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ABSTRACT

Parameter-efficient fine-tuning (PEFT) methods must be resource-efficient yet
handle heterogeneous reasoning transformations, and classical low-rank adaptation
(LoRA) is constrained by the nominal rank r. Hadamard-style extensions like
HiRA raise the nominal rank but couple every update to the global energy pattern
of the frozen weight matrix, while ABBA trades this inductive bias for fully learned
dense intermediates. To address the limitation of global modulation, we propose
Block Hadamard high-Rank Adaptation (BHRA), which partitions each weight ma-
trix and applies HiRA-style multiplicative modulation independently within every
block, preserving the PEFT parameter footprint while unlocking localized rank am-
plification. Our empirical analyses reveal that this blockwise design maintains rich
spectra across rank budgets, mitigating the collapse induced by global modulation.
Across eight commonsense reasoning tasks and two arithmetic benchmarks with
Llama-3.2 1B/3B, Mistral-7B, and Gemma-2 9B, BHRA consistently surpasses
strong PEFT baselines under matched parameter budgets.

1 INTRODUCTION

Large Language Models (LLMs) have achieved strong performance across diverse application
domains, including medicine (Thirunavukarasu et al., 2023), multi-step reasoning (Wei et al., 2022),
and finance (Wu et al., 2023). A common strategy for adapting LLMs to specialized domains is full
fine-tuning (FFT), which updates all model parameters. However, the sheer scale of modern LLMs
renders FFT computationally and storage intensive, often impractical under real-world constraints.
To mitigate these costs, Parameter-Efficient Fine-Tuning (PEFT) (Ding et al., 2023) freezes the
pretrained backbone and optimizes lightweight task-specific modules, thereby retaining most of the
capacity of the base model while significantly reducing training overhead.

Among PEFT approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2022) is particularly influential:
given a base weight W ∈ Rm×n, LoRA introduces trainable matrices L1 ∈ Rm×r and L2 ∈ Rr×n

such that the update is ∆W = L1L2. This construction reduces the number of trainable parameters
to (m+ n)r while leaving inference-time computation unchanged. However, the algebraic rank of
∆W is upper bounded by r, so LoRA and its variants (Liu et al., 2024; Ren et al., 2024; Albert et al.,
2025) may require a large r to accommodate heterogeneous tasks, thereby undermining the very
efficiency that motivates PEFT.

To achieve higher effective rank, Hadamard-based adapters modulate weights multiplicatively. HiRA
(Huang et al., 2025) couples the frozen weight matrix W0 with a low-rank factor via an element-
wise product, yielding ∆W = W0 ⊙ (BA), where A and B share LoRA’s dimensionality and ⊙
denotes the Hadamard product. In principle, this can raise the attainable rank since rank(∆W ) may
approach rank(W0)× rank(BA). However, the modulation is global: every entry of ∆W inherits
the magnitude pattern of W0, limiting the ability to reallocate adaptation capacity to task-critical
substructures. Alternatively, ABBA (Singhal et al., 2025) discards W0 and learns two free factors
(B1A1)⊙ (B2A2), improving flexibility but sacrificing the inductive bias encoded in the pretrained
backbone. These approaches highlight the open question of how to retain PEFT efficiency while
distributing the available rank budget more effectively than global Hadamard modulation allows.

To diagnose the underlying limitation, we examine the stable rank ∥∆W∥2F /∥∆W∥22, a standard
surrogate for effective rank. Figure 2 shows that LoRA’s stable rank remains close to unity even
as r increases, indicating that most adaptation energy concentrates in a single dominant direction.
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Hadamard Product
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frozen trainable

BHRA

Block Hadamard Product

Figure 1: Illustration of BHRA compared with LoRA (Hu et al., 2022) and HiRA (Huang et al., 2025).
r0 and r denotes the rank of W0 and the total rank budget, respectively. The b× b grid indicates the
block partition, and □ denotes the blockwise Hadamard product.

HiRA initially achieves higher stable rank but degrades with larger budgets since the global coupling
channels singular-value mass into a few directions inherited from W0.
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Figure 2: Average stable rank of ∆W when
adapting Llama-3.2 1B to commonsense rea-
soning. BHRA maintains a substantially
larger effective rank across identical rank bud-
gets r.

To address the limitation of global modulation, we
propose Block Hadamard High-Rank Adaptation
(BHRA), maintains substantially higher stable ranks
across budgets by activating a broader set of di-
rections while preserving parameter efficiency, as
shown by the green curve in the Figure 2. As il-
lustrated in Figure 1, BHRA partitions each weight
matrix into a b × b grid and applies HiRA-style
modulation independently within each block. For
block (i, j) with per-block rank r

b , the update is
∆Wij = W0,ij ⊙ (BijAij), thereby decoupling
the modulation spatially while keeping the total rank
budget r comparable to LoRA and HiRA. This design
preserves the computational footprint of Hadamard
adapters yet enables the model to deploy capacity pre-
cisely where downstream tasks demand it. As shown
in Figure 3, this localized allocation translates into
consistent gains across eight commonsense reasoning benchmarks on Llama-3.2 1B, with the largest
improvements at higher ranks where the ability to redistribute capacity is most beneficial.

Our contributions are threefold:

• We provide quantitative analyses of Hadamard-style adapters, demonstrating global modu-
lation collapses the effective rank of ∆W while blockwise modulation maintains diverse
directions.

