltonian
computation (7a) decouples into three independent optimiza-
tions with respect to u, d1, and d3. The bound on the ith

component of d3 is given by D3(x)i = [−a(x), a(x)], where
a(x) =

∑nu

j=1 max{|uj |, |uj |} ×max{|d2ij(x)|, |d2ij(x)|}.
For the number of training samples M = 300, we visualize

the recovered safe sets for our method, all the baselines, and
the ground truth in Fig. 1. The ground truth safe set, computed
using the analytical expression of the dynamics, is shaded in
green. The safe set recovered using our method is entirely con-
tained within the ground truth safe set, indicating satisfaction
of the safety constraint. On the other hand, Baseline 1 fails to
satisfy the safety constraint, since the recovered safe set is not
contained within the ground truth safe set. The safe set from
Baseline 2 is not visualized in Fig. 1 because its recovered safe
set is empty due to model uncertainty bounds D1 and D2 being
too conservative. Specifically, conformal prediction provides
state-independent uncertainty bounds, which are dictated by
the worst-case modeling errors across all states, leading to
overly conservative behaviors. Baseline 3 is less conservative
than Baseline 2, as its model uncertainty bounds are state-
dependent, but it is more conservative than our methods since
its model uncertainty d3(x) is control-independent and its
bound D3(x) is an overapproximation of that of our method.

We also perform an ablation study over the number of train-
ing samples M to further highlight the benefit of using state
and control-dependent model uncertainty. The percent safe set



Fig. 1. Recovered safe sets (states starting from which the inverted pendulum
stays within 0.6π of the upright for 0.7 seconds) for our method, the Mean
Dynamics baseline (Baseline 1), the Partial Game baseline (Baseline 3) in the
inverted pendulum experiment, with the ensemble trained with 300 training
samples. Note that Baseline 2 (conformal prediction) is not visualized, because
its safe set is empty.

Fig. 2. Changes in percent safe set recovered with our method, the Conformal
Prediction baseline (Baseline 2), and the Partial Game baseline (Baseline 3),
over the number of training samples.

recovered, as a function of M , is charted in Fig. 2. Across
all experimented M , our method consistently outperforms
the baselines, indicating that the state and control-dependent
model uncertainty representation leads to less conservative
behaviors. Our model uncertainty representation can reflect
local variations of model uncertainties, allowing the safe set
to expand or shrink according to local model uncertainty
level. Furthermore, the control-dependent nature of our model
uncertainty representation, which taken into consideration of
the interaction between the control and the model uncertainty,
also helps reduce the conservativeness.

B. Turtlebot Hardware Experiment

We apply the proposed approach on a real hardware testbed,
TurtleBot 4, which we refer to as the vehicle, in this exper-
iment. We are interested in providing safety assurances for
the vehicle carrying a payload, and we seek to demonstrate
the importance of incorporating model uncertainty in safety
analysis and the benefit of model learning.

Let A ⊆ R2 be a rectangular experimental space, centered
at [0, 0]⊤ with side lengths lx and ly . The failure set F is hence
given by F = {x ∈ X ||px| > lx

2 , |py| >
ly
2 }, where px and

py are the x, y positions of the center of mass of the vehicle.
We model the vehicle as a 4-dimensional system with state
[px, py, θ, ω]

⊤, where ω is the angular velocity, and control
u, an angular velocity setpoint. We operate the vehicle with a
constant forward velocity.

We first collect 120 state and control trajectories using a
random control at each time step. Each trajectory is roughly
5 seconds and yields about 100 training samples ([x, u] , ẋ).
Then, we train an ensemble dynamics model containing 5 fully
connected feed-forward neural networks, each with 3 hidden
layers and 512 neurons per layer.

The safe set and the safety controller are computed for our
method and the mean dynamics baseline until convergence
(i.e., the time horizon is [0,∞]). For visualization purposes, we
project the safe set to the x, y plane at some fixed θ and ω. In
Fig. 3, the safe sets projected at θ = 0.7 and ω = 0 are shown.
We apply mean dynamics baseline’s safety controller π∗

m, from
two states x1 and x2, within the mean dynamics baseline safe
set Sm. π∗

m is unable to keep the vehicle inside A, since Sm

and π∗
m do not take into consideration the model uncertainty

and, as a result, are overly optimistic. On the other hand, we
roll out the vehicle from 2 nearby states, x3 and x4, within
our method’s safe set S with our method’s safety controller
π∗, and the vehicle stays within A, indicating that our method
is able to obtain a better estimate of the actual safe set of the
system.

