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ABSTRACT

Federated Learning (FL) is the state-of-the-art approach for learning from decen-
tralized data in privacy-constrained scenarios. As the current literature reports, the
main problems associated with FL refer to system and statistical challenges: the
former ones demand for efficient learning from edge devices, including lowering
communication bandwidth and frequency, while the latter require algorithms robust
to non-iidness. State-of-art approaches either guarantee convergence at increased
communication cost or are not sufficiently robust to handle extreme heterogeneous
local distributions. In this work we propose a novel generalization of the heavy-ball
momentum, and present FEDHBM to effectively address statistical heterogeneity
in FL without introducing any communication overhead. We conduct extensive
experimentation on common FL vision and NLP datasets, showing that our FED-
HBM algorithm empirically yields better model quality and higher convergence
speed w.r.t. the state-of-art, especially in pathological non-iid scenarios. While
being designed for cross-silo settings, we show how FEDHBM is applicable in
moderate-to-high cross-device scenarios, and how good model initializations (e.g.
pre-training) can be exploited for prompt acceleration. Extended experimentation
on large-scale real-world federated datasets further corroborates the effectiveness
of our approach for real-world FL applications. 1

1 INTRODUCTION

The introduction of the Federated Learning (FL) paradigm in (McMahan et al., 2017) and FEDAVG
algorithm has sparked a considerable interest in learning from decentralized data. In FL, a central
server orchestrates an iterative two-step training process over several communication rounds consist-
ing of: (i) local training on a potentially large number of clients, each having its own private data,
and (ii) aggregation of the updated models into a shared global one. The intrinsic privacy-preserving
nature of FL is appealing because it enables decentralized applications in cases where local data
cannot be shared among clients. Yet, this very same characteristic of FL introduces also some
challenges, because constraining the local optimization to use only the client’s own data may cause
statistical heterogeneity. This has been shown to hamper the convergence of FEDAVG (Hsu et al.,
2019), increasing the number of communication rounds needed to reach a target model quality (Reddi
et al., 2021) and the result at convergence. Recent advances in FL have tried to mitigate this problem,
proposing new methods that possess strong theoretical guarantees even in the presence of a non-iid
distribution of the local datasets but at the cost of increased communication. For instance, SCAF-
FOLD relies on additional control variables to correct the local client’s updates, with experimentally
better performances but with double the communication bandwidth requirements. Other recent algo-
rithms (Karimireddy et al., 2021) require even more communication and also additional computation.
Therefore, these solutions may be unsuitable in a regimen of limited communication resources, which
is particularly relevant for applications with edge devices connected by slow, expensive and unreliable
communication links (Kairouz et al., 2021). Moreover, albeit these methods are theoretically sound,
in this paper we show experimental evidence that they are not sufficiently robust to handle cases of
extreme heterogeneity (see fig. 1), confirming and extending what was found by Varno et al. (2022)
for the specific case of FEDDYN (Acar et al., 2021).

1Code will be released upon acceptance
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Figure 1: Impact of heterogeneity, from ex-
treme (α = 0) to moderate (α = 0.6), on
model quality (up) and convergence speed
(no. of rounds to reach an absolute accuracy
of 70%, bottom). Other algorithms are ei-
ther robust to non-iidness (e.g. MIMEMOM )
or communication-efficient (e.g. FEDDYN ),
while FEDHBM is the least affected.

These considerations motivate the need for an FL
algorithm that is both robust to client heterogeneity
and communication-efficient by design. In this work,
we try to answer the following research question:

Is it possible to robustly speed-up federated optimiza-
tion, even in extreme heterogeneous settings, without
incurring in additional communication and compu-
tational costs?

As a positive answer, we propose FEDHBM , a
novel FL algorithm based on our generalization of the
heavy-ball momentum (Polyak, 1964) to the feder-
ated setting. The underlying idea of FEDHBM is to
exploit the models sent to a client at two subsequent
rounds to calculate, locally on the client, a momen-
tum term over a window of the last τ rounds of Fe-
dAvg. Intuitively, this formulation is equivalent to a
moving average of velocity vectors and not gradients,
thus providing a more direct and robust estimate of
the global optimization trajectory that can be used as
a client-drift correction. Our analysis reveals that the
proposed momentum formulation has superior per-
formance, being remarkably more stable in extreme
heterogeneous scenarios. Additionally, by adding a
local correction term, the presented method achieves
faster convergence and improves the quality of the
final model without any additional communication.

Contributions We summarize the contributions of our work as follows:

• We shed a new light on the problem of communication-efficient FL under extreme statistical
heterogeneity, and propose a framework based on a novel generalized heavy-ball formulation.
We show that existing momentum-based FL algorithms can be regarderd as instances of this
general framework and, within this same framework, we present FEDHBM , a robust and
communication-efficient federated optimization algorithm.

• We perform an extensive empirical validation on common FL vision and NLP tasks, showing
that FEDHBM yields both better model quality and higher convergence speed w.r.t. the
state-of-art, especially in pathological non-iid scenarios. FEDHBM also shows remarkable
flexibility with very low client participation rates, which makes it effective even in cross-
device FL. In particular, we show how good model initializations, such as a pre-trained
model, can be exploited to achieve a substantial acceleration.

• Extending the experimentation to large-scale real-world vision federated datasets, our
analysis reveals robustness issues of even theoretically-proven algorithms. Conversely, these
results corroborate the effectiveness of our approach for real-world FL applications.

Related works The problem of non-iidness. The detrimental effects of non-iid data have been
first observed by (Zhao et al., 2018), who proposed to broadcast a small portion of public data to
reduce the distance between local clients’ distributions and partly recover the loss in performance.
Alternatively, in (Li & Wang, 2019) the public data is kept server-side and used for knowledge
distillation. However, such approaches require having data well suited for the purpose, which is a
strong assumption. Having noticed that the performance loss comes from weight divergence, FedProx
(Li et al., 2020) adds a regularization term to the loss function, penalizing the divergence from
the global model. Nevertheless, in practical cases this was shown to be ineffective in addressing
data heterogeneity Caldarola et al. (2022). Other works (Kopparapu & Lin, 2020; Zaccone et al.,
2022; Zeng et al., 2022; Caldarola et al., 2021) have explored grouping clients based on their data
distribution to alleviate the aggregation of divergent models.

Stochastic Variance Reduction in FL. Another research line applies stochastic variance reduction
techniques in FL (Chen et al., 2021; Li et al., 2019). With SCAFFOLD, Karimireddy et al. (2020)
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for the first time provided convergence guarantees in FL for arbitrarily heterogeneous data. The
authors also shed light on the client-drift experienced in local optimization, which results in slow and
unstable convergence. SCAFFOLD uses control variates to estimate the direction of the server model
and clients’ models: their difference is an estimate of the client drift and can be used to correct the
local update. While well principled in theory and robust in practice, this approach requires double the
communication to send the control variates back and forth. Similarly to (Karimireddy et al., 2020),
we use a corrective term to alleviate the client drift during local optimization but our momentum term
does not require any additional data exchange.

ADMM and adaptivity. Other methods are based on the Alternating Direction Method of Multipliers
(Chen et al., 2022; Gong et al., 2022; Wang et al., 2022). In particular, FedDyn (Acar et al., 2021)
dynamically modifies the loss function such that the model parameters converge to stationary points
of the global empirical loss. Although technically it enjoys the same convergence properties of
SCAFFOLD without suffering from its increased communication cost, in practical cases FedDyn has
displayed problems in dealing with pathological non-iid settings (Varno et al., 2022).