• To address the limitation of global modulation, we propose Block Hadamard High-Rank
Adaptation (BHRA), a block-partitioned HiRA variant that preserves PEFT efficiency yet
expands the attainable rank under a fixed parameter budget.

• We conduct extensive experiments on multiple benchmarks and demonstrates the effective-
ness of BHRA against representative PEFT baselines.
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2 RELATED WORK
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Figure 3: Performance of BHRA (solid) and
HiRA (dashed) of Llama-3.2 1B on eight com-
monsense reasoning datasets using different
HiRA configurations.

Low-rank adaptation. LoRA Hu et al. (2022) pa-
rameterizes the update as a low-rank decomposition
∆W = BA, freezing W0 and training only A,B. It
achieves large parameter and memory savings with
negligible inference overhead and has the common
budget or implementation baseline for PEFT. Build-
ing on this, AdaLoRA Zhang et al. (2023) adap-
tively allocates the rank budget across layers by im-
portance, improving utilization under the same total
budget. DoRA Liu et al. (2024) decomposes each
pretrained weight into magnitude and direction and
applies LoRA only to the directional component, nar-
rowing the gap to full fine-tuning without extra in-
ference cost. GraLoRA Jung et al. (2025) introduces
granularity: it partitions a weight matrix into sub-
blocks and matches a tiny LoRA to each block, mitigating structural bottlenecks and boosting
expressivity at essentially the same parameter and FLOPs scale as standard LoRA.

A parallel line raises effective rank via Hadamard product, using the inequality rank(O1 ⊙O2) ≤
rank(O1) × rank(O2) Million (2007). HiRA Huang et al. (2025) writes ∆W = W0 ⊙ (BA),
leveraging the typically high rank of W0 to exceed LoRA’s limit while keeping LoRA-level parameter
cost. ABBA Singhal et al. (2025) fully decouples from W0 by learning two low-rank factors and
taking their Hadamard product, ∆W = (B1A1)⊙ (B2A2), yielding higher expressivity under the
same budget. In this paper, we introduce BHRA, the first blockwise Hadamard formulation of ∆W
for PEFT via block Hadamard product: partition W0 and apply HiRA-style modulation independently
per block, ∆Wij = ∆W0,ij⊙(BijAij). BHRA (1) strictly generalizes HiRA, which is the 1×1 case,
(2) raises attainable effective rank by per-block bounds rank(∆Wij) ≤ rank(W0,ij)×rank(BijAij),
and (3) preserves HiRA-style parameters and FLOPs while adding spatial controllability absent in
global Hadamard or purely additive block schemes.

Other PEFT. Beyond low-rank updates, adapter tuning Houlsby et al. (2019) freezes the backbone
and inserts small bottlenecks. The original Adapter layers establish the template for parameter sharing
across tasks. Prompt tuning Lester et al. (2021) and prefix tuning Li & Liang (2021) keeps all weights
fixed and instead learns continuous prompts or layer-wise key or value prefixes, with Prefix-Tuning
targeting generation and Prompt Tuning becoming competitive with full fine-tuning as model size
scales to billions. These categories primarily optimize storage, compute, and task compositionality,
and are complementary to BHRA, which instead targets higher effective rank of ∆W via blockwise
Hadamard modulation under LoRA-level parameter and FLOPs.

3 METHODOLOGY

In this section, we first revisit the hadamard-style adaptation, and then introduce Block Hadamard
high-Rank Adaptation (BHRA). Next, we provide a theoretical analysis of the expressive power of
BHRA. Finally, we present the training and inference efficiency and gradient analysis for BHRA.

Revisiting Hadamard-Style Adaptation. Let W0 ∈ Rm×n denote the frozen weight matrix of a
linear layer and let r be the available rank budget. Following Hu et al. (2022), LoRA introduces
trainable factors L1 ∈ Rm×r and L2 ∈ Rr×n such that

∆WLoRA = L1L2, (1)
and therefore rank(∆WLoRA) ≤ r. HiRA (Huang et al., 2025) retains this low-rank scaffold but
modulates the update multiplicatively with the pretrained weights:

∆WHiRA = W0 ⊙ (BA), (2)
where ⊙ denotes the Hadamard (element-wise) product. The attainable rank of ∆WHiRA follows
from the classical Hadamard product inequality as follows.
Lemma 3.1 (Hadamard rank bound (Million, 2007)). For any matrices O1 and O2 of the same size,

rank(O1 ⊙O2) ≤ rank(O1) rank(O2). (3)
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Table 1: Comparison of Hadamard-based adapters under an equal parameter/rank budget.

Method Trainable parameters Rank upper bound Dependence on W0

LoRA r(m+ n) r None
HiRA r(m+ n) r0 r Global modulation by W0

ABBA r(m+ n) r2 None; dense intermediates
BHRA r(m+ n) br0 r Blockwise modulation by W0

Applying Lemma 3.1 with O1 = W0 and O2 = BA yields

rank(∆WHiRA) ≤ rank(W0) rank(BA) ≤ rank(W0) r, (4)

showing that HiRA multiplies LoRA’s rank bound by rank(W0) while preserving the trainable
parameter count r(m+ n).

Recently, to address the reliance on W0 in HiRA, ABBA (Singhal et al., 2025) learns two independent
low-rank products whose Hadamard combination forms the update, thereby discarding the dependence
on W0 but requiring dense m × n intermediates. Alternatively, BHRA aims to combine HiRA’s
inductive bias with ABBA’s flexibility while keeping a LoRA-level parameter footprint.

