
QUIC is notQuick Enough over Fast Internet
Anonymous Author(s)
Submission Id: 90

ABSTRACT
QUIC is expected to be a game-changer in improving web applica-
tion performance. In this paper, we conduct a systematic examina-
tion of QUIC’s performance over high-speed networks. We find that
over fast Internet, the UDP+QUIC+HTTP/3 stack suffers a data rate
reduction of up to 45.2% compared to the TCP+TLS+HTTP/2 coun-
terpart. Moreover, the performance gap between QUIC and HTTP/2
grows as the underlying bandwidth increases. We observe this is-
sue on lightweight data transfer clients and major web browsers
(Chrome, Edge, Firefox, Opera), on different hosts (desktop, mobile),
and over diverse networks (wired broadband, cellular). It affects
not only file transfers, but also various applications such as video
streaming (up to 9.8% video bitrate reduction) and web browsing.
Through rigorous packet trace analysis and kernel- and user-space
profiling, we identify the root cause to be high receiver-side pro-
cessing overhead, in particular, excessive data packets and QUIC’s
user-space ACKs. We make concrete recommendations for mitigat-
ing the observed performance issues.

1 INTRODUCTION
QUIC is a multiplexed transport-layer protocol over UDP, poised
to be a foundational pillar of the next-generation Web infrastruc-
tures. It has recently been standardized by the IETF (known as IETF
QUIC [48]) as the transport foundation of HTTP/3 [31]. Since 2013,
QUIC has been commercially deployed by numerous companies
including Google, Akamai, Meta, and Cloudflare [4, 9, 14, 22, 53].
As its adoption continues to grow rapidly, QUIC (together with
HTTP/3) is standing at the forefront to reshape the performance
paradigm of the World Wide Web, underpinning a multitude of
applications and services. There is a plethora of literature on charac-
terizing QUIC performance [42, 50, 56, 66, 71, 72, 79, 84]. They have
used various QUIC implementations (customized vs. commercial),
compute environments (mobile vs. desktop), and network condi-
tions (wired vs. wireless). Due to such diversity, their findings are
understandably a mixture of performance gains, and in some cases,
degradations, compared to TCP and earlier generations of HTTP.
In addition, a majority of these studies focus on low-throughput
use cases.

In this study, we systematically examine an under-explored sce-
nario: running QUIC over high-speed networks. This scenario is
becoming increasingly important with the debut of faster networks
such as high-speed wired links, WiFi 6/7, and 5G, which often reach
more than 500 Mbps and up to 1+ Gbps per connection. Meanwhile,
given the ubiquity of HTTP on today’s Internet, HTTP (QUIC) is
being utilized for bandwidth-intensive applications like ultra-high-
resolution videos [63] and VR/AR [83]. This makes understanding
QUIC’s performance on high-speed networks even more crucial.

QUIC is Slow over Fast Internet. Despite typically being re-
ferred to as a transport-layer protocol, QUIC is deeply coupled
with upper-layer components, namely TLS and HTTP. Its user-
space nature makes such coupling more complex and extensive.

Note that an apple-to-apple comparison should be done on the
UDP+QUIC+HTTP/3 protocol stack and TCP+TLS+HTTP/2 stack.
For brevity, we refer to the two stacks as QUIC and HTTP/2. We
begin with comparing QUIC and HTTP/2 in a simple environment:
file download using a command-line data transfer tool, cURL [1],
and a Chromium-based client, quic_client [26]. For a fair com-
parison, we keep factors such as the congestion control algorithm,
server configuration, and network condition the same. The results
show that QUIC and HTTP/2 exhibit similar performance when the
network bandwidth is relatively low (below ∼600 Mbps), whereas
under a higher network bandwidth, QUIC consistently lags behind
HTTP/2 by up to 15.7% in terms of throughput. The performance
gap becomes more pronounced as the bandwidth increases. No-
tably, during packet reception, QUIC incurs considerably higher
CPU usage than HTTP/2 on state-of-the-art client hosts.

Next, we investigate more realistic scenarios by conducting the
same file download experiments on major browsers: Chrome, Edge,
Firefox, and Opera. We observe that the performance gap is even
larger than that in the cURL and quic_client experiments: on
Chrome, QUIC begins to fall behind when the bandwidth exceeds
∼500 Mbps. When the bandwidth reaches 1 Gbps, QUIC becomes
45.2% slower than HTTP/2. On weaker clients such as mobile de-
vices, the gap is even larger.

QUIC’s Slowness Impacts Multiple Web Applications.We
experimentally demonstrate that QUIC’s performance degradation
affects not only bulk file transfers but also other applications in-
cluding video content delivery and web browsing, despite their
intermittent traffic patterns. QUIC incurs a video bitrate reduction
of up to 9.8% compared to HTTP/2 when delivering DASH [73]
video chunks over high-speed Ethernet and 5G. Again, such QoE
degradation only exhibits when the underlying bandwidth is suffi-
ciently high. For example, the impact is almost hidden over 4G but
unleashed over 5G. QUIC’s web page loading performance is less
affected. Its page load time is 3.0% longer than HTTP/2’s, averaged
across 100 representative websites, with a long tail of page load
time gaps over 50%.

QUIC’s Slowness over Fast Internet is due to Receiver-
side Processing. With the above results, we then identify the
primary culprit of the QUIC-HTTP/2 performance gap. This is a
highly challenging task due to a wide range of factors in the Web
ecosystem, the high complexity of QUIC, and various engineering
difficulties. We first make two observations by looking into packet
traces and performance data: (1) The client running QUIC receives a
much higher number of packets compared to those during HTTP/2
downloads; (2) There is a high delay between incoming data packets
and their corresponding ACK packets when QUIC receives at a
high data rate, suggesting that it takes longer to process QUIC
packets. Both observations indicate that the slow performance of
QUIC over fast Internet is due to limited receiver-side processing
capability. It is important to note that although QUIC’s user-space
implementation is known to cause performance degradation in

1

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 90

general [53] and there have been efforts to optimize UDP/QUIC’s
sender-side transmission performance [7, 35, 46], we are the first to
identify the receiver side as a more likely performance bottleneck for
QUIC over fast Internet. This is not only because servers are typically
more powerful than clients (desktops, laptops, mobile phones), but
also attributed to unique challenges in handling data reception per
QUIC’s design, as detailed next.

The Poor Receiver-side Performance is due to Excessive
Data Packets and User-space ACKs. We conduct deep perfor-
mance profiling on the user-space Chromium (the open-sourced
version of Chrome browser) and the underlying OS networking
stack. We identify two main root causes of QUIC’s poor receiver-
side performance.
• Issue 1. When downloading the same file, the in-kernel UDP
stack issues much more packet reads (netif_receive_skb)
than TCP, leading to a significantly higher CPU usage. This
is because none of the QUIC implementations we examine uses
UDP generic receive offload (GRO) where the link layer module
combines multiple received UDP datagrams into a mega data-
gram before passing it to the transport layer. This is in sharp
contrast to the wide deployment of TCP segmentation offload,
and recent advocacy of UDP send-side offload (GSO).

• Issue 2. In the user space, QUIC incurs a higher overhead when
processing received packets and generating responses. This over-
head can be attributed to multiple factors: the excessive packets
passed from the kernel (Issue 1), the user-space nature of QUIC
ACKs, and the lack of certain optimizations such as delayed ACK
in QUIC.
Recommendations for Mitigation.We make several recom-

mendations for mitigating the above impact, including deploying
UDP GRO on the receiver side, making generic offloading solutions
(GSO and GRO) more QUIC-friendly, improving relevant QUIC
logic on the receiver side, and using multiple CPU cores to receive
data for QUIC. We also discuss some practical challenges of re-
alizing the above recommendations, such as the heterogeneity of
today’s commodity client hosts (PCs, mobile devices, and embedded
devices, with diverse OSes) compared to the servers.

