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Abstract

In this paper, we reveal that most current efficient multimodal fine-tuning methods
are hindered by a key limitation: they are directly borrowed from LLMs, often
neglecting the intrinsic differences of multimodal scenarios and even affecting the
full utilization of all modalities. Inspired by our empirical observation, we argue
that unimodal adaptation and cross-modal adaptation are two essential parts for the
effective fine-tuning of MLLMs. From this perspective, we propose Multimodal
low-rank Adaptation (MoKkA), a multimodal-aware efficient fine-tuning strategy
that takes multimodal characteristics into consideration. It compresses unimodal
information by modality-specific parameters while explicitly enhancing cross-
modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive
experiments cover three representative multimodal scenarios (audio-visual-text,
visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2,
Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of
the proposed method. Ablation studies and efficiency evaluation are also conducted
to fully asses our method. Overall, we think MokA provides a more targeted
solution for efficient adaptation of MLLMs, paving the way for further exploration.
The project page is at https://gewu-1lab.github.io/MokA,

1 Introduction

Large language models (LLMs) have gained remarkable popularity due to their impressive ability to
understand and generate content. To extend their capabilities to more general multimodal scenarios,
recent advancements of Multimodal Large Language Models (MLLMs) [38l 140, 20] have focused
on aligning other modalities, such as images, with text tokens, thereby equipping LLMs with the
ability to interpret and process content of other modalities. However, due to the massive parameter
scale of LLMs, fully fine-tuning such models on downstream tasks is computationally prohibitive
and inefficient in most cases.

A promising direction has emerged in the field of LLM fine-tuning before, which involves selectively
updating a subset of parameters rather than the full model. These Parameter-Efficient Fine-Tuning
(PEFT) strategies have seen widespread adoption and have been successfully extended to the fine-
tuning of MLLMs. In particular, LoRA [12]] and its variants, which assume that over-parameterized
models in fact reside on a low intrinsic dimension, have been broadly applied [6} 7} [39]], demonstrating
strong adaptability and efficiency. However, the development of efficient multimodal LLLM fine-
tuning is at present obscured by a “dark cloud”: most current methods are directly borrowed from
LLMs, often overlooking the fundamental differences of multimodal scenarios. Indeed, prior studies
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Figure 1: (a): Common MLLM fine-tuning framework. (b): Sketch of classic LoORA module for
MLLM fine-tuning. (c¢): Partial modality inference setting. Take tokens of visual modality as an
example. (d-f): Partial modality inference performance of LoRA. Full modality: Regular case where
all multimodal tokens are processed by the LoRA module. Text-/Audio-/Visual-/Speech-only: Only
text/audio/visual/speech tokens are passed through the LoRA pathway at the prefilling stage during
inference. Results are based on LLaMA?2.

in multimodal learning have demonstrated that the inherent heterogeneity of different modalities
necessitates modality-specific utilization strategies, rather than a fully unified way [24, 34].

To this end, we are motivated to observe the fine-tuning efficacy of the widely used LoRA strategy. A
common MLLM fine-tuning framework is shown in encoded representation of non-text
modality (e.g., audio or visual) is first aligned with the text embedding space via a projector (usually
Q-former or MLP), after which the resulting multimodal tokens are integrated and processed jointly by
the LLM. In the efficient fine-tuning case, the LLM backbone is frozen, and parameters of additional
LoRA modules are optimized. provides the sketch of classic LORA module. A and B
matrices are shared across different modalities.

To further observe how well tokens of different modalities are utilized, we conduct partial modality
inference experiments. The training stage retains the original setting, wherein all multimodal tokens
are processed by the LoORA module. Specifically, we evaluate the model’s performance when only
tokens from a selected modality are passed through the LoRA adaptation pathway at the prefilling
stage during inference. As illustrated in visual token inference is used as an example.
And it should be noted that the pre-trained weights still receive full tokens of all modalities. Results
shown in|[Figure Td-1f demonstrate a surprising phenomenon across three representative multimodal
scenarios, audio-visual-text case, visual-text case, and speech-text case. Text token inference can
achieve quite comparable performance to the regular full modalities case. However, Non-text token
inference (e.g., audio or visual) leads to a noticeable drop in performance.

The above results suggest that the optimization of all-modality-shared LoRA parameters is overly
influenced by text tokens, resulting in non-text tokens being less effectively utilized during fine-
tuning. Although these all-modality-shared parameters implicitly improve cross-modal interaction,
this phenomenon reveals the need to consider individual modality during fine-tuning. This fact
inspires us that unimodal and cross-modal adaptation are equally critical in the fine-tuning of
MLLMs, which is mostly ignored as mentioned above.

To this end, we propose the Multimodal low-rank Adaptation (MokA), a fine-tuning strategy designed
to achieve unimodal adaptation while explicitly enhancing cross-modal interaction. While MokA
retains the widely adopted low-rank decomposition matrices, it redefines the roles of matrices A
and B to better accommodate multimodal characteristics. Specifically, matrix A is designed to be
modality-specific, allowing each modality to compress information independently and thus avoid



interference from others. After that, a cross-attention mechanism is introduced to strengthen the
interaction between text tokens and non-text tokens, emphasizing task-relevant features. Finally, a
shared multimodal matrix B projects the unimodal low-rank representations into a unified space,
facilitating effective alignment across modalities. These three parts jointly ensure both unimodal and
cross-modal adaptation. In experiments, noticeable improvement in multiple multimodal scenarios
demonstrates the effectiveness of our method. We think MokA represents a first-step attempt at
multimodal-aware adaptation, and further possibilities exist under our basis that simultaneously
accounts for both unimodal and cross-modal adaptation.

