Under review as a conference paper at ICLR 2026

EXCAVATING CONSISTENCY ACROSS EDITING STEPS
FOR EFFECTIVE MULTI-STEP IMAGE EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-step image editing with diffusion models typically requires repeatedly exe-
cuting the inversion—denoising paradigm, which leads to severe challenges in both
image quality and computational efficiency. Repeated inversion introduces errors
that accumulate across editing steps, degrading image quality, while regeneration
of unchanged background regions incurs substantial computational overhead. In
this paper, we present ExCave, a training-free multi-step editing framework that
improves both image quality and computational efficiency by excavating consis-
tency across editing steps. ExCave introduces an inversion sharing mechanism
that performs inversion once and reuses its consistent features across subsequent
edits, thereby significantly reducing errors. To eliminate redundant computation,
we propose the CacheDiff method that regenerates only the edited regions while
reusing consistent features from unchanged background regions. Finally, we de-
sign GPU-oriented optimizations to translate theoretical gains into practical re-
ductions in end-to-end latency. Extensive experiments demonstrate that ExCave
achieves superior image quality and dramatically reduces inference latency, estab-
lishing a new paradigm for accurate and efficient multi-step editing.

1 INTRODUCTION

With the breakthrough progress of diffusion models (Dalva et al.| 2024} |[Esser et al., 2024} Peebles
& Xiel 2023} [Xie et al.l 2024), they have become the state-of-the-art methods for image editing
tasks (Cao et al., 2023} |[Hertz et al., [2022} |Xu et al., [2023)). Diffusion-based image editing methods
are widely applied in various domains, including image inpainting (Hertz et al.| 2022} [Lu et al.}
2023)), image composition (Wang et al.,2024b; |Xue et al., [2022)), and image enhancement (Y1 et al.,
2023} {Zhou et al.| [2023). Such methods typically adopt the inversion—denoising paradigm (Mokady
et al.| 2023 [Wang et al., 2024a)): (1) the inversion stage maps the input image to the corresponding
latent-space noisy image, and then (2) the denoising stage gradually removes noise and modifies the
image structure to generate the edited image.

In practical image editing scenarios, users’ preferences are highly individualized and often uncer-
tain, making it challenging for a single-step editing process to consistently meet specific tastes.
For instance, when adding a cute animal to an image, the single-step process might insert a cat.
However, the user may find the cat insufficiently cute and request further modifications, such as in-
creasing its fluffiness. Consequently, to achieve personalized image editing, users tend to iteratively
refine prompts and perform multiple edits (defined as multi-step editing) until satisfactory results are
obtained. To meet this demand (Joseph et al., [2024; |Zhou et al.| [2025)), existing frameworks must
repeatedly execute the inversion-denoising paradigm. However, this iterative mode poses severe
challenges in both image quality and computational efficiency. Specifically, due to the discretization
and causality of the inversion stage (Wang et al.,[2024a; [Zhu et al.|, [2025)), frequent calls to inversion
introduce substantial errors, progressively degrading image quality with increasing editing steps.
Moreover, such an iterative mode incurs high computational overhead, posing severe challenges for
real-time image editing. Consequently, traditional multi-step editing frameworks fail to achieve sat-
isfactory image quality and generation speed, necessitating the design of an accurate and efficient
multi-step editing framework.

To address this problem, we conduct an in-depth analysis of traditional multi-step editing frame-
works (Joseph et all 2024; Zhou et al., [2025) and identify that their inefficiency stems from

Under review as a conference paper at ICLR 2026

their neglect of region consistency, where some image regions remain unchanged across edit-
ing steps. Specifically, we find that across successive editing steps, only the regions semantically
relevant to the edit prompts necessitate transformation, while irrelevant areas remain consistent.
Fig.[T)illustrates the changes in different image regions during two-step editing. For example, in the
first editing step, the user intends to add a hiking stick to the mountaineer. Consequently, the hand
region, which is highly relevant to the hiking stick, is identified as the edited region (red box in
Fig.[I) and is modified through the inversion—denoising paradigm. In contrast, regions unrelated to
any prompts, such as the mountain area, are regarded as background regions (covered by a blue
box) and remain unchanged.

Y Y
{ ’I Edited Region : ’I Background Region
- —

A woman hiking on a trail with mountains in the i .))
+ holding a hiking stick + wearing sunglasses

distance, carrying a backpack.
Source First Editing Second Editing
Ours 65— S Ours %65 261
MTC-Edit m— .5 EEdit — .
FireFlow mm— g 5 FORA | 483
RF-Solver | 1085 DuCa | 635
StableFlow | 135.5 ToCa | 69.2

[20 40 60 80 100 120 140) 10 20 30 40 50 60 70 80
Editing latency of different editing methods (s) Editing latency of different acceleration methods (s)

Figure 1: An example of ExCave in two-step editing and efficiency comparisons.

Motivated by these consistency properties, we propose a training-free multi-step editing framework,
termed ExCave, achieving improvements in both image quality and computational efficiency. To ex-
ploit region consistency, we propose the inversion sharing mechanism. This mechanism initializes
consistent and inconsistent features through the first inversion stage and then shares them across the
subsequent editing steps. During each editing step, the inconsistent features corresponding to the
edited regions are identified and updated by the denoising stage, ensuring that critical information
is fully preserved. By requiring only one inversion stage regardless of the number of editing steps,
our approach drastically reduces the accumulated errors introduced by repeated inversion. Further-
more, leveraging the acceleration potential provided by region consistency, we develop the CacheD-
iff method, which directly retrieves shared features corresponding to background regions without
performing redundant computations on unmodified areas. For the edited regions, we adopt a sparse
dataflow into the denoising stage to selectively regenerate only the necessary content, thereby avoid-
ing excessive computation. Finally, to facilitate the deployment of ExCave, three GPU optimization
techniques are introduced to convert the theoretical computational gains into actual reductions in
end-to-end latency, thereby promoting its practical use.