Momentum-based approaches. Authors in (Hsu et al., 2019) found that using a server-side momentum
effectively reduces the gap in accuracy between iid and non-iid scenarios. However, as highlighted in
(Karimireddy et al., 2020), the source of slow and unstable convergence is the client drift experienced
locally. FEDADC (Ozfatura et al., 2021) and FEDCM (Xu et al., 2021), albeit with slightly different
but equivalent formulations, both propose to send the server momentum to clients to correct local
updates. As a more general and theoretically proved framework, authors in (Karimireddy et al., 2021)
proposed MIME to adapt an arbitrary centralized optimization algorithm to cross-device FL, by using
a combination of control-variates and server optimizer state (e.g. momentum) at every client-update
step. These statistics require an extra communication round and increased bandwidth, hence these
algorithms are not communication-efficient. In this work we generalize the heavy-ball formulation
by proposing a window wider than one round for momentum calculation. Within this framework,
existing algorithms can be expressed as special case of our formulation. We investigate the role of a
larger window, experimentally proving it is an enabling factor for dealing with extreme heterogeneity.
We then propose our FEDHBM as a specific instantiation in which the window width being controlled
by client participation leads to an algorithm robust and communication-efficient by design.

Lowering communication requirements in FL. Researchers have studied methods to reduce the
memory needed for exchanging gradients in the distributed setting, for example by quantization
(Alistarh et al., 2017) or by compression (Mishchenko et al., 2019; Koloskova* et al., 2020). In the
context of FL, such ideas have been developed to meet the communication and scalability constraints
(Reisizadeh et al., 2020), and to take into account non-iidness (Sattler et al., 2020). Our work focuses
on the efficient use of the information already being sent in standard FedAvg, so additional techniques
to compress that information remain orthogonal to our approach.

2 PROBLEM SETUP

Notation. Throughout this work we adopt a unified notation both for ours and state-of-art algorithms,
in a way compliant with the first work on FL (McMahan et al., 2017). We denote as K ∈ N+ the total
number of clients who could participate in training, C ∈ (0, 1] as the portion of them that participate
in any round t ∈ [T ], and S and St as respectively the total set of clients and the set of clients
participating in any round t. We indicate as D any data distribution, with Di and di,j respectively
the local distribution and the j-th batch of size B of client i, and E as the number of local epochs.
Conversely, Ji := E

⌈
|Di|/B

⌉
is the number of local steps of client i, and η, ηl indicate the global and

local learning rates. In regards to the objective function, we call fθ the function parameterized by
model parameters θ and L the loss function. More precisely, θti,j is the model of client i at round t

before being presented with batch j, θti,1 := θt−1 the model received by the server and θti := θti,Ji+1
the model trained by the i-th client and sent to the server for aggregation.

Setting Cross-silo FL. In this setting, following the characterization in (Kairouz et al., 2021), the
training nodes are expected to be different organizations or geo-distributed data centers. The number
of such nodes is modest (O(102)) and they are assumed to be almost always available and reliable.
This makes it possible to maintain a state on nodes across two different rounds, and often the use of
stateful clients is an indicator for an algorithm to be designed for this scenario. Usually, the problem
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of FL in such a setting is cast as a finite-sum optimization problem, where each function is the local
clients’ loss function (eq. 1)

Setting cross-device FL. Differently from cross-silo FL, in the cross-device setting the clients are
assumed to be possibly unreliable edge devices, with only a fraction of them available at any given
time. As such, communication is the primary bottleneck. Most importantly, they can be massive in
number (O(1010)), so this motivates the fact that they should be stateless since each client is likely
to participate only once in the training procedure. Following the characterization in (Karimireddy
et al., 2021), being the number of clients enormous, this problem can be modeled by introducing the
stochasticity client-level, over the possibly sampled clients (eq. 2).

CROSS-SILO:

arg min
θ∈Rd

∑
k∈S

|Dk|
|DS |

E(x,y)∼Dk
[L(fθ; (x, y))] (1)

CROSS-DEVICE:

arg min
θ∈Rd

Ei∼S

|Di|∑
i=1

1

|Di|
L(fθ; (xi, yi))

 (2)

Cross-silo and cross-device in practice The two aforementioned setups are however extreme cases,
and real-world scenarios will likely enjoy some features from both settings. Previous FL works that
address cross-silo FL usually experiment with a few hundred devices but account for low participation
and unreliability, and treat communication as the primary bottleneck (Karimireddy et al., 2020; Acar
et al., 2021). However, they are stateful, and this has raised concerns about their applicability in
cross-device: in particular Karimireddy et al. (2021) noticed that the control variates in Karimireddy
et al. (2020) get stale as clients are not seen again during training, and highlights that stateless clients
reflect the different formulation in equations 2, 1. In this work we show that FEDHBM is robust to
extremely low participation rates, and that it gets more effective as each client participates in the
training process. Remarkably, our method succeeds in scenarios where even theoretically strong
methods fail (see figure 2 and table 5).

3 METHOD

Generalized heavy-ball momentum The use of SGD with momentum is a common practice in
deep learning (Krizhevsky et al., 2012; He et al., 2015) as it often provides faster convergence and
better generalization (Yan et al., 2018). It consists in accumulating the directions of reduction of the
objective function to stabilize the optimization dynamics. In this work, we propose a framework for
using momentum in FL based on a novel generalization of Polyak’s heavy-ball formulation (Polyak,
1964), as follows:

CLASSICAL HEAVY-BALL (POLYAK, 1964):

θt ← θt−1 − η∇L(fθt−1) + β(θt−1 − θt−2) (3)

GENERALIZED HEAVY-BALL (GHB ):

θt ← θt−1−η∇L(fθt−1)+
β

τ
(θt−1−θt−τ−1) (4)

Namely, we propose to allow a wider τ -window to be considered to estimate the momentum term.
When setting τ = 1, the above formulation falls back to SGD with Polyak’s formulation, which
is equivalent to a more common one that uses an additional variable to accumulate the previous
directions (Liu et al., 2020; Sutskever et al., 2013). The main intuition behind our method is that the
trajectory of the server updates over a window τ > 1 provides a better estimate for the momentum
term in a federated setting. This proves particularly important in FL because partial participation
and non-iidness of local datasets tend to worsen the estimate of the global gradient. Intuitively, as τ
increases, the momentum term increasingly incorporates information from a broader range of clients.
A key observation is that when τ equals the average period length (e.g. τ = 1

C ), under uniform
client sampling, the momentum term contains the information on the global distribution and hence
is optimal. We experimentally verified this hypothesis, demonstrating its validity in practice as we
showed by purposely varying τ in figure 4.3. Within the GHB formulation, we also show that existing
momentum-based FL algorithms implement the special case of GHB with τ = 1, as it is shown in
Table 1. However, in a FL scenario, implementing the GHB in eq. 4 for an arbitrary value of τ
requires the server to send both models θt−1 and θt−τ−1 to each client, resulting in a communication
overhead of 1.5× w.r.t. FedAvg. Namely, both methods in Xu et al. (2021); Ozfatura et al. (2021)
incur in this overhead. To calculate such momentum in a communication efficient way, we can exploit
the fact that a client participates multiple times in the training procedure, it has available the model
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Table 1: Comparison of recent momentum-base FL algorithms within our generalized heavy-ball
framework: FEDCM and FEDADC implement an equivalent update rule, since the only difference is
a constant scaling on the gradient term (Liu et al., 2020). We generalize the momentum calculation
over a window of τ rounds in GHB , recovering FEDCM (and FEDADC ) when setting τ = 1

METHOD UPDATE RULE IN ORIGINAL WORK EQUIVALENT UPDATE RULE

FEDCM
(Xu et al., 2021)

θti,j+1 ← θti,j − ηl(α∇L(fθt
i,j
, di,j) + (1− α)mt−1)

mt ← − 1

|St|

|St|∑
i=1

(θti − θt−1)

