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Abstract
Existing high-dimensional Bayesian optimization
(BO) methods typically leverage low-dimensional
embeddings or structural assumptions to mitigate
the curse of dimensionality, yet these approaches
frequently incur considerable computational over-
head due to iterative surrogate retraining and fixed
assumptions. To address these limitations, we pro-
pose Gradient-Informed Bayesian Optimization
using Tabular Foundation Models (GIT-BO), an
approach that uses a pre-trained tabular founda-
tion model (TFM) as a surrogate, leveraging its
gradient information to adaptively identify low-
dimensional subspaces for optimization. We pro-
pose a way to exploit internal gradient compu-
tations from the TFM’s forward pass by creat-
ing a gradient-informed diagnostic matrix that
reveals the most sensitive directions of the TFM’s
predictions, enabling optimization in a continu-
ously re-estimated active subspace without the
need for repeated model retraining. Extensive
empirical evaluation across 23 synthetic and real-
world benchmarks demonstrates that GIT-BO con-
sistently outperforms four state-of-the-art Gaus-
sian process-based high-dimensional BO meth-
ods, showing superior scalability and optimiza-
tion performances especially as dimensionality
increases up to 500 dimensions.

1. Introduction & Background
Bayesian optimization (BO) is widely recognized as an
effective and sample-efficient technique for black-box opti-
mization, essential in machine learning (Dewancker et al.,
2016; Snoek et al., 2012), engineering design (Kumar et al.,
2024; Wang & Dowling, 2022; Zhang et al., 2020; Yu et al.,
2025), and hyperparameter tuning (Klein et al., 2017; Wu
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et al., 2019). However, BO can struggle in high-dimensional
spaces (especially when dimension D > 100) due to the
curse of dimensionality, making it difficult for conventional
Gaussian process (GP)-based methods to effectively explore
complex objective functions (Malu et al., 2021; Wang et al.,
2023; Hvarfner et al., 2024; Xu & Zhe, 2024; Letham et al.,
2020). Existing high-dimensional BO approaches mitigate
these challenges by exploiting low-dimensional subspaces,
but still rely heavily on iterative model retraining and struc-
tural assumptions, incurring substantial computational over-
head (Rana et al., 2017; Nayebi et al., 2019; Eriksson et al.,
2019; Letham et al., 2020; Eriksson & Jankowiak, 2021).

Recent advances in tabular foundation models (TFM) have
proposed using Prior-Data Fitted Networks (PFNs) to by-
pass surrogate refitting in Bayesian Optimization. Ini-
tially demonstrated for simple low-dimensional BO prob-
lems (Müller et al., 2023), the PFN-based BO was further
validated for constrained engineering problems (Yu et al.,
2025), using the parallel processing capabilities of the trans-
former architecture to outperform other methods in both
speed and performance. TabPFN v2, a recent TFM model,
extends the capabilities of TabPFN to handle inputs up to
500 dimensions, demonstrating superior performance in
zero-shot classification, regression, and time series predic-
tion tasks (Hollmann et al., 2025).

While TabPFN v2 presents an exciting opportunity as a
high-dimensional BO surrogate due to its computational
efficiency and predictive accuracy, its fixed-parameter foun-
dation model architecture restricts its ability to dynami-
cally adapt kernel hyperparameters. This is in contrast to
traditional GP models, which adjust their kernel param-
eters during optimization to effectively identify principal
searching directions in high-dimensional spaces (Eriksson
& Jankowiak, 2021; Hvarfner et al., 2024; Xu & Zhe, 2024).
Addressing this limitation requires an approach that can
leverage the strengths of foundation models while introduc-
ing adaptive mechanisms for subspace exploration, a gap
we aim to bridge in this work.

Therefore, we introduce Gradient-Informed Bayesian Op-
timization using Tabular Foundation Models (GIT-BO)
algorithm— a novel framework leveraging pre-trained tab-
ular models for scalable, high-dimensional optimization.
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GITBO leverages the gradient-informed subspace identi-
fication technique that adaptively learns promising search
directions in high-dimensional spaces, exploiting the TFM’s
adaptive gradient knowledge during the optimization. Fur-
thermore, we benchmark GIT-BO against four popular
state-of-the-art (SOTA) GP high-dimensional BO meth-
ods across twenty-three diverse benchmarks, including syn-
thetic functions and real-world problems, introducing foun-
dation model surrogates as a viable alternative for complex
Bayesian optimization tasks.

2. GIT-BO Overview
We summarize the GIT-BO algorithm in this section and
provide the full details of the algorithm in the appendix.
The framework consists of four main components: (1) Ini-
tial observed samples are collected in the high-dimensional
space RD. (2) TabPFN v2, a fixed-weight tabular foun-
dation model generates predictions of the objective space
at inference time using in-context learning. (3) Gradient
information from TabPFN’s forward pass (∇µ̂(x)) is used
to identify a low-dimensional gradient-informed (GI) sub-
space. We leverage the approximated diagnostic (Fisher
information) matrix H = Eµ[∇xµn(x)∇xµn(x)

⊤] to iden-
tify the reduced subspace spanned by its principal eigenvec-
tors (Zahm et al., 2022; Li et al., 2024a;b; Ly et al., 2017).
The TabPFN v2 one-shot predictions µ̂(x) and σ̂2(x) are
used for Thompson sampling acquisition calculations. (4)
The next sample point (xnext) is selected within this GI sub-
space with the highest acquisition value and appended to
the data set for iterative search until the stopping criteria
are met. Figure 1 visually shows the GIT-BO methods, and
Algorithm 1 demonstrates the algorithm.

