
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BLOCKWISE HADAMARD HIGH-RANK ADAPTATION
FOR PARAMETER-EFFICIENT LLM FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) methods must be resource-efficient yet
handle heterogeneous reasoning transformations, and classical low-rank adaptation
(LoRA) is constrained by the nominal rank r. Hadamard-style extensions like
HiRA raise the nominal rank but couple every update to the global energy pattern
of the frozen weight matrix, while ABBA trades this inductive bias for fully learned
dense intermediates. To address the limitation of global modulation, we propose
Block Hadamard high-Rank Adaptation (BHRA), which partitions each weight ma-
trix and applies HiRA-style multiplicative modulation independently within every
block, preserving the PEFT parameter footprint while unlocking localized rank am-
plification. Our empirical analyses reveal that this blockwise design maintains rich
spectra across rank budgets, mitigating the collapse induced by global modulation.
Across eight commonsense reasoning tasks and two arithmetic benchmarks with
Llama-3.2 1B/3B, Mistral-7B, and Gemma-2 9B, BHRA consistently surpasses
strong PEFT baselines under matched parameter budgets.

1 INTRODUCTION

Large Language Models (LLMs) have achieved strong performance across diverse application
domains, including medicine (Thirunavukarasu et al., 2023), multi-step reasoning (Wei et al., 2022),
and finance (Wu et al., 2023). A common strategy for adapting LLMs to specialized domains is full
fine-tuning (FFT), which updates all model parameters. However, the sheer scale of modern LLMs
renders FFT computationally and storage intensive, often impractical under real-world constraints.
To mitigate these costs, Parameter-Efficient Fine-Tuning (PEFT) (Ding et al., 2023) freezes the
pretrained backbone and optimizes lightweight task-specific modules, thereby retaining most of the
capacity of the base model while significantly reducing training overhead.

Among PEFT approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2022) is particularly influential:
given a base weight W ∈ Rm×n, LoRA introduces trainable matrices L1 ∈ Rm×r and L2 ∈ Rr×n

such that the update is ∆W = L1L2. This construction reduces the number of trainable parameters
to (m+ n)r while leaving inference-time computation unchanged. However, the algebraic rank of
∆W is upper bounded by r, so LoRA and its variants (Liu et al., 2024; Ren et al., 2024; Albert et al.,
2025) may require a large r to accommodate heterogeneous tasks, thereby undermining the very
efficiency that motivates PEFT.

To achieve higher effective rank, Hadamard-based adapters modulate weights multiplicatively. HiRA
(Huang et al., 2025) couples the frozen weight matrix W0 with a low-rank factor via an element-
wise product, yielding ∆W = W0 ⊙ (BA), where A and B share LoRA’s dimensionality and ⊙
denotes the Hadamard product. In principle, this can raise the attainable rank since rank(∆W) may
approach rank(W0)× rank(BA). However, the modulation is global: every entry of ∆W inherits
the magnitude pattern of W0, limiting the ability to reallocate adaptation capacity to task-critical
substructures. Alternatively, ABBA (Singhal et al., 2025) discards W0 and learns two free factors
(B1A1)⊙ (B2A2), improving flexibility but sacrificing the inductive bias encoded in the pretrained
backbone. These approaches highlight the open question of how to retain PEFT efficiency while
distributing the available rank budget more effectively than global Hadamard modulation allows.

To diagnose the underlying limitation, we examine the stable rank ∥∆W∥2F /∥∆W∥22, a standard
surrogate for effective rank. Figure 2 shows that LoRA’s stable rank remains close to unity even
as r increases, indicating that most adaptation energy concentrates in a single dominant direction.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

HiRA

(b)

(a)

Hadamard Product

LoRA

(c)

frozen trainable

BHRA

Block Hadamard Product

Figure 1: Illustration of BHRA compared with LoRA (Hu et al., 2022) and HiRA (Huang et al., 2025).
r0 and r denotes the rank of W0 and the total rank budget, respectively. The b× b grid indicates the
block partition, and □ denotes the blockwise Hadamard product.

HiRA initially achieves higher stable rank but degrades with larger budgets since the global coupling
channels singular-value mass into a few directions inherited from W0.

32 64 128 256 512 1024
Rank r

0

20

40

60

80

Av
er

ag
e

st
ab

le
 ra

nk
 o

f
W

LoRA
HiRA
BHRA

Figure 2: Average stable rank of ∆W when
adapting Llama-3.2 1B to commonsense rea-
soning. BHRA maintains a substantially
larger effective rank across identical rank bud-
gets r.

To address the limitation of global modulation, we
propose Block Hadamard High-Rank Adaptation
(BHRA), maintains substantially higher stable ranks
across budgets by activating a broader set of di-
rections while preserving parameter efficiency, as
shown by the green curve in the Figure 2. As il-
lustrated in Figure 1, BHRA partitions each weight
matrix into a b × b grid and applies HiRA-style
modulation independently within each block. For
block (i, j) with per-block rank r

b , the update is
∆Wij = W0,ij ⊙ (BijAij), thereby decoupling
the modulation spatially while keeping the total rank
budget r comparable to LoRA and HiRA. This design
preserves the computational footprint of Hadamard
adapters yet enables the model to deploy capacity pre-
cisely where downstream tasks demand it. As shown
in Figure 3, this localized allocation translates into
consistent gains across eight commonsense reasoning benchmarks on Llama-3.2 1B, with the largest
improvements at higher ranks where the ability to redistribute capacity is most beneficial.

Our contributions are threefold:

• We provide quantitative analyses of Hadamard-style adapters, demonstrating global modu-
lation collapses the effective rank of ∆W while blockwise modulation maintains diverse
directions.

• To address the limitation of global modulation, we propose Block Hadamard High-Rank
Adaptation (BHRA), a block-partitioned HiRA variant that preserves PEFT efficiency yet
expands the attainable rank under a fixed parameter budget.