θt ← θt−1 − ηmt

θti,j+1 ← θti,j − ηl(∇L(fθt
i,j
, di,j) + βmt−1)

mt ← βmt−1 +
1

|St|

|St|∑
i=1

Ji∑
j=1

∇L(fθt
i,j
, di,j)

θt ← θt−1 − η

|St|

|St|∑
i=1

(θt − θti)

FEDADC
(Ozfatura et al., 2021)

θti,j+1 ← θti,j − ηl(∇L(fθt
i,j
, di,j) + 1/Jim

t−1)

mt ← 1

ηl|St|

|St|∑
i=1

(θt−1 − θti)− (1− β)mt−1

θt ← θt−1 − ηηlm
t

θti,j+1 ← θti,j − ηl(∇L(fθt
i,j
, di,j) + βmt−1)

mt ← βmt−1 +
1

|St|

|St|∑
i=1

Ji∑
j=1

∇L(fθt
i,j
, di,j)

θt ← θt−1 − η

|St|

|St|∑
i=1

(θt − θti)

MIMELITEMOM
(Karimireddy et al., 2021)

θti,j+1 ← θti,j − ηl(∇L(fθt
i,j
, di,j) + βmt−1)

mt ← βmt−1 +
1

|St|

|St|∑
i=1

∇L(fθt−1 ,Di)

θt ← θt−1 − η

|St|

|St|∑
i=1

(θt − θti)

(NO EQUIVALENT)

GHB (ours)

θti,j+1 ← θti,j − ηl∇L(fθt
i,j
, di,j) +

β

τJi
(θt−1 − θt−τ−1)

θt ← θt−1 − η

|St|

|St|∑
i=1

(θt − θti)

θti,j+1 ← θti,j − ηl(∇L(fθt
i,j
, di,j) + βmt−1)

mt ← 1

τ

 t∑
t′=t−τ+1

(βmt′−1 +
1

|St′ |

|St′ |∑
i=1

1

Ji

Ji∑
j=1

∇L(fθt′
i,j
, di,j))


θt ← θt−1 − η

|St|

|St|∑
i=1

(θt − θti)

θt−τi−1 received at some round t − τi. Hence, choosing τ = τi does not involve additional data
exchange. Let us remark that τi is not hand-tuned, but it is instead determined stochastically by client
participation: in practice, under uniform sampling, on average each client automatically considers a
window of length τi ≈ 1/C. In this sense, letting it be self-tuned resonates with the above intuition
about considering the average period in which each client is sampled once. We show in section 4.3
that this choice is a good trade-off between required participation and performance. We name this
communication efficient instance of our generalized momentum framework LOCAL-GHB (for a
graphical intuition see fig. 5 in appendix).

Algorithm 1: FEDHBM and FedAvg

Require: initial model θ0, K clients, C participation ratio, T
number of total round, B batch size, η and ηl learning rates.

1: for t = 1 to T do
2: St ← subset of clients∼ U(S,max(1,K · C))
3: for i ∈ St in parallel do
4: θt

i,1 ← θt−1

5: for j = 1 to Ji do
6: mt

i,j ← (θt
i,j − θ

t−τi
i ) if θt−τ

i is set else 0
7: sample a mini-batch di,j fromDi

8: θt
i,j+1 ← θt

i,j − ηl∇L(fθt
i,j

, di,j) +β̂imt
i,j

9: end for
10: save locally model θt

i

11: end for
12: θt ← θt−1 − η

∑
i∈St

|Di|
|DSt | (θ

t−1 − θt
i)

13: end for

FEDHBM While a generalized momentum
over a window τ > 1 can better estimate the
local correction to apply for embedding the up-
dated information of other clients, the correction
is not adjusted to the progressive drift of multi-
ple local steps. To counteract this issue, we add a
correction term specific to each client objective,
such that it penalizes the direction of the last
updates at round t− τi with respect to the pro-
gressive updates of local steps at current round t.
This intuitions results in a slight modification of
LOCAL-GHB , namely considering θti,j instead
of θt−1 and θt−τi

i instead of θt−τi−1. As shown
below, this results in an update rule consisting
of two contributions, i) the same τi-momentum
of LOCAL-GHB and ii) a local correction term,

penalizing the incremental updates of the current round with respect to the ones at round t− τi.

We call FEDHBM the addition of such correction term to LOCAL-GHB . More formally, let us
denote by ut

i,j the update performed by client i-th at step j-th for any round t, then FEDHBM update
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rule can be written as follows:
θti,j+1 = θti,j − η∇L(fθt

i,j
, di,j) + β̂i(θ

t
i,j − θt−τi

i ) (5)

= θti,j − η∇L(fθt
i,j
, di,j) + β̂i

(
θt−1 − θt−τi−1 −

j∑
k=1

ut
i,k +

Ji∑
k=1

ut−τi
i,k

)

= θti,j − η∇L(fθt
i,j
, di,j) + β̂i(θ

t−1 − θt−τi−1)︸ ︷︷ ︸
LOCAL-GHB

+ β̂i

(
Ji∑
k=1

ut−τi
i,k −

j∑
k=1

ut
i,k

)
︸ ︷︷ ︸

LOCAL CORRECTION

Let us notice that under uniform client sampling, it holds that Ei∼U(S)[τi]→ τ = 1/C. Consequently,
the momentum factor in equation 5 is set as β̂i := βC/Ji

Communication-efficiency and low participation Our efficient formulation relies on the fact that
each client is selected more than once during training: this is reasonable in cross-silo settings, but may
not hold in extreme cross-device scenarios. In this case, it would be still possible to leverage GHB ,
choosing the value of τ as a hyperparameter (with 1.5× overhead). Even if in this work we focus on
cases that are still tractable using our most efficient formulation 1, we show that large values of τ are
still a robust choice in high cross-device settings: in particular, we show that is possible to consider
a window starting from a common initialization and still recover the full acceleration obtained in
cross-silo (see ablation study in section 4.3). Remarkably, robustness to very low participation rates is
especially noticeable in our large-scale experiments in section 4.4, where other SOTA methods fail.

4 EXPERIMENTAL RESULTS

To validate our method, we run experiments on commonly used FL datasets across computer vision
and NLP tasks. We then extend experimentation to large-scale real-world federated datasets. Com-
paring FEDHBM with existing state-of-art algorithms, we find that: i) it is the most communication-
efficient, ii) it yields the best model quality and iii) it provides a clear advantage in high cross-device
scenarios, especially when starting training from pre-trained models.

4.1 SETUP

Experimental protocol Our experimental baseline includes several state-of-the-art algorithms, in-
cluding momentum-based methods (FEDAVGM Hsu et al. (2019), MIMEMOM and MIMELITEMOM
(Karimireddy et al., 2021)). Since FEDCM and FEDADC correspond to our GHB with τ = 1 and
we report a full ablation on the value of τ (see section 4.3), they are not considered in the main result.
All the results are reported in terms of mean top-1 accuracy over the last 100 rounds, averaged over 5
independent runs.

Datasets and settings We consider image classification and next character/word prediction tasks.
For the former, we use CIFAR-10/100, and for the latter SHAKESPEARE and STACKOVERFLOW .
Following Hsu et al. (2020), for both CIFAR-10/100 we split the total datasets according to a Dirichlet
distribution with concentration parameter α, simulating two extreme levels of heterogeneity, corre-
sponding to α = 0 (NON-IID) and α = 10.000 (IID). For SHAKESPEARE and STACKOVERFLOW we
instead use the predefined splits. We consider two settings: the first one closer to cross-silo, we
use CIFAR-10, CIFAR-100, and SHAKESPEARE , partitioning the datasets in K = 100 parts and
choosing C = 10%. The second is closer to cross-device: we choose K = 500 and C = 1% for both
CIFAR’s and use the natural split of STACKOVERFLOW dataset, corresponding to having K = 40.000
and C = 0.12%. Let us remark that the level of non-iidness we introduce is extreme: in the non-iid
cross-silo setting with CIFAR-100 each client only has samples belonging to a single class. Additional
details about each setting are provided in table 3 of supplementary. We also present results on large-
scale real-world FL vision datasets, LANDMARKS-USERS-160K and INATURALIST-USERS-120K ,
in section 4.4.