In summary, our contributions are as follows: (1) We propose a training-free multi-step editing
framework, ExCave, which leverages the region consistency of multi-step editing to achieve im-
provements in both image quality and computational efficiency. (2) We introduce the inversion
sharing mechanism and the CacheDiff method to harness the consistency of regions, respectively
improving the accuracy and computational efficiency of the multi-step editing. (3) We design three
GPU optimization techniques to translate the computational benefits of ExCave into practical latency
reduction, enhancing its usability. (4) Extensive experiments demonstrate that ExCave improves im-
age quality in multi-step editing while reducing runtime latency.

2 RELATED WORK

2.1 IMAGE EDITING

As an important application in the field of image generation, image editing has been extensively
studied and explored in academia. Common editing approaches follow the noise-addition and noise-
reduction framework (i.e., the inversion-denoising paradigm), where the original image is progres-

Under review as a conference paper at ICLR 2026

sively perturbed by a certain level of noise in the latent space, and then the denoising capability of
diffusion models is utilized to gradually obtain the final edited image.

When the inversion—denoising paradigm is applied to editing tasks such as prompt-guided edit-
ing (Wang et al [2024a; |Cao et al.l 2023 Hertz et al., |2022), image composition (Wang et al.,
2024b; |Lu et al.| [2023)), and image dragging (Shi et al., [2024; [Zhao et al.} 2024)), it usually involves
operations on the attention features, including modification, enhancement, and replacement. For
example, the RF-Solver (Wang et al2024a)) model caches the V matrices of the last few timesteps
during the inversion stage, and in the denoising stage, it replaces the V' matrices generated at the
corresponding timesteps with the cached ones for attention computation, thereby ensuring that the
edited image retains similar to the original image.

2.2 DIFFUSION MODEL ACCELERATION

Low-latency and high-quality image generation is an important research field. Current diffusion
model acceleration approaches mainly fall into two categories: reducing the number of sampling
steps (Xue et al., 2023} Zheng et al.,[2023};|Gonzalez et al.|[2023)) and accelerating internal computa-
tions of diffusion models (Yan et al., 2025} Zou et al., 2025; Selvaraju et al., [2024; |Zou et al.| [2024)).
Since reducing the number of sampling steps significantly affects image quality, it is unsuitable for
image editing. The mainstream solution for reducing internal computation is timestep-level token
caching, which skips the computation of less important tokens in the current timestep by reusing
tokens computed in previous timesteps. Unfortunately, existing caching schemes are designed for
single-step editing and overlook optimization opportunities arising from the consistency properties
of multi-step editing, making them inefficient in multi-step scenarios.

Moreover, existing token caching schemes suffer from the following issues: first, they require users
to pre-mark the locations of edited regions, but editing tasks such as prompt-guided editing can-
not obtain this information in advance, thus greatly limiting applicability. Second, these caching
schemes are essentially variants of approximate computation, which inevitably degrade image qual-
ity. Additionally, they are not optimized for GPUs, so their improvements remain at the theoretical
level and cannot be translated into practical end-to-end latency reduction.

Our proposed multi-step editing framework effectively reduces temporal and spatial redundancy by
reusing features across editing steps, thereby significantly enhancing computational efficiency. In
addition, we propose a series of GPU-oriented optimizations to transform the computational gains
into practical end-to-end latency reduction, strengthening the practicality of our framework.

3 PRELIMINARIES

3.1 IMAGE EDITING PARADIGM

Xo, =X, + (ti —tic1) x Mo(C, Xy, _,,ti—1),i€{1,..,N} (1)

Traditional image editing methods perform editing based on the inversion-denoising paradigm.
Specifically, they first execute the inversion stage, taking the original image X;, as input and grad-
ually adding noise under the constraint of the initial condition C' to obtain the noisy image X, .
As shown in Eqn. [1} given discrete timesteps ¢ = {¢o,...,ty}, the model My predicts the noise
My(C, Xy, _,,ti—1) at each timestep ¢; according to the constraint C, and adds it to the input image
X, , to obtain the output image X;,. Then, in the denoising stage, the model gradually removes

noise from the noisy image Z;, (Z;, = X,) under the editing condition C’ to obtain the edited
image Z;,, as detailed in Eqn. 2}

Zy = Zy, + (tiig — t;) X Mg(C', Zy, t5),i € {N, ..., 1} 2)

The key to realizing the inversion—denoising paradigm is the diffusion model My, which models
the probability flow path from the noise distribution to the real image distribution by learning the
forward simulation system defined by the ordinary differential equation (ODE) dZ; = v(Z;,t)dt.
Owing to the reversibility of the ODE, Mjy can also support the transformation from the real image
distribution to the noise distribution. This property endows image editing methods based on the
inversion—denoising paradigm with high flexibility, making them the mainstream approach.

Under review as a conference paper at ICLR 2026

3.2 RETHINKING TRADITIONAL IMAGE EDITING PARADIGM

Traditional multi-step editing frameworks require repeated execution of the full inversion-denoising
paradigm, which leads to two major challenges: poor image quality and low computational effi-
ciency. Here, we conduct a detailed analysis of the causes of these two issues.

We first analyze the cause of poor image quality. Theoretically, if the editing condition C' " is identical
to the initial condition C, meaning that no edited regions exist, the image should remain unchanged
after processing through the inversion and denoising stages.

7 = denoising(inversion(Z,C),C) 3)

However, due to discretization and causality in the inversion stage, researchers have found that even
in the absence of edited regions, the image cannot be perfectly restored after the inversion and de-
noising stages. This implies that the inversion stage introduces non-negligible errors. Moreover, as
the number of editing steps increases, the errors introduced during the inversion stage progressively
propagate and amplify, ultimately causing image quality to degrade.

Next, we explore the cause of low computational efficiency. Traditional methods regenerate all re-
gions of the image during the denoising stage. Since the edited regions occupy only 14.7% of the
image on average in multi-step editing, regenerating the unchanged background introduces consid-
erable unnecessary computation, severely reducing the efficiency of multi-step editing.