2 Method

2.1 Rethinking of low-rank adaptation in the multimodal scenario

LoRA [12] is based on the assumption that the weight updates during fine-tuning lie in a subspace
of low “intrinsic rank.” Rather than updating the entire pre-trained weight matrix directly, LoRA
introduces a low-rank decomposition approach, where the update AW € R%** to a pre-trained matrix
Wo € R4¥F is parameterized as the product of two much smaller matrices: B € R?¥*" and A € R™**,
with » < min(d, k). The resulting fine-tuned weight matrix W’ is given by Wy + AW = W, + BA.
Therefore, for h = Wyx, the modified update forward pass yields:

h =Wox+ AWx = Wyx + BAx. (1)
Here, Wy remains fixed during training, while only the matrices A and B are learned. To ensure
stable training, A is initialized using a uniform Kaiming distribution [11]], and B is initialized to
zero, leading to an initial update AW = BA = 0 at the beginning of fine-tuning. LoRA [12]] and its
variants have been extensively employed in the parameter-efficient fine-tuning of MLLM:s [6), (7} 39].
These methods typically employ shared parameters to uniformly process tokens from all modalities,
implicitly facilitating cross-modal interactions during adaptation. However, our empirical results
reveal that such shared tuning leads to limited utilization of all modalities. This highlights the need to
consider individual modality during fine-tuning.

To better support multimodal adaptation, we argue that both unimodal and cross-modal updates
should be considered during fine-tuning. In other words, the model should be able to learn from each
modality independently while also ensuring the cross-modal interaction. Therefore, the design of
the update mechanism should ensure that both types of information are properly captured during the
forward pass:

h:VV()X-i-AWX:I/V()X_|_Aw[xm1;xm2;_“ ;an]’ @)
= Wox + [AWlxml ; AWQsz; cees AWnan] 4 AWCI‘OSS[Xml : sz; . ;an]’ 3)
unimodal adaptation cross-modal adaptation

where 7 is the number of modalities. x™ is the token sequence of modality i. AW; is the unimodal
update parameters of modality 7, and AW g5 is cross-modal update parameters.

2.2 Multimodal low-rank Adaptation (MokA) ,L
Based on the above perspective, we propose Multimodal |
low-rank Adaptation (MokA) strategy, a parameter- s
efficient fine-tuning method tailored for the multimodal t
nature of MLLMs. Considering the efficiency advantage of SR o
LoRA, MokA retains the core idea of low-rank adaptation, Weights Attention
but redefines the roles of the projection matrices A and B /T\
to better reflect the characteristics of multimodal scenarios.

. . .. . . TextA  AudioA Visual A
By unimodal compression and explicitly reinforcing cross- ' ' 1
modal interaction, MokA enables both unimodal and cross-
modal adaptation, leading to more effective fine-tuning _T—

of MLLMs. The overall structure of MokA is depicted
inFige 2
Concretely, MoKA has three core parts: unimodal matrix A, Figure 2: Illustration of MokA strategy.

task-centric cross-attention, and shared multimodal matrix
B. Here we take the audio-visual-text case as an example, and other cases can be well extended.



2.2.1 Unimodal matrix A

For an arbitrary pretrained weight Wy in the LLMs, we suppose its input sequence is x =
[ 28; - saf s aysal; - say el 2l ] Here {Ni}icqq,,y is the token length of
modality 7. ¢ is the first token of modality a, and so on. For simplicity, we use x* to denote the
token sequence of modality i. Then the whole input sequence can be rewritten as x = [x%; x"; x'|.

To ensure the well compression of unique unimodal information and avoid the interruption from others,
matrix A is designed to be individual for each modality, allowing tokens from different modalities
to be processed independently through their respective parameter. The compressed sequence after
matrix A is:

Ax = [A"x"; AVx"; AlxY), %)
where {A;};c{q,v,1} is the parameter of modality . After processing by unimodal matrix A, embed-
dings of each modality are individually mapped into a low-rank space, without the potential influence
of other modalities.

2.2.2 Task-centric cross-attention

In the fine-tuning process of MLLMs, text and non-text tokens typically serve distinct roles. Specifi-
cally, under supervised instruction tuning, text tokens often function as task descriptions or prompts,
whereas non-text tokens (e.g., audio or visual inputs) primarily convey contextual information upon
which the task is based. The following example illustrates a typical instruction format:

<audio> <visual> Please answer the question: which clarinet makes the sound first?

In this case, <audio> and <visual> provide the event

information. “Please answer the question: which clarinet Text oken e e
makes the sound first?” describes the concrete task for -
LLMs. Successfully answering such questions relies on o ( )Soﬂm@ —EoE—
effectively capturing the semantic association between the aven

task description conveyed by text tokens and the event | — I

cues provided by non-text tokens. Therefore, it becomes
intuitive and necessary to explicitly emphasize the most
relevant cross-modal information to support accurate rea-
soning. Since unimodal information has been extracted
individually after the processing of unimodal matrices A, this stage is well-suited for introducing
cross-modal interaction. Additionally, as the token embeddings are projected into a low-rank space,
the computational burden of performing cross-modal interaction is significantly reduced. Hence,
we place the cross-attention part after the low-rank compression to ensure both effectiveness and
efficiency. The concrete attention mechanism is illustrated in[Figure 3| and is conducted as follows:

Figure 3: Cross-attention part of MokA.
Take the visual token as an example.