Models Unless otherwise mentioned, for CIFAR-10/100 we use the version of LeNet-5 described in
(Hsu et al., 2020), whereas for SHAKESPEARE and STACKOVERFLOW we use the same RNN and
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Table 2: Number of rounds to reach a target accuracy w.r.t centralized of several SOTA FL algorithms
with respect to ours (α→ 0). In round brackets we report the speedup w.r.t FedAvg. Best result is in
bold, second best is underlined.

METHOD
COMM.

OVERHEAD

CIFAR10

CROSS-SILO CROSS-DEVICE

70% 80% 90% 70% 80% 90%

FEDAVG 1x 5520 (1.00x) 9935 (1.00x) - (-) 5610 (1.00x) - (-) - (-)
FEDPROX 1x 5610 (0.98x) 9935 (1.00x) - (-) 5610 (1.00x) - (-) - (-)
SCAFFOLD 2x 2800 (1.97x) 5200 (1.91x) - (-) 2970 (1.89x) 5270 (-) - (-)
FEDDYN 1x 1000 (5.52x) 1810 (5.49x) - (-) 1950 (2.88x) 3180 (-) 7600 (-)
ADABEST 1x 5520 (1.00x) 9935 (1.00x) - (-) 5610 (1.00x) - (-) - (-)
MIME 2x 3410 (1.62x) 5180 (1.92x) 9700 (-) 3840 (1.46x) 7340 (-) - (-)

FEDAVGM 1x 5380 (1.03x) 9500 (1.05x) - (-) 3480 (1.61x) 5370 (-) - (-)
FEDCM 1.5x 5400 (1.02x) 9500 (1.05x) - (-) 3400 (1.65x) 5300 (-) - (-)
FEDADC 1.5x 5400 (1.02x) 9500 (1.05x) - (-) 3400 (1.65x) 5300 (-) - (-)
MIMEMOM 3x 1500 (3.68x) 2350 (4.23x) 4450 (-) 2490 (2.25x) 3470 (-) 7360 (-)
MIMELITEMOM 2x 2080 (2.65x) 3320 (2.99x) 6510 (-) 3090 (1.82x) 4510 (-) 8490 (-)
FEDHBM (ours) 1x 770 (7.17x) 1270 (7.82x) 2560 (-) 1950 (2.88x) 2960 (-) 6510 (-)

LSTM used in Reddi et al. (2021); Karimireddy et al. (2021). Additional details about the datasets
and the splits, the models’ architecture, and the algorithms’ hyperparameters are deferred to the
appendix.

4.2 COMPARATIVE RESULTS
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Figure 2: Comparing LOCAL-GHB and
FEDHBM with other state-of-art ap-
proaches on CIFAR-10/100 (up and bot-
tom respectively) using a ResNet-20, un-
der extreme heterogeneity.

Convergence speed As it is possible to see from ta-
ble 2, FEDHBM is consistently faster than the current
state-of-the-art: it attains 70% of centralized accuracy
with a speedup of 7.17× and 2.88× respectively in cross-
silo and cross-device. Importantly, the reported results
do not consider the additional slowdown introduced in
MIME and SCAFFOLD due to increased communica-
tion: while usually being the second best, they require
additional communication, which in practice nullifies the
speed gains attained. Similar results hold also for CIFAR-
100 and are reported in table 4 of supplementary. This
evidence corroborates our claim that FEDHBM is the most
communication-efficient method.

Final model quality As showed in tables Tables 3 and
4, FEDHBM consistently outperforms the other methods
even when facing extreme non-iid clients’ distributions, in
both settings. FEDDYN improves FEDAVG on CIFAR-10,
but fails to converge for CIFAR-100, in line with the results
reported by Varno et al. (2022). Confirming the findings
of Hsu et al. (2019), server-only momentum improves
performance only in non-pathological scenarios, due to
the client drift. Integrating the server momentum client side, MIMEMOM usually surpasses both
SCAFFOLD and FEDDYN , especially in the presence of high heterogeneity. However these
results are not consistent across architectures, since on our ResNet-20 experiments we found that
MIMEMOM and FEDDYN fail to surpass FEDAVG (see figure 2). Conversely, FEDHBM consistently
outperforms all the other algorithms across all settings, except for the extreme cross-device scenario
of STACKOVERFLOW . This is mainly due to the fact that, since each client participates 1.5 times on
average, FEDHBM most of the time cannot calculate its τi-momentum. As we will show in Sec. 4.3,
it is possible to easily circumvent this limitation, without introducing any communication overhead.
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Table 3: Test accuracy (%) comparison of several SOTA FL algorithms on our cross-silo setting. Best
result is in bold, second best is underlined.

METHOD
CIFAR-10 CIFAR-100 SHAKESPEARE

NON-IID IID NON-IID IID NON-IID IID

FEDAVG 66.12± 0.32 83.11± 0.34 35.56± 0.24 49.74± 0.22 47.31± 0.10 47.08± 0.17
FEDPROX 66.12± 0.32 83.11± 0.34 35.48± 0.30 49.86± 0.22 47.30± 0.10 47.07± 0.17
SCAFFOLD 74.83± 0.20 82.93± 0.25 45.50± 0.12 49.41± 0.40 50.25± 0.10 50.13± 0.10
FEDDYN 70.93± 0.18 83.52± 0.12 NaN 51.95± 0.17 50.72± 0.12 50.80± 0.16
ADABEST 66.12± 0.36 83.11± 0.38 35.56± 0.26 49.74± 0.25 47.31± 0.10 47.08± 0.17
MIME 75.08± 0.55 83.13± 0.46 36.31± 0.49 50.87± 0.36 48.29± 0.16 48.49± 0.15

FEDAVGM 67.58± 0.27 83.60± 0.31 35.22± 0.33 50.68± 0.25 50.00± 0.03 50.41± 0.08
FEDCM 69.01± 0.26 83.39± 0.30 36.04± 0.34 50.18± 0.50 49.16± 0.07 50.45± 0.09
FEDADC 69.12± 0.32 83.41± 0.32 37.88± 0.30 50.16± 0.41 49.23± 0.11 50.42± 0.12
MIMEMOM 80.95± 0.40 83.11± 0.20 48.17± 0.68 50.60± 0.11 48.46± 0.19 48.89± 0.25
MIMELITEMOM 78.79± 0.38 83.23± 0.29 46.00± 0.30 50.66± 0.10 49.10± 0.38 49.39± 0.32
FEDHBM (ours) 81.71± 0.15 83.83± 0.14 50.41± 0.51 51.99± 0.45 51.33± 0.08 51.36± 0.19

Table 4: Test accuracy (%) comparison of several SOTA FL algorithms on our cross-device setting.
Best result is in bold, second best is underlined.