In Table 1, we summarize the principal Hadamard-style adapters under a shared rank budget r for
an m × n layer. LoRA trains r(m + n) parameters and its update rank is bounded by r. HiRA
multiplies this bound by rank(W0) = r0. ABBA reaches r2 by learning two dense intermediates.
BHRA redistributes the rank budget across blocks of W0, retaining the same parameter count while
enabling localized amplification.

Block-Hadamard High-Rank Adaptation (BHRA). BHRA partitions W0 into a b × b grid of
disjoint blocks. Let each block share dimensions m/b by n/b for clarity (other partitions follow
analogously), and denote block (i, j) by W0,ij ∈ R(m/b)×(n/b). Within every block we allocate
low-rank factors

Bij ∈ R(m/b)×(r/b), Aij ∈ R(r/b)×(n/b), (5)

whose product Cij = BijAij has rank at most r/b. Arranging these factors into a block matrix
produces a “capacity” tensor

CBHRA =

C11 · · · C1b

...
. . .

...
Cb1 · · · Cbb

 ∈ Rm×n. (6)

The BHRA update is obtained by a blockwise Hadamard product between this learned capacity and
the frozen weights:

∆WBHRA = CBHRA□W0, (7)

where □ applies the element-wise Hadamard product inside each block (Günther & Klotz, 2012).
Setting b = 1 recovers HiRA. The trainable parameter count remains r(m+n) because the b2 blocks
each store a rank- rb pair.

This construction mirrors the schematic in Figure 1: orange low-rank LoRA pairs (Bij , Aij) tile
the matrix, the grey tiles represent the corresponding submatrices of W0, and the block Hadamard
operator combines them to form ∆WBHRA. Localizing the modulation allows BHRA to amplify rank
in every block without materializing dense intermediates.

Expressive Power of BHRA. We begin by bounding the rank of the learned capacity that mediates
BHRA’s update. Let r0 = rank(W0).

Lemma 3.2 (Rank of the BHRA capacity). For a b × b partition with uniform rank budget,
rank(CBHRA) ≤ br.

Proof. Fix a row i. The horizontal concatenation [Ci1 · · · Cib] consists of b blocks, each with rank
at most r/b. The rank of a horizontal concatenation is no larger than the sum of the ranks of its
constituents, so the i-th row block has rank at most r. Stacking the b row blocks vertically increases
the rank by at most r per block, yielding rank(CBHRA) ≤ br.
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With this capacity bound in hand, combining Lemma 3.2 with Lemma 3.1 yields the desired rank
guarantee for BHRA as follows.
Proposition 3.1 (BHRA rank upper bound). Let r0 = rank(W0). Then

rank(∆WBHRA) = rank(CBHRA□W0) ≤ rank(CBHRA) rank(W0) ≤ br0r. (8)

The factor b reflects the number of block rows; non-square grids simply replace it with the number of
row partitions. Thus BHRA scales the HiRA bound by the number of block slices while preserving
the parameter footprint r(m+ n). Empirically, pretrained blocks often exhibit high local rank, so the
b-fold amplification translates into near-full-rank updates under the same budget. We analyze parallel
bounds for other Hadamard-style adapters next and include full derivations in Appendix A.

Comparison with HiRA. For HiRA, letting rank(W0) = r0 and writing ∆WHiRA = W0 ⊙ (BA) with
B ∈ Rm×r and A ∈ Rr×n, the Hadamard rank inequality ensures

rank(∆WHiRA) = rank
(
W0 ⊙ (BA)

)
≤ r0 rank(BA) ≤ r0r.

Coupled with Proposition 3.1, which yields rank(∆WBHRA) ≤ br0r, we see that BHRA scales
HiRA’s attainable rank by a factor of b while preserving the identical parameter budget r(m+ n).
When b = 1, the two bounds coincide, recovering HiRA.

Training and Inference Efficiency. First, we analyze the expected computational cost of LoRA
in terms of FLOPs. LoRA adapts each linear layer with a pair of rank-r GEMMs: the projection
Z = AX costs (2n− 1)rT FLOPs and the reconstruction Y = BZ costs (2r − 1)mT , yielding

FLOPsLoRA = (2n− 1)rT + (2r − 1)mT = 2r(m+ n)T − (r +m)T, (9)

while caching only the rT activations in Z. HiRA keeps these two multiplications but gates the update
with a mask W0 ⊙ (BA) that we materialize once, so its adapter overhead stays at ≈ 2r(m+ n)T
with the same activation footprint.

BHRA partitions the layer into b× b blocks. Summing the per-block projections, reconstructions,
mask multiplications, and refreshes gives

FLOPs(train)
BHRA = 2r(m+ n)T − 2brT +

mn

b2
T +

2mnr

b
, (10)

which collapses to the HiRA expression when b = 1. Before deployment we fold the learned masks
Hij into W0, leaving inference with the same two rank-r GEMMs (2n− 1)rT + (2m− 1)rT and a
static buffer of size mn/b2 in addition to the usual rT cache. Please find the detailed analysis of the
trade-off in Appendix B.

Gradient Analysis. Following the exposition of Huang et al. (2025), let a linear layer produce
z = (W0 +∆W )x and incur loss L with residual g = ∇zL. The gradient with respect to the update
parameters factors through G = gx⊤.

In LoRA the two low-rank factors are differentiated as ∇AL = B⊤G and ∇BL = GA⊤, so the
gradients are completely agnostic to the pretrained weights W0. HiRA inserts W0 multiplicatively
and the gradients become∇AL = B⊤(W0 ⊙G) and ∇BL = (W0 ⊙G)A⊤, revealing that HiRA
leverages the structure already encoded in W0 to steer the update directions.