• We conduct extensive experiments on multiple benchmarks and demonstrates the effective-
ness of BHRA against representative PEFT baselines.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

32 64 128 256 512 1024
Rank (r)

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

OBQA
ARC-c

ARC-e
Wino

HellaS
PIQA

SIQA
BoolQ

Average

Figure 3: Performance of BHRA (solid) and
HiRA (dashed) of Llama-3.2 1B on eight com-
monsense reasoning datasets using different
HiRA configurations.

Low-rank adaptation. LoRA Hu et al. (2022) pa-
rameterizes the update as a low-rank decomposition
∆W = BA, freezing W0 and training only A,B. It
achieves large parameter and memory savings with
negligible inference overhead and has the common
budget or implementation baseline for PEFT. Build-
ing on this, AdaLoRA Zhang et al. (2023) adap-
tively allocates the rank budget across layers by im-
portance, improving utilization under the same total
budget. DoRA Liu et al. (2024) decomposes each
pretrained weight into magnitude and direction and
applies LoRA only to the directional component, nar-
rowing the gap to full fine-tuning without extra in-
ference cost. GraLoRA Jung et al. (2025) introduces
granularity: it partitions a weight matrix into sub-
blocks and matches a tiny LoRA to each block, mitigating structural bottlenecks and boosting
expressivity at essentially the same parameter and FLOPs scale as standard LoRA.

A parallel line raises effective rank via Hadamard product, using the inequality rank(O1 ⊙O2) ≤
rank(O1) × rank(O2) Million (2007). HiRA Huang et al. (2025) writes ∆W = W0 ⊙ (BA),
leveraging the typically high rank of W0 to exceed LoRA’s limit while keeping LoRA-level parameter
cost. ABBA Singhal et al. (2025) fully decouples from W0 by learning two low-rank factors and
taking their Hadamard product, ∆W = (B1A1)⊙ (B2A2), yielding higher expressivity under the
same budget. In this paper, we introduce BHRA, the first blockwise Hadamard formulation of ∆W
for PEFT via block Hadamard product: partition W0 and apply HiRA-style modulation independently
per block, ∆Wij = ∆W0,ij⊙(BijAij). BHRA (1) strictly generalizes HiRA, which is the 1×1 case,
(2) raises attainable effective rank by per-block bounds rank(∆Wij) ≤ rank(W0,ij)×rank(BijAij),
and (3) preserves HiRA-style parameters and FLOPs while adding spatial controllability absent in
global Hadamard or purely additive block schemes.

Other PEFT. Beyond low-rank updates, adapter tuning Houlsby et al. (2019) freezes the backbone
and inserts small bottlenecks. The original Adapter layers establish the template for parameter sharing
across tasks. Prompt tuning Lester et al. (2021) and prefix tuning Li & Liang (2021) keeps all weights
fixed and instead learns continuous prompts or layer-wise key or value prefixes, with Prefix-Tuning
targeting generation and Prompt Tuning becoming competitive with full fine-tuning as model size
scales to billions. These categories primarily optimize storage, compute, and task compositionality,
and are complementary to BHRA, which instead targets higher effective rank of ∆W via blockwise
Hadamard modulation under LoRA-level parameter and FLOPs.

3 METHODOLOGY

In this section, we first revisit the hadamard-style adaptation, and then introduce Block Hadamard
high-Rank Adaptation (BHRA). Next, we provide a theoretical analysis of the expressive power of
BHRA. Finally, we present the training and inference efficiency and gradient analysis for BHRA.

Revisiting Hadamard-Style Adaptation. Let W0 ∈ Rm×n denote the frozen weight matrix of a
linear layer and let r be the available rank budget. Following Hu et al. (2022), LoRA introduces
trainable factors L1 ∈ Rm×r and L2 ∈ Rr×n such that

∆WLoRA = L1L2, (1)
and therefore rank(∆WLoRA) ≤ r. HiRA (Huang et al., 2025) retains this low-rank scaffold but
modulates the update multiplicatively with the pretrained weights:

∆WHiRA = W0 ⊙ (BA), (2)
where ⊙ denotes the Hadamard (element-wise) product. The attainable rank of ∆WHiRA follows
from the classical Hadamard product inequality as follows.
Lemma 3.1 (Hadamard rank bound (Million, 2007)). For any matrices O1 and O2 of the same size,

rank(O1 ⊙O2) ≤ rank(O1) rank(O2). (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Hadamard-based adapters under an equal parameter/rank budget.

Method Trainable parameters Rank upper bound Dependence on W0

LoRA r(m+ n) r None
HiRA r(m+ n) r0 r Global modulation by W0

ABBA r(m+ n) r2 None; dense intermediates
BHRA r(m+ n) br0 r Blockwise modulation by W0

Applying Lemma 3.1 with O1 = W0 and O2 = BA yields

rank(∆WHiRA) ≤ rank(W0) rank(BA) ≤ rank(W0) r, (4)

showing that HiRA multiplies LoRA’s rank bound by rank(W0) while preserving the trainable
parameter count r(m+ n).

Recently, to address the reliance on W0 in HiRA, ABBA (Singhal et al., 2025) learns two independent
low-rank products whose Hadamard combination forms the update, thereby discarding the dependence
on W0 but requiring dense m × n intermediates. Alternatively, BHRA aims to combine HiRA’s
inductive bias with ABBA’s flexibility while keeping a LoRA-level parameter footprint.

In Table 1, we summarize the principal Hadamard-style adapters under a shared rank budget r for
an m × n layer. LoRA trains r(m + n) parameters and its update rank is bounded by r. HiRA
multiplies this bound by rank(W0) = r0. ABBA reaches r2 by learning two dense intermediates.
BHRA redistributes the rank budget across blocks of W0, retaining the same parameter count while
enabling localized amplification.

Block-Hadamard High-Rank Adaptation (BHRA). BHRA partitions W0 into a b × b grid of
disjoint blocks. Let each block share dimensions m/b by n/b for clarity (other partitions follow
analogously), and denote block (i, j) by W0,ij ∈ R(m/b)×(n/b). Within every block we allocate
low-rank factors

Bij ∈ R(m/b)×(r/b), Aij ∈ R(r/b)×(n/b), (5)

whose product Cij = BijAij has rank at most r/b. Arranging these factors into a block matrix
produces a “capacity” tensor

CBHRA =

C11 · · · C1b

...
. . .