At a high level, we advocate careful examinations of upper-layer
protocols over emerging networks, applications, and services. This
paper instantiates this idea by conducting a pioneering study on
QUIC performance over high-speed Internet. We make two-fold
contributions in this work: the measurement findings and the root
cause analysis. We intend to release all the measurement data and
source code of the study.

2 BACKGROUND AND MOTIVATION
QUIC is a user-space transport over UDP and comes with enforced
encryption. It was initially proposed and developed by Google
(gQUIC) [53] with the goal of enabling fast, reliable, and secure
connections. Earlier, Google reported significant performance gains
compared with TCP [5, 8]. An IETF working group was launched in
2016 to improve the original gQUIC design which fuses the trans-
port, cryptographic handshakes, and upper-layer HTTP. They tease
various functionalities into parts, and later standardized the refined
version into IETF QUIC [48]. As the application layer wrapper of

Table 1: Preliminary file download tests.

Testbed Download Time (s) CPU Usage (%)
HTTP/2 HTTP/3 HTTP/2 HTTP/3

Desktop, Ethernet 9.32 18.60 (+99%) 77.5 96.9
Pixel 5, low-band 5G 37.11 78.65 (+112%) 121.55 161.77
Pixel 5, mmWave 5G 30.10 63.20 (+110%) 128.43 165.20

QUIC, HTTP/3 was also adopted as an IETF standard recently [31].
Essentially, HTTP/3 was structured to make the HTTP syntax as
well as existing HTTP/2 functionalities compatible with QUIC. To-
gether with the network layer and layers below, UDP, QUIC, and
HTTP/3 form a new protocol stack for next-generation network
communication, whose current counterpart is the stack of TCP,
TLS, and HTTP/2. While QUIC’s design brings benefits such as
0/1-RTT fast handshake, stream multiplexing for the removal of
head-of-line blocking, and connection migration, there are also
potential downsides. For example, QUIC involves processing and
copying data between the kernel space and user space.

Downloading data over QUIC can become very slow in particular
given the emergence of high-speed Internet. We conduct a prelim-
inary experiment on both desktop and mobile Chrome browsers
to download 1 GB files (see §3.1 for details). Table 1 presents the
results averaged over 10 runs. We can find that, the file download
time when QUIC is enabled is around double the time with QUIC
disabled. The CPU usage is also higher during QUIC download. The
performance disparity between QUIC and HTTP/2 is even larger on
smartphones. Note that the CPU usage for the desktop is measured
from the browser’s network service while the measurement refers
to the CPU usage of the entire browser process for the smartphone.
CPU usage exceeding 100% indicates that the browser process was
utilizing more than one cores in a multi-core system.

The results raise a couple of questions: When is QUIC data trans-
fer slower than HTTP/2? What are the underlying reasons for the
performance gap? Can users benefit from the current deployment
of QUIC? To answer these questions, we carry out an in-depth mea-
surement study on QUIC performance over high-speed networks.

3 QUIC TRANSPORT PERFORMANCE
In this section, we conduct a series of experiments comparing the
performance of QUIC and HTTP/2. We start with introducing our
experimental methodologies in §3.1. Then, we present file download
experiments on lightweight data transfer clients in §3.2. Finally, we
discuss the results on commercial web browsers in §3.3.

3.1 Methodology
Various factors within different components in the network can
affect the overall performance and potentially become the bottle-
neck. When comparing the UDP+QUIC+HTTP/3 (QUIC) stack with
the TCP+TLS+HTTP/2 (HTTP/2) stack, we carefully set up the
following testbed to ensure a fair comparison, that is, the observed
performance gaps originate solely from the differences in the pro-
tocol themselves.

We deploy a server machine equipped with an Intel Xeon E5-
2640 CPU and a client desktop featuring an Intel Core i7-6700 CPU.
They are connected through a 1-Gbps Ethernet, only two hops away

2

QUIC is not Quick Enough over Fast Internet Conference’17, July 2017, Washington, DC, USA

 750

 800

 850

 900

 950

 1000

 1050

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

File size (MB)

cURL-HTTP/2
cURL-QUIC
quic_client-QUIC

Figure 1: Throughput of lightweight
clients during file download.

 20

 30

 40

 50

 60

 70

 80

 90

 100

cURL
HTTP2

cURL
QUIC

qclient
QUIC

C
P

U
 U

s
a

g
e

 (
%

)

Figure 2: CPU usage of
lightweight clients.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
c
tu

a
l
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Available Bandwidth (Mbps)

cURL-HTTP/2
cURL-QUIC
quic_client-QUIC

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 U

s
a
g
e
 (

%
)

Available Bandwidth (Mbps)

cURL-HTTP/2
cURL-QUIC
quic_client-QUIC

Figure 3: Throughput andCPUusage of cURL and quic_client
during file download under limited bandwidth.

from each other. This setup avoids several network-related impacts
such as network congestion and bandwidth throttling imposed
by middleboxes which are often unfriendly to QUIC [38, 44, 53,
81]. Both machines run Ubuntu 18.04. We host an HTTP server
using OpenLiteSpeed (v1.7.15) [25] built based on a mainstream
QUIC library, LSQUIC [21]. The congestion control algorithm for
QUIC is set to CUBIC, which is the default algorithm used for TCP
in the OS. We also make sure their initial transport settings stay
the same. Furthermore, both the UDP and TCP buffer sizes are
adjusted to exceed 10x the link’s bandwidth-delay product (BDP) to
prevent buffer starvation during experiments. We run tcpdump to
collect packet traces. We employ Linux tc [2] to control available
network bandwidth when evaluating QUIC and HTTP/2 under low
or changing bandwidth conditions.

3.2 File Download on Lightweight Clients
We start our investigation with a simplified setup, using two non-
browser download tools, cURL [1] and quic_client [26]. cURL is
a command-line data transfer tool that supports both QUIC and
HTTP/2. quic_client is a standalone QUIC client implementation,
built with the same QUIC stack as Chrome/Chromium.

We use the clients to download files of different sizes, ranging
from 50 MB to 1 GB, over QUIC and HTTP/2. For each file size,
both tools undergo 20 repeated download sessions. Figure 1 re-
ports the mean values and standard deviations from the collected
traces. The results show that cURL running HTTP/2 noticeably
outperforms both QUIC clients, well utilizing the 1 Gbps available
bandwidth. quic_client’s results stand very close to those of cURL
on QUIC. On average, the throughput of cURL running QUIC and
that of quic_client is 7-16% and 8-12% lower, respectively, com-
pared to cURL with HTTP/2. Moreover, both cURL on QUIC and
quic_client display an almost parallel trajectory, which indicate
the similar efficiency in their QUIC implementations.

We present in Figure 2 the distribution of the client’s CPU
usage during the download of a 1 GB file. The CPU usage for
cURL when running QUIC is higher than that of cURL on HTTP/2.
quic_client’s CPU usage is further elevated, nearly maxing out at
100%, while its throughput remains similar to cURL on QUIC. Note
that, for quic_client, we have deactivated any debug mode for
optimal performance (is_debug=false). Since it is a simplistic im-
plementation of the QUIC protocol stack, for instance, not designed

for handling multiple concurrent connections or non-transfer func-
tionalities such as logging, it just consumes all available CPU re-
sources during the download process without reservation, unlike
cURL which is engineered for versatility across various scenarios.