Aa a At t\ T
Att (A“x“,Atxt,Atxt) = softmax M Alxt, 5)
\/;
Av v At t\ T
Att (A”x“,AtXt,Atxt) = softmax M Alx!t 6)
\/77
where r is the rank. Then, the enhanced audio and visual tokens are:
A%XT + N\ At (Aax“, Atxt, Atxt) , @)
AUXY + A\ Att (A”x”, Alx?t, Atxt) , 8)

where A\, and )\, are the hyperparameters that control the strength of explicit cross-modal interaction.
Finally, the sequence after cross-attention is:

Ax = [A%X" + NoAtto 3 AUXY + A\pAtt, 44 A'X). 9)
Here we use Att; ;. to simply denote the cross-attention between modality ¢ and text. It should be
noted that while we adopt a cross-attention module to explicitly enhance the interaction between text
and non-text tokens, alternative designs that serve a similar purpose can also be considered. Further
discussion is provided in In addition, in MokA, linear projections (W, Wy, and W) are
not included in the cross-attention module, since low-rank matrices A of each modality actually can
be considered as the linear projection in attention in this case. We also provide more discussion and

comparison in|Appendix B



2.2.3 Shared multimodal matrix B

After unimodal compression and explicit cross-modal interaction enhancement, it becomes crucial to
project the resulting unimodal representations into a shared space to facilitate cross-modal alignment.
To this end, a shared multimodal matrix B is employed to perform this projection. The final output of
the MokA pathway is thus given by:

BAx = [B(A*X" + M\oAtta i 4); B(A'X" + A\ Att, . ,); BA'X']. (10)

2.2.4 Overview

In conclusion, in MokA, for a pretrained weight matrix W, € R4¥F  its update AW € RIXF jg
parameterized as the product of much smaller matrices: B € R4*" and {A* € RT'Xk}ie{a,u’t}, with
r < min(d, k). For input sequence x, the forward pass yields:

h = Wox + AWx = Wox + AW [x*; x"; x"], (11)
= Wox + [B(A“X® + MoAtta s 4); B(A'XY + A\Att, . ); BA'X'], (12)
= Wox + [BA"x"; BA"x"; BA'x"] + [A\o BAtta 1 1; Ao BAtt, 1 450N, ], (13)

unimodal adaptation cross-modal adaptation

where Oy, denotes the zero vector of dimension Ny, since text-token remains unchanged after cross-
attention. During fine-tuning, Wy remains unchanged, with A’ and B being subject to optimization.
Also, A? is initialized using the uniform Kaiming distribution [[11]], while B is initialized to zero. It
leads to an initial update AW = 0 at the beginning of fine-tuning, to provide a smooth starting point.

Based on[Equation T3] MokA ensures both unimodal and cross-modal adaptation, offering a more
tailored solution for fine-tuning MLLMs.

3 Training and evaluation details

3.1 Implement details

Our framework follows the common MLLM framework as illustrated in but with MokA
strategy. Text input is processed by the corresponding LLM tokenizer, and non-text input is first
encoded by its encoder, and then aligned with the text embedding space via a projector. Here we use
Q-former followed by a two-layer MLP as the projector. Finally, all tokens are fed into LLM.

For the visual branch of audio-visual-text and visual-text scenarios, we use CLIP-ViT/L-14 [25]] as
the visual encoder to extract the last layer patch level embedding of each frame or image. For the
audio branch of the audio-visual-text scenario, we use the BEATS [5] encoder to extract features. For
the speech branch of the speech-text scenario, OpenAl’s Whisper model [26] is used. The number of
query tokens in Q-Former of all branches is 32.

3.2 Training procedure and benchmarks

Our experiment of MLLM follows the widely used two-stage training paradigm: pre-training stage
that aims to cross-modal alignment and supervised instruction-tuning for downstream tasks.

Pre-training: LLM backbone is frozen. Projectors are trainable for cross-modal alignment. For
the visual branch of audio-visual-text and visual-text scenarios, trainable modules are trained on
video-LLaVA [19] dataset, including the video captioning and the image captioning tasks. For the
audio branch of the audio-visual-text scenario, trainable modules are trained on AudioCaps [14]
dataset on the audio captioning task. For the speech branch of the speech-text scenario, trainable
modules are trained on GigaSpeech-M [4] dataset on the speech recognition task. During pre-training,
using the AdamW optimizer with a cosine learning rate schedule. The initial learning rate is 1le — 4
with a warmup ratio of 0.03.

Instruction-tuning: At this stage, we train the model on downstream tasks in different scenarios.
Trainable parameters include all projectors and our MokA module. For the audio-visual-text case,
the model is fine-tuned on the train set of MUSIC-AVQA [17], and AVE [30], respectively. For
the visual-text case, the model is fine-tuned on the LLaVA-Instruct-150K [20] and a 12k subset of
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Figure 4: Framework of baselines that also follow our multimodal-aware basis, yet relying on more
parameters and offering limited cross-modal interaction.

A-OKVQA. For the speech-text case, the model is fine-tuned on the LibriSpeech [23], using the
annotations provided by [28]]. Rank of low-rank matrices is 4. The remaining settings are the same as
the first stage.