...
Cb1 · · · Cbb

 ∈ Rm×n. (6)

The BHRA update is obtained by a blockwise Hadamard product between this learned capacity and
the frozen weights:

∆WBHRA = CBHRA□W0, (7)

where □ applies the element-wise Hadamard product inside each block (Günther & Klotz, 2012).
Setting b = 1 recovers HiRA. The trainable parameter count remains r(m+n) because the b2 blocks
each store a rank- rb pair.

This construction mirrors the schematic in Figure 1: orange low-rank LoRA pairs (Bij , Aij) tile
the matrix, the grey tiles represent the corresponding submatrices of W0, and the block Hadamard
operator combines them to form ∆WBHRA. Localizing the modulation allows BHRA to amplify rank
in every block without materializing dense intermediates.

Expressive Power of BHRA. We begin by bounding the rank of the learned capacity that mediates
BHRA’s update. Let r0 = rank(W0).

Lemma 3.2 (Rank of the BHRA capacity). For a b × b partition with uniform rank budget,
rank(CBHRA) ≤ br.

Proof. Fix a row i. The horizontal concatenation [Ci1 · · · Cib] consists of b blocks, each with rank
at most r/b. The rank of a horizontal concatenation is no larger than the sum of the ranks of its
constituents, so the i-th row block has rank at most r. Stacking the b row blocks vertically increases
the rank by at most r per block, yielding rank(CBHRA) ≤ br.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

With this capacity bound in hand, combining Lemma 3.2 with Lemma 3.1 yields the desired rank
guarantee for BHRA as follows.
Proposition 3.1 (BHRA rank upper bound). Let r0 = rank(W0). Then

rank(∆WBHRA) = rank(CBHRA□W0) ≤ rank(CBHRA) rank(W0) ≤ br0r. (8)

The factor b reflects the number of block rows; non-square grids simply replace it with the number of
row partitions. Thus BHRA scales the HiRA bound by the number of block slices while preserving
the parameter footprint r(m+ n). Empirically, pretrained blocks often exhibit high local rank, so the
b-fold amplification translates into near-full-rank updates under the same budget. We analyze parallel
bounds for other Hadamard-style adapters next and include full derivations in Appendix A.

Comparison with HiRA. For HiRA, letting rank(W0) = r0 and writing ∆WHiRA = W0 ⊙ (BA) with
B ∈ Rm×r and A ∈ Rr×n, the Hadamard rank inequality ensures

rank(∆WHiRA) = rank
(
W0 ⊙ (BA)

)
≤ r0 rank(BA) ≤ r0r.

Coupled with Proposition 3.1, which yields rank(∆WBHRA) ≤ br0r, we see that BHRA scales
HiRA’s attainable rank by a factor of b while preserving the identical parameter budget r(m+ n).
When b = 1, the two bounds coincide, recovering HiRA.

Training and Inference Efficiency. First, we analyze the expected computational cost of LoRA
in terms of FLOPs. LoRA adapts each linear layer with a pair of rank-r GEMMs: the projection
Z = AX costs (2n− 1)rT FLOPs and the reconstruction Y = BZ costs (2r − 1)mT , yielding

FLOPsLoRA = (2n− 1)rT + (2r − 1)mT = 2r(m+ n)T − (r +m)T, (9)

while caching only the rT activations in Z. HiRA keeps these two multiplications but gates the update
with a mask W0 ⊙ (BA) that we materialize once, so its adapter overhead stays at ≈ 2r(m+ n)T
with the same activation footprint.

BHRA partitions the layer into b× b blocks. Summing the per-block projections, reconstructions,
mask multiplications, and refreshes gives

FLOPs(train)
BHRA = 2r(m+ n)T − 2brT +

mn

b2
T +

2mnr

b
, (10)

which collapses to the HiRA expression when b = 1. Before deployment we fold the learned masks
Hij into W0, leaving inference with the same two rank-r GEMMs (2n− 1)rT + (2m− 1)rT and a
static buffer of size mn/b2 in addition to the usual rT cache. Please find the detailed analysis of the
trade-off in Appendix B.

Gradient Analysis. Following the exposition of Huang et al. (2025), let a linear layer produce
z = (W0 +∆W)x and incur loss L with residual g = ∇zL. The gradient with respect to the update
parameters factors through G = gx⊤.

In LoRA the two low-rank factors are differentiated as ∇AL = B⊤G and ∇BL = GA⊤, so the
gradients are completely agnostic to the pretrained weights W0. HiRA inserts W0 multiplicatively
and the gradients become∇AL = B⊤(W0 ⊙G) and ∇BL = (W0 ⊙G)A⊤, revealing that HiRA
leverages the structure already encoded in W0 to steer the update directions.

BHRA preserves this inductive bias while localising it. Partition the residual and input as g =
[g⊤1 , . . . , g

⊤
b]

⊤ and x = [x⊤
1 , . . . , x

⊤
b]

⊤, so the blockwise gradients factor through Gij = gix
⊤
j . For

block (i, j),
∇Aij

L = B⊤
ij(W0,ij ⊙Gij) , ∇Bij

L = (W0,ij ⊙Gij)A
⊤
ij .

Thus each block is guided only by its corresponding slice W0,ij , preventing globally small entries of
W0 from suppressing gradients elsewhere while retaining the beneficial alignment that differentiates
HiRA from LoRA.

4 EXPERIMENTS

In this section, we evaluate BHRA on commonsense and arithmetic reasoning tasks. We will introduce
the datasets, experimental settings and results on these tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 DATASETS

Commonsense reasoning. We utilize eight sub-tasks with predefined training and testing datasets
(Hu et al., 2023), combining 170,420 query-answer pairs for fine-tuning LLMs and selecting 120
random entries as a validation set. The eight sub-tasks includes BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2021), ARC-Challenge and ARC-Easy (Clark et al., 2018), and OBQA Mihaylov et al. (2018).
We evaluate performance on each dataset independently to capture task-specific generalization.