BHRA preserves this inductive bias while localising it. Partition the residual and input as g =
[g⊤1 , . . . , g

⊤
b ]

⊤ and x = [x⊤
1 , . . . , x

⊤
b ]

⊤, so the blockwise gradients factor through Gij = gix
⊤
j . For

block (i, j),
∇Aij

L = B⊤
ij(W0,ij ⊙Gij) , ∇Bij

L = (W0,ij ⊙Gij)A
⊤
ij .

Thus each block is guided only by its corresponding slice W0,ij , preventing globally small entries of
W0 from suppressing gradients elsewhere while retaining the beneficial alignment that differentiates
HiRA from LoRA.

4 EXPERIMENTS

In this section, we evaluate BHRA on commonsense and arithmetic reasoning tasks. We will introduce
the datasets, experimental settings and results on these tasks.
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4.1 DATASETS

Commonsense reasoning. We utilize eight sub-tasks with predefined training and testing datasets
(Hu et al., 2023), combining 170,420 query-answer pairs for fine-tuning LLMs and selecting 120
random entries as a validation set. The eight sub-tasks includes BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2021), ARC-Challenge and ARC-Easy (Clark et al., 2018), and OBQA Mihaylov et al. (2018).
We evaluate performance on each dataset independently to capture task-specific generalization.

Arithmetic reasoning. We fine-tune Mistral-7B (Jiang et al., 2023) and Gemma-2 9B (Team et al.,
2024) on a 50K-sample subset of MetaMathQA (Yu et al., 2023), and evaluate on MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021), reporting exact-match accuracy, consistent with prior
work (Singhal et al., 2025).

For both tasks, We insert LoRA adapters into all attention projections including query, key, value,
and output as well as feedforward network layers.

4.2 EXPERIMENTAL SETTINGS

Baselines. We compare against representative PEFT methods under matched parameter budgets:
LoRA (Hu et al., 2022), DoRA (Liu et al., 2024), HiRA (Huang et al., 2025), ABBA (Singhal et al.,
2025). Our experiments use the Llama-3.2-1B and Llama-3.2-3B (Grattafiori et al., 2024), Mistral-7B
(Jiang et al., 2023) and Gemma-2 9B (Team et al., 2024) open-source LLMs.

Metrics. For commonsense reasoning we adopt accuracy as the primary metric, consistent with
Huang et al. (2025); Singhal et al. (2025). Given a model completion, we apply a task-specific
post-processing step: the generated text is scanned for canonical answer tokens (e.g., true”/false”
for BoolQ, option letters for PIQA, SIQA, ARC, and OBQA). The first matched token is treated as
the prediction; if no valid token is detected the response is marked incorrect. Accuracy is computed
separately for each dataset and we report the macro-average over all eight tasks to control for dataset
size imbalance. Arithmetic benchmarks follow the exact-match protocol of GSM8K/MATH. Outputs
are normalized by stripping punctuation, lowercasing, and resolving verbal numbers to their numeric
forms so that mathematically equivalent answers are aligned. A prediction counts as correct only
when the normalized string matches the reference exactly.

Implementation details. Following the identical training setup to Huang et al. (2025); Singhal et al.
(2025) except learning rate adjustments, we implement BHRA on all reasoning tasks with total rank
settings rtot = 32. We train for 2 epochs and 1 epoch for the commonsense reasoning and arithmetic
reasoning tasks, respectively. Results are reported as the mean over 5 random seeds. These choices
mirror the HiRA setup for fair comparison. In BHRA, we set p = q = b and rb = rtot

b to exactly
matches LoRA/HiRA parameter counts and FLOPs. We use this setting in all main comparisons. We
adopt LoRA-style scaling α = rtot and standard initialization that yields zero initial update (Hu et al.,
2022), matching HiRA’s practice to preserve the base model at step 0. We use AdamW with learning
rate 0.002 and 100 warm-up steps as in (Singhal et al., 2025). As with HiRA and ABBA, we support
pre-compute and add ∆W to W0, yielding zero inference overhead beyond the base model. Please
find the detailed implementation in Appendix C.

4.3 RESULTS ON COMMONSENSE REASONING

As shown in Table 2, on Llama-3.2-1B, BHRA attains an average accuracy of 73.76, improving over
LoRA (70.75%) by +3.01% points and over HiRA (72.40%) by +1.36% points, while remaining
within 0.03% of ABBA (73.79%). On Llama-3.2-3B, BHRA reaches 84.52%, which is +2.73%
above LoRA and +0.69% above HiRA, and is 0.24% below ABBA. Gains are strongest on tasks
such as ARC-c, ARC-e, Wino, and BoolQ, where models benefit from combining diverse local
transformations. The blockwise Hadamard update increases local effective rank without increasing
the parameter or FLOP budget, and it allows different regions of the weight matrix to specialize. This
combination improves coverage of subspaces that matter for multi-facet commonsense reasoning.

6
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Table 2: Comparison of multiple fine-tuning methods on Llama-3.2 1B and 3B across eight common-
sense reasoning datasets. Best results among PEFT methods are in bold.

Model Method # Params Accuracy (↑)
OBQA ARC-c ARC-e Wino HellaS PIQA SIQA BoolQ Avg.