Inference: To well assess the effectiveness of our fine-tuning strategy, we evaluate our trained models
on in-domain test sets or public benchmarks. Details are provided in the supplementary materials.
e Audio-visual-text: in-domain test set of MUSIC-AVQA and AVE dataset.
o Visual-text: public benchmarks: MME,,cep [91, MMBench [22], POPE [18]], SEED-Bench [16].
e Speech-text: public benchmarks: MMAU ;i —speech [27)] as well as the foundation subset of
AIR-Benchgpeech—en [37].

Large Language Model. For all three cases, LLaMA-2-7b-Chat [31], LLaMA-3-8B-Instruct [10],
and Qwen2-7B-Instruct [36] are used as the LLM base model, respectively. For the audio-visual-text
case, Qwen2.5-VL-7B-Instruct [2] is also used as the LLM base model. Throughout the training
process, weights of LLM are kept frozen. More experiments of Qwen3 are provided in

4 Experiments

4.1 Audio-visual-text scenario

To validate the effectiveness of our MokA fine-tuning strategy, we compare it with LoRA [12]]
and its variants, including multiple LoRA, LORAMOoE [8l], DoRA [21]], HydraLoRA (29|, Uni-modal
LoRA [1]. In addition, we also compare with two additional baselines, whose frameworks are provided
in[Figure 4] Concretely, the Uni LoORA + MM LoRA strategy employs unimodal low-rank matrices
A to extract unimodal information independently, while incorporating an additional fully shared
multimodal LoRA module to implicitly promote cross-modal interaction. The Uni LoRA + MM
LoRA + Gate variant further introduces a gating mechanism to dynamically integrate the outputs of
the Uni LoRA and MM LoRA branches for improved fusion. These two baselines incorporate our
multimodal-aware basis that ensures both unimodal and cross-modal adaptation, but involve more
parameters and offer limited cross-modal interaction. Based on the results in we can have
the following observations:

Our proposed MokA method achieves the superior overall performance across multiple audio-visual-
text datasets, consistently outperforming other baselines and compared methods. While MokA
introduces a slight increase in parameter scale compared to standard LoRA, this does not account for
the observed performance improvements. Based on the multiple LoRA, a baseline that uses
3 A matrices and B A matrices, underperforms both standard LoRA and MokA. Simply increasing
the number of low-rank matrices does not necessarily lead to better fine-tuning performance. This
suggests that MokA’s advantage stems not from parameter quantity, but from its insurance for both
unimodal and multimodal adaptation.

The mentioned two baselines, Uni LoRA + MM LoRA and Uni LoRA + MM LoRA + Gate, achieve
competitive results. These results further support the validity of our multimodal-aware basis that
unimodal and cross-modal adaptation are both essential for the fine-tuning of MLLMs. However, de-
spite their effectiveness, MokA achieves superior results with fewer parameters and further enhanced
cross-modal interactions.

In addition, Qwen2.5VL with LoRA outperforms both LLaMA?2 and Qwen2 under the LoRA fine-
tuning setting. But when using MokA, the performance of Qwen2.5VL is slightly lower than that
of LLaMA2 and Qwen2. A possible reason is that the official visual connector in Qwen2.5VL,



Table 1: Evaluation results of LoRA, its variants, and our MokA on audio-visual-text datasets,
MUSIC-AVQA and AVE. #A and #B are the number of low-rank matrices. Here N = 3 refers to the
number of modalities.

LLM Method MUSIC-AVQA AVE #A  #B
LoRA [12]] 73.41 69.84 1 1

Multiple LoRA 72.66 71.77 N N

LoRAMOE [8] 73.57 72.81 N N

DoRA [21] 73.97 72.18 1 1

LLaMA2 HydralLoRA [29] 74.12 72.27 1 N
Uni-modal LoRA [1] 74.37 71.44 N N

Uni LoRA + MM LoRA 74.43 7236 | N+1 2

Uni LoRA + MM LoRA + Gate 74.94 7356 | N+1 2

¥ MokA 75.71 74.68 N 1

LoRA 72.83 72.13 1 1

Multiple LoRA 72.71 72.11 N N

LoRAMOE [8] 73.48 72.83 N N

DoRA [21]] 73.29 7291 1 1

Qwen2 HydralLoRA [29] 73.14 72.59 1 N
Uni-modal LoRA [[1] 73.62 73.14 N N

Uni LoRA + MM LoRA 74.09 7335 | N+1 2

Uni LoRA + MM LoRA + Gate 74.71 7396 | N+1 2

¥ MokA 75.26 74.48 N 1

LoRA 73.00 71.38 1 1

Multiple LoRA 73.13 71.27 N N

LoRAMOE [8] 73.28 7191 N N

DoRA [21] 73.37 71.06 1 1

Qwen2.5-VL HydraLLoRA [29] 73.04 71.26 1 N
Uni-modal LoRA [1]] 73.46 72.11 N N

Uni LoRA + MM LoRA 73.75 7227 | N+1 2

Uni LoRA + MM LoRA + Gate 73.81 7268 | N+1 2

¥ MokA 74.87 73.14 N 1

LoRA 78.31 76.91 1 1

LLaMA3 Multiple LoRA 78.63 77.02 N N
¥ MokA 79.15 77.81 N 1

which serves a similar role to the projector used in our other LLM variants, remains frozen during
fine-tuning. As a result, only the newly introduced audio branch is trainable, which may have limited
the full potential of our method. But MokA still introduces noticeable improvement in this case,
compared to other methods. In summary, our method achieves considerable improvement across
various LLM backbones, demonstrating its broad versatility.