Arithmetic reasoning. We fine-tune Mistral-7B (Jiang et al., 2023) and Gemma-2 9B (Team et al.,
2024) on a 50K-sample subset of MetaMathQA (Yu et al., 2023), and evaluate on MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021), reporting exact-match accuracy, consistent with prior
work (Singhal et al., 2025).

For both tasks, We insert LoRA adapters into all attention projections including query, key, value,
and output as well as feedforward network layers.

4.2 EXPERIMENTAL SETTINGS

Baselines. We compare against representative PEFT methods under matched parameter budgets:
LoRA (Hu et al., 2022), DoRA (Liu et al., 2024), HiRA (Huang et al., 2025), ABBA (Singhal et al.,
2025). Our experiments use the Llama-3.2-1B and Llama-3.2-3B (Grattafiori et al., 2024), Mistral-7B
(Jiang et al., 2023) and Gemma-2 9B (Team et al., 2024) open-source LLMs.

Metrics. For commonsense reasoning we adopt accuracy as the primary metric, consistent with
Huang et al. (2025); Singhal et al. (2025). Given a model completion, we apply a task-specific
post-processing step: the generated text is scanned for canonical answer tokens (e.g., true”/false”
for BoolQ, option letters for PIQA, SIQA, ARC, and OBQA). The first matched token is treated as
the prediction; if no valid token is detected the response is marked incorrect. Accuracy is computed
separately for each dataset and we report the macro-average over all eight tasks to control for dataset
size imbalance. Arithmetic benchmarks follow the exact-match protocol of GSM8K/MATH. Outputs
are normalized by stripping punctuation, lowercasing, and resolving verbal numbers to their numeric
forms so that mathematically equivalent answers are aligned. A prediction counts as correct only
when the normalized string matches the reference exactly.

Implementation details. Following the identical training setup to Huang et al. (2025); Singhal et al.
(2025) except learning rate adjustments, we implement BHRA on all reasoning tasks with total rank
settings rtot = 32. We train for 2 epochs and 1 epoch for the commonsense reasoning and arithmetic
reasoning tasks, respectively. Results are reported as the mean over 5 random seeds. These choices
mirror the HiRA setup for fair comparison. In BHRA, we set p = q = b and rb = rtot

b to exactly
matches LoRA/HiRA parameter counts and FLOPs. We use this setting in all main comparisons. We
adopt LoRA-style scaling α = rtot and standard initialization that yields zero initial update (Hu et al.,
2022), matching HiRA’s practice to preserve the base model at step 0. We use AdamW with learning
rate 0.002 and 100 warm-up steps as in (Singhal et al., 2025). As with HiRA and ABBA, we support
pre-compute and add ∆W to W0, yielding zero inference overhead beyond the base model. Please
find the detailed implementation in Appendix C.

4.3 RESULTS ON COMMONSENSE REASONING

As shown in Table 2, on Llama-3.2-1B, BHRA attains an average accuracy of 73.76, improving over
LoRA (70.75%) by +3.01% points and over HiRA (72.40%) by +1.36% points, while remaining
within 0.03% of ABBA (73.79%). On Llama-3.2-3B, BHRA reaches 84.52%, which is +2.73%
above LoRA and +0.69% above HiRA, and is 0.24% below ABBA. Gains are strongest on tasks
such as ARC-c, ARC-e, Wino, and BoolQ, where models benefit from combining diverse local
transformations. The blockwise Hadamard update increases local effective rank without increasing
the parameter or FLOP budget, and it allows different regions of the weight matrix to specialize. This
combination improves coverage of subspaces that matter for multi-facet commonsense reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of multiple fine-tuning methods on Llama-3.2 1B and 3B across eight common-
sense reasoning datasets. Best results among PEFT methods are in bold.

Model Method # Params Accuracy (↑)
OBQA ARC-c ARC-e Wino HellaS PIQA SIQA BoolQ Avg.

Llama-3.2 1B

FFT 1.24 B 74.00 62.05 78.63 74.79 79.63 80.62 75.37 63.77 73.61
LoRA 22.54 M 68.48 58.91 76.67 71.95 75.45 77.79 72.94 63.82 70.75
DoRA 22.92 M 70.00 59.57 77.50 72.70 75.46 78.42 73.14 63.71 71.31
HiRA 22.54 M 71.40 60.49 78.56 72.52 78.19 79.97 74.12 63.95 72.40
ABBA 22.54 M 73.60 61.52 79.04 74.19 81.87 81.12 74.00 65.02 73.79

BHRA 22.54 M 73.04 62.66 79.47 74.02 80.35 80.47 74.41 65.91 73.79

Llama-3.2 3B

FFT 3.21 B 85.00 78.81 90.00 86.55 93.14 87.25 81.49 73.58 84.48
LoRA 48.63 M 82.27 76.19 87.52 84.00 91.25 84.38 79.06 69.66 81.79
DoRA 49.40 M 82.80 76.59 89.05 85.86 92.71 85.92 80.82 71.02 83.10
HiRA 48.63 M 83.52 77.13 89.38 85.30 92.91 86.49 80.71 72.68 83.51
ABBA 48.63 M 84.76 78.24 89.76 86.28 93.51 86.91 80.82 73.63 84.24

BHRA 48.63 M 85.16 78.48 90.03 86.49 93.37 87.03 81.28 74.35 84.52

Table 3: Comparison of multiple fine-tuning methods on Mistral-7B and Gemma-2 9B across
arithmetic reasoning benchmarks. Best results among PEFT methods are in bold.