The above issues indicate that traditional multi-step editing frameworks not only introduce non-
negligible errors but also perform excessive redundant computation, resulting in both poor image
quality and low computational efficiency. Hence, it is imperative to develop a more accurate and
efficient editing framework.

3.3 EXPLORING NEW OPPORTUNITIES FROM REGION CONSISTENCY

Since the aforementioned problems are closely related to the background regions, we conduct exper-
iments to analyze their characteristics in depth. We performed multi-step editing on images and ana-
lyzed the intermediate features. The detailed procedures and results are provided in the Appendix D}
The experimental results show that: (1) across different editing steps, the features corresponding to
the background regions exhibit very high consistency between two successive inversion stages; and
(2) within a single editing step, the background features produced by the inversion and denoising
stages are also highly consistent.

Inspired by these findings, we propose a new design principle: reusing features of the background
regions across different editing steps and within a single step. Specifically, we reuse the features of
background regions from the first inversion stage in subsequent inversion stages, thereby effectively
preventing error propagation and amplification during multi-step editing. Furthermore, during the
denoising stage, we reuse the background features obtained from the inversion stage for the denois-
ing stage, thus avoiding redundant regeneration of the background.

4 METHODOLOGY

Based on the design principle in Section [3.3] we propose a multi-step editing framework named
ExCave, which incorporates a feature cache to store shared features. To address the problem of poor
image quality, we introduce the inversion sharing mechanism (Section[4.T). This mechanism initial-
izes the feature cache using the noisy image and background features generated in the first inversion
stage, and then shared them across all editing steps. In this way, the accumulated error introduced by
repeated inversion is greatly reduced. Since edited regions exist in the image, the inversion sharing
mechanism updates the feature cache with the newly generated features corresponding to the edited
regions at each step, ensuring that complete features are retained for the denoising stages. To tackle
the issue of low computational efficiency, we propose the CacheDiff method (Section 4.2). Given
that the background features have already been stored in the feature cache, during the denoising
stage of each editing step, we only identify and regenerate edited regions while directly reusing
the cached background features, which avoids redundant computation on background regions and
significantly improves efficiency. Finally, three GPU optimization techniques (Section 4.3) are in-
troduced to convert the computational gains of ExCave into actual end-to-end latency reduction,
thereby facilitating its practical deployment. Fig.[2|illustrates the overall workflow of ExCave.

Under review as a conference paper at ICLR 2026

a@j Diffusion Model D Edited Region . Background Region @ Edited Feature @ Background Feature @ Noisy Image
3

4 K

-
¥

Winit \Init_Inversion Stage 1

Feature Cache _

N
8 € gs|
Lou% w«:u

SEE Sl 8 E[E] EE]
e [T—— rereegon]| B optce 1o e E T

@

v

2
a(é%
B

] Do |

21% generate.
Denoising Stage 1 Denoising Stage N

Figure 2: The overall workflow of the ExCave multi-step editing framework.

18% generate

14% generate

4.1 INVERSION SHARING MECHANISM (ISM)

The inversion sharing mechanism is designed with the purpose that all editing steps share the infor-
mation generated in the first inversion stage. In this way, only a single inversion stage is required,
which maximally reduces the impact of errors introduced by the inversion stage. As shown in Fig.[2]
considering that the inversion stage provides both the noisy image and intermediate features for the
denoising stage, we need to implement the sharing of these two components separately.

We first examine whether sharing the noisy image affects editing correctness. According to Eqn.[3]
we find that the input noisy image X fN in the denoising stage of the k-th editing step is identical to
the noisy image produced by the inversion stage of the (k + 1)-th step:

XfN = inversion(denoising(XfN ,CF), CF) 4)
This indicates that each editing step produces the same noisy image in its inversion stage, i.e.,

inversion(Z;, C;) = inversion(Z;, C;), (i # j) Q)

Therefore, we consider the noisy image obtained from a single inversion stage sufficient to be di-
rectly shared across all denoising stages. Based on this, in the inversion sharing mechanism, we first
apply inversion stage to the original image once to obtain the noisy image, and then share it with
each denoising stage, thereby enabling the sharing of noisy images across all editing steps.

The challenge of sharing features lies in the fact that, after each edit, the cached features corre-
sponding to the edited regions become outdated, which would lead to incorrect results in subsequent
steps. This implies that the feature cache must be updated during each editing. Given that, accord-
ing to Eqn. [the features in the denoising stage of the k-th editing step is identical to that in the
inversion stage of the (k + 1)-th step, we introduce a neighboring update mechanism, which updates
the feature cache using the features from the denoising stage of step k, thereby restoring the state
of the inversion stage for step k£ + 1. Specifically, during each denoising stage, the features consist
of background features reused from the feature cache and newly generated features for the edited
regions. Therefore, updating the features corresponding to the edited regions into the feature cache
suffices to maintain the correct state of the inversion stage for the next editing step. Through this
reuse-and-update strategy, we maximally realize the sharing of inversion features in multi-step edit-
ing. Notably, an essential prerequisite for updating cache is the accurate localization of the edited
regions, which will be elaborated in detail in Section[#.21]

4.2 CACHEDIFF

Based on the region consistency, it can be inferred that the background regions remain unchanged
during a single editing step, which implies that the background features in the inversion and de-
noising stages are identical. Accordingly, we propose the CacheDiff method, which reuses the
background features from the inversion stage during denoising, thereby avoiding regeneration of
the background. We first propose the Visual-Semantic Fusion (VS Fusion) localization method
(Section F.2.) to accurately locate the edited regions in the denoising stage. Then, we design a
reuse-based sparse dataflow for the denoising stage (Section4.2.2), which generates only the edited
regions while directly reusing the cached background features.