METHOD
CIFAR-10 CIFAR-100 STACKOVERFLOW

NON-IID IID NON-IID IID NON-IID

FEDAVG 66.08± 0.15 77.47± 0.33 35.31± 0.31 48.46± 0.56 24.02± 0.41
FEDPROX 65.92± 0.26 77.42± 0.37 35.32± 0.20 48.55± 0.56 23.88± 0.42
SCAFFOLD 74.20± 0.12 80.77± 0.32 44.59± 0.38 50.35± 0.51 24.77± 0.41
FEDDYN 77.79± 0.73 80.82± 0.74 NaN 50.46± 0.31 24.04± 0.35
ADABEST 65.91± 0.25 77.43± 0.35 35.31± 0.31 48.46± 0.56 24.01± 0.4
MIME 70.90± 0.24 77.64± 0.17 39.43± 0.22 48.30± 0.20 18.82± 2.85

FEDAVGM 73.90± 0.97 82.40± 0.28 38.11± 1.04 50.61± 0.28 24.07± 0.35
FEDCM 74.01± 0.91 81.36± 0.25 38.57± 0.99 50.56± 0.38 24.01± 0.29
FEDADC 73.96± 0.89 81.31± 0.32 38.52± 1.01 50.36± 0.42 23.96± 0.23
MIMEMOM 77.41± 0.74 82.87± 0.22 42.33± 1.47 50.12± 0.29 24.92± 0.59
MIMELITEMOM 76.41± 1.15 82.73± 0.27 41.23± 2.57 49.93± 0.27 23.30± 3.46
FEDHBM (ours) 79.31± 0.45 81.64± 0.18 48.69± 0.95 52.73± 0.29 24.47± 0.40

4.3 ABLATION STUDY

The importance of τ -window momentum in GHB In figure 3 we show that the τ -window
momentum generalization introduced in our GHB formulation is crucial to effectively address
extreme statistical heterogeneity. In fact constraining τ = 1 fails at improving FEDAVG : this
demonstrates that the correction provided by the momentum term is ineffective under extreme
non-iidness when using the standard formulation. Both FEDCM and FEDADC are equivalent to
GHB with τ = 1 (cf. Table 1), hence they lead to the same results. Conversely, a wider window
provides a steep enhancement both in convergence speed and final model quality, showing that
our generalized momentum is the key factor for enabling excellent performance. Secondly our
experiments show that our communication-efficient instance LOCAL-GHB , that allows each client
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Figure 3: Ablation study on the size τ of the window for GHB on CIFAR-10/100 and comparison
with LOCAL-GHB and FEDHBM , under extreme heterogeneity
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to independently calculate its momentum term, reaches the same performance of GHB without the
additional overhead of sending the global model of round t − τ . Finally, thanks to the additional
local correction term (eq. 1), FEDHBM always outperforms all the alternative solutions both in
convergence speed and final model quality (see also figure 2).

Addressing extreme cross-device scenarios Besides overall empirical success, we have shown
that in the extreme cross-device of STACKOVERFLOW FEDHBM has diminished performance. This
is due to the fact that most of the time the momentum term will be equal to zero (line 6 in algorithm
1). To address such limitation, we propose just to use the simpler formulation of LOCAL-GHB the
first time each client is selected, using as past model the initial server model. From the second
time on, each client uses the formulation in eq. 5. Let us note that this does not require additional
communication: when training a model from scratch, it is necessary to only know the initialization
algorithm and the seed for the random number generator to recover the very same model client side.
We denote this variation FedHBM-shared. To further investigate the impact of initial model selection,
we conducted experiments in which clients were allowed to choose a distinct random initialization,
referred to as FedHBM-random. As it is possible to see from figure 4a, both solutions make our
algorithm to recover its full performance gains, underscoring the resilience of our approach.

Use of pre-trained models Following the practice highlighted above, when training from a pre-
trained model it is possible to use it as past model for all clients. The availability of the pre-
trained model does not constitute a communication-hampering factor, since it can be asynchronously
downloaded from a server different than the FL training orchestrator. We experiment by letting the
initial server model have the feature extractor initialized from a pre-trained model (on CIFAR-100 for
CIFAR-10 and vice versa). As illustrated in figures 4b and 4c, this modification allows regaining full
speed from early rounds of training, thereby demonstrating the efficacy of leveraging a well-initialized
model for prompt acceleration.
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Figure 4: Effect of using a shared model as initialization. For CIFAR’s we show the impact of using
a pre-trained backbone, while for STACKOVERFLOW we analyze the use of a random shared or
independent model initialization.

4.4 RESULTS IN LARGE-SCALE REAL-WORLD SCENARIOS

To further corroborate the results presented in controlled scenarios on common FL datasets, in this
section we extended our experimentation to real-world large-scale FL vision datasets, following
Hsu et al. (2020). Results in table 5 show that FEDHBM outperforms SOTA methods even in
large-scale applications. Importantly, it shows superior robustness, as we show failure cases of even
theoretically-backed algorithms (e.g. SCAFFOLD ), despite careful and broad hyperparameter
search. In particular, for MIMEMOM we leveraged the official JAX implementation provided by
authors (see section B.1 for details).

5 CONCLUSIONS

We introduced a framework based on a novel generalized heavy-ball momentum (GHB ) formulation
for FL; in particular, we showed that existing momentum-based FL algorithms are instances of
this general framework. Within it we proposed FEDHBM , which outperforms the state-of-the-art

9
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Table 5: Test accuracy (%) comparison of best SOTA FL algorithms on LANDMARKS-USERS-
160K and INATURALIST-USERS-120K

METHOD COMM.
OVERHEAD

LANDMARKS-USERS-160K INATURALIST-USERS-120K

C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 1%

FEDAVG 1× 60.31± 0.18 38.03± 0.84 45.25± 0.07 47.59± 0.13
SCAFFOLD 2× 61.03± 0.08 0.0 0.0 0.0

FEDAVGM 1× 61.50± 0.22 41.34± 0.38 46.08± 0.09 48.37± 0.07
MIMEMOM 3× 0.0 0.0 0.0 0.0
FEDHBM (ours) 1× 65.41± 0.17 41.64± 0.18 47.33± 0.04 49.80± 0.05

approaches in terms of both model quality and convergence speed. Remarkably, we showed that
FEDHBM is the most robust to statistical heterogeneity and performs favorably even in high cross-
device settings and real-world scenarios. The generality and versatility of the novel generalized
heavy-ball momentum formulation we propose expands its potential applications to a wider range of
scenarios where communication is a bottleneck, such as distributed learning.
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Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
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A VISUALIZATION OF τi-WINDOWS IN FEDHBM

Figure 5: Illustration of momentum term calculation in FEDHBM , considering different τi windows
for different clients. On the horizontal axis are shown the rounds, while on the vertical axis we depict
the clients and the server.

Figure 5 depicts the server-client interactions in standard FL training. First, a global server model
θt−1 is sent to all selected clients in round t, then this model is used as starting point θti,j for local
training, where i indicates the client index and j is the local training step. Finally, at the end of round
t, the model trained by each client, denoted as θti , is sent to the server for aggregation. The number of
rounds between two subsequent times a client i is selected is called τi. Different clients can have
different τi, i.e., “windows”, as depicted in the figure for clients 1 and 2. Moreover, the number of
rounds τi is not fixed for a client, as this may be sampled with varying frequency. However, under
uniform client sampling assumption, we expect to have τi → τ = 1/C.

B EXPERIMENTS

B.1 DATASET AND MODELS

CIFAR-10/100 We consider CIFAR-10 and CIFAR-100 to experiment with image classification
tasks, each one respectively having 10 and 100 classes. For all methods, training images are pre-
processed by applying random crops, followed by random horizontal flips. Both training and test
images are finally normalized according to their mean and standard deviation. As the main model for
experimentation, we used a model similar to LeNet-5 as proposed in (Hsu et al., 2020). To further
validate our findings, we also employed a ResNet-20 as described in (He et al., 2015), following
the implementation provided in (Idelbayev). Since batch normalization Ioffe & Szegedy (2015)
layers have been shown to hamper performance in learning from decentralized data with skewed
label distribution (Hsieh et al., 2020), we replaced them with group normalization (Wu & He, 2018),
using two groups in each layer. For a fair comparison, we used the same modified network also in
centralized training. We report the result of centralized training for reference in Table 6: as per the
hyperparameters, we use 64 for the batch size, 0.01 and 0.1 for the learning rate respectively for the
LeNet and the ResNet-20 and 0.9 for momentum. We trained both models on both datasets for 150
epochs using a cosine annealing learning rate scheduler.