Method Mistral-7B Gemma-2 9B
Params GSM8K (↑) MATH (↑) # Params GSM8K (↑) MATH (↑)

FFT 7.24 B 67.74 19.62 9.24 B 79.28 39.89
LoRA 83.88 M 61.94 15.98 108.04 M 76.19 36.56
DoRA 85.26 M 65.73 19.02 109.88 M 76.91 38.05
HiRA 83.88 M 66.29 17.77 108.04 M 78.74 38.11
ABBA 83.88 M 66.57 18.03 108.04 M 78.70 38.80

BHRA 83.88 M 66.64 20.07 108.04 M 78.98 38.13

4.4 RESULTS ON ARITHMETIC REASONING

As shown in Table 3, on Mistral-7B, BHRA reaches 66.64% on GSM8K and 20.07% on MATH.
This improves over LoRA by 4.70% and 4.09%, over HiRA by 0.35% and 2.30%, and over ABBA
by 0.07% and 2.04%. The larger gains on MATH indicate that blockwise Hadamard modulation
raises useful local rank for long, stepwise derivations. These two benchmarks are standard multi-step
arithmetic tests in the literature. On Gemma-2 9B, BHRA attains 78.98% on GSM8K and 38.13% on
MATH. Relative to LoRA, the improvements are 2.79% and 1.57%. BHRA edges HiRA on GSM8K
by 0.24% and is effectively tied on MATH with a 0.02% point lead, while it is 0.28% above ABBA
on GSM8K and 0.67% below on MATH.

5 ANALYSIS

5.1 SINGULAR VALUE STRUCTURE OF FULL FINE-TUNING, HIRA, AND BHRA

0 2 4 6 8 10 12 14
Layer index

0

500

1000

1500

2000

sin

gu
la

r v
al

ue
s

 1
%

 o
f

_m
ax Wq

0 2 4 6 8 10 12 14
Layer index

Wk

0 2 4 6 8 10 12 14
Layer index

Wv

0 2 4 6 8 10 12 14
Layer index

Wo

0 2 4 6 8 10 12 14
Layer index

Wgate

0 2 4 6 8 10 12 14
Layer index

Wup

0 2 4 6 8 10 12 14
Layer index

Wdown

LoRA
HiRA r=32
HiRA r=128
HiRA r=512
BHRA
FFT

Figure 4: Count of singular values exceeding 1% of the layer-wise maximum for FFT, LoRA, HiRA,
and BHRA.

Figure 4 reports the number of singular values above the 1% energy threshold for each transformer
projection. Full fine-tuning (FFT) activates the richest spectrum throughout the stack, and BHRA
closely tracks this envelope, particularly in the FFN up/down projections where its counts remain high
even in deeper layers. HiRA exhibits a clear dependence on the nominal rank: at r = 32 it delivers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

only a modest lift over LoRA, r = 128 roughly doubles the active directions in the feed-forward
pathway, and r = 512 pushes the spectrum further but still falls short of the blockwise coverage
achieved by BHRA. LoRA remains almost flat across layers, reflecting the severe bottleneck imposed
by its single low-rank factorization.

0 2 4 6 8 10 12 14
Layer index

10 2

10 1

100

101

W
F²

Wq

0 2 4 6 8 10 12 14
Layer index

Wk

0 2 4 6 8 10 12 14
Layer index

Wv

0 2 4 6 8 10 12 14
Layer index

Wo

0 2 4 6 8 10 12 14
Layer index

Wgate

0 2 4 6 8 10 12 14
Layer index

Wup

0 2 4 6 8 10 12 14
Layer index

Wdown

LoRA
HiRA r=32
HiRA r=128
HiRA r=512
BHRA
FFT

Figure 5: Layer-wise sum of squared singular values for FFT, LoRA, HiRA, and BHRA.

0 2 4 6 8 10 12 14
Layer index

0

500

1000

1500

2000

Ef
fe

ct
iv

e
ra

nk

Wq

0 2 4 6 8 10 12 14
Layer index

Wk

0 2 4 6 8 10 12 14
Layer index

Wv

0 2 4 6 8 10 12 14
Layer index

Wo

0 2 4 6 8 10 12 14
Layer index

Wgate

0 2 4 6 8 10 12 14
Layer index

Wup

0 2 4 6 8 10 12 14
Layer index

Wdown

LoRA
HiRA r=32
HiRA r=128
HiRA r=512
BHRA
FFT

Figure 6: Effective rank across layers for FFT, LoRA, HiRA, and BHRA.

The aggregate singular-value energy in Figure 5 mirrors this stratification. BHRA preserves nearly all
of the FFT energy in every projection, whereas HiRA recovers progressively more mass as the rank
increases from 32 to 128 and 512, yet each variant still trails BHRA in the deeper FFN blocks. LoRA
consistently captures the least energy, underscoring that a global low-rank adapter fails to populate
directions that dominate the spectrum. This indicates that LoRA stays rank-deficient in every module.

0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450
Mean block Gini

70

71

72

73

74

75

Ac
cu

ra
cy

 (%
)

LoRA
HiRA
BHRA

Figure 7: Accuracy on the eight com-
monsense tasks versus mean block Gini
of the learned adapters (Llama-3.2-1B,
rb × b = 32). Greater block heterogene-
ity correlates with higher accuracy, and
BHRA dominates both LoRA and HiRA
in this trade-off.

Effective-rank trends in Figure 6 reinforce the conclusion.
BHRA maintains an entropy-based rank profile that is
indistinguishable from full fine-tuning across the network.
HiRA’s curves again separate by nominal rank: the r = 32
model plateaus early, the r = 128 setting narrows the gap
through the middle of the stack, and r = 512 approaches
BHRA only in the lower layers while still lagging in the
upper decoder blocks. The stability analysis in Figure 2
confirms that this hierarchy persists when sweeping the
target rank: BHRA keeps a higher stable rank than HiRA
across the sweep and LoRA remains nearly flat near one.

Together, these spectral diagnostics explain the accuracy
hierarchy observed in Table 2 and Table 3: BHRA’s block-
wise capacity unlocks rich, layer-local updates that em-
ulate the representational flexibility of full fine-tuning,
whereas HiRA and LoRA remain constrained by their
limited ability to populate the singular spectrum.