We next limit the available network bandwidth from 50 Mbps
to 1000 Mbps. As shown in Figure 3, when the available band-
width is low, QUIC and HTTP/2 exhibit similar performance. Both
QUIC clients can catch up with the available bandwidth, with
quic_client’s throughput being slightly lower. However, as the
bandwidth provision grows beyond around 600Mbps, QUIC’s actual
throughput starts to be bottlenecked and a noticeable throughput
disparity between QUIC and HTTP/2 emerges. The CPU usage for
quic_client is always high and that of cURL QUIC hovers around
70%, reemphasizing the computational challenges associated with
the protocol. We analyze possible performance inhibitors leading
to the high CPU usage later in §5.

3.3 File Download on Real Browsers
Transitioning from lightweight clients, we look into experiments
on real web browsers. This exploration mainly focuses on the well-
known Chrome browser.

We repeat the file download tests on Chrome. As shown in Fig-
ure 4, the performance gap between QUIC and HTTP/2 is even
larger than that in our prior lightweight client experiments (§3.2).
Figure 5 plots the CPU usage of the network process (“Utility: Net-
work Service” [27], responsible for network-related tasks.) during
the download. It is evident that the Chrome browser running QUIC
demands more computational power than Chrome with HTTP/2.
Different from the lightweight cURL and quic_client, Chrome
is a full-fledged web browser, so the CPU saturation issue is ex-
acerbated, leading to even lower QUIC performance. Remarkably,
QUIC’s average throughput can barely hit 478 Mbps.

The experimental results in controlled bandwidth scenarios are
depicted in Figure 6. QUIC fails to fully utilize the bandwidth start-
ing earlier at approximately 500 Mbps, compared to the 600 Mbps
bottleneck point identified in the lightweight client tests (see Fig-
ure 3). Chrome with QUIC approaches 100% CPU usage when the
throughput is only 200 Mbps. Recall that, with further limited com-
pute resources, the HTTP/2-QUIC performance gap on mobile de-
vices is more pronounced, as shown in Table 1.

Additionally, we run experiments of changing the CPU frequency
(i.e., CPU clock speed). The Intel Core i7-6700 CPU equipped on the
client machine has a base frequency of 3.40 GHz and can be boosted
to 4.00 GHz. In Figure 7, as we reduce the CPU frequency, Chrome’s

3

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 90

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

File size (MB)

Chrome-HTTP/2
Chrome-QUIC

Figure 4: Throughput of the Chrome
browser during file download.

 65

 70

 75

 80

 85

 90

 95

 100

Chrome
HTTP/2

Chrome
QUIC

C
P

U
 U

s
a

g
e

 (
%

)

Figure 5: CPU usage of
the Chrome browser.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
c
tu

a
l
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Available Bandwidth (Mbps)

Chrome-HTTP/2
Chrome-QUIC

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 U

s
a
g
e
 (

%
)

Available Bandwidth (Mbps)

Chrome-HTTP/2
Chrome-QUIC

Figure 6: Throughput and CPU usage of the Chrome browser
during file download under limited bandwidth.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CPU Frequency (GHz)

6700-HTTP/2
6700-QUIC

10700-HTTP/2
10700-QUIC

Figure 7: Throughput of the Chrome browser
at different CPU frequencies.

 0

 200

 400

 600

 800

 1000

Chrome Edge Opera Firefox

T
h
ro

u
g
h
p
u
t
(M

b
p
s
) HTTP/2 QUIC

Figure 8: Throughput of four different
browsers during file download.

Table 2: Browsers’ CPU usage (%).

Browser HTTP/2 HTTP/3
Chrome 77.1±4.7 97.4±4.5
Edge 28.4±3.9 81.1±7.7
Opera 27.9±3.3 84.9±14.5
Firefox 185.8±61.9 213.0±46.5

QUIC download throughput further drops to around 200 Mbps
while the throughput over HTTP/2 still remains above 900 Mbps
even at 1.60 GHz. Note, unless otherwise specified, all the other
experiments in this work are done with the CPU set to 3.40 GHz.
Then, we test on a machine with a more advanced CPU, Intel Core
i7-10700 with a 4.80 GHz maximum turbo frequency. The QUIC
downlink throughput stays close compared to the 6700 machine at
the same frequency while it can reach 530 Mbps at 4.80 GHz. This
suggests that increasing CPU computing power can marginally
narrow the performance gap between QUIC and HTTP/2.

ComparingDifferent Browsers. In addition to Google Chrome
(v102), we extend our HTTP file download experiments to other
QUIC-enabled web browsers: Mozilla Firefox (v105), Microsoft Edge
(v106), and Opera (v93). We plot the download throughput statistics
for four browsers in Figure 8 and list their CPU usage data in
Table 2. Note that we were unable to isolate the CPU usage of
Firefox’s network service but we ensure that no other activities
running in Firefox. We find that, all the browsers have a worse
performance when QUIC is enabled, with increased CPU usage.
Therefore, the slow QUIC download issue is prevalent across major
commercial browsers. This can significantly affects the end-user
experience, especially when downloading bulk data at a high speed.

4 APPLICATION STUDY
Our experimental findings have painted a compelling narrative
about QUIC’s performance not just in bulk file transfers, but also
other applications, including video content delivery and web page
loading, despite their intermittent traffic patterns. In this section,
we delve into these specific application areas to further showcase
the impact of QUIC.

4.1 Video Streaming
The vast and growing demand for high-quality video content and
smooth delivery on the Internet underscores the importance of
efficient protocols for adaptive bitrate (ABR) video streaming [28].
Leveraging both QUIC and HTTP/2, we set out to explore their
real-world implications on video streaming performance.

We employ ffmpeg to encode a custom 4K video with H.264,
generating six tracks at different bitrates. 4K video streaming usu-
ally requires 35-100 Mbps [11, 18, 60], which can be easily achieved
by today’s high-speed networking like 5G. In order to challenge the
rate adaptation controllers, avoid trivial bitrate selection, and ex-
amine future ultra-high resolution videos and extended reality (XR)
performance over high-speed connectivity, we scale up the video
bitrates with the top track bitrate reaching 200 Mbps, to match
the median throughput of 5G network traces [60]. Specifically, the
bitrates are 20 Mbps, 40 Mbps, 80 Mbps, 120 Mbps, 160 Mbps, and
200 Mbps. We also encode the video into three different chunk
durations, 1s, 2s, and 4s. We set up a dash.js server for ABR video
streaming. The server is configured to support two major categories
of bitrate adaptation algorithms: Buffer-Based (BB) [45] which se-
lects bitrates with the goal of keeping the buffer occupancy high,
and Rate-Based (RB) [55] which selects the highest bitrate below
the bandwidth predicted from experienced throughputs during past
chunk downloads. The client machine runs a Chrome browser to
fetch and play the video content from the server.

We evaluate ABR video streaming under three types of network
conditions. In addition to the 1 Gbps Ethernet link considered in
our previous experiments, we also run tc [2] to emulate 4G and
5G networks using real network traces, randomly selected from
the Lumos5G dataset [59]. For each network type, we have two
traces each for walking and driving scenarios to incorporate various
mobility patterns. We conduct such a trace-driven emulation to

4

QUIC is not Quick Enough over Fast Internet Conference’17, July 2017, Washington, DC, USA

170 175 180 185 190
HTTP/2 Bitrate (Mbps)

170

175

180

185

190

HT
TP

/3
 B

itr
at

e
(M

bp
s) BB-1s

BB-2s
BB-4s
RB-1s
RB-2s
RB-4s

(a) Stream over Ethernet.

90 95 100 105 110 115
HTTP/2 Bitrate (Mbps)

90

95

100

105

110

115

HT
TP

/3
 B

itr
at

e
(M

bp
s) BB-1s

BB-2s
BB-4s
RB-1s
RB-2s
RB-4s

(b) Stream over 5G.