4.2 Visual-text and speech-text scenarios

To further validate our method across a broader range of multimodal scenarios, we conducted
experiments beyond the challenging audio-visual-text case. Specifically, our method is further
verified on two representative multimodal scenarios: visual-text and speech-text. For these tasks, we
adopted three different LLM backbones, LLaMA?2, LLaMA3, and Qwen2. The corresponding results
are presented in[Table 2] and [Table 3] The experimental results demonstrate that our method achieves
stable and consistent performance gains across multiple benchmark datasets, further confirming its
effectiveness. This indicates the versatility of MokA in handling different multimodal combinations
and LLM architectures.




Table 2: Evaluation results of LoRA, its variants, and our MokA on visual-text benchmarks. #A and
#B are the number of low-rank matrices. Here N = 2 refers to the number of modalities.

LLM Method MME,., .., MMBench POPE SEED-Bench| #A #B
LoRA 908.52 50.64 70.28 39.71 1 1
Multiple LoRA 882.87 49.83 68.20 38.44 N N
LoRAMOE [8] 938.52 51.98 71.15 39.13 N N
DoRA [21] 786.47 51.31 71.07 38.96 1 1
LLaMA2 HydralLoRA [29] 774.47 47.33 70.87 38.81 1 N
Uni-modal LoRA [1]] 992.31 51.98 72.24 39.27 N N
Uni LoRA + MM LoRA 972.87 50.96 73.39 39.74 N+1 2
Uni LoRA + MM LoRA + Gate 988.37 52.01 73.48 3991 N+1 2
¥ MokA 1025.86 52.74 74.23 40.45 N 1
LoRA 1062.34 57.89 81.17 55.25 1 1
Multiple LoRA 1103.28 57.01 80.96 55.13 N N
LoRAMOE [8] 1157.39 57.29 81.29 56.39 N N
DoRA [21] 1024.42 56.19 80.75 55.03 1 1
Qwen2 HydralLoRA [29] 1098.25 56.42 81.34 54.67 1 N
Uni-modal LoRA [1]] 1189.47 57.39 81.12 56.21 N N
Uni LoRA + MM LoRA 1191.81 57.17 81.46 56.84 N+1 2
Uni LoRA + MM LoRA + Gate| 1201.49 57.91 81.72 57.18 N+1 2
¥ MokA 1292.37 59.06 82.33 58.10 N 1
LoRA 1030.64 68.45 77.47 56.34 1 1
LLaMA3 Multiple LoRA 1032.74 68.79 78.73 56.06 N N
¥ MokA 1072.67 69.90 79.27 56.60 N 1
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Figure 5: Partial modality inference performance of MokA w/o cross-attention. Full modality:
Regular case where all multimodal tokens are processed by the MokA module w/o cross-attention.
Text-/Audio-/Visual-/Speech-only: Only text/audio/visual/speech tokens are passed through the LoRA
pathway at the first generation step during inference. Results are based on LLaMA?2.

4.3 Partial modality inference of MokA

To further examine how effectively MokA leverages tokens from different modalities, we also conduct
partial modality inference experiments where only tokens from a selected modality are passed through
the LoRA adaptation pathway at the first generation during inference. It should be noted that the
evaluated model is MokA w/o cross-attention, as cross-attention computation requires the presence
of both text and non-text tokens. The results, presented in show that MokA w/o cross-
attention significantly enhances the utilization of individual modalities compared to LoRA (as shown
in[Figure Td-1f). These findings highlight that the multimodal-aware design of MokA facilitates more
effective use of all available modalities.

4.4 Cross-modal interaction variants

In the original MokA framework, cross-attention is employed to explicitly strengthen the interaction
between text and non-text tokens, thereby facilitating improved cross-modal adaptation. As previously
discussed, alternative modules that similarly enhance this interaction can also be considered. In this



Table 3: Evaluation results of LoRA, its variants, and our MokA on speech-text benchmarks,
MMAU.,,,ini—speech and AIR-Benchgpeecn—en. #A and #B are the number of low-rank matrices.
Here N = 2 refers to the number of modalities.

LLM Method MMAU AIR-Bench #A #B
LoRA 30.33 31.75 1 1

Multiple LoRA 29.73 31.91 N N

LoRAMOE [&§] 27.63 33.97 N N

DoRA [21] 26.73 34.36 1 1

LLaMA2 HydralLoRA [29] 29.13 31.66 1 N
Uni-modal LoRA [1] 38.14 35.14 N N

Uni LoRA + MM LoRA 37.54 32.56 N+1 2

Uni LoRA + MM LoRA + Gate | 32.13 33.04 N+1 2

¥ MokA 38.44 39.64 N 1

LoRA 50.15 44.55 1 1

Multiple LoRA 50.45 41.13 N N

LoRAMOE [8] 50.75 42.99 N N

DoRA [21] 52.55 44.11 1 1

Qwen2 HydralLoRA [29]] 53.45 43.94 1 N
Uni-modal LoRA [[1] 54.05 47.01 N N

Uni LoRA + MM LoRA 54.16 43.55 N+1 2

Uni LoRA + MM LoRA + Gate | 54.35 46.15 N+1 2

¥ MokA 55.26 49.17 N 1

LoRA 46.25 43.04 1 1

LLaMA3 Multiple LoRA 44.74 43.87 N N

¥ MokA 51.05 44.39 N 1

Table 4: Evaluation results of MokA and variants on audio-visual-text and visual-text cases. Results
are based on LLaMA?2.