Llama-3.2 1B

FFT 1.24 B 74.00 62.05 78.63 74.79 79.63 80.62 75.37 63.77 73.61
LoRA 22.54 M 68.48 58.91 76.67 71.95 75.45 77.79 72.94 63.82 70.75
DoRA 22.92 M 70.00 59.57 77.50 72.70 75.46 78.42 73.14 63.71 71.31
HiRA 22.54 M 71.40 60.49 78.56 72.52 78.19 79.97 74.12 63.95 72.40
ABBA 22.54 M 73.60 61.52 79.04 74.19 81.87 81.12 74.00 65.02 73.79

BHRA 22.54 M 73.04 62.66 79.47 74.02 80.35 80.47 74.41 65.91 73.79

Llama-3.2 3B

FFT 3.21 B 85.00 78.81 90.00 86.55 93.14 87.25 81.49 73.58 84.48
LoRA 48.63 M 82.27 76.19 87.52 84.00 91.25 84.38 79.06 69.66 81.79
DoRA 49.40 M 82.80 76.59 89.05 85.86 92.71 85.92 80.82 71.02 83.10
HiRA 48.63 M 83.52 77.13 89.38 85.30 92.91 86.49 80.71 72.68 83.51
ABBA 48.63 M 84.76 78.24 89.76 86.28 93.51 86.91 80.82 73.63 84.24

BHRA 48.63 M 85.16 78.48 90.03 86.49 93.37 87.03 81.28 74.35 84.52

Table 3: Comparison of multiple fine-tuning methods on Mistral-7B and Gemma-2 9B across
arithmetic reasoning benchmarks. Best results among PEFT methods are in bold.

Method Mistral-7B Gemma-2 9B
# Params GSM8K (↑) MATH (↑) # Params GSM8K (↑) MATH (↑)

FFT 7.24 B 67.74 19.62 9.24 B 79.28 39.89
LoRA 83.88 M 61.94 15.98 108.04 M 76.19 36.56
DoRA 85.26 M 65.73 19.02 109.88 M 76.91 38.05
HiRA 83.88 M 66.29 17.77 108.04 M 78.74 38.11
ABBA 83.88 M 66.57 18.03 108.04 M 78.70 38.80

BHRA 83.88 M 66.64 20.07 108.04 M 78.98 38.13

4.4 RESULTS ON ARITHMETIC REASONING

As shown in Table 3, on Mistral-7B, BHRA reaches 66.64% on GSM8K and 20.07% on MATH.
This improves over LoRA by 4.70% and 4.09%, over HiRA by 0.35% and 2.30%, and over ABBA
by 0.07% and 2.04%. The larger gains on MATH indicate that blockwise Hadamard modulation
raises useful local rank for long, stepwise derivations. These two benchmarks are standard multi-step
arithmetic tests in the literature. On Gemma-2 9B, BHRA attains 78.98% on GSM8K and 38.13% on
MATH. Relative to LoRA, the improvements are 2.79% and 1.57%. BHRA edges HiRA on GSM8K
by 0.24% and is effectively tied on MATH with a 0.02% point lead, while it is 0.28% above ABBA
on GSM8K and 0.67% below on MATH.

5 ANALYSIS

5.1 SINGULAR VALUE STRUCTURE OF FULL FINE-TUNING, HIRA, AND BHRA

0 2 4 6 8 10 12 14
Layer index

0

500

1000

1500

2000

# 
sin

gu
la

r v
al

ue
s 

 1
%

 o
f 

_m
ax Wq

0 2 4 6 8 10 12 14
Layer index

Wk

0 2 4 6 8 10 12 14
Layer index

Wv

0 2 4 6 8 10 12 14
Layer index

Wo

0 2 4 6 8 10 12 14
Layer index

Wgate

0 2 4 6 8 10 12 14
Layer index

Wup

0 2 4 6 8 10 12 14
Layer index

Wdown

LoRA
HiRA r=32
HiRA r=128
HiRA r=512
BHRA
FFT

Figure 4: Count of singular values exceeding 1% of the layer-wise maximum for FFT, LoRA, HiRA,
and BHRA.

Figure 4 reports the number of singular values above the 1% energy threshold for each transformer
projection. Full fine-tuning (FFT) activates the richest spectrum throughout the stack, and BHRA
closely tracks this envelope, particularly in the FFN up/down projections where its counts remain high
even in deeper layers. HiRA exhibits a clear dependence on the nominal rank: at r = 32 it delivers
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only a modest lift over LoRA, r = 128 roughly doubles the active directions in the feed-forward
pathway, and r = 512 pushes the spectrum further but still falls short of the blockwise coverage
achieved by BHRA. LoRA remains almost flat across layers, reflecting the severe bottleneck imposed
by its single low-rank factorization.
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Figure 5: Layer-wise sum of squared singular values for FFT, LoRA, HiRA, and BHRA.
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Figure 6: Effective rank across layers for FFT, LoRA, HiRA, and BHRA.

The aggregate singular-value energy in Figure 5 mirrors this stratification. BHRA preserves nearly all
of the FFT energy in every projection, whereas HiRA recovers progressively more mass as the rank
increases from 32 to 128 and 512, yet each variant still trails BHRA in the deeper FFN blocks. LoRA
consistently captures the least energy, underscoring that a global low-rank adapter fails to populate
directions that dominate the spectrum. This indicates that LoRA stays rank-deficient in every module.
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Figure 7: Accuracy on the eight com-
monsense tasks versus mean block Gini
of the learned adapters (Llama-3.2-1B,
rb × b = 32). Greater block heterogene-
ity correlates with higher accuracy, and
BHRA dominates both LoRA and HiRA
in this trade-off.