5.2 ANALYSIS OF BLOCK HETEROGENEITY

Figure 7 plots macro accuracy against the mean block Gini of the learned updates. The three PEFT
baselines form clearly separated clusters: LoRA achieves the lowest heterogeneity and correspond-
ingly lags in accuracy, HiRA raises both quantities modestly, while BHRA consistently occupies
the upper-right region. This monotonic trend supports our claim that BHRA’s blockwise Hadamard
modulation induces richer intra-layer variation captured by higher block Gini coefficient, which in
turn translates into stronger commonsense performance under a fixed parameter budget.

5.3 CHOICE OF rb FOR BHRA

Under a fixed budget rb×b = 32, we sweep rb ∈ {1, 2, 4, 8, 16, 32} with b = 32/rb on commonsense
reasoning tasks shown in Figure 8 and arithmetic tasks (Please find details in Appendix D). Across
both settings, rb = 4, b = 8 is consistently on the accuracy maximum while remaining stable across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the benchmark models and datasets; very small rb with many tiny blocks underfits, where larger
rb with few blocks loses block diversity and slightly degrades performance. Therefore, we set
rb = 4, b = 8 as a balanced point between per-block expressivity and block diversity under the same
parameter budget.

5.4 ANALYSIS OF PLACEMENT OF BHRA IN TRANSFORMERS

Table 4: Impact of selectively fine-tuning individual transformer components - Key, Query, Value,
Output, Up, Gate, and Down projections, with BHRA on Llama-3.2-1B.

Component OBQA ARC-c ARC-e Wino HellaS PIQA SIQA BoolQ Avg.
All 73.04 62.66 79.47 74.02 80.35 80.47 74.41 65.91 73.79

FFN 73.10 62.37 79.48 73.90 79.60 81.04 74.16 65.79 73.68
Down 68.80 59.00 76.70 69.97 73.44 77.48 72.68 64.50 70.32
Gate 65.73 57.17 76.25 68.48 71.32 77.37 71.60 64.18 69.01
Up 67.80 63.29 67.57 73.37 71.85 75.66 75.17 68.21 67.12
O 66.52 57.13 75.29 68.92 74.27 78.16 72.36 63.60 69.46

QKV 66.68 57.49 75.64 70.73 75.62 78.01 73.19 62.31 69.96
V 57.95 50.80 69.98 64.39 67.85 76.43 67.90 60.96 64.70
K 58.50 48.98 69.70 63.63 63.21 74.08 65.90 57.32 62.66
Q 57.20 48.55 67.06 65.07 58.54 73.48 64.69 60.99 61.95

(rb=1, b=32)

(rb=2, b=16)

(rb=4, b=8)

(rb=8, b=4)

(rb=16, b=2)

(rb=32, b=1)

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

BHRA (1B)
BHRA (3B)

LoRA (1B)
LoRA (3B)

HiRA (1B)
HiRA (3B)

Figure 8: The performance of BHRA, LoRA
and HiRA under fixed budget (rb × b = 32)
on commonsense reasoning tasks.

Table 4 quantifies how BHRA behaves when re-
stricted to individual projection matrices inside the
Llama-3.2-1B transformer. Adapting every linear
submodule (“All”) achieves the strongest average ac-
curacy (73.79) and principally serves as an upper
bound. Limiting BHRA to the feed-forward path-
way (FFN: Up, Gate, and Down) nearly matches
this ceiling at 73.68 average, underscoring that most
of the attainable improvements arise from the MLP
stack. Among single-component interventions, the
Down projection delivers the largest gain (70.32 av-
erage), followed by the Gate (69.01) and Up (67.12)
branches. Each of these submodules modulates fea-
ture transformation and routing, allowing BHRA to
inject diverse block-specific updates. In contrast, up-
dating the attention projections alone is markedly less effective: the Output projection reaches 69.46,
and adapting only Q, K, or V hovers near 62–65. Even treating QKV jointly recovers to just 69.96,
still below the FFN-focused variants. These trends align with the functional roles of the submodules:
attention weights primarily steer token-to-token interactions, whereas the feed-forward projections
reshape hidden states and thus provide a richer canvas for blockwise Hadamard modulation.

6 CONCLUSION

In this paper, we propose Block Hadamard high-Rank Adaptation (BHRA), which mitigates the rank
bottlenecks of classical low-rank and Hadamard-style adapters by partitioning pretrained weights
and applying HiRA-style modulation locally. This blockwise formulation preserves LoRA-level
efficiency while expanding the attainable rank of ∆W , as corroborated by stable-rank and spectral
analyses. Across eight commonsense reasoning tasks and two arithmetic benchmarks on Llama-
3.2 1B/3B, Mistral-7B, and Gemma-2 9B, BHRA consistently outperforms representative PEFT
baselines under matched parameter and FLOP budgets. Ablation studies show that moderate block
counts with modest per-block rank offer a resilient accuracy–efficiency trade-off. These results
highlight block-level heterogeneity as a key determinant of high-utility PEFT and establish BHRA
as a practical, theoretically grounded alternative to existing Hadamard adapters. Future work will
pursue data-driven block partitions, multi-modal extensions, and integration with adaptive scheduling
or continual learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. Details of the model architecture,
BHRA configurations and training hyperparameters are provided in Section 4 and Appendix C. The
datasets used for training and evaluation are publicly available and fully described in Section 4.1.
We also provide the directory of the source code and scripts for reproducing all experiments in
the supplementary materials. This includes implementations of our BHRA, training scripts, and
configuration files.

REFERENCES

Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
Hengel, and Ehsan Abbasnejad. Randlora: Full-rank parameter-efficient fine-tuning of large
models. arXiv preprint arXiv:2502.00987, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature machine intelligence, 5(3):220–235, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Matthias Günther and Lutz Klotz. Schur’s theorem for a block hadamard product. Linear algebra
and its applications, 437(3):948–956, 2012.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. HiRA: Parameter-efficient
hadamard high-rank adaptation for large language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=TwJrTz9cRS.

10

https://openreview.net/forum?id=TwJrTz9cRS
https://openreview.net/forum?id=TwJrTz9cRS

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825,
2023. URL https://api.semanticscholar.org/CorpusID:263830494.