L N S

Se® a9

—

Under review as a conference paper at ICLR 2026

Fig.] illustrates the overall process of CacheDiff. Specifically, in the inversion stage, CacheDiff
stores the input matrix of each timestep and the Key-Value pairs of each layer into the feature cache.
During denoising, CacheDiff first locates the edited and background regions at the beginning of
each timestep using VS Fusion. Then, it computes only the edited regions and directly reuses the
background features from the feature cache. Notably, CacheDiff updates the feature cache with
the Key-Value pairs of the edited regions, which is necessary to enable the neighboring update
mechanism in Section .11

4.2.1 VISUAL-SEMANTIC FUSION LOCALIZATION METHOD (VS FUSION)

Algorithm 1: VS Fusion Method Algorithm 2: Reuse-Based Sparse Dataflow.
Input: Cross attention map S € RNX M; Input: image tokens I
P CrreyN—1, localization mask M ask;
Current image tokens {15} "5 previous key-value pairs { KP, VP};
Previous image tokens {If}j.v=701; Output: edited image tokens I¢;

updated key-value pairs { K, V% }.
1 I€ <+ select(I, Mask);
// sparse attention module
{Q% K, V} « qkv(I€);
{K? V®} « select({KP,VP}, Mask):
K « concat(K¢, K®, Mask);
V < concat(Ve,V?, Mask);
S+ Q° x KT
Ifmp «— Softmaxz(S°) x V;
// sparse MLP module
Ifpp & FC1(I5,,)
9 If,, < GELU(If,,,):
10 I° « FCa(If,,,):
11 returnI¢, K, V;

semantic threshold Pg;
visual threshold P, ;
Output: localization mask M ask.
// Generate semantic mask
Saug «— 0;
for i <— 010 M do
t Savg < Savg + Sl il

Savg + Savg/]\/f;
Ms < Savg > Ps;
// Generate visual mask
for i <— Oto N do
| Myli] « S, [I£[k] — IP[k]]:

My < My > Py
Mask <— Mg N My;
return M ask;

NS U AW N

®

To generate only the edited regions in the denoising stage, how to accurately locate them becomes
a critical challenge. We observe that edited regions are determined by the editing prompts. There-
fore, the relevance between image tokens and editing prompts can roughly indicate whether a token
located within the edited regions, thereby enabling coarse-grained localization. Additionally, the
difference between the input image of each denoising step and the corresponding image from the
inversion stage can directly reflect the visual changes of each image region, which helps us deter-
mine the edited regions at a fine-grained level. Based on the above observations, we propose the
Visual-Semantic Fusion Localization method, whose implementation is described in Alg.

4.2.2 REUSE-BASED SPARSE DATAFLOW

After locating the edited regions, another key challenge is how to perform computation exclusively
on these regions during the denoising stage. To address this, we first use the feature cache to store
inversion-stage features for the reuse of background regions during denoising. We observe that the
Key-Value pairs corresponding to the background contain complete feature information. Therefore,
during inversion, CacheDiff stores the Key-Value pairs of each layer at each timestep in the feature
cache for subsequent reuse according to the localization mask.

Then, we design a reuse-based sparse dataflow, as illustrated in Alg. [2] In the sparse attention
module, CacheDiff loads the background key tokens & and background value tokens V' from the
feature cache (line3) and combines them with edited tokens to form the complete key matrix K
and value matrix V' (line4-5). Afterwards, K and V are combined with the edited query matrix
Q¢ to perform the attention computation (line6-7). In a similar manner, the sparse MLP module is
implemented to compute solely on the edited tokens.

4.3 GPU OPTIMIZATION TECHNIQUES

Through the inversion sharing mechanism and the CacheDiff method, ExCave improves image qual-
ity while significantly enhancing computational efficiency. However, when ExCave is integrated into
baseline models, we find that the theoretical benefits are not fully translated into actual end-to-end
latency reduction. Using Nsight System to profile GPU performance, we identify three major bot-
tlenecks. The first issue is that allocating memory for Key-Value pairs stalls the GPU. Since we use
CPU main memory as the feature cache, ExCave frequently calls CudaHostAlloc during the initial
allocation of Key-Value pairs in the inversion stage, causing the GPU to be blocked and stay idle for

Under review as a conference paper at ICLR 2026

along time. The second issue is that, in the default stream, accesses to the feature cache are executed
serially with matrix multiplication operations. Consequently, the frequent cache accesses during the
denoising stage significantly increase end-to-end latency. Finally, because ExCave accesses each
Key-Value pair at most once during the denoising stage, this extremely low access frequency leads
to frequent cache misses, further increasing latency.

Pre-Allocation of Memory: To avoid GPU stalls caused by initial memory allocations of Key-
Value pairs, we propose pre-allocating memory technique. Specifically, leveraging the bidirectional
communication capability of the PCle bus, the GPU issues memory allocation requests to the CPU
simultaneously as the model weights are loaded from CPU to GPU. In this way, we avoid memory
allocation during the inversion stage, thereby improving GPU utilization.

Multi-Stream Parallelism: To mitigate the latency introduced by serial execution, we employ
multi-stream parallelism to overlap cache accesses with GPU computations. We create three
streams: a compute stream for model inference, a KV load stream for loading features of the back-
ground regions, and a KV store stream for writing back features of the edited regions. By running
these three streams in parallel, most of the cache access latency is successfully hidden.

Data Prefetching and Delayed Write-Back: After deploying multi-stream parallelism, idle periods
still exist in the compute stream, which arises from the cause that, within a single block, cache
accesses and matrix operations have data dependencies (e.g., K must be loaded before computing
Q x KT, leaving insufficient room for data prefetching inside the block. To address this, we propose
an inter-block data prefetching and delayed write-back technique, which decouples intra-block data
dependencies through asynchronous data access, enabling full parallelism between cache access and
matrix operations. Specifically, in block 7, we prefetch K fH and V;_'il required by block ¢ + 1, and
pass K and V;¥ to block i + 1 for write-back. Since block i does not require K5 |, V;77, and block

i+ 1 does not require K7, VF, this asynchronous data access successfully decouples dependencies,
thereby enabling full parallelism between cache accesses and matrix computations.

5 EXPERIMENTS

B - -
, 83

s

+

ource s

g

Ours n asaCtrf FireFlow r MTC-Edit
" = E . E

Editing Steps

Figure 3: Qualitative comparison of multi-step editing results against baseline methods.