Effective-rank trends in Figure 6 reinforce the conclusion.
BHRA maintains an entropy-based rank profile that is
indistinguishable from full fine-tuning across the network.
HiRA’s curves again separate by nominal rank: the r = 32
model plateaus early, the r = 128 setting narrows the gap
through the middle of the stack, and r = 512 approaches
BHRA only in the lower layers while still lagging in the
upper decoder blocks. The stability analysis in Figure 2
confirms that this hierarchy persists when sweeping the
target rank: BHRA keeps a higher stable rank than HiRA
across the sweep and LoRA remains nearly flat near one.

Together, these spectral diagnostics explain the accuracy
hierarchy observed in Table 2 and Table 3: BHRA’s block-
wise capacity unlocks rich, layer-local updates that em-
ulate the representational flexibility of full fine-tuning,
whereas HiRA and LoRA remain constrained by their
limited ability to populate the singular spectrum.

5.2 ANALYSIS OF BLOCK HETEROGENEITY

Figure 7 plots macro accuracy against the mean block Gini of the learned updates. The three PEFT
baselines form clearly separated clusters: LoRA achieves the lowest heterogeneity and correspond-
ingly lags in accuracy, HiRA raises both quantities modestly, while BHRA consistently occupies
the upper-right region. This monotonic trend supports our claim that BHRA’s blockwise Hadamard
modulation induces richer intra-layer variation captured by higher block Gini coefficient, which in
turn translates into stronger commonsense performance under a fixed parameter budget.

5.3 CHOICE OF rb FOR BHRA

Under a fixed budget rb×b = 32, we sweep rb ∈ {1, 2, 4, 8, 16, 32} with b = 32/rb on commonsense
reasoning tasks shown in Figure 8 and arithmetic tasks (Please find details in Appendix D). Across
both settings, rb = 4, b = 8 is consistently on the accuracy maximum while remaining stable across
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the benchmark models and datasets; very small rb with many tiny blocks underfits, where larger
rb with few blocks loses block diversity and slightly degrades performance. Therefore, we set
rb = 4, b = 8 as a balanced point between per-block expressivity and block diversity under the same
parameter budget.

5.4 ANALYSIS OF PLACEMENT OF BHRA IN TRANSFORMERS

Table 4: Impact of selectively fine-tuning individual transformer components - Key, Query, Value,
Output, Up, Gate, and Down projections, with BHRA on Llama-3.2-1B.

Component OBQA ARC-c ARC-e Wino HellaS PIQA SIQA BoolQ Avg.
All 73.04 62.66 79.47 74.02 80.35 80.47 74.41 65.91 73.79

FFN 73.10 62.37 79.48 73.90 79.60 81.04 74.16 65.79 73.68
Down 68.80 59.00 76.70 69.97 73.44 77.48 72.68 64.50 70.32
Gate 65.73 57.17 76.25 68.48 71.32 77.37 71.60 64.18 69.01
Up 67.80 63.29 67.57 73.37 71.85 75.66 75.17 68.21 67.12
O 66.52 57.13 75.29 68.92 74.27 78.16 72.36 63.60 69.46

QKV 66.68 57.49 75.64 70.73 75.62 78.01 73.19 62.31 69.96
V 57.95 50.80 69.98 64.39 67.85 76.43 67.90 60.96 64.70
K 58.50 48.98 69.70 63.63 63.21 74.08 65.90 57.32 62.66
Q 57.20 48.55 67.06 65.07 58.54 73.48 64.69 60.99 61.95
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(rb=4, b=8)
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Figure 8: The performance of BHRA, LoRA
and HiRA under fixed budget (rb × b = 32)
on commonsense reasoning tasks.

Table 4 quantifies how BHRA behaves when re-
stricted to individual projection matrices inside the
Llama-3.2-1B transformer. Adapting every linear
submodule (“All”) achieves the strongest average ac-
curacy (73.79) and principally serves as an upper
bound. Limiting BHRA to the feed-forward path-
way (FFN: Up, Gate, and Down) nearly matches
this ceiling at 73.68 average, underscoring that most
of the attainable improvements arise from the MLP
stack. Among single-component interventions, the
Down projection delivers the largest gain (70.32 av-
erage), followed by the Gate (69.01) and Up (67.12)
branches. Each of these submodules modulates fea-
ture transformation and routing, allowing BHRA to
inject diverse block-specific updates. In contrast, up-
dating the attention projections alone is markedly less effective: the Output projection reaches 69.46,
and adapting only Q, K, or V hovers near 62–65. Even treating QKV jointly recovers to just 69.96,
still below the FFN-focused variants. These trends align with the functional roles of the submodules:
attention weights primarily steer token-to-token interactions, whereas the feed-forward projections
reshape hidden states and thus provide a richer canvas for blockwise Hadamard modulation.