We now highlight the benefit of model learning with a
safety filtering experiment. When the vehicle is traveling at a
constant forward velocity, it is common to model the vehicle
with a three-dimensional Dubins Car (Dubins3D) with the

dynamics
[
ṗx, ṗy, θ̇

]⊤
= [V cos(θ), V sin(θ), u]

⊤. However,
since the vehicle carries a payload, which introduces factors
that could render the Dubins3D model inaccurate, a learned
model can more accurately represent the system. We compute
the safe set Sd and safety controller π∗

d using the Dubins3D
model to convergence. Then, we use π∗

d to filter a nominal
controller π(x) = 0 in a least restrictive fashion [7]. The
filtered controller π̂d keeps the vehicle moving with the current
heading unless it is at risk of exiting Sd, in which case π∗

d takes
over (i.e. π̂d(x) = π∗

d(x)). We similarly filter π with π∗, and
filtered controller is denoted as π̂.

Starting from a state x ∈ S∩Sd, we roll out the vehicle with
π̂d and π̂. The state trajectories projected to the x − y plane
are shown in Fig. 4. The vehicle eventually exits A under π̂d,
indicating that π∗

d does not actually render Sd control invariant



Fig. 3. Comparison between projected safe sets S and Sm along with
TurtleBot rollout trajectories using safety controllers π∗ and π∗

m. The initial
state of rollouts using π∗ are marked with pentagons. All rollouts start with
heading θ = 0.7 and angular velocity ω = 0. The states at which the
TurtleBot enters failure set F are marked with crosses.

under the actual vehicle dynamics and is overly optimistic.
However, π̂ does keep the vehicle inside A for the entire
experiment. For both trajectories, the mint-colored markers
indicate the states where the safety controller π∗ or π∗

d takes
over and commands the vehicle to turn maximally to stay
within A. Since Sd is more optimistic than S, π∗

d intervenes
closer to the boundary of A than π∗ would, and the resulting
trajectory is uncomfortably close to exiting A. In contrast,
there is a healthy margin for the trajectory filtered by π∗.

VI. CONCLUSION

In this work, we proposed a framework for generating
robust safety assurances for systems with unknown dynamics.
Further, we provide a concrete instantiation of our framework
with ensemble neural network models as the nominal model
and safeguard the system against the worst-case model uncer-
tainty. Though our method is shown to provide robust safety
assurances in the experiments, it faces several challenges,
which we look to address in future works. First of all, our
method does not scale well to higher-dimensional systems. We
will investigate the possibility of incorporating learning-based

Fig. 4. Filtered controller π̂ and π̂d rollout trajectories. The blue markers
indicate the states at which the nominal controller π is on. Whereas the mint
markers indicates the states where safety controllers π∗ and π∗

d intervene.
The state at which the vehicle exits the experiment space under π̂d is marked
with a red cross.

reachability computation tools [4, 12] into our framework.
Second, the proposed model uncertainty estimation approach
might not provide model uncertainty bounds that accurately
reflect the distribution of realized model uncertainties. We
will address this challenge by examining other uncertainty
estimation approaches, such as [15] and [13].
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Shromona Ghosh, and Claire J. Tomlin. Bridging
hamilton-jacobi safety analysis and reinforcement learn-
ing. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8550–8556, 2019. doi:
10.1109/ICRA.2019.8794107.

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages
1050–1059, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.press/v48/
gal16.html.

[14] Sylvia Herbert, Jason J Choi, Suvansh Sanjeev, Marsalis
Gibson, Koushil Sreenath, and Claire J Tomlin. Scalable
learning of safety guarantees for autonomous systems us-
ing hamilton-jacobi reachability. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),

pages 5914–5920. IEEE, 2021.
[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles

Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural
information processing systems, 30, 2017.

[16] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[17] John Lygeros. On reachability and minimum cost optimal
control. Automatica, 40(6):917–927, 2004.

[18] Ian Mitchell, Alex Bayen, and Claire J. Tomlin. A time-
dependent Hamilton-Jacobi formulation of reachable sets
for continuous dynamic games. IEEE Transactions on
Automatic Control (TAC), 50(7):947–957, 2005.

[19] Luyao Niu, Hongchao Zhang, and Andrew Clark. Safety-
critical control synthesis for unknown sampled-data sys-
tems via control barrier functions. In 2021 60th IEEE
Conference on Decision and Control (CDC), pages
6806–6813. IEEE, 2021.

[20] Andrew Taylor, Andrew Singletary, Yisong Yue, and
Aaron Ames. Learning for safety-critical control with
control barrier functions. In Proceedings of the 2nd
Conference on Learning for Dynamics and Control,
volume 120 of Proceedings of Machine Learning Re-
search, pages 708–717. PMLR, 10–11 Jun 2020. URL
https://proceedings.mlr.press/v120/taylor20a.html.

https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v120/taylor20a.html

	Introduction
	Problem Formulation
	Background
	Safety Assurances for Learned Dynamics
	Model Representation and Hamiltonian Formulation
	Ensemble Dynamics Representation

	Experiments
	Inverted Pendulum
	Turtlebot Hardware Experiment

	Conclusion