27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5
HTTP/2 Bitrate (Mbps)

27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5

HT
TP

/3
 B

itr
at

e
(M

bp
s) BB-1s

BB-2s
BB-4s
RB-1s
RB-2s
RB-4s

(c) Stream over 4G.
Figure 9: Comparing average video chunk bitrate between HTTP/3 (QUIC) and HTTP/2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Number of Objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30

C
D

F

Page Size (MB)

Figure 10: Website characterization.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

Page Load Tests over Ethernet

CDT
PLT
TTFB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

Page Load Tests at 100 Mbps

CDT
PLT
TTFB

Figure 11: Web page loading results (HTTP/3 over HTTP/2).

ensure QUIC and HTTP/2 experience the same set of network
conditions and to provide better reproducibility across different
rounds.

We measure video chunk bitrate and CPU usage during the
streaming process. Each experimental setup is executed 20 times.
As shown in Figure 9, the results of streaming ABR videos over
QUIC and HTTP/2 suggest that QUIC performs worse than HTTP/2
in Ethernet and 5G scenarios. The bitrate reduction goes up to 9.8%.
This is likely due to the bandwidth in these two network settings
being high enough to saturate the client CPU. Revisiting our earlier
discussions in §3, we discover that, the bottleneck bandwidths after
which QUIC cannot fully utilize the link capacity for the lightweight
clients and Chrome are around 500Mbps and 600Mbps, respectively.
Taking into account the video playback overhead (e.g., decoding
and rendering), this bottleneck point could be further lowered. On
the other hand, for the slow 4G networks, shown in Figure 9c, the
performance difference is not that significant. The HTTP/2 setups
have a slightly better overall bitrate.

4.2 Web Page Loading
Web browsing (i.e., web page loading) plays another crucial role in
the Web ecosystem. Unlike bulk file download, loading a web page
usually involves transferring multiple small objects that can be
either concurrent or sequential depending on object dependencies.
We conduct an extensive experiment with Alexa’s top 100 websites.

First, we use the original URLs to directly load the remote web-
sites, with QUIC enabled on Chrome. We repeat the tests on each
website 20 times. Surprisingly, the page load tests on most websites
do not capture any HTTP/3 objects, which means those websites
have not enabled QUIC yet. Only 16 websites exhibit HTTP/3 traffic
during page loads. The website containing the largest portion of
HTTP/3 objects is www.discord.com with no HTTP/1.1 objects,
8.5 HTTP/2 objects, and 30.0 HTTP/3 objects on average. It is also

noteworthy that, with various third-party links (for example, for
tracking or generating dynamic content purposes) visited from
JavaScript files embedded in the main page, none of the tested
websites are completely loaded over HTTP/3.

Then we download these 100 websites using SiteSucker [23] and
host them locally on our web server. One challenge we encountered
is, to our knowledge, there is no tool that can be used to download
an entire website with countless external links so that it can be
fully hosted locally. There are tools to record web page load and
replay locally, e.g., Web Page Replay (WprGo) [19] and Fiddler [20].
However, since they do not really copy the entire website, it is
not possible to toggle between different HTTP protocols during
the replay. Figure 10 shows the website features which include the
number of objects and the total page size, illustrating the diversity
of our test websites. Using chrome-har-capturer [12], we build
scripts to collect HTTP Archive (HAR) [3] files and calculate the
evaluation metrics. To compare the page load performance of QUIC
and HTTP/2, we utilize three major metrics: (1) content download
time (CDT) [33], defined as the time to download all content needed
to load the website, after which the rendering process can start; (2)
page load time (PLT) [62, 77], at which the rendering of all compo-
nents of the page is finished; and (3) time-to-first-byte (TTFB) [32],
which is the delay from sending the request to receiving the first
byte of the response.

We repeat the page load tests 20 times for each website over
Ethernet. We also use tc to throttle bandwidth at 100 Mbps, to
examine the performance at limited bandwidth conditions (e.g.,
4G/5G). Note that we do not directly use mobile network traces
because a web page load is too fast, making it difficult to ensure
consistent network conditions across rounds by replaying traces.
Figure 11 compares the timers (CDT, PLT, and TTFB) for QUIC and
HTTP/2. A data point greater than 1.0 means the corresponding
timer is longer in QUIC tests. We can learn from the results that,

5

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 90

the performance difference is not as significant as that observed
in video streaming tests. On average, QUIC’s PLT is 3.0% longer
than HTTP/2’s. However, there is a long tail indicating that in some
cases the gap can be over 50% and up to 74.9%. We also observe
the increased CPU usage in QUIC, compared to HTTP/2 page load
tests. The PLT increase is not as significant as the bulk download
time increase, because web page loading involves both local page
rendering, which is not affected by the network protocol selection,
and network data transfer.

5 ROOT CAUSE ANALYSIS
With the QUIC and HTTP/2 results on various applications, we now
identify the root cause of the observed performance gap. Unless
otherwise noted, for experiments and analysis in this section, we
use Chromium (v102) as it is a production-level implementation
supporting both HTTP/2, and QUIC and it is not proprietary, thus
easy to profile internal activities.

5.1 Eliminating Non-contributing Factors
We begin with eliminating several potential factors, most backed
up with controlled experiments.
• Server Software. We set up another web server, Nginx-quic
(v1.14.0) [24], on the same server machine. We compare the time
to download 1 GB file from Nginx and from OpenLiteSpeed (our
server setup in §3) using Google Chrome. HTTP/2 performs
similarly on both web servers while QUIC performs even worse
when running on Nginx, being slower by 18%.

• UDP/TCP Protocols. We conduct iPerf UDP and TCP tests
under the same network setup. The results show that both pro-
tocols can fully utilize the link bandwidth (1 Gbps), with UDP
achieving 958 Mbps and TCP achieving 944 Mbps on average.

• HTTP syntax. HTTP/3 [31] serves as the mapping of HTTP
for using QUIC as the transport. Adapted from HTTP/2 [30], it
has an almost identical syntax structure to HTTP/2 [13, 41].

• TLS Encryption. Both QUIC (TLS v1.3) and HTTP/2 (TLS v1.2)
employ the TLS_AES_128_GCM_SHA256 cipher on ourweb server.
We also benchmark different cipher suites and the results do not
significantly affect the performance.

• Parameter Tuning.We tune QUIC-specific parameters such
as enabling/disabling packet pacing and adjusting path MTU
discovery [40]. We do not observe noticeable improvements
compared to the original performance gap.

• Client OS. We repeat the above experiments on Mac OS and
Windows for the receiver, and observe similar results.

• Disk and Memory. We download files directly to a volatile
RAM-based disk using Linux tmpfs [17]. We also test with Linux
HugePages [29] to avoid frequent memory swaps. Neither ap-
proach helps in improving QUIC performance.

5.2 Evidence from Packet Trace Analyses
Next, We get insights by analyzing tcpdump packet traces.

QUIC Perceives Much More Packets than HTTP/2.We no-
tice that for QUIC, the number of packets received by the OS’s UDP

stack is an order of magnitude higher than the number of packets
received by the TCP stack during HTTP/2 downloads (744K versus
58K on average). We have confirmed this is not caused by retrans-
missions. While prior tests show that increasing the packet size
up to MTU can help [10], all QUIC packets in our experiments are
already MTU-sized (1472 bytes, excluding the 8-byte UDP header
and the 20-byte IP header in the standard 1500-byte MTU setup).
We also verify that the numbers of packets transmitted over the
wire are very close between QUIC and HTTP/2. The difference of
their transport-layer-perceived packets is because TCP (HTTP/2)
uses generic receive offload (GRO), where the link layer module
in the OS combines multiple received TCP segments into a large
segment of up to 64 KB. However, despite the availability of UDP
GRO, it is not used by QUIC, and integrating GRO with QUIC faces
challenges as to be discussed in §5.3.