Yeonjoon Jung, Daehyun Ahn, Hyungjun Kim, Taesu Kim, and Eunhyeok Park. Gralora: Granular
low-rank adaptation for parameter-efficient fine-tuning. arXiv preprint arXiv:2505.20355, 2025.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Elizabeth Million. The hadamard product. Course Notes, 3(6):1–7, 2007.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten Rijke, Zhumin
Chen, and Jiahuan Pei. Melora: Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 3052–3064, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, and Praneeth Vepakomma. Abba: Highly expres-
sive hadamard product adaptation for large language models. arXiv preprint arXiv:2505.14238,
2025.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

11

https://api.semanticscholar.org/CorpusID:263830494

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lq62uWRJjiY.

12

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILED ANALYSIS OF RANK UPPER BOUNDS

HiRA rank upper bound. Let W0 ∈ Rm×n with rank(W0) = r0. HiRA parameterises the update
as ∆WHiRA = W0 ⊙ (BA) with B ∈ Rm×r and A ∈ Rr×n. Using the Hadamard rank inequality,

rank(∆WHiRA) = rank
(
W0 ⊙ (BA)

)
≤ r0 rank(BA) ≤ r0r,

so the HiRA update obeys
rank(∆WHiRA) ≤ r0r .

ABBA rank upper bound. ABBA learns two independent low-rank products, P = B1A1 and
Q = B2A2, each of rank at most r. Their Hadamard combination expands as

∆WABBA = P ⊙Q =

r∑
i=1

r∑
j=1

(b1,i ⊙ b2,j) (a1,i ⊙ a2,j)
⊤, (11)

where b1,i denotes the i-th column of B1, etc. Consequently rank(∆WABBA) ≤ r2 irrespective of
W0; the attainable rank is capped by r2tot/4 even when the layer dimension is much larger.

BHRA rank upper bound. For BHRA we reuse the block construction described earlier; The
learned capacity CBHRA satisfies Lemma 3.2, namely rank(CBHRA) ≤ br for a uniform b× b partition.
Combining Lemma 3.2 with Lemma 3.1 yields Proposition 3.1:

rank(∆WBHRA) = rank(CBHRA□W0) ≤ b r0r.

As before the ambient dimension enforces rank(∆WBHRA) ≤ min{m,n}, so altogether

rank(∆WBHRA) ≤ br0r .

The factor b reflects the number of block rows; non-square partitions simply replace it with the
number of row groups.

Relationship. Comparing the bounds

rank(∆WHiRA) ≤ r0r, rank(∆WBHRA) ≤ br0r,

shows that BHRA scales HiRA’s rank budget by a factor of b while keeping the same parameter count
r(m+ n). When b = 1 the two bounds coincide, recovering HiRA.

B DETAILED ANALYSIS OF TRADE-OFF

We first quantify the training cost of LoRA and HiRA before detailing BHRA and its relation to
GraLoRA. All derivations assume a mini-batch with sequence length T .

LoRA overhead recap. LoRA performs the projection Z = AX with cost (2n − 1)rT FLOPs
followed by the reconstruction Y = BZ with cost (2r − 1)mT . Summing the two gives

FLOPsLoRA = (2n− 1)rT + (2r − 1)mT = 2r(m+ n)T − (r +m)T. (12)

No Hadamard modulation is involved, and the only activations cached for backpropagation are the
rank-r projections Z, totalling rT elements.

HiRA overhead recap. HiRA retains LoRA’s two GEMMs but multiplies the update by W0

element-wise. The projection and reconstruction costs remain (2n − 1)rT and (2m − 1)rT . The
Hadamard modulation introduces an mnT element-wise product with the same shape as the base
model matmul W0X . We include this term in the total FLOP expression above, but emphasize that it
matches the dense baseline cost already incurred by the frozen layer. Hence, when comparing adapter
overheads we focus on the extra low-rank multiplications, which remain O(r(m+ n)T) as in LoRA.
Collecting the adapter-specific terms yields

FLOPs(adapter)
HiRA = (2n− 1)rT + (2m− 1)rT ≈ 2r(m+ n)T. (13)

HiRA therefore matches LoRA’s asymptotic adapter cost while keeping the same rT activation cache.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

BHRA overhead. Following the GraLoRA analysis, we decompose one training step into three
stages. With a b × b partition and sequence length T , each column slice Xj ∈ R(n/b)×T is first
projected to Zij = AijXj ∈ R(r/b)×T . This costs (2n/b− 1)(r/b)T FLOPs per block, so across b2
blocks we obtain

FLOPs1 = (2n− b)rT.

The reconstruction stage multiplies Zij by Bij ∈ R(m/b)×(r/b), yielding Yij = BijZij ∈ R(m/b)×T

at the same per-block cost, hence

FLOPs2 = (2m− b)rT.

Unlike GraLoRA, BHRA applies a multiplicative mask Hij = W0,ij ⊙Cij . If this mask is evaluated
online, it introduces (mn/b2)T element-wise products. Refreshing Cij = BijAij once per step costs
2(m/b)(n/b)(r/b) FLOPs per block, or 2mnr/b overall. Summing all terms yields

FLOPs(train)
BHRA = 2r(m+ n)T − 2brT +

mn

b2
T +

2mnr

b
. (14)

The 2r(m+ n)T term matches HiRA’s rank-dependent scaling; the remaining corrections stem from
the block partition and vanish when b = 1.

Relation to GraLoRA and inference cost. Setting W0,ij = 1 recovers GraLoRA with k = b,
where the Hadamard stage disappears and the expression above reduces to the classic (2n− k)rT +
(2m− k)mT + (k− 1)mT form. In BHRA we precompute the masks Hij and fold them into W0,ij

before deployment, so inference evaluates only the two low-rank GEMMs per block:

FLOPs(adapter)
BHRA = (2n− 1)rT + (2m− 1)rT ≈ 2r(m+ n)T, (15)

identical in order to HiRA and LoRA.