5.1 EXPERIMENTAL SETUP

Baselines. We compare our method with two categories of popular approaches: (1) Rectified Flow-
based methods, including FireFlow (Deng et all, [2024)), StableFlow (Avrahami et all, [2025), RF-
Solver (Wang et all, [20244), and MTC-Edit (Zhou et all, [2025); and (2) Diffusion-based methods,
including PnP (Tumanyan et al.| 2023) and MasaCtrl (Cao et al., [2023). In addition, we compare
computational efficiency with the SOTA acceleration method EEdit 2025)), which skips
the computation of less important tokens in the current timestep by reusing tokens computed in pre-
vious timesteps. In total, we evaluate seven widely adopted image editing methods, whose inference
pipelines are built upon official implementations from Hugging Face or GitHub repositories.

Datasets. We adopt the PIE-Bench Benchmark 2023) for image editing. Since the original
PIE-Bench benchmark does not support multi-step image editing, we extend it to support five-step

editing by following the prior work MTC-Edit (Zhou et al.l 2025)).

Under review as a conference paper at ICLR 2026

Implementation Details. Our method is implemented on FLUX-Dev (Labs, 2024), following the
same framework as other Rectified Flow-based methods. We adopt the same hyperparameters as
RF-Solver (Wang et al., [2024a), using 15 diffusion steps and setting the guidance values to 1 and 2
for inversion and denoising stages respectively. All experiments are conducted on an NVIDIA A100
GPU. More implementation details are provided in the Appendix.

Metrics. To comprehensively assess our approach, we adopt seven metrics spanning four evaluation
dimensions. Overall image quality is evaluated using PSNR (Huynh-Thu & Ghanbari, [2008) and
FID (Heusel et al.l |2017), while background consistency is examined with LPIPS (Zhang et al.,
2018)), SSIM (Wang et al.,|2004) and MSE. The CLIP-T score (Radford et al.,|2021) is employed to
measure text—image alignment. Finally, inference latency is reported to characterize computational
efficiency.

5.2 EDITING RESULTS

Qualitative Comparison. We conduct extensive qualitative comparisons between our method and
existing editing approaches, as shown in Fig. [3] Existing methods generate images that are visu-
ally similar to the sources but fail to preserve background consistency. In contrast, our framework
shares the same background features across multiple editing steps, thereby effectively maintaining
consistency in the background. Moreover, as the editing steps increase, existing methods struggle
to maintain text-image alignment. For instance, the methods aiming at improving the efficiency
of multi-step editing, such as EEdit, show a sharp decline in fidelity after three editing steps. By
mitigating errors introduced during the inversion stage, the inversion sharing mechanism in our
framework ensures better text—image alignment and higher image quality, thereby supporting more
editing steps while maintaining editing quality.

Table 1: Comparison of image quality across various methods in multi-step editing.

Method ‘ Overall Quality ‘ Background Consistency ‘ Text Alignment
‘ PSNR1 FID | ‘ LPIPS _ g—2 4 SSIM ., o T MSE_ ., o ‘ CLIP-T 1

PnP 7.23 77.24 85.03 2647 18.39 20.59
MasaCtrl 7.43 78.09 86.18 25.75 19.21 20.09
FireFlow 8.35 45.25 84.62 27.65 16.52 21.19
StableFlow 8.34 51.09 86.67 28.03 17.81 21.31
RF-Solver 8.22 49.33 83.91 27.15 16.92 21.29
MTC-Edit 8.55 43.79 84.34 28.24 16.87 21.33
EEdit 7.96 66.96 90.34 24.15 17.41 21.09
Ours ‘ 8.39 40.43 ‘ 82.41 28.38 16.84 ‘ 21.33

Quantitative Comparison. As shown in Table [I] our method achieves significantly better per-
formance on background consistency metrics such as LPIPS, SSIM, since it allocates computation
only to the edited regions and reuses cached background feature. Furthermore, in terms of text
alignment, our method achieves higher CLIP-T score than existing approaches, since our CacheDiff
method accurately identifies prompt-relevant regions and prioritizes their feature computation. We
also achieve competitive results on PSNR and FID, as the proposed inversion sharing mechanism
effectively inhibits error propagation during the diffusion process, thereby preserving image quality.

Table 2: End-to-end inference latency (s) across various methods for multi-step editing.

Method | Two Steps | Three Steps | Four Steps | Five Steps
‘ Inversion Denoising Total ‘ Inversion Denoising Total ‘ Inversion Denoising Total ‘ Inversion Denoising Total
PnP 342.82 214.08 556.91 514.23 321.12 835.35 685.64 428.16 1113.81 857.05 535.19 1392.25
MasaCtrl 5.61 10.64 16.25 8.42 1591 24.33 11.27 21.24 32.51 14.03 26.51 40.54
FireFlow 11.82 11.65 23.47 17.74 17.48 35.22 23.62 23.24 46.86 29.52 29.09 58.61
StableFlow 9.61 45.46 55.07 14.43 68.15 82.58 19.27 90.82 110.09 24.06 113.51 137.57
RF-Solver 21.83 21.64 43.47 3275 3241 65.16 43.62 43.24 86.86 54.57 54.01 108.58
MTC-Edit 7.85 7.61 15.46 11.72 11.47 23.19 15.63 15.23 30.86 19.56 19.01 42.57
EEdit \ 9.79 7.63 17.42 \ 14.72 12.05 26.77 \ 19.36 15.21 34.57 \ 24.44 19.12 43.56
Ours \ 10.91 7.14 18.05 \ 10.93 9.52 20.45 \ 10.92 1231 23.23 \ 10.94 15.38 26.62

Computational Efficiency. Table 2| reports a comparison of end-to-end inference latency. By gen-
erating only the edited regions and directly reusing background features across editing steps, the
CacheDiff method substantially reduces the computational overhead of multi-step editing. Conse-
quently, our method averagely achieves an 65.8% reduction in end-to-end latency compared with
conventional methods, demonstrating the efficiency of ExCave. In addition, compared with EEdit,

Under review as a conference paper at ICLR 2026

ExCave can achieve greater latency reduction as the number of editing step increases. This is be-
cause EEdit optimizes only within single-step editing and neglects the opportunities provided by
consistency across editing steps, resulting in suboptimal speedup. Moreover, ExCave delivers higher
quality than EEdit, as verified by Fig.[3]

5.3 ABLATION STUDY

We conduct extensive ablation studies to analyze the contributions of the inversion sharing mecha-
nism and CacheDiff method to editing quality and computational efficiency.