QUIC has a much Higher RTT Dominated by Local Pro-
cessing. We measure the packet round-trip time (RTT), defined as
the time between when a data packet is sent out from the server
and when the first packet to acknowledge it is received. The RTT
consists of the propagation delay spent on the paths and the pro-
cessing delay spent on the receiver side. Though TCP and QUIC
have different ACK mechanisms, the average packet RTT can still
reflect how fast packets are transferred and processed, and thus
help adjust the sending rate. The average RTT for HTTP/2 down-
load is 1.9ms while QUIC’s RTT skyrockets to 16.2ms. Since the
ping RTT between the two machines is only 0.23ms as measured,
the endpoint packet processing takes most of the packet latency.

The above results provide further evidence that the performance
bottleneck of QUIC appears to be on the receiver side.

5.3 Root Causes via OS/Chromium Profiling
To definitively pinpoint the root cause, we conduct fine-grained
profiling in both the OS kernel (OS’s networking stack) and the
user space (Chromium’s networking stack) using Linux perf [16].

Excessive Receiver-side Processing in the Kernel.We run
1 GB file downloads on Chromium with QUIC and HTTP/2. Mean-
while, we use perf to monitor events in the Linux networking
subsystem (net) associated with Chromium’s network service. For
QUIC, we observe a huge number of calls on netif_receive_skb
which is invoked when a packet is received at the network inter-
face. Specifically, there are 231K calls of this type witnessed during
a single QUIC download compared to a mere 15K in an HTTP/2
download. This difference roughly corresponds to the difference in
the number of received UDP and TCP packets (§5.2).

A standard way to reduce packet processing overhead in the
OS is to involve NIC offloading that has been widely used for TCP,
including segmentation offload such as TCP Segmentation Offload
(TSO) and Generic Segment Offload (GSO) on the sender side and
receive offload such as Generic Receive Offload (GRO) on the re-
ceiver side1. While some existing efforts [7, 10] have shown the
effectiveness of UDP sender-side offloading, our work pioneers
in pinpointing the criticality of receiver-side offloading for today’s
commodity QUIC client hosts.

1Another solution, UDP Fragmentation Offload (UFO), uses IP fragmentation. It was
deprecated so we do not consider it in this work.

6

QUIC is not Quick Enough over Fast Internet Conference’17, July 2017, Washington, DC, USA

Table 3: Download 1 GB file with and without offloading.

Setup # Sent Packets # Recv Packets Time (s)
QUIC (on) 743K 743K 18.60
QUIC (off) 744K 744K 18.82
HTTP/2 (on) 19K 53K 9.36
HTTP/2 (off) 744K 744K 10.84

Table 4: A breakdown of packet processing time.

Chromium Networking Stack QUIC (8.5s) HTTP/2 (4.1s)
Read UDP/TCP packets from socket 0.248s 0.037s
Process UDP/TCP packets for payload 0.310s 0.084s
Decode QUIC/TLS-encrypted packets 0.660s 0.814s
Parse decrypted QUIC/HTTP2 frames 3.468s 3.182s
Generate QUIC responses (e.g., ACK) 2.972s –
Others 0.859s 0.001s

In addition, we note that realizing offloading for QUIC is challeng-
ing. First, unlike TCP which uses a byte stream model so its payload
can be flexibly (re)packetized, UDP’s offloading logic must preserve
the packet boundaries. The existing UDP GSO/GRO thus only sup-
ports offloading a train of UDP packets with identical lengths speci-
fied by the application [35]. This constraint makes directly applying
UDP GSO/GRO to QUIC inefficient, due to QUIC’s inherent mul-
tiplex nature: QUIC frames belonging to different streams vary in
size and are multiplexed after encryption. As a result, if a train of
UDP datagrams (containing the encrypted frames) have different
packet sizes, existing UDP GSO/GRO cannot offload them. Second,
blindly aggregating many UDP datagrams and transmitting them in
a single burst may cause congestion-related packet losses and fair-
ness issues, particularly over the wide-area Internet [35, 46]. Third,
the diverse QUIC variants add complexity to realizing the QUIC
offloading logic in NIC hardware. Likely due to the above reasons,
although UDP GSO/GRO [6] is available in the newer Linux kernel
versions, to our knowledge none of the QUIC implementations have
adopted it.

We carry out additional experiments with available offloading
mechanisms (TSO, GSO, and GRO) enabled and disabled on both
server and client sides. The results in Table 3 indicate that UDP
(QUIC) does not benefit from GRO/GSO. In contrast, TCP shows
a more significant reduction in download time, with much fewer
packets processed by the OS’s TCP stack. The discrepancy in the
number of packets sent and received is likely because the server-
side offload may have a different power on segmentation compared
to client-side receive offload capability on packet reassembly. Note,
all other experiments in this study have them turned on.

When profiling kernel-level activities for QUIC, we also observe
a more significant proportion of calls to function do_syscall_64
(17K for QUIC, compared to 4K for HTTP/2) and function copy_
user_enhanced_fast_string (4K vs. 3K). Such intensive interac-
tions across the user-kernel boundary are resulted from the sub-
stantial volume of QUIC packets perceived by the UDP stack. They
further increase the processing overhead.

Excessive Receiver-side Processing in the User Space. The
high in-kernel packet processing overhead results in high pro-
cessing overhead in the user space for QUIC. To demonstrate the
latter, we profile Chromium’s networking stack, specifically, the

 0

 3

 6

 9

 12

cURL-HTTP/2 cURL-QUIC quic_client-QUICD
o

w
n

lo
a

d
 T

im
e

 (
s
) 1*1GB 2*500MB 5*200MB 10*100MB

Figure 12: Parallel download experiments (instances of cURL
or quic_client download 1 GB of files in total).

Chrome_ChildIOT thread. Table 4 provides a breakdown of the
time spent by each packet processing stages. The stack is primar-
ily responsible for (1) reading UDP/TCP packets from the socket;
(2) processing UDP/TCP packets to extract the payload; (3) de-
coding QUIC/TLS-encrypted packets; and (4) parsing decrypted
QUIC/HTTP2 frames. For QUIC, QuicChromiumPacketReader is
responsible for reading and processing the incoming QUIC packets.
Its entry point is StartReading and consumes 8.7s out of the total
download time of 20.6s on average when downloading a 1 GB file.
On the flip side, the HTTP/2 counterpart is SpdySession starting
from DoReadLoop, and spends 4.1s out of 9.4s. QUIC lags behind
HTTP/2 at each of the four stages above. Furthermore, we notice
that, out of the 8.7s consumed by QuicChromiumPacketReader,
QUIC spends 3.0s generating responses such as ACKs. In contrast,
for HTTP/2, the ACKs are handled by the OS kernel, and they are
generated more efficiently and sparsely due to various optimiza-
tions such as TCP delayed ACK and receive offload.

6 RECOMMENDATIONS FOR MITIGATION
Following the above experiments and analysis, we make several
recommendations for mitigating the observed issues.

Adoption of UDP GRO on the Receiver Side. Most impor-
tantly, UDP GRO needs to be deployed on the receiver side to
reduce the number of packets handled by the UDP stack. This will
reduce not only the in-kernel overhead, but also QUIC’s processing
overhead in the user space. However, given the heterogeneity of
today’s commodity hosts (PCs, mobile devices, and even embedded
devices, with diverse OSes), wide deployment of UDP GRO can be
challenging, not to mention supporting it in the NIC hardware.

QUIC-friendly Improvements to the offloading solutions.
We advocate that the generic offloading solutions (GSO and GRO)
need some QUIC-friendly improvements. First, UDP GSO/GRO
needs to support offloading a train of packets with different sizes
(§5.3). Second, UDP GSO needs proper pacing configurations (i.e.,
avoid transmitting too many UDP packets in a single burst that
may incur network congestion) over the wild Internet. Ideally, the
pacing logic should be properly interfaced with QUIC’s logic such
as congestion control2.