Method Music-AVQA AVE | MME,.,.., MMBench POPE SEED-Bench
LoRA 73.41 69.84 908.52 50.64 70.28 39.71
Multiple LoRA 72.66 71.77 882.87 49.83 68.20 38.44
Cross-attention*® 74.94 72.59 955.18 51.25 72.94 39.91
Naive interaction 75.04 73.18 996.73 51.49 73.52 40.17
v MokA 75.71 74.68 | 1025.86 52.74 74.23 40.45

section, we explore several variants of the cross-modal interaction module, as summarized in
The cross-attention* variant also adopts a cross-attention mechanism; however, it uses text tokens
as queries. Consequently, the updated text tokens integrate information from the relevant non-text
tokens—reversing the direction of interaction compared to the original MokA. The naive interaction
variant performs a simple, uniform mapping from text tokens to non-text tokens without employing
any attention mechanism.

Experimental results show that all proposed variants outperform the LoRA baseline, demonstrating the
general effectiveness of explicitly enhancing cross-modal interactions. However, the cross-attention*®
variant performs slightly worse than the others. One possible explanation is that, unlike in other
variants where text tokens remain unchanged, this variant alters text tokens by integrating non-text
features. Although cross-modal interaction is enhanced, the modification of text representations
may adversely affect language modeling capabilities. In addition, while naive interaction yields
competitive results, MokA achieves further improvement through its dynamic attention mechanism.
These findings suggest that the core idea of explicitly reinforcing cross-modal interactions is beneficial,
and the effectiveness is not restricted to one specific module design.



4.5 Ablation study
Table 5: Ablation study of MokA. CA denotes Cross-

To thoroughly validate the efficacy of ~Attention. Results are based on LLaMAZ2.
our method, we conduct ablation stud-

ies across all three multimodal sce- Method | MUSIC-AVQA POPE AIR-Bench
narios. Results are shown in [Table 3l LoRA [12] 73.41 70.28 31.75
Based on the results, even without the Multiple LoORA 72.66 68.20  31.97
cross-attention module, MokA w/o MokA w/o CA 74.85 73.57 33.25
CA outperforms the LoRA baseline, W MokA 75.71 74.23 39.64

demonstrating the effectiveness of en-

hancing unimodal adaptation. Furthermore, the introduction of the cross-attention module leads to
additional performance improvements, indicating the benefit of explicitly enhancing cross-modal
adaptation. These results indicate the necessity of each part in MokA.

4.6 Efficiency evaluation

To enable a more comprehensive

comparison, we further evaluate Taple 6: Efficiency evaluation and performance comparison.
the proposed MokA and LoRA Here, trainable parameters include low-rank matrices and all

baselines on the proportion of  projectors. Results are based on LLaMA2.
trainable parameters in the full

model, and inference latency. As Method Trainable / Total| Avg. forward [POPE
reported in [Table 6 although Parameters |time per sample| Acc
MokA introduces additional pa- LoRA [12] 1.27% 1.000 x 7028
rameters due to the inclusion of vy jii T oRA| 1.43% 1.006 x | 68.20
more low-rank matrices, the in-

W MokA 1.33% 1.069 x 74.23

crease is quite modest compared
to the full LLM. Also, despite
MOokA incurs a slight increase in inference latency compared to standard LoRA, it achieves a
notable performance gain of 3.95% on the POPE benchmark. These results suggest that the addi-
tional computational cost introduced by MokA is acceptable, and the performance improvement is
considerable. More detailed efficiency evaluations are provided in[Appendix D}

5 Related works

MLLMs built upon powerful LLM backbones are increasingly demonstrating impressive capabilities
across diverse downstream tasks [33[13]]. However, fine-tuning these models remains computationally
expensive, prompting growing interest in parameter-efficient fine-tuning (PEFT) techniques that
reduce memory and storage overhead during adaptation. Among them, LoRA has emerged as a
widely adopted, and researchers have proposed several variants to further improve its efficiency and
flexibility [8} 21} 29, 1]]. For instance, LORAMOE [8] introduces multiple LoRA heads combined via
a gating mechanism, while DoRA [21]] focuses solely on optimizing the gradient direction, enabling
more efficient updates. Despite these advancements, most PEFT strategies for MLLMs are direct
extensions of LLM techniques and fail to account for the inherent characteristics of multimodal
learning. To address this gap, we propose MokA, a fine-tuning strategy specifically designed for
MLLMs. It explicitly ensures both unimodal and cross-modal adaptation to better preserve unimodal
representations and enhance cross-modal interaction, offering a targeted solution for efficient and
effective multimodal adaptation.