Method | Overall Quality | Background Consistency | Text Alignment
| PSNRT FIDL | LPIPS o 5l SSIM_ o1 MSE_, ol | CLPT?H
Baseline 8.32 53.33 80.91 27.15 16.22 21.29
Ours w/o CacheDiff 8.37 50.73 80.70 29.38 14.84 21.39

Table 3: Ablation study on inversion sharing mechanism.

Ablation of the Inversion Sharing Mechanism (ISM). As illustrated in Fig. 4] incorporating
the inversion sharing mechanism substantially improves background consistency. Specifically, our
method perfectly preserves the appearance of the dog, whereas the baseline method introduces white
spots on its eyebrows, demonstrating that our method provides a superior visual experience. This
improvement stems from the inversion sharing mechanism, which enables the background regions
of the original image to be shared across editing steps, thereby preventing error propagation from
affecting these regions. Quantitative results in Table3|further support this observation, showing con-
sistent improvements across multiple metrics, thereby confirming that the inversion sharing mecha-
nism effectively reduces errors during editing.

Ablation of the CacheDiff method. Table [
presents the changes in inference latency with and |

Inference Latency

without the CacheDiff method. By skipping redun- Method

dant regeneration of background regions, CacheDiff | Inversion Denoising Total
performs computation only on 27% of pixels, lead- Baseline 54.57 54.01 108.58
ing to a latency reduction of 70.9% in the denois- Ours w/o ISM 54.13 15.72 69.84

ing stage. This demonstrates that CacheDiff signif- Table 4: Ablation study on CacheDiff.
icantly enhances computational efficiency in multi-
step editing.

Editing Steps Background Consistency

.. iText Alignment

Baseline

Denoising Speedup .~~~

- Image Quality
[—owm |
Ours w/o s
Ours w/o CacheDift

Inversion Speedup *

Our w/o
CacheDiff

L wC.Edi
+wearing a red Speedup et

Source Become slim

. ome s bandapa
Figure 4: The qualitative ablation study Figure 5: A multi-dimensional Comparison
about inversion sharing mechanism. over different configurations and methods.

Fig.[5|presents a comprehensive comparison between our method and others across multiple dimen-
sions. Our method achieves consistent advantages in image quality, background consistency, text
alignment, and speedup, thereby validating its effectiveness.

6 CONCLUSION

We present ExCave, a framework that leverages region consistency to improve both the precision and
efficiency of multi-step editing. By introducing the inversion sharing mechanism and the CacheD-
iff method, our framework suppresses error accumulation and avoids redundant computation. Ex-
periments show that it achieves higher image quality and faster editing than existing approaches,
demonstrating its practical value.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on optimizing multi-step image editing and thus does not have direct ethical im-
plications. However, the capabilities of image generation and editing should be carefully considered
to prevent misuse for producing harmful content such as gore or violence.

REPRODUCIBILITY STATEMENT

We provide additional experiments and implementation details in Appendix A, C, D, and E, in-
cluding further experimental results and the proof of Section The source code is available at
https://anonymous.4open.science/r/ExCave-D623.

REFERENCES

Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 7877-7888, 2025.

Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Mas-
actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 22560-22570,
2023.

Yusuf Dalva, Kavana Venkatesh, and Pinar Yanardag. Fluxspace: Disentangled semantic editing in
rectified flow transformers. arXiv preprint arXiv:2412.09611, 2024.

Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, and Fan Tang. Fireflow: Fast inver-
sion of rectified flow for image semantic editing. arXiv preprint arXiv:2412.07517, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, Hatem Hajri, Nader Masmoudi, et al. Seeds:
Exponential sde solvers for fast high-quality sampling from diffusion models. Advances in Neural
Information Processing Systems, 36:68061-68120, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in image/video quality as-
sessment. Electronics letters, 44(13):800-801, 2008.

KJ Joseph, Prateksha Udhayanan, Tripti Shukla, Aishwarya Agarwal, Srikrishna Karanam, Koustava
Goswami, and Balaji Vasan Srinivasan. Iterative multi-granular image editing using diffusion
models. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp- 8107-8116, 2024.

Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
diffusion-based editing with 3 lines of code. arXiv preprint arXiv:2310.01506, 2023.

Black Forest Labs. Flux. https://github.com/black—-forest—-labs/flux, 2024.

Shilin Lu, Yanzhu Liu, and Adams Wai-Kin Kong. Tf-icon: Diffusion-based training-free cross-
domain image composition. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 2294-2305, 2023.

10

https://anonymous.4open.science/r/ExCave-D623
https://github.com/black-forest-labs/flux

Under review as a conference paper at ICLR 2026

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6038—-6047, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-
forward caching in diffusion transformer acceleration, 2024. URL https://arxiv.org/
abs/2407.01425.

Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF Tan,
and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based image edit-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 8839-8849, 2024.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1921-1930, 2023.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024a.

Yibin Wang, Weizhong Zhang, Jianwei Zheng, and Cheng Jin. Primecomposer: Faster progressively
combined diffusion for image composition with attention steering. In Proceedings of the 32nd
ACM International Conference on Multimedia, pp. 10824-10832, 2024b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600—
612, 2004.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffu-
sion transformers. arXiv preprint arXiv:2410.10629, 2024.

Sihan Xu, Yidong Huang, Jiayi Pan, Zigiao Ma, and Joyce Chai. Inversion-free image editing with
natural language. arXiv preprint arXiv:2312.04965, 2023.