Optimizing QUIC logic on the Receiver Side. There is also
room for improvement in the QUIC logic on the receiver side. Send-
ing delayed QUIC ACKs [47] can help reduce the overhead on gen-
erating QUIC responses. Besides, we note that Chromium currently
uses recvmsg to read individual UDP packets; using recvmmsg to

2Google has a simple experimental pacing design for UDP GSO, but it is not designed
specifically for QUIC and was only tested in data center networks.

7

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 90

read multiple UDP packets in a single system call may help improve
the receiver-side performance.

Multi-threaded download.we also notice that Chromium uses
a single thread for receiving network data.When fetching large files,
using multi-threaded download (each thread running on a separate
CPU core) can improve the receive-side performance. Since the
tested Chrome browser version does not have built-in support of
multi-threaded download, we conduct an experiment where we
launch 𝑘 instances of cURL or quic_client, each downloading
a file of 1 GB/𝑘 (𝑘 = 1, 2, 5, 10). We use the latest finishing time
across the 𝑘 instances to calculate the overall transfer time of 1 GB
worth of data. As shown in Figure 12, increasing 𝑘 helps reduce
the download time, in particular for QUIC. Nevertheless, similar to
parallel TCP connections, this approach may incur fairness issues in
network resource allocation. The sender could use existing solutions
such as coupled congestion control [68] to bound the aggregated
aggressiveness of the 𝑘 QUIC sessions.

7 RELATEDWORK
We discuss existing literature related to QUIC, its performance
measurements, industry-driven optimizations, and other relevant
works. Then we highlight how our study differs from them.

QUICMeasurements. Since its advent at Google in 2013, QUIC
has been extensively researched in the literature. Google presented
their experiencewith QUIC after years of Internet-wide deployment.
Carlucci et al. [34] examined an early version of QUIC (v21) and
showed its superior performance over TCP. Likewise, Megyesi et
al. [57] compared QUIC with SPDY [78] and HTTP/1.1 and high-
lighted QUIC’s performance improvements. QUIC’s rapid evolution
has led to efforts investigating the interoperability across QUIC
implementations [49, 56]. Longitudinal studies, such as by Kakhki et
al. [50] and Piraux et al. [66], traced QUIC’s progression over time.
Rüth et al. [70] took a first look at QUIC deployment and usage at
an early stage. Similarly, QScanner [86] is implemented to analyze
early QUIC deployments. There is also a rich tapestry of research
diving into the impact of QUIC on various applications includ-
ing videos streaming [64, 80], web browsing [71, 79], and a mix
of different workloads [72, 84], and on various platforms includ-
ing mobile [42] and satellite communication [51]. None of these
works specifically focus on IETF QUIC’s performance on major
applications over high-speed networks as we do.

QUIC Performance Optimization by Industry.With various
measurement studies on different aspects of QUIC, some efforts
have been made to optimize QUIC from the industry. Through pre-
sentations and blogs, companies like Google [46], Cloudflare [7],
and Fastly [10] reported their progress on optimizing QUIC. Some
of their findings such as using UDP GSO [6] are relevant to ours.
However, all the above works are concerned with the server-side
performance. Since downlink traffic dominates the overall server-
side traffic, they naturally focus on optimizing data transmission
performance. Furthermore, some of their measurement methodolo-
gies are not very realistic or not documented in details, making it
difficult to reproduce the experiments. For example, Cloudflare [7]
made some attempts in accelerating sending data over QUIC includ-
ing using sendmmsg and UDP GSO, but both the client and server

run on the same host (a laptop) instead of a production environ-
ment. Fastly [10] attributed the high computational cost of QUIC
to ACK processing and per-packet sender overhead. However, they
also focus on the sender-side optimization and use a simple setting
where the CPU’s clock is limited at only 400 MHz in order to mea-
sure the throughput sustainable with all available computational
power. Red Hat [15] also mentioned enabling optional TSO/GSO
support in a new release but omitted a performance examination
on QUIC. In contrast, we investigate the receiver-side performance
bottleneck through rigorous measurements and profiling on mul-
tiple dimensions (network traces, OS kernel, QUIC runtime, and
higher-layer applications). Besides, we identify new challenges in
making offloading solutions harmonize with QUIC.

Other Works on QUIC. Some prior works extended QUIC to
multipath QUIC (MPQUIC) [36]. Researchers have further followed
up with new packet schedulers for MPQUIC [63, 67, 76] and upper-
layer solutions [85]. MultipathTester [37] is an iOS application
for comparing the performance of MPTCP with MPQUIC. Several
studies focused on QUIC congestion control [39, 43, 58] and some
others look at the security and privacy [52, 54, 61, 74] aspects of
QUIC. eQUIC Gateway [65] is a kernel module for accelerating
QUIC through eBPF XDP. It is proposed to offload QUIC logic to
NIC [82]. There are also new experimental protocols motivated by
QUIC, such as TCPLS [69] and DCQUIC [75]. Our work on the root
causing of QUIC’s slowness offers unique contributions that set it
apart from all the above studies.

8 CONCLUDING REMARKS
QUIC, with its design principles aimed at eliminating the head-of-
line blocking problem, introducing fast connection establishments,
and integrating transport-layer security, promises a more respon-
sive and secureWeb experience. However, our in-depth study, along
with others, has highlighted areas where QUIC might not meet ex-
pectations. Our extensive measurements have underscored that,
in some environments such as fast Internet (>500 Mbps in our
experiments), QUIC’s performance may not always live up to its
name (“quick”). Through comprehensive performance profiling, we
reveal the root cause to be the pronounced receiver-side processing
overhead. This overhead manifests in the form of excessive data
packets observed at Layer 3 and above, as well as QUIC’s distinctive
user-space ACKs.

There are notable challenges to grapple with. The absence of cer-
tain offloading techniques like UDP GRO, the user-space nature of
QUIC, andQUIC’s inherent reliance on UDPmight complicate its de-
ployment, especially in environments that have been meticulously
optimized for TCP. Nevertheless, it is pivotal to note that QUIC is
still in its nascent phase, with considerable research, exploration,
and development fervently aiming to enhance its performance. The
ongoing efforts and collaborations from multiple stakeholders in
the Web ecosystem, including OS vendors, QUIC developers, and
standardization organizations, will play a crucial role in the evolu-
tion of QUIC. As more web services transition to HTTP/3, we can
expect a broader adoption of QUIC across the Internet. We hope
that our findings can spur more explorations to improve QUIC, and
upper-layer protocols in general, boosting their performance for
the next generation networks, services, and applications.