Memory footprint. We separate forward activations from persistent parameters. Like LoRA/HiRA,
BHRA stores the projected features Zij to backpropagate through Aij ; these consume rT elements
independent of b. The reconstructed tensors Yij can be released after the Hadamard modulation. The
block masks Cij add mn cached values shared across all tokens and reused for gradients, mirroring
GraLoRA’s expanded latent space. Without checkpointing the peak layer memory is rT +mn/b2

elements—rT for the stored projections and mn/b2 to keep the block masks active during the
forward/backward pair. With gradient checkpointing, Yij and Hij are recomputed on demand, so the
peak requirement shrinks to the rT latent cache plus the persistent masks. Because r ≪ m,n, the
additional mn/b2 term remains negligible relative to the base model activations, keeping BHRA in
the same empirical regime as HiRA and GraLoRA.

Table 5: Hyperparameter settings for training Llama-3.2 1B and 3B on COMMONSENSE170K, and
Mistral-7B and Gemma-2 9B on MetaMathQA.

Llama-3.2 1B / 3B Mistral-7B / Gemma-2 9B
Optimizer AdamW AdamW
Batch size 6 1
Max. Seq. Len 256 512
Grad Acc. Steps 24 32
Epochs 2 1
Dropout 0.05 0
Learning Rate 2× 10−3 2× 10−3

Target Modules q_proj, k_proj, v_proj, o_proj, up_proj, down_proj
LR Scheduler Linear Cosine
Warmup Ratio 0.02 0.02

C EXPERIMENTAL DETAILS

We implement all models in PyTorch (Paszke et al., 2019) with HuggingFace Transformers (Wolf
et al., 2020). Experiments run on 8 NVIDIA A100 80 GB GPUs, and we initialize base models

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

in torch.bfloat16 to reduce memory consumption. Every configuration is trained with the AdamW
optimizer (Loshchilov & Hutter, 2017), and we report the mean performance across five random
seeds (42, 2025, 2024, 2023, 2022).

We configure Llama-3.2 1B, Llama-3.2 3B, Mistral-7B, and Gemma-2 9B using the hyperparameters
in Table 5. We conduct a sweep over learning rates and scaling factors to identify optimal settings for
each model-task pair. BHRA generally performs better with slightly higher learning rates compared
to LoRA, and we recommend initiating hyperparameter sweeps in that range.

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

 (%
)

GSM8K

BHRA (Mistral)
BHRA (Gemma)

LoRA (Mistral)
LoRA (Gemma)

HiRA (Mistral)
HiRA (Gemma)

(rb=1, b=32)

(rb=2, b=16)

(rb=4, b=8)

(rb=8, b=4)

(rb=16, b=2)

(rb=32, b=1)
15

20

25

30

35

Ac
cu

ra
cy

 (%
)

MATH

Figure 9: Performance of BHRA, LoRA, and HiRA under a fixed budget (r × b = 32) on arithmetic
tasks.

While we adopt most settings from prior work (Hu et al., 2023), we run targeted learning-rate sweeps
to tune performance. For baselines we replicate the experimental protocols from LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024), HiRA (Huang et al., 2025), and ABBA (Singhal et al., 2025) To
contextualize BHRA’s behavior, we summarize their key ideas below:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• LoRA: Freezes pretrained weights and injects a pair of rank-r matrices whose product forms
a low-rank update, yielding parameter-efficient adapters.

• DoRA: Decouples the update direction and magnitude so the adapter can match high-rank
structure while retaining LoRA’s parameter count.

• HiRA: Modulates the LoRA update with a Hadamard product with the frozen weights,
amplifying the attainable rank in proportion to rank(W0).

• ABBA: Learns two independent low-rank factors whose Hadamard combination produces a
dense, high-rank update without referencing W0.

D EXTENDED EXPERIMENTS

Figure 9 extends the block sweep to GSM8K and MATH. For both base models the BHRA curve
peaks at rb = 4 (b = 8), matching the commonsense study: moving left to rb = 1 introduces many
tiny blocks that slightly underfit (~2 accuracy points on GSM8K for Mistral), while moving right
to rb ≥ 16 collapses block diversity and erodes the gains (~1–2 points on both datasets). Across
the entire sweep BHRA maintains a margin over LoRA and HiRA—Gemma retains a ~3 point
advantage on MATH and ~4 points on GSM8K, and Mistral stays 1–2 points ahead except for the
largest blocks—highlighting that the balanced rb = 4, b = 8 setting offers the best trade-off between
per-block expressivity and diversity on arithmetic reasoning as well.

E ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. Our study focuses on low-rank adaptation
techniques for large language models. All datasets used in our experiments (i.e., eight commonsense
resoning sub-tasks, and arithmetic resoning dataset including MetaMathQA, MATH and GSM8K) are
publicly available and have been widely used in prior research. No private or personally identifiable
information is included. Since no human subjects were involved, IRB approval was not required.
We acknowledge that adapting large-scale models may raise potential ethical concerns, such as
misuse for generating harmful or biased content. Our intention is purely to advance the efficiency
and accessibility of model fine-tuning for research purposes. We encourage responsible and fair use
of our methods and note that mitigation strategies against misuse (e.g., filtering, safety alignment)
should be applied when deploying adapted models in real-world scenarios.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to assist with the linguistic polishing of this paper. The models
were not involved in designing the methodology, conducting experiments, or drawing conclusions.

16

	Introduction
	Related Work
	Methodology
	Experiments
	Datasets
	Experimental Settings
	Results on Commonsense Reasoning
	Results on Arithmetic Reasoning

	Analysis
	Singular Value Structure of Full Fine-Tuning, HiRA, and BHRA
	Analysis of Block Heterogeneity
	Choice of rb for BHRA
	Analysis of Placement of BHRA in Transformers

	Conclusion
	Reproducibility Statement
	Detailed Analysis of Rank Upper Bounds
	Detailed Analysis of Trade-off
	Experimental Details
	Extended Experiments
	Ethics Statement
	The Use of Large Language Models (LLMs)