6 CONCLUSION

In this paper, we propose Block Hadamard high-Rank Adaptation (BHRA), which mitigates the rank
bottlenecks of classical low-rank and Hadamard-style adapters by partitioning pretrained weights
and applying HiRA-style modulation locally. This blockwise formulation preserves LoRA-level
efficiency while expanding the attainable rank of ∆W , as corroborated by stable-rank and spectral
analyses. Across eight commonsense reasoning tasks and two arithmetic benchmarks on Llama-
3.2 1B/3B, Mistral-7B, and Gemma-2 9B, BHRA consistently outperforms representative PEFT
baselines under matched parameter and FLOP budgets. Ablation studies show that moderate block
counts with modest per-block rank offer a resilient accuracy–efficiency trade-off. These results
highlight block-level heterogeneity as a key determinant of high-utility PEFT and establish BHRA
as a practical, theoretically grounded alternative to existing Hadamard adapters. Future work will
pursue data-driven block partitions, multi-modal extensions, and integration with adaptive scheduling
or continual learning.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. Details of the model architecture,
BHRA configurations and training hyperparameters are provided in Section 4 and Appendix C. The
datasets used for training and evaluation are publicly available and fully described in Section 4.1.
We also provide the directory of the source code and scripts for reproducing all experiments in
the supplementary materials. This includes implementations of our BHRA, training scripts, and
configuration files.
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A DETAILED ANALYSIS OF RANK UPPER BOUNDS

HiRA rank upper bound. Let W0 ∈ Rm×n with rank(W0) = r0. HiRA parameterises the update
as ∆WHiRA = W0 ⊙ (BA) with B ∈ Rm×r and A ∈ Rr×n. Using the Hadamard rank inequality,

rank(∆WHiRA) = rank
(
W0 ⊙ (BA)

)
≤ r0 rank(BA) ≤ r0r,

so the HiRA update obeys
rank(∆WHiRA) ≤ r0r .

ABBA rank upper bound. ABBA learns two independent low-rank products, P = B1A1 and
Q = B2A2, each of rank at most r. Their Hadamard combination expands as

∆WABBA = P ⊙Q =

r∑
i=1

r∑
j=1

(b1,i ⊙ b2,j) (a1,i ⊙ a2,j)
⊤, (11)

where b1,i denotes the i-th column of B1, etc. Consequently rank(∆WABBA) ≤ r2 irrespective of
W0; the attainable rank is capped by r2tot/4 even when the layer dimension is much larger.

BHRA rank upper bound. For BHRA we reuse the block construction described earlier; The
learned capacity CBHRA satisfies Lemma 3.2, namely rank(CBHRA) ≤ br for a uniform b× b partition.
Combining Lemma 3.2 with Lemma 3.1 yields Proposition 3.1:

rank(∆WBHRA) = rank(CBHRA□W0) ≤ b r0r.

As before the ambient dimension enforces rank(∆WBHRA) ≤ min{m,n}, so altogether

rank(∆WBHRA) ≤ br0r .

The factor b reflects the number of block rows; non-square partitions simply replace it with the
number of row groups.

Relationship. Comparing the bounds

rank(∆WHiRA) ≤ r0r, rank(∆WBHRA) ≤ br0r,

shows that BHRA scales HiRA’s rank budget by a factor of b while keeping the same parameter count
r(m+ n). When b = 1 the two bounds coincide, recovering HiRA.

B DETAILED ANALYSIS OF TRADE-OFF

We first quantify the training cost of LoRA and HiRA before detailing BHRA and its relation to
GraLoRA. All derivations assume a mini-batch with sequence length T .

LoRA overhead recap. LoRA performs the projection Z = AX with cost (2n − 1)rT FLOPs
followed by the reconstruction Y = BZ with cost (2r − 1)mT . Summing the two gives

FLOPsLoRA = (2n− 1)rT + (2r − 1)mT = 2r(m+ n)T − (r +m)T. (12)

No Hadamard modulation is involved, and the only activations cached for backpropagation are the
rank-r projections Z, totalling rT elements.

HiRA overhead recap. HiRA retains LoRA’s two GEMMs but multiplies the update by W0

element-wise. The projection and reconstruction costs remain (2n − 1)rT and (2m − 1)rT . The
Hadamard modulation introduces an mnT element-wise product with the same shape as the base
model matmul W0X . We include this term in the total FLOP expression above, but emphasize that it
matches the dense baseline cost already incurred by the frozen layer. Hence, when comparing adapter
overheads we focus on the extra low-rank multiplications, which remain O(r(m+ n)T ) as in LoRA.
Collecting the adapter-specific terms yields

FLOPs(adapter)
HiRA = (2n− 1)rT + (2m− 1)rT ≈ 2r(m+ n)T. (13)

HiRA therefore matches LoRA’s asymptotic adapter cost while keeping the same rT activation cache.
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BHRA overhead. Following the GraLoRA analysis, we decompose one training step into three
stages. With a b × b partition and sequence length T , each column slice Xj ∈ R(n/b)×T is first
projected to Zij = AijXj ∈ R(r/b)×T . This costs (2n/b− 1)(r/b)T FLOPs per block, so across b2
blocks we obtain

FLOPs1 = (2n− b)rT.

The reconstruction stage multiplies Zij by Bij ∈ R(m/b)×(r/b), yielding Yij = BijZij ∈ R(m/b)×T

at the same per-block cost, hence

FLOPs2 = (2m− b)rT.

Unlike GraLoRA, BHRA applies a multiplicative mask Hij = W0,ij ⊙Cij . If this mask is evaluated
online, it introduces (mn/b2)T element-wise products. Refreshing Cij = BijAij once per step costs
2(m/b)(n/b)(r/b) FLOPs per block, or 2mnr/b overall. Summing all terms yields

FLOPs(train)
BHRA = 2r(m+ n)T − 2brT +

mn

b2
T +

2mnr

b
. (14)

The 2r(m+ n)T term matches HiRA’s rank-dependent scaling; the remaining corrections stem from
the block partition and vanish when b = 1.