8

QUIC is not Quick Enough over Fast Internet Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] 1998. cURL - command line tool and library for transferring data with URLs.

https://curl.se/.
[2] 2001. Linux Traffic Control (tc). https://man7.org/linux/man-pages/man8/tc.8.

html.
[3] 2012. HTTP Archive (HAR) format. https://w3c.github.io/web-performance/

specs/HAR/Overview.html.
[4] 2013. Chromium Blog: Experimenting with QUIC. https://blog.chromium.org/

2013/06/experimenting-with-quic.html.
[5] 2015. Chromium Blog: A QUIC update on Google’s experimental transport. https:

//blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html.
[6] 2018. UDP GSO. https://lwn.net/Articles/752956/.
[7] 2020. Accelerating UDP packet transmission for QUIC. https://blog.cloudflare.

com/accelerating-udp-packet-transmission-for-quic/.
[8] 2020. Chromium Blog: Chrome is deploying HTTP/3 and IETF QUIC. https:

//blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html.
[9] 2020. How Facebook is bringing QUIC to billions. https://engineering.fb.com/

2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/.
[10] 2020. QUIC vs TCP: Which is Better? https://www.fastly.com/blog/measuring-

quic-vs-tcp-computational-efficiency.
[11] 2020. What’s the Best Bitrate for the Best Video Quality on YouTube? (1080p,

1440p, 4K). https://www.youtube.com/watch?v=0fz479id_Ic.
[12] 2021. Chrome HAR capturer. https://github.com/cyrus-and/chrome-har-

capturer.
[13] 2021. HTTP/2 vs HTTP/3: A comparison. https://ably.com/topic/http-2-vs-http-

3.
[14] 2021. HTTP/3 and QUIC: Past, Present, and Future. https://www.akamai.com/

blog/performance/http3-and-quic-past-present-and-future.
[15] 2021. Improve UDP performance in RHEL 8.5. https://developers.redhat.com/

articles/2021/11/05/improve-udp-performance-rhel-85.
[16] 2021. Linux Perf. https://man7.org/linux/man-pages/man1/perf.1.html.
[17] 2021. Linux Temporary Filesystem (tmpfs). https://man7.org/linux/man-pages/

man5/tmpfs.5.html.
[18] 2021. YouTube 4K bitrates enconding. https://support.google.com/youtube/

answer/1722171.
[19] 2022. Catapult - Web Page Replay. https://chromium.googlesource.com/catapult/

+/HEAD/web_page_replay_go/.
[20] 2022. Fiddler - Web Debugging Proxy and Troubleshooting Solutions. https:

//www.telerik.com/fiddler.
[21] 2022. GitHub - litespeedtech/lsquic: LiteSpeed QUIC and HTTP/3 Library. https:

//github.com/litespeedtech/lsquic.
[22] 2022. HTTP RFCs have evolved: A Cloudflare view of HTTP usage trends.

https://blog.cloudflare.com/cloudflare-view-http3-usage/.
[23] 2022. SiteSucker. https://ricks-apps.com/osx/sitesucker/index.html.
[24] 2023. NGINX QUIC. https://quic.nginx.org/.
[25] 2023. OpenLiteSpeed. https://openlitespeed.org/.
[26] 2023. The Chromium Projects. https://www.chromium.org/Home/.
[27] 2023. The Chromium Projects - Network Service. https://chromium.googlesource.

com/chromium/src/+/HEAD/services/network/.
[28] Mohsen Attaran. 2023. The impact of 5G on the evolution of intelligent automa-

tion and industry digitization. Journal of ambient intelligence and humanized
computing 14, 5 (2023), 5977–5993.

[29] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill, and Michael M
Swift. 2013. Efficient virtual memory for big memory servers. ACM SIGARCH
Computer Architecture News 41, 3 (2013), 237–248.

[30] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext transfer
protocol version 2 (HTTP/2). RFC 7540, IETF (2015).

[31] Mike Bishop. 2022. HTTP/3. RFC 9114, IETF (2022).
[32] Enrico Bocchi, Luca De Cicco, and Dario Rossi. 2016. Measuring the quality of

experience of web users. ACM SIGCOMM Computer Communication Review 46, 4
(2016), 8–13.

[33] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. 2011. Understanding
website complexity: measurements, metrics, and implications. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference. 313–328.

[34] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
an Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing. 609–614.

[35] Willem de Bruijn and Eric Dumazet. 2018. Optimizing UDP for content delivery:
GSO, pacing and zerocopy. In Linux Plumbers Conference.

[36] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath quic: Design
and evaluation. In Proceedings of the 13th international conference on emerging
networking experiments and technologies. 160–166.

[37] Quentin De Coninck and Olivier Bonaventure. 2019. Multipathtester: Comparing
mptcp and mpquic in mobile environments. In 2019 Network Traffic Measurement
and Analysis Conference (TMA). IEEE, 221–226.

[38] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Plug-
inizing quic. In Proceedings of the ACM Special Interest Group on Data Communi-
cation. 59–74.

[39] Mathis Engelbart and Jörg Ott. 2021. Congestion control for real-time media
over QUIC. In Proceedings of the 2021 Workshop on Evolution, Performance and
Interoperability of QUIC. 1–7.

[40] Godred Fairhurst, Tom Jones, Michael Tüxen, Irene Rüngeler, and Timo Völker.
2020. Packetization Layer Path MTU Discovery for Datagram Transports. RFC
8899, IETF (2020).

[41] Roy Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP Semantics. RFC
9110, IETF (2022).

[42] Anirudh Ganji and Muhammad Shahzad. 2021. Characterizing the Performance
of QUIC on Android and Wear OS Devices. In 2021 International Conference on
Computer Communications and Networks (ICCCN). IEEE, 1–11.

[43] Habtegebreil Haile, Karl-Johan Grinnemo, Simone Ferlin, Per Hurtig, and Anna
Brunstrom. 2022. Performance of QUIC congestion control algorithms in 5G
networks. In Proceedings of the ACM SIGCOMM Workshop on 5G and Beyond
Network Measurements, Modeling, and Use Cases. 15–21.

[44] Fahad Hilal and Oliver Gasser. 2023. Yarrpbox: Detecting Middleboxes at Internet-
Scale. Proceedings of the ACM on Networking 1, CoNEXT1 (2023), 1–23.

[45] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM.
187–198.

[46] Swett Ian. 2020. As QUIC as TCP, Optimizing QUIC and HTTP/3 CPU Usage
- EPIQ 2020. https://conferences.sigcomm.org/sigcomm/2020/workshop-epiq.
html.

[47] Janardhan Iyengar, Ian Swett, and Mirja Kühlewind. 2023. QUIC Acknowledge-
ment Frequency. IETF (2023). https://datatracker.ietf.org/doc/draft-ietf-quic-
ack-frequency/04/ Work in Progress.

[48] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-based multiplexed and
secure transport. RFC 9000, IETF (2021).

[49] Benedikt Jaeger, Johannes Zirngibl, Marcel Kempf, Kevin Ploch, and Georg Carle.
2023. QUIC on the Highway: Evaluating Performance on High-Rate Links. In
2023 IFIP Networking Conference (IFIP Networking). 1–9.

[50] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols. In proceedings of the 2017
internet measurement conference. 290–303.

[51] Mike Kosek, Hendrik Cech, Vaibhav Bajpai, and Jörg Ott. 2022. Exploring Prox-
ying QUIC and HTTP/3 for Satellite Communication. In 2022 IFIP Networking
Conference (IFIP Networking). IEEE, 1–9.

[52] Mike Kosek, Luca Schumann, Robin Marx, Trinh Viet Doan, and Vaibhav Bajpai.
2022. DNS privacy with speed? evaluating DNS over QUIC and its impact on web
performance. In Proceedings of the 22nd ACM Internet Measurement Conference.
44–50.

[53] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183–
196.

[54] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. 2015.
How secure and quick is QUIC? Provable security and performance analyses. In
2015 IEEE Symposium on Security and Privacy. IEEE, 214–231.

[55] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the conference of the ACM special
interest group on data communication. 197–210.

[56] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same standards,
different decisions: A study of QUIC and HTTP/3 implementation diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC. 14–20.

[57] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. 2016. How quick is QUIC?. In
2016 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[58] Ayush Mishra, Sherman Lim, and Ben Leong. 2022. Understanding speciation in
QUIC congestion control. In Proceedings of the 22nd ACM Internet Measurement
Conference. 560–566.

[59] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu,
Rostand AK Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, et al.
2020. Lumos5G: Mapping and predicting commercial mmWave 5G throughput.
In Proceedings of the ACM Internet Measurement Conference. 176–193.