Ben Xue, Shenghui Ran, Quan Chen, Rongfei Jia, Binqiang Zhao, and Xing Tang. Dccf: Deep com-
prehensible color filter learning framework for high-resolution image harmonization. In European
conference on computer vision, pp. 300-316. Springer, 2022.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Advances in Neural
Information Processing Systems, 36:77632-77674, 2023.

Zexuan Yan, Yue Ma, Chang Zou, Wenteng Chen, Qifeng Chen, and Linfeng Zhang. Eedit:
Rethinking the spatial and temporal redundancy for efficient image editing. arXiv preprint
arXiv:2503.10270, 2025.

Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Diff-retinex: Rethinking low-
light image enhancement with a generative diffusion model. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 12302-12311, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

11

https://arxiv.org/abs/2407.01425
https://arxiv.org/abs/2407.01425

Under review as a conference paper at ICLR 2026

Xuanjia Zhao, Jian Guan, Congyi Fan, Dongli Xu, Youtian Lin, Haiwei Pan, and Pengming Feng.
Fastdrag: Manipulate anything in one step. Advances in Neural Information Processing Systems,
37:74439-74460, 2024.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. In International conference on machine learn-
ing, pp. 42390-42402. PMLR, 2023.

Dewei Zhou, Zongxin Yang, and Yi Yang. Pyramid diffusion models for low-light image enhance-
ment. arXiv preprint arXiv:2305.10028, 2023.

Zijun Zhou, Yingying Deng, Xiangyu He, Weiming Dong, and Fan Tang. Multi-turn consistent
image editing. arXiv preprint arXiv:2505.04320, 2025.

Tianrui Zhu, Shiyi Zhang, Jiawei Shao, and Yansong Tang. Kv-edit: Training-free image editing for
precise background preservation. arXiv preprint arXiv:2502.17363, 2025.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching, 2024. URL https://arxiv.
org/abs/2412.18911.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion trans-
formers with token-wise feature caching, 2025. URL https://arxiv.org/abs/2410.
05317.

APPENDIX

A IMPLEMENTATION DETAILS
Experiments were conducted on a machine with the following hardware and software specifications:

A.1 HARDWARE SPECIFICATIONS
* Architecture: x86 64
* CPU Op-Modes: 32-bit, 64-bit
* Address Sizes: 48 bits physical, 48 bits virtual
* Byte Order: Little Endian
* Total CPU cores: 80
* On-line CPU(s) List: 0-79
* Vendor ID: AuthenticAMD
* Model Name: AMD EPYC 7443 24-Core Processor
* CPU Family: 25

A.2 SOFTWARE SPECIFICATIONS
e Operating System: Ubuntu 22.04.3 LTS
* CUDA: 11.8
* Python: 3.10.16
* huggingface-hub: 0.31.2
* numpy: 2.2.5
* torch: 2.4.1

¢ transformers: 4.51.3

12

https://arxiv.org/abs/2412.18911
https://arxiv.org/abs/2412.18911
https://arxiv.org/abs/2410.05317
https://arxiv.org/abs/2410.05317

Under review as a conference paper at ICLR 2026

B METRICS

Our experiments adopt a set of widely used metrics for image quality, prompt adherence, and effi-
ciency. Frechet Inception Distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS)
are feature-based similarity metrics, which are computed using pretrained neural networks. Lower
values indicate higher similarity. We use InceptionV3 for FID and AlexNet for LPIPS. Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean Squared Error (MSE) are
pixel-space similarity metrics. Higher PSNR and SSIM, and lower MSE, indicate higher similarity.
CLIP-T measures the alignment of generated images with the input prompts using a pretrained CLIP
model. Higher scores indicate stronger adherence. In our experiments, we use the clip-vit-base-
patch16 model. Inference latency quantifies the runtime overhead associated with model inference.
Higher values indicate greater computational cost.

C MORE EXPERIMENTS

In this section, we present more quantitative results, demonstrating the effectiveness of our method
for multi-step editing in terms of both editability and structural preservation.

PnP MasaCtrl FireFlow StableFlow RF-Solver MTC-Edit EEdit
» - B [

Editing Steps

Figure 6: More qualitative comparison of multi-step editing results against baseline methods.

MasaCtrl FireFlow StableFlow RF-Solver MTC-Edit EEdit

g

]
g
H
<
H
g
H
u
N
£
5
H
3
:
N
s
£
5
H
3
B
N
N
§
3
3
H
:
3
¥
H
H
H
2
7

g

£
5
&
=
H
g
2
F}
3
3|
T
H

Editing Steps

3
B

Figure 7: More qualitative comparison of multi-step editing results against baseline methods.

D EXPERIMENTAL SUPPORT FOR SECTION[3.3]

We design experiments to conduct an in-depth analysis of the characteristics of regional consistency.
Specifically, we perform multi-step editing on the input images using the baseline model RF-Solver
and save its intermediate features for analysis. Afterwards, we compare the feature similarity be-
tween the inversion and denoising stages within the same editing step, as well as between the in-
version stages of adjacent editing steps. We then visualize these statistics across multiple timesteps
using heatmaps to reveal general patterns.

13

Under review as a conference paper at ICLR 2026

Key Matrix

1.0

08 o
06 12

>24
04 3¢
02 48

R —
RISy Dovigdins sl
timestep=3 >24 é"
36 BN T
i 6

agg o o
0.0
1.0

0,
12

timestep=6 >24

0
12

=24
36,
a8

timestep=9

21 42 63 8
x

o

12

»24

36,
48

timestep=12

21 42 63 8
x

cosine similarity L1 distance

21 a2 63 8302
x

L2 distance

Value Matrix

08 o
12|
>24
36
a8, "

06 12
>24

36
02 48

0 21 42 63 8
x

08 o

12 B
24}
36|
a8

06 12
7 »24
04 56

02 48;

21 42 63 8
x
1.0
- 08 o
d § 06 12
24 3 »24
04 55

21 42 63 02 4891 42 63 8
X 00 X
1.0

08 o
06 12

>24
04 3¢

21 42 63 02 48

x

(

21 a2 63 8302
00 X

cosine similarity L1 distance L2 distance

Figure 8: Token-level similarity of key matrix and value matrix between inversion stage and denois-

ing stage.