To simulate FL training on those datasets, for both our cross-silo and cross-device settings we split
the total datasets according to a Dirichlet distribution with concentration parameter α, following Hsu
et al. (2020).

In practice, we draw a multinomial qi ∼ Dir(αp) from a Dirichlet distribution, where p describes a
prior class distribution over N classes, and α controls the iidness among all clients: the greater α the
more homogeneous the clients data distributions will be. After drawing the class distributions qi, for
every client i, we sample training examples for each class according to qi without replacement. In
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the main paper, we considered only two levels of heterogeneity: the former corresponds to setting
α = 0 and is used to simulate a pathological non-iid scenario, while the latter uses α = 10k, and
corresponds to having homogeneous local datasets. To further investigate the impact of heterogeneity,
we provide the results for different values of α in section B.4 of this supplementary.

Shakespeare The Shakespeare language modeling dataset is created by collating the collective
works of William Shakespeare and originally comprises 715 clients, with each client denoting a
speaking role. However, for this study, a different approach was used, adopting the LEAF (Caldas
et al., 2019) framework to split the dataset among 100 devices and restrict the number of data points
per device to 2000. The non-IID dataset is formed by assigning each device to a specific role, and
the local dataset for each device contains the sentences from that role. Conversely, the IID dataset is
created by randomly distributing sentences from all roles across the devices.

For this task, we have employed a two-layer Long Short-Term Memory (LSTM) classifier, consisting
of 100 hidden units and an 8-dimensional embedding layer. Our objective is to predict the next
character in a sequence, where there are a total of 80 possible character classes. The model takes in a
sequence of 80 characters as input, and for each character, it learns an 8-dimensional representation.
The final output of the model is a single character prediction for each training example, achieved
through the use of 2 LSTM layers and a densely-connected layer followed by a softmax. This model
architecture is the same used by (Li et al., 2020; Acar et al., 2021).

We report the result of centralized training for reference in Table 6: we train for 75 epochs with
constant learning rate, using as hyperparameters 100 for the batch size, 1 for the learning rate, 0.0001
for the weight decay and no momentum.

StackOverflow The Stack Overflow dataset is a language modeling corpus that comprises questions
and answers from the popular Q&A website, StackOverflow. Initially, the dataset consists of 342477
unique users but for, practical reasons, we limit our analysis to a subset of 40k users. Our goal is to
perform the next-word prediction on these text sequences. To achieve this, we utilize a Recurrent
Neural Network (RNN) that first learns a 96-dimensional representation for each word in a sentence
and then processes them through a single LSTM layer with a hidden dimension of 670. Finally, the
model generates predictions using a densely connected softmax output layer. The model and the
preprocessing steps are the same as in (Reddi et al., 2021).

We report the result of centralized training for reference in Table 6: as per the hyperparameters, we
use 16 for the batch size, 10−1/2 for the learning rate and no momentum or weight decay. We train
for 50 epochs with a constant learning rate.

Given the size of the test dataset, testing on STACKOVERFLOW is conducted on a subset of them
made by 10000 randomly chosen test examples, selected at the beginning of training.

Large-scale real-world datasets As large-scale real-world datasets for our experimentation we
follow Hsu et al. (2020). LANDMARKS-USERS-160K is composed of ≈ 164k images belonging to
≈ 2000 classes, realistically split among 1262 clients. INATURALIST-USERS-120K is composed of
≈ 120k images belonging to ≈ 1200 classes, split among 9275 clients. For both datasets we use a
MobileNetV2 pretrained on ImageNet. These datasets are challenging to train not only because of
their inherent complexity (size of images, number of classes), but also because usually at each round a
very small portion of clients is selected. In particular, for LANDMARKS-USERS-160K we sample 10
clients per round, while for INATURALIST-USERS-120K we experiment different participation rates,
sampling 10, 50 or 100 clients per round. In the main paper we choose to report the participation rate
instead of the number of sampled clients to better highlight that the tested scenarios are closer to a
cross-device setting, which is the most challenging for algorithms based on client participation, like
SCAFFOLD and ours. As per the model, for both datasets we use a MobileNetV2 pretrained on
ImageNet.

Hyper-parameters For ease of consultation, we report the hyper-parameters grids as well as the
chosen values in Table 7. For LANDMARKS-USERS-160K and INATURALIST-USERS-120K we
only test the best SOTA algorithms, that is FEDAVG and FEDAVGM as baselines, SCAFFOLD and
MIMEMOM . For all algorithms we perform E = 5 local epochs, and searched η ∈ {0.1, 1} and ηl ∈
{0.01, 0.1}, and found η = 0.1, ηl = 0.1 works best for FEDAVGM , while η = 1, ηl = 0.1 works
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best for the others. For INATURALIST-USERS-120K , we had to enlarge the grid for SCAFFOLD
and MIMEMOM : for both we searched η ∈ {10−1, 10−1/2, 1} and ηl ∈ {10−2, 10−3/2, 10−1}.
Despite our effort, we did not obtain positive results for these algorithms. Failure cases of these
theoretically-backed algorithms are interesting to analyze, but are out of the scope of this work. For
SCAFFOLD , most likely it is because of very low participation rates, which causes control variates
to become stale, as highlighted in Karimireddy et al. (2021).

Table 6: Test accuracy (%) of centralized train-
ing over datasets and models used. Results are
reported in term of mean top-1 accuracy over the
last 10 epochs, averaged over 5 independent runs.

DATASET ACC. CENTRALIZED (%)

CIFAR-10 W/ LENET 86.48± 0.22
CIFAR-10 W/ RESNET-20 89.05± 0.44
CIFAR-100 W/ LENET 57.00± 0.09
CIFAR-100 W/ RESNET-20 62.21± 0.85
SHAKESPEARE 52.00± 0.16
STACKOVERFLOW 28.50± 0.25

For simplicity, in all our FL experiments we
did not use any learning rate scheduler. In fact,
while using strategies to change the learning
rate as training proceeds is in general benefi-
cial, this would result in a difficult tuning of
hyper-parameters associated with the scheduler,
since the algorithms present very different con-
vergence rates. As such, our result must be read
as a comparison between different algorithms,
and the results of centralized training in Table 6
are intended just as a reference.

Table 7: Hyper-parameter search grid for each combination of method and dataset. The best
performing values are indicated in bold.