6 Discussion

In this paper, we argue that both unimodal adaptation and cross-modal adaptation are essential parts
for the effective fine-tuning of MLLMs, yet have largely been neglected before. To this end, we
propose Multimodal low-rank Adaptation (MokA) for efficient multimodal fine-tuning. MokA
redefines the roles of low-rank matrices A and B, ensuring unimodal information is preserved while
enhancing cross-modal interaction by cross-attention. We think MokA is a preliminary step toward
multimodal-aware adaptation, highlighting the potential for future extensions that jointly consider
both unimodal and cross-modal adaptation.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose MokA, an efficient fine-tuning strategy for MLLMs.
Experiments covering multiple multimodal scenarios verify the effectiveness of MokA.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In[Section 4.6] we discuss the efficiency and efficacy of MokA and baselines.
MokA is with a slight increase in parameters and inference latency, but also brings noticeable
improvement.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide experimental information in

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code in the supplementary material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the information of used dataset in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The resource-intensive nature of LLM training prevents us from conducting
multiple runs or including variance estimates.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this information in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, we have reviewed the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide this discussion in the supplementary material.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Our model is used for multimodal understanding, which has low risk for
misuse.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In[Section 3| we have cited all used models and datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our source code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: In this paper, we provide a new fine-tuning strategy for multimodal LLM. And
in we provide the training process.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extension to Qwen3

To further validate our MokA method, we equip it with the latest Qwen3 [35] model. Qwen3-8B is
used as the LLM base model. Throughout the training process, weights of LLM are kept frozen.

Results are shown in We conduct experiments in the audio-visual-text case. Our method
can still deliver improvements compared to the LoRA baseline, with the latest Qwen3 model. These
findings provide additional evidence of the effectiveness and scalability of MokA.

Table 7: Evaluation results of LoRA, its variants, and our MokA on audio-visual-text datasets,
MUSIC-AVQA and AVE. #A and #B are the number of low-rank matrices. Here N = 3 refers to the
number of modalities.

Method MUSIC-AVQA AVE #A #B
LoRA 78.57 74.17 1 1
Multiple LoRA 78.24 74.01 N N
v MokA 79.54 75.38 N 1

B MokA with linear projection

In MokA, linear projections (W,, W}, and W, are not included in the cross-attention module:

a<,a tt\ T
Att (A“x“,AtXt,Atxt) = softmax m Atx?, (14)
Jr
VU t T
Att (A”x”, Alx?t, Atxt) = softmax (W) Alx?t. (15)
r

The reason is that low-rank matrices A of each modality actually can be considered as the linear
projection in attention in this case. Therefore, we do not introduce other linear projections in the
cross-attention module. In addition, projections of key and value are shared in this case (A%). In
fact, this kind of projection sharing strategy has been widely used to increase the efficiency of
attention [15/[32]]. For example, in the Linformer [32], it also utilizes the sharing key-value projection
strategy to reduce computation cost. What’s more, here non-text tokens are used as queries to
merge textual information into non-text modalities. In this way, cross-modal interaction is explicitly
enhanced, while text tokens are kept unchanged to avoid potential disruption to the model’s original
strong text understanding capability.

To further validate the idea of cross-attention, we conduct experiments that include linear projections
in cross-attention. The concrete attention mechanism with linear projection is conducted as follows,
and the notation is consistent with the main manuscript:

W(LA(L a WtAt t\ T
Att (Aaxa,Atxt,Atxt) = softmax <( g 4% \)([ A ) WﬁAtxt, (16)
T
W?v AYxV Wt,At t\ T
Att (A'x", A'x", A'x") = softmax <( Uil z(f ) ) WEA". 17)
r

Here, W' is the linear projection of the audio query, and the others are similar.

In we provide the results in the audio-visual-text and visual-text cases. Based on the results,
MoKA with linear projection, yields improvements compared with LoRA baseline. However, it does
not consistently outperform the original MoKA and introduces additional trainable parameters along
with increased computational overhead.

C More than three modality case

In this section, we extend our experiments to scenarios with more than three modalities. Specifically,
we consider a four-modality setting involving audio, visual, point cloud, and language data, and
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evaluated it on the MCUB-3 benchmark [3]]. In this 3+ modality case, LoRA has an accuracy of
37.41%. Our MokA has an accuracy of 45.58%, indicating its scalability and effectiveness under 3+
modality cases.

D Efficiency evaluation

Compared to LoRA, MokA introduces additional A matrices and a cross-attention module. However,
it should be noted that the additional computational cost of MokA only comes from the cross-attention
module, which is flexible and can be replaced by a more efficient strategy if needed. In this section,
we provide a more detailed efficiency analysis comparing FLOPs, GPU memory usage, and average
forward time per sample (proportional to training time). For clarity, we report these metrics for the
two-modality (VL), three-modality (AVL), and four-modality (AVPL) settings. As shown in the
tables, MokA’s extra computational and memory cost remains limited and acceptable for typical
multimodal scenarios.

Table 8: Efficiency evaluation between LoRA and MokA on various datasets. Results are based on
LLaMA2.

VL (MME_percep) FLOPs Memory Usage Avg. forward time/sample

LoRA 1.000x 1.000x 1.000x

¥ MokA 1.009x 1.001x 1.069x

AVL (MUSIC-AVQA) FLOPs Memory Usage Avg. forward time/sample

LoRA 1.000x 1.000x 1.000x

v MokA 1.021x 1.001x 1.134x

AVPL (MCUB-3) FLOPs Memory Usage Avg. forward time/sample

LoRA 1.000x 1.000x 1.000x

¥ MokA 1.013x 1.002x 1.213x

E Audio-visual interaction

In the original MokA, only the attention between text and non-text tokens is considered. It is
motivated by the fact that text modality typically conveys the question or task description, while
the audio and visual modalities provide environmental information, in the instruction. Therefore,
cross-attention is applied to explicitly enhance the interaction between the task (text token) and
environment (non-text token). It is also worth exploring whether further interactions between the
scene modalities themselves—i.e., audio and visual—can be beneficial. To this end, we conduct
additional ablation studies. Experiments are conducted based on LLaMA?2. The table reports the
results for audio-visual attention with both audio as query and video as query. The results show
that introducing additional audio-visual attention can bring gains, but it is not very noticeable. The
potential benefit from further enhancing explicit audio-visual interactions is relatively limited.