Key Matrix

timestep=3
P 04 .
0.2 02 48)
0.0 X
10
08
06
timestep=6 04 loa
0.2 0.2 48
00 0.0
10 10
flos 08
106 06
timestep=9 >24

los 12
»24 =24
36 104 36

timestep=12 >24

21 42 63 ag02 BoTo1an 63 agi02 8
x 0.0 x 00

cosine similarity L1 distance

>4 '
36 {
12

10.4 361

02 48]

21 42 63
x

21 42 63
x

21 42 63 8y0?
x

L2 distance

Value Matrix

>24
36
a8,

48

21 42 63 8y0? 0 21 42 63 8
X x

0 21 42 63 8
X

0.4

021 42 63 8502
X

0.0

cosine similarity L1 distance 12 distance

Figure 9: Token-level similarity of key matrix and value matrix between different inversion stages.

The results are shown in Fig. [§|and Fig. [9] where higher cosine similarity (deeper red) and lower
L1/L.2 distance (deeper blue) are better, indicating higher similarity. We find that intermediate fea-
tures corresponding to background regions (i.e., consistency regions) exhibit consistently high simi-
larity between the inversion and denoising stages within the same editing step, suggesting that these
features can be safely reused across these two stages. Similarly, as illustrated in Fig. |9} background
features also demonstrate high similarity across inversion stages of different editing steps, indicating
that feature sharing is also feasible across multiple inversion stages.

E TRENDS OF IMAGE QUALITY METRICS WITH INCREASING EDITING STEPS

Fig. [T0] presents the changes of PSNR across different editing steps. It can be find that the PSNR
degradation of our method remains relatively small as the number of editing steps increases, consis-

14

Under review as a conference paper at ICLR 2026

b OUTs b EECit MTC-Edit e FireFlow === StableFlow MasaCtrl e PP e OUrS ot EE MTC-Edit =mtbomm FireFlow === StableFlow MasaCtrl s PP

Editing Step Editing Step

Figure 10: PSNR across different editing steps. ~ Figure 11: FID across different editing steps.

tently ranking among the Top-2 methods. These results clearly demonstrate the competitiveness of
ExCave.

Fig. [[T]illustrates the trend of FID with respect to editing steps. We observe that the FID growth of
our method is the slowest, maintaining Top-1 performance in most cases. This advantage arises from
our inversion sharing mechanism, which effectively suppresses error accumulation across multiple
editing steps and thereby preserves higher image quality.

095 | e Ours —e—dit MTC-Edit == FireFlow ——e—StableFlow MasaCtrl === PnP ag [0un e MTC-Edit === FireFlow o= StableFlow MasaCtrl e PP
.34

032

09 [-
03
085
2 5 028
S o8 & 026
024

022

0.7 0.2

Editing Step Editing Step

Figure 12: LPIPS across different editing steps. Figure 13: SSIM across different editing steps.

o3 e QTS b EEC MTC-Edit = FireFlow = StableFlow MasaCtrl et PP e Qurs e EE it MTC-Edit =t FireFlow == StableFlow MasaCtrl PP
. 216

019 214
21.2
0.18
" —_—— —< -
2 017 & 208
= > 4 =1
———— © 206

1 2 3 4 5 1 2 3 4 5
Editing Step Editing Step

Figure 14: MSE across different editing steps. Figure 15: CLIP-T across different editing steps.

Fig.[12} Fig.[T4]report the changes of LPIPS, SSIM, and MSE. Our method consistently ranks among
the best across all editing steps and its superiority becomes more pronounced as the number of
editing steps increases. This can be attributed to our effective exploitation of regional consistency
across multiple editing steps, which enables the sharing of background features from the original
image and thus achieves superior background consistency.

Finally, Fig.[I5]shows the trend of CLIP-T scores with respect to editing steps. Our method achieves
consistently stable and leading CLIP-T performance, which can be explained by the proposed VS
Fusion method. By accurately identifying regions relevant to the editing prompts and focusing
generation on those areas, our method attains improved text-image alignment.

F THE USE OoF LLMS

We use the large language models (LLM) to polish the writing. Specifically, we first write the entire
paper independently, and then employed LLMs to refine sentences that are informal or insufficiently
academic. LLMs are primarily used in Sections 3 and 4. For example, in the last paragraph of Sec-
tion 3.2, we write: Hence, it is imperative to develop a more accurate and efficient editing frame-
work. The initial version is Therefore, it is necessary to design a more accurate and efficient editing

15

Under review as a conference paper at ICLR 2026

framework. We consider the initial version do not adequately convey a sense of urgency, so the LLM
refinement replace necessary with imperative. Moreover, since Therefore appears frequently in the
original text, we adopt the LLM’s suggestion to substitute it with Hence.

In summary, we mainly use LLMs to adjust sentence structures and word choices, without allow-
ing them to modify the paper’s content. Importantly, we do not use LLMs to retrieve references
or generate research ideas, since hallucinations can lead to incorrect references or unreliable sug-
gestions. Moreover, we regard idea generation as the core of our work, which must be carried out
independently by authors.

16

	Introduction
	Related Work
	Image Editing
	Diffusion Model Acceleration

	Preliminaries
	Image Editing Paradigm
	Rethinking Traditional Image Editing Paradigm
	Exploring New Opportunities from Region Consistency

	Methodology
	Inversion Sharing Mechanism (ISM)
	CacheDiff
	Visual-Semantic Fusion Localization Method (VS Fusion)
	Reuse-Based Sparse Dataflow

	GPU Optimization Techniques

	Experiments
	Experimental Setup
	Editing Results
	Ablation Study

	Conclusion
	Implementation Details
	Hardware Specifications
	Software Specifications

	Metrics
	More Experiments
	Experimental Support for Section 3.3
	Trends of Image Quality Metrics with Increasing Editing Steps
	The Use of LLMs