METHOD HPARAM CIFAR-10/100 SHAKESPEARE STACKOVERFLOW

LENET RESNET-20

ALL FL wd [0.001, 0.0008, 0.0004] [0.0001, 0.00001] [0, 0.0001, 0.00001] [0, 0.0001, 0.00001]
B 64 64 100 16

FEDAVG
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDPROX
η [1, 0.5, 0.1] - [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] - [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
µ [0.1, 0.01, 0.001] - [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001]

SCAFFOLD η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDDYN
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

ADABEST
η [1, 0.5, 0.1] - [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] - [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001] - [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

MIME
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDAVGM
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9] [0.99, 0.9] [0.99, 0.9] [0.99, 0.9]

MIMEMOM
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9] [0.99, 0.9] [0.99, 0.9] [0.99, 0.9]

MIMELITEMOM
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9] [0.99, 0.9] [0.99, 0.9] [0.99, 0.9]

FEDCM
η [1, 0.5, 0.1] - [1, 0.5, 0.1] -
ηl [1, 0.5, 0.1] - [1, 0.5, 0.1] -
α [0.05, 0.1, 0.5] - [0.05, 0.1, 0.5] -

FEDHBM (ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9]

B.2 SIMULATING CROSS-SILO AND CROSS-DEVICE

In the main paper, we provide experimental results on two different settings, devised to simulate
the characteristics of cross-silo and cross-device FL as described in (Kairouz et al., 2021). For both
settings, we test two different tasks: image classification and NLP. Table 8 illustrates our use of
dataset splits to simulate the two settings.
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Cross-silo FL As per image classification, we use CIFAR-10-100, splitting the dataset among 100
clients and selecting at each round 10% of them. This leads to each device being selected a relatively
high number of times, and so represents the most suitable setting for stateful algorithms, like ours.
For the next-character prediction task, we use LEAF (Caldas et al., 2019) to split the text dataset of
SHAKESPEARE dialogues among 100 clients and select 10% of them at each round.

Cross-device FL As per image classification, we use a different split of CIFAR-10-100, diving the
dataset among 500 clients and selecting at each round 1% of them. In this scenario, each client is
selected 10 times fewer than the cross-silo, and, considering the difficulty of the task, we found this
to be reasonably challenging as a cross-device setting. For the next-word prediction task, our split of
STACKOVERFLOW dataset consists of 40k local datasets assigned to clients, and at each round, we
select 50 of them. This division represents the most challenging scenario for stateful algorithms, since
each client is selected on average every 800 rounds, and this usually leads to stale local information.
In the main paper, we showed that even in this case FEDHBM effectively addresses this kind of
scenario, since the local information is used to calculate a momentum term.

Table 8: Details about datasets’ split used for our experiments

CIFAR-10 CIFAR-100 SHAKESPEARE STACKOVERFLOW

CROSS-SILO CROSS-DEVICE CROSS-SILO CROSS-DEVICE

Clients 100 500 100 500 100 40k
Avg. examples per client 500 100 500 100 2000 428
Number of local steps 8 2 8 2 20 27
Number of clients per round 10 5 10 5 10 50
Total number of rounds 10k 10k 20k 20k 250 1500
Average participation (round) 1k 100 2k 200 25 1.5

Implementation details and practicality of experiments We implemented all the tested algorithms
and training procedures in a single codebase, using PYTORCH 1.10 framework, compiled with CUDA
10.2. The federated learning setup is simulated by using a single node equipped with 11 Intel(R)
Core(TM) i7-6850K CPUS and 4 NVIDIA GeForce GTX 1070 GPUS, running in a sequential
manner (on a single GPU) the parallel client training and the following aggregation by the central
server. Under these conditions, a single FedAvg experiment on CIFAR-10/100 using LeNet-5
takes ≈ 6 (LeNet) and ≈ 7 hours (ResNet-20) to run 10k rounds in our cross-silo scenario. For
SCAFFOLD we use the "option II" of their algorithm (Karimireddy et al., 2020) to calculate
the client controls, incurring almost no overhead in our simulations. Conversely, all MIME’s methods
incur a significant overhead due to the additional round needed to calculate the full-batch gradients,
taking ≈ 12 hours. On SHAKESPEARE and STACKOVERFLOW , FedAvg takes ≈ 22 minutes and
≈ 3.5 hours to run respectively 250 and 1500 rounds.

B.3 ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to the ones reported in the main paper. Namely, we
present the complete results about convergence speed and show additional numerical results for the
experiments in cross-silo using a ResNet-20, as partially presented in Figure 2 of the main paper.

Convergence speed on CIFAR-100 Table 9 completes the results presented in Table 2 of the main
paper, reporting the results on CIFAR-100. As it is shown, FEDHBM is the fastest algorithm for all
the target values of accuracy reported, in both cross-silo and cross-device settings. FEDHBM is 1.76×
and 1.67× faster than MIMEMOM in reaching 60% of target accuracy, respectively in cross-silo and
cross-device settings. Let us note that the reported results do not account for the communication
overhead introduced by other methods, hence the showed gains are lower bounds for the actual
speedups we expect in real scenarios.

Results on ResNet-20 Table 10 reports the final model quality on our cross-silo setting for CIFAR-
10/100 using the ResNet-20. These results confirm the ones reported in the main paper, and prove
generalization to a more complex model architecture on image classification. In particular, SCAF-
FOLD (Karimireddy et al., 2020) confirms its effectiveness in handling heterogeneity, improving
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Table 9: Number of rounds to reach a target accuracy w.r.t centralized of several SOTA FL algorithms
with respect to ours (α = 0) for CIFAR100. In round brackets we report the speedup w.r.t FedAvg.
Best result is reported in bold, second best is underlined.

METHOD
COMM.

OVERHEAD

CIFAR100

CROSS-SILO CROSS-DEVICE

60% 70% 80% 60% 70% 80%

FEDAVG 1x 15540 (1.00x) - (-) - (-) 16270 (1.00x) - (-) - (-)
FEDPROX 1x 16050 (0.97x) - (-) - (-) 16330 (1.00x) - (-) - (-)
SCAFFOLD 2x 7290 (2.13x) 10580 (-) 16410 (-) 8600 (1.89x) 11870 (-) 18220 (-)
FEDDYN 1x - (-) - (-) - (-) - (-) - (-) - (-)
ADABEST 1x 15540 (1.00x) - (-) - (-) 16270 (1.00x) - (-) - (-)
MIME 2x 15370 (1.01x) 19810 (-) - (-) 11870 (1.37x) 17070 (-) - (-)

FEDAVGM 1x 16510 (0.94x) - (-) - (-) 12740 (1.28x) 19370 (-) - (-)
MIMEMOM 3x 4530 (3.43x) 6100 (-) 8810 (-) 8540 (1.91x) 12370 (-) - (-)
MIMELITEMOM 2x 6360 (2.44x) 8810 (-) 13630 (-) 10130 (1.61x) 14320 (-) - (-)
FEDHBM (ours) 1x 2570 (6.05x) 3580 (-) 5930 (-) 5090 (3.20x) 7460 (-) 11870 (-)

Table 10: Test accuracy (%) comparison of several SOTA FL algorithms on our cross-silo setting,
using a ResNet-20. Best result is in bold, second best is underlined.

METHOD
NON-IID IID

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
FEDAVG 61.03 ± 1.06 21.94 ± 0.88 86.54 ± 0.20 58.57 ± 0.40
SCAFFOLD 71.78 ± 1.67 30.73 ± 1.31 86.82 ± 0.31 58.05 ± 0.66
FEDDYN 60.25 ± 3.05 6.02 ± 0.52 86.96 ± 0.33 60.76 ± 0.71
MIME 53.69 ± 2.89 9.00 ± 0.41 86.66 ± 0.15 59.00 ± 0.32

FEDAVGM 65.99 ± 2.24 22.81 ± 0.80 87.74 ± 0.27 58.68 ± 0.89
MIMEMOM 69.25 ± 3.64 21.67 ± 1.11 88.01 ± 0.14 60.46 ± 0.63
MIMELITEMOM 57.03 ± 0.91 14.39 ± 0.58 87.98 ± 0.39 59.22 ± 0.47

LOCAL-GHB (ours) 80.56 ± 0.28 38.17 ± 1.02 88.76 ± 0.15 62.00 ± 0.49
FEDHBM (ours) 83.39 ± 0.34 42.46 ± 0.76 89.23 ± 0.15 62.48 ± 0.48

FEDAVG by approximately 10 accuracy points on both CIFAR-10/100. Instead FEDDYN does not
bring any improvement w.r.t. FEDAVG on CIFAR-10 and it actually performs significantly worse
on CIFAR-100 in the cross-silo setting. Concerning the family of MIME algorithms, we also have
surprising results. In fact, differently from the LeNet results, we observe that with the ResNet-20
the MIME algorithms fail at improving FEDAVG . This is particularly evident on CIFAR-100, where
there is actually a big performance drop both with Mime and MimeLiteMom. Even MimeMom
only achieves results comparable to FEDAVG . Although we may conjecture that our grid search
may be not broad enough if that were the case it would be a behaviour indicative of high sensitivity
to hyper-parameters choice (we also confirmed our results by using the original Jax code provided
by the authors). Conversely, FEDHBM effectively improves FEDAVG by a large margin also on
ResNet-20, both on CIFAR-10/100.