Table 9: Evaluation results of LoRA and MokA variants on audio-visual-text datasets. Results are
based on LLaMA2.

Method MUSIC-AVQA AVE

LoRA 73.41 69.84

¥ MokA 75.71 74.68

MokA w/ audio query att. 75.78 74.53
MokA w/video query att. 75.76 74.81
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F Ablation study of rank

In this section, we conduct experiments of MokA with different ranks. It consistently outperforms
the LoRA baseline across different rank settings.

Table 10: Evaluation results of LORA and MokA on MUSIC-AVQA and AVE with different ranks.
Results are based on LLaMA?2.

Method MUSIC-AVQA AVE Rank
LoRA 73.41 69.84 r=4
LoRA 73.56 70.01 r=8
LoRA 73.73 70.07 r=12

¥ MokA 75.71 74.68 r=

W MokA 74.68 74.71 r=8

v MokA 74.89 74.36 r=12

G Case study of cross-attention in MokA

In this section, we conduct a case study on the cross-attention module in MokA. This module explicitly
integrates task description information from text tokens with non-text tokens, thereby facilitating
cross-modal interaction. Here we provide two samples from an audio-visual-text scenario, as shown
in The visualization shows the cross-attention weights of the g,,,; at the 10—th layer.
The LLM model is LLaMA2. The results indicate that during the process of explicit cross-modal
integration (e.g., cross-attention), text tokens that are more related to a given modality can receive
higher attention weights. For example, the token “sound” receives greater attention in relation to
the audio modality. This cross-modal integration can better facilitate the alignment and interaction
between text tokens and non-text tokens.

Table 11: Experiments of MokA with linear projection under the audio-visual-text and visual-text
cases. The LLM backbone is LLaMA2.

Method Music-AVQA | MME,.;..., MMBench POPE SEED-Bench
LoRA 73.41 908.52 50.64 70.28 39.71
Multiple LoRA 72.66 882.87 49.83 68.20 38.44
MokA w/ linear projection 73.83 926.77 53.97 72.43 41.01
¥ MokA 75.71 1025.86 52.74 74.23 40.45

H Broader impacts

In this paper, we aim to contribute to the efficient fine-tuning of MLLM, particularly how they well
process and integrate information from different modalities. Improvements in this area may support
downstream applications in fields like autonomous driving and education. At the same time, this
line of research carries certain risks. For example, there is a possibility that MLLM could reflect or
amplify biases present in the training data, or be misused in sensitive contexts. We do not directly
address these issues in this work, but acknowledge them as important areas for future research. All
datasets used are publicly available, and we follow standard filtering procedures to reduce exposure
to harmful content.

I Datasets

Information about the datasets used in our experiments is provided in this section.

Video-LLaVA [19] used a mixed dataset of images and videos for video captioning and image
captioning tasks. The dataset includes a 665k image-text instruction and a 100k video-text instruction.
This dataset is used for pre-training the visual branch.
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Figure 6: Cross-attention weight visualization, where deeper colors indicate higher attention weights.

AudioCaps [14]] dataset is used for the audio captioning task. It consists of 46K pairs of audio clips
and text descriptions. This dataset is used for pre-training the audio branch.

GigaSpeech-M [4] is a 1000h dataset for speech recognition task. This dataset is used for pre-training
the speech branch.

MUSIC-AVQA [17] is an audio-visual-text dataset, which is introduced to support spatio-temporal
understanding of musical content. It offers 45K QA pairs across 33 question templates that span
multiple modalities and question types.

AVE [30] is an audio-visual-text dataset. It focuses on the audio-visual event localization task. This
dataset covers 28 event classes and consists of 4,143 samples.

LLaVA-Instruct-150K [20] is a set of GPT-generated multimodal instruction-following data. It is
used for instruction fine-tuning for the visual-text case.

LibriSpeech [23]] is a 960-hour dataset. We use the instruction from [28]] for instruction fine-tuning of
the speech-text case.

MME), ¢, cep [9] is the perception subset of the MME benchmark, covering a total of 10 subtasks for
the evaluation of the visual-text perception ability.

MMBench [22]is a collection of benchmarks to evaluate the visual-text understanding capability. It
has 3,000 multiple-choice questions covering object detection, text recognition, action recognition,
image captioning, relation reasoning, and so on.

POPE [18]] is a benchmark that is used for evaluating the visual-text understanding ability of MLLM.
The used image is the test set of MSCOCO dataset.

SEED-Bench [16] consists of 19K multiple-choice questions with accurate human annotations for
evaluating the visual-text understanding ability of MLLM.

MMAU im0 —speech [27] is the speech subset of MMAU-mini benchmark. This benchmark is used
for evaluating the speech-text understanding ability of MLLM.

AIR-Benchgpcecn—en [37] is the English speech subset of the foundation part of AIR-Bench. This
benchmark is used for evaluating the speech-text understanding ability of MLLM.
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