[60] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley
Mao, et al. 2021. A variegated look at 5G in the wild: performance, power, and
QoE implications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
610–625.

[61] Marcin Nawrocki, Pouyan Fotouhi Tehrani, Raphael Hiesgen, Jonas Mücke,
Thomas C Schmidt, and Matthias Wählisch. 2022. On the interplay between
TLS certificates and QUIC performance. In Proceedings of the 18th International
Conference on emerging Networking EXperiments and Technologies. 204–213.

9

https://curl.se/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
https://lwn.net/Articles/752956/
https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://www.youtube.com/watch?v=0fz479id_Ic
https://github.com/cyrus-and/chrome-har-capturer
https://github.com/cyrus-and/chrome-har-capturer
https://ably.com/topic/http-2-vs-http-3
https://ably.com/topic/http-2-vs-http-3
https://www.akamai.com/blog/performance/http3-and-quic-past-present-and-future
https://www.akamai.com/blog/performance/http3-and-quic-past-present-and-future
https://developers.redhat.com/articles/2021/11/05/improve-udp-performance-rhel-85
https://developers.redhat.com/articles/2021/11/05/improve-udp-performance-rhel-85
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://chromium.googlesource.com/catapult/+/HEAD/web_page_replay_go/
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://blog.cloudflare.com/cloudflare-view-http3-usage/
https://ricks-apps.com/osx/sitesucker/index.html
https://quic.nginx.org/
https://openlitespeed.org/
https://www.chromium.org/Home/
https://chromium.googlesource.com/chromium/src/+/HEAD/services/network/
https://chromium.googlesource.com/chromium/src/+/HEAD/services/network/
https://conferences.sigcomm.org/sigcomm/2020/workshop-epiq.html
https://conferences.sigcomm.org/sigcomm/2020/workshop-epiq.html
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/04/
https://datatracker.ietf.org/doc/draft-ietf-quic-ack-frequency/04/

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 90

[62] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In Proceedings of the 25th International Conference on World
Wide Web. 1305–1315.

[63] Thomas William do Prado Paiva, Simone Ferlin, Anna Brunstrom, Ozgu Alay,
and Bruno Yuji Lino Kimura. 2023. A First Look at Adaptive Video Streaming
over Multipath QUIC with Shared Bottleneck Detection. In Proceedings of the
14th Conference on ACM Multimedia Systems. 161–172.

[64] Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, and Anja Feld-
mann. 2018. The quic fix for optimal video streaming. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC. 43–49.

[65] Gustavo Pantuza, Marcos AM Vieira, and Luiz FM Vieira. 2021. eQUIC gateway:
Maximizing QUIC throughput using a gateway service based on eBPF+ XDP. In
2021 IEEE Symposium on Computers and Communications (ISCC). IEEE, 1–6.

[66] Maxime Piraux, Quentin De Coninck, and Olivier Bonaventure. 2018. Observing
the evolution of QUIC implementations. In Proceedings of the Workshop on the
Evolution, Performance, and Interoperability of QUIC. 8–14.

[67] Alexander Rabitsch, Per Hurtig, and Anna Brunstrom. 2018. A stream-aware mul-
tipath QUIC scheduler for heterogeneous paths. In Proceedings of the Workshop
on the Evolution, Performance, and Interoperability of QUIC. 29–35.

[68] Costin Raiciu, Mark Handley, and Damon Wischik. 2011. Coupled congestion
control for multipath transport protocols. RFC 6356, IETF (2011).

[69] Florentin Rochet, Emery Assogba, Maxime Piraux, Korian Edeline, Benoit Donnet,
and Olivier Bonaventure. 2021. TCPLS: modern transport services with TCP and
TLS. In Proceedings of the 17th International Conference on emerging Networking
EXperiments and Technologies. 45–59.

[70] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. 2018. A First
Look at QUIC in the Wild. In International Conference on Passive and Active
Network Measurement. Springer, 255–268.

[71] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld. 2019. Perceiving
QUIC: Do users notice or even care?. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies. 144–150.

[72] Tanya Shreedhar, Rohit Panda, Sergey Podanev, and Vaibhav Bajpai. 2021. Evalu-
ating QUIC Performance Over Web, Cloud Storage, and Video Workloads. IEEE
Transactions on Network and Service Management 19, 2 (2021), 1366–1381.

[73] Iraj Sodagar. 2011. The mpeg-dash standard for multimedia streaming over the
internet. IEEE multimedia 18, 4 (2011), 62–67.

[74] Mukesh Soni and Brajendra Singh Rajput. 2021. Security and performance evalu-
ations of QUIC protocol. In Data Science and Intelligent Applications. Springer,
457–462.

[75] Lizhuang Tan, Wei Su, Yanwen Liu, Xiaochuan Gao, and Wei Zhang. 2021. DC-
QUIC: Flexible and Reliable Software-defined Data Center Transport. In IEEE
INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE, 1–8.

[76] Jing Wang, Yunfeng Gao, and Chenren Xu. 2019. A multipath QUIC scheduler for
mobile HTTP/2. In Proceedings of the 3rd Asia-Pacific Workshop on Networking
2019. 43–49.

[77] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with {WProf}. In 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
473–485.

[78] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How speedy is {SPDY}?. In 11th usenix symposium on networked
systems design and implementation (nsdi 14). 387–399.

[79] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. 2019. A perfor-
mance perspective on web optimized protocol stacks: TCP+ TLS+ HTTP/2 vs.
QUIC. In Proceedings of the Applied Networking Research Workshop. 1–7.

[80] Shichang Xu, Subhabrata Sen, and Z Morley Mao. 2020. CSI: Inferring mobile
ABR video adaptation behavior under HTTPS and QUIC. In Proceedings of the
Fifteenth European Conference on Computer Systems. 1–16.

[81] Yihui Yan and Zhice Yang. 2021. When QUIC’s Connection Migration Meets
Middleboxes A case study on mobile Wi-Fi hotspot. In 2021 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 1–6.

[82] Xiangrui Yang, Lars Eggert, Jörg Ott, Steve Uhlig, Zhigang Sun, and Gianni
Antichi. 2020. Making quic quicker with nic offload. In Proceedings of theWorkshop
on the Evolution, Performance, and Interoperability of QUIC. 21–27.

[83] Shou-Cheng Yen, Ching-Ling Fan, and Cheng-Hsin Hsu. 2019. Streaming 360°
videos to head-mounted virtual reality using DASH over QUIC transport protocol.
In Proceedings of the 24th ACM Workshop on Packet Video. 7–12.

[84] Alexander Yu and Theophilus A Benson. 2021. Dissecting performance of pro-
duction QUIC. In Proceedings of the Web Conference 2021. 1157–1168.

[85] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. 2021. Xlink: Qoe-driven
multi-path quic transport in large-scale video services. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference. 418–432.

[86] Johannes Zirngibl, Philippe Buschmann, Patrick Sattler, Benedikt Jaeger, Juliane
Aulbach, and Georg Carle. 2021. It’s over 9000: analyzing early QUIC deployments
with the standardization on the horizon. In Proceedings of the 21st ACM Internet
Measurement Conference. 261–275.

10

	Abstract
	1 Introduction
	2 Background and Motivation
	3 QUIC Transport Performance
	3.1 Methodology
	3.2 File Download on Lightweight Clients
	3.3 File Download on Real Browsers

	4 Application Study
	4.1 Video Streaming
	4.2 Web Page Loading

	5 Root Cause Analysis
	5.1 Eliminating Non-contributing Factors
	5.2 Evidence from Packet Trace Analyses
	5.3 Root Causes via OS/Chromium Profiling

	6 Recommendations for Mitigation
	7 Related Work
	8 Concluding Remarks
	References