B.4 ADDITIONAL ABLATIONS

Using Nesterov Accelerated Gradient Table 11 includes results with the Nesterov Accelerated
Gradient variant of momentum. As it is possible to notice, in our setting this variation does not lead
to significant differences overall. These results are in line with those obtained by (Ozfatura et al.,
2021).

Ablation on momentum term In figure 6 we show an ablation study on the β term in our
momentum factor β̂i = βC/Ji. In standard momentum, the β factor indicates the decaying rate of
past gradients, and for this reason, it is usually a number lower than 1, with common values being
{0.9, 0.99}. Intuitively, a value closer to 1 will make the momentum accumulate past directions,
while β = 0 means no momentum at all. As graphs show, setting β = 1 leads to more stable
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Table 11: Test accuracy (%) comparison of several SOTA FL algorithms on our cross-silo setting.
Best result is in bold, second best is underlined.

METHOD
CIFAR-10 CIFAR-100 SHAKESPEARE

NON-IID IID NON-IID IID NON-IID IID

FEDAVG 66.12± 0.32 83.11± 0.34 35.56± 0.24 49.74± 0.22 47.31± 0.10 47.08± 0.17
FEDPROX 66.12± 0.32 83.11± 0.34 35.48± 0.30 49.86± 0.22 47.30± 0.10 47.07± 0.17
SCAFFOLD 74.83± 0.20 82.93± 0.25 45.50± 0.12 49.41± 0.40 50.25± 0.10 50.13± 0.10
FEDDYN 70.93± 0.18 83.52± 0.12 NaN 51.95± 0.17 50.72± 0.12 50.80± 0.16
ADABEST 66.12± 0.36 83.11± 0.38 35.56± 0.26 49.74± 0.25 47.31± 0.10 47.08± 0.17
MIME 75.08± 0.55 83.13± 0.46 36.31± 0.49 50.87± 0.36 48.29± 0.16 48.49± 0.15

FEDAVGM 67.58± 0.27 83.60± 0.31 35.22± 0.33 50.68± 0.25 50.00± 0.03 50.41± 0.08
MIMEMOM 80.95± 0.40 83.11± 0.20 48.17± 0.68 50.60± 0.11 48.46± 0.19 48.89± 0.25
MIMELITEMOM 78.79± 0.38 83.23± 0.29 46.00± 0.30 50.66± 0.10 49.10± 0.38 49.39± 0.32

FEDHBM (ours) 81.71± 0.15 83.83± 0.14 50.41± 0.51 51.99± 0.45 51.33± 0.08 51.36± 0.19
FEDHBM - Nesterov (ours) 81.93± 0.15 83.77± 0.13 50.25± 0.60 51.40± 0.64 51.30± 0.10 51.38± 0.20

convergence. Note that this is not in opposition to the common practice of having a momentum factor
β ∈ [0, 1), since our momentum term decays with β̂i rate, so as long C/Ji < 1 it is safe to set β = 1.

Measuring the effect of heterogeneity Figure 7 presents an analysis of the effect of heterogeneity
on i) final model quality (left) and ii) convergence speed (right). The experimental results, while
confirming that it is crucial to perform some form of drift control during local optimization, show
that momentum methods handle extreme heterogeneity scenarios better than methods that rely on
stochastic variance reduction, as SCAFFOLD . Let us notice that the considered algorithms are
robust w.r.t non-extreme heterogeneity: this underlines the need for algorithms that do not sacrifice
communication efficiency for robustness to non-iidness. The right part of the figure shows that
heterogeneity has a strong effect also on convergence speed. In line with the results on the left
graph, MIMEMOM and FEDHBM are the fastest when facing the pathological case of α = 0.
Surprisingly, MIMEMOM is not significantly faster than FEDAVG and FEDAVGM in non-extremely
heterogeneous scenarios; indeed it is slower if taking into account the communication overhead. In
all cases FEDHBM performs best, demonstrating high robustness to heterogeneity from both the
considered perspectives.
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Figure 6: Ablation study on β values for FEDHBM on CIFAR-10/100 in our cross-silo setting

Additional experiments with learning rate decay This paragraph has been added in response
to a reviewer’s concern about the use of learning rate schedules in our experimental validation. In
this paper, we claimed that using learning rate schedules can cause unfair comparison, as different
algorithms exhibit very different convergence rates, especially in non-iid settings. Let us also point
out that many well-established works in FL do not use learning rate schedules (McMahan et al.,
2017; Li et al., 2020; Hsu et al., 2019; Karimireddy et al., 2020; 2021), while some others do (Acar
et al., 2021). Figure 8 shows the accuracy curves of the best FL algorithms from table 10, using
a learning rate decay with decay coefficient fine-tuned for each algorithm, searched in the range
{0.999, 0.9992, 0.9995, 0.9999}. For all the algorithms, the best learning rate decay turned out to be
0.9999. Comparing with performances without learning rate decay reported in table 10, it is possible
to notice that: i) the use of learning rate, in general, does not change the relative performance of
the algorithms and ii) the use of learning rate decay, in these settings, does not help convergence,
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METHOD α = 0 α = 0.1 α = 0.3 α = 0.6

FEDAVG 66.12 79.82 80.90 81.44
SCAFFOLD 74.83 80.72 81.49 81.84
FEDDYN 70.93 80.05 80.89 81.76
FEDAVGM 67.58 80.30 81.21 81.70
MIMEMOM 80.95 82.11 82.37 82.53
FEDHBM (ours) 81.71 82.40 82.65 82.96

METHOD α = 0 α = 0.1 α = 0.3 α = 0.6

FEDAVG - 2130 1800 1620
SCAFFOLD 5610 1140 940 810
FEDDYN 2780 650 570 500
FEDAVGM - 2110 1800 1540
MIMEMOM 2670 1830 1580 1520
FEDHBM (ours) 1410 480 440 390

Figure 7: Ablation study on the effect of several degrees of heterogeneity on performance of SOTA
algorithms and FEDHBM on CIFAR-10. The left figure shows the final accuracy reached by
algorithms, while the right figure shows the number of rounds needed to reach 70% of absolute
accuracy. The tables show the values depicted in the respective picture above. The best results are in
bold, second best are in underlined.
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Figure 8: Experiments with learning rate decay of SOTA algorithms and FEDHBM on CIFAR-
100. The decay coefficient has been searched in the range {0.999, 0.9992, 0.9995, 0.9999} for each
algorithm.

especially in non-iid scenario, where the performances are degraded w.r.t. not applying any schedule.
This is motivated by the fact that a large number of rounds is needed to achieve convergence, and
probably the simple decay strategy, which we adopt from Acar et al. (2021), is not optimal to
practically give an advantage. Other learning rate schedules may be more appropriate, but this largely
expands the needed hyperparameter search, considering that it must be searched separately for each
algorithm.
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