Relation to GraLoRA and inference cost. Setting W0,ij = 1 recovers GraLoRA with k = b,
where the Hadamard stage disappears and the expression above reduces to the classic (2n− k)rT +
(2m− k)mT + (k− 1)mT form. In BHRA we precompute the masks Hij and fold them into W0,ij

before deployment, so inference evaluates only the two low-rank GEMMs per block:

FLOPs(adapter)
BHRA = (2n− 1)rT + (2m− 1)rT ≈ 2r(m+ n)T, (15)

identical in order to HiRA and LoRA.

Memory footprint. We separate forward activations from persistent parameters. Like LoRA/HiRA,
BHRA stores the projected features Zij to backpropagate through Aij ; these consume rT elements
independent of b. The reconstructed tensors Yij can be released after the Hadamard modulation. The
block masks Cij add mn cached values shared across all tokens and reused for gradients, mirroring
GraLoRA’s expanded latent space. Without checkpointing the peak layer memory is rT +mn/b2

elements—rT for the stored projections and mn/b2 to keep the block masks active during the
forward/backward pair. With gradient checkpointing, Yij and Hij are recomputed on demand, so the
peak requirement shrinks to the rT latent cache plus the persistent masks. Because r ≪ m,n, the
additional mn/b2 term remains negligible relative to the base model activations, keeping BHRA in
the same empirical regime as HiRA and GraLoRA.

Table 5: Hyperparameter settings for training Llama-3.2 1B and 3B on COMMONSENSE170K, and
Mistral-7B and Gemma-2 9B on MetaMathQA.

Llama-3.2 1B / 3B Mistral-7B / Gemma-2 9B
Optimizer AdamW AdamW
Batch size 6 1
Max. Seq. Len 256 512
Grad Acc. Steps 24 32
Epochs 2 1
Dropout 0.05 0
Learning Rate 2× 10−3 2× 10−3

Target Modules q_proj, k_proj, v_proj, o_proj, up_proj, down_proj
LR Scheduler Linear Cosine
Warmup Ratio 0.02 0.02

C EXPERIMENTAL DETAILS

We implement all models in PyTorch (Paszke et al., 2019) with HuggingFace Transformers (Wolf
et al., 2020). Experiments run on 8 NVIDIA A100 80 GB GPUs, and we initialize base models
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in torch.bfloat16 to reduce memory consumption. Every configuration is trained with the AdamW
optimizer (Loshchilov & Hutter, 2017), and we report the mean performance across five random
seeds (42, 2025, 2024, 2023, 2022).

We configure Llama-3.2 1B, Llama-3.2 3B, Mistral-7B, and Gemma-2 9B using the hyperparameters
in Table 5. We conduct a sweep over learning rates and scaling factors to identify optimal settings for
each model-task pair. BHRA generally performs better with slightly higher learning rates compared
to LoRA, and we recommend initiating hyperparameter sweeps in that range.
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Figure 9: Performance of BHRA, LoRA, and HiRA under a fixed budget (r × b = 32) on arithmetic
tasks.

While we adopt most settings from prior work (Hu et al., 2023), we run targeted learning-rate sweeps
to tune performance. For baselines we replicate the experimental protocols from LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024), HiRA (Huang et al., 2025), and ABBA (Singhal et al., 2025) To
contextualize BHRA’s behavior, we summarize their key ideas below:
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• LoRA: Freezes pretrained weights and injects a pair of rank-r matrices whose product forms
a low-rank update, yielding parameter-efficient adapters.

• DoRA: Decouples the update direction and magnitude so the adapter can match high-rank
structure while retaining LoRA’s parameter count.

• HiRA: Modulates the LoRA update with a Hadamard product with the frozen weights,
amplifying the attainable rank in proportion to rank(W0).

• ABBA: Learns two independent low-rank factors whose Hadamard combination produces a
dense, high-rank update without referencing W0.

D EXTENDED EXPERIMENTS

Figure 9 extends the block sweep to GSM8K and MATH. For both base models the BHRA curve
peaks at rb = 4 (b = 8), matching the commonsense study: moving left to rb = 1 introduces many
tiny blocks that slightly underfit (~2 accuracy points on GSM8K for Mistral), while moving right
to rb ≥ 16 collapses block diversity and erodes the gains (~1–2 points on both datasets). Across
the entire sweep BHRA maintains a margin over LoRA and HiRA—Gemma retains a ~3 point
advantage on MATH and ~4 points on GSM8K, and Mistral stays 1–2 points ahead except for the
largest blocks—highlighting that the balanced rb = 4, b = 8 setting offers the best trade-off between
per-block expressivity and diversity on arithmetic reasoning as well.

E ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. Our study focuses on low-rank adaptation
techniques for large language models. All datasets used in our experiments (i.e., eight commonsense
resoning sub-tasks, and arithmetic resoning dataset including MetaMathQA, MATH and GSM8K) are
publicly available and have been widely used in prior research. No private or personally identifiable
information is included. Since no human subjects were involved, IRB approval was not required.
We acknowledge that adapting large-scale models may raise potential ethical concerns, such as
misuse for generating harmful or biased content. Our intention is purely to advance the efficiency
and accessibility of model fine-tuning for research purposes. We encourage responsible and fair use
of our methods and note that mitigation strategies against misuse (e.g., filtering, safety alignment)
should be applied when deploying adapted models in real-world scenarios.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to assist with the linguistic polishing of this paper. The models
were not involved in designing the methodology, conducting experiments, or drawing conclusions.
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