Algorithm 1 Gradient-Informed Bayesian Optimization us-
ing Tabular Foundation Models (GIT-BO)
Require: objective f , domain X ⊂RD, init. size n0, itera-

tion budget I , subspace dim. r
1: Draw n0 LHS points xi

2: Set yi = f(xi); D ← {(xi, yi)}n0
i=1

3: for i = 1 to I do
4: Fit TabPFN on D to obtain mean µn and variance σ2

n

5: Calculate gradient∇xµn(xi) for all (xi, yi)∈D
6: H = Eµ[∇xµn(x)∇xµn(x)

⊤] diagnostic matrix;
7: Vr ← top-r eigvectors of H
8: Set xcand ← xref + Vrz, with xref ← x̄ and z ∼

U([−1, 1]r)
9: xnext ← argmaxj ThompsonSamplingn(xcand)

10: Evaluate ynext = f(xnext)and append the query point
data D ← D ∪ {(xnext, ynext)}

11: end for
12: return x⋆ = argmin(x,y)∈D y

3. Experiment
We benchmark GIT-BO against random search (Bergstra
& Bengio, 2012) and four high-dimensional BO meth-
ods, including SAASBO (Eriksson & Jankowiak, 2021),
TURBO (Eriksson et al., 2019), HESBO (Nayebi et al.,
2019), and ALEBO (Letham et al., 2020). For HESBO
and ALEBO, we varied dembedding ∈ {10, 20} and denote
the choice as HESBO/ALEBO (d={10, 20}). We evaluate
the algorithms on a total of 63 benchmark problems, both
synthetic and real-world tasks, at a fixed-iteration cutoff.
Each algorithm run is repeated 20 times using fixed seeds,
with statistical ranking and analysis calculated, and the av-
erage algorithm runtime tavg is measured. Details of the
experiment setup, implementation, and metric are in the
appendix.

4. Results and Evaluations
This section reports a subset of the results of the 63 bench-
mark optimization experiments. The complete optimization
results for all synthetic and real-world engineering problems
are detailed in the Appendix.

4.1. Overall Statistical Ranking and Algorithm Runtime
Tradeoffs

Across all problem variants, Figure 2 (a) shows that GIT-BO
achieves the top statistical performance rank based on the op-
timization results, followed by SAASBO, ALEBO (d=10),
and HESBO (d=20). Even when we enforce a strict itera-
tion limit at 100 iterations, GIT-BO still outperforms other
GP-based algorithms in the statistical rank demonstrated in
Figure 2 (b). A detailed rank-iteration evolution curve in
Figure 2 (c) shows that GIT-BO becomes dominant within
the first 25 iterations and keeps that lead. Figure 2 (d) plots
the average run time tavg of each algorithm versus the statis-
tical rank. GIT-BO requires ≈ 103 sec per trial, two orders
of magnitude faster than SAASBO and ALEBO. With the
first place in rank and third place in tavg, GIT-BO is the
Pareto frontier of speed and quality.

4.2. Scalable Synthetic Benchmarks (100 ≤ D ≤ 500)

The convergence results for the 45 scalable synthetic prob-
lems can be summarized in three categories (nine experi-
ments) in Figure 3 (a). First, GIT-BO has absolute domina-
tion over several problems (e.g., Ackley), outperforming all
other algorithms in all dimensions. The second category, the
most common observed ones, are that ALEBO (d=10) or
SAASBO match or outperform GIT-BO in D = 100 ; how-
ever, GIT-BO maintains its top optimization efficiency in
the higher dimensions D ≥ 300 (e.g., Levy). Finally, GIT-
BO struggles with very few problems (e.g., Michalewicz),
where the current SOTA methods with the trust region and
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Figure 1. GIT-BO algorithm overview.
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Figure 2. (a) and (b): Statistical ranking of the overall performance across 63 benchmark problems. GIT-BO ranked the top at optimization
results at both fixed 100- and 200-iteration evaluations. (c): Plot of average algorithm rank at each iteration. Due to the compute limit, we
only run ALEBO and SAASBO for 100 iterations. We compare their final results after 100 iterations with other algorithms run for 200
iterations. The plot shows that GIT-BO achieves a fast convergence at ranking performance as it remains the top of all algorithms after 25
iterations. (d): Plot of average time vs overall statistical rank. The shorter time and smaller rank perform better (bottom left corner), so we
show GIT-BO at the Paerto front as the best algorithm.

linear embedding finding strategies dominate.

4.3. Real-world Problem

Figure 3 (b) illustrates the convergence results for a sub-
set of six real-world problems. GIT-BO outperforms all
baselines on the four 100+D CEC engineering tasks on
power system optimization and the 388D SVM hyperpa-
rameter optimization problem, showing its great potential
to tackle real-world applications. GIT-BO achieves the
second and third best in the LassoDNA problem and car
problems (MOPTA08 Car and Mazda), respectively. One
possible explanation is that these engineering benchmarks
data might differ greatly from the training distribution of our
TFM, TabPFN v2. Although SAASBO achieves the best
for these problems, it takes on average three hours to solve
them, while the second best, GIT-BO, takes only fifteen
minutes. This showcases that GIT-BO offers a compelling
trade-off for resource-constrained engineering optimization
tasks where time-to-solution is critical.

5. Discussion
5.1. Novelties and Strengths

Our results demonstrate that a TFM can serve as a
top-class surrogate in high-dimensional BO. By com-
bining TabPFN’s one-shot regression with a data-driven,
gradient-informed subspace updating after every evaluation,
GIT-BO converges faster than carefully tuned GP baselines
on sixty-three benchmarks, maintaining its lead even as di-
mensionality grows to 500D. The approach removes the
computational bottleneck of GP retraining and latent space
searching while preserving the exploration–exploitation bal-
ance (up to two orders of magnitude speed up). Taken
together, these properties position GIT-BO as an accessible
“drop-in” optimizer for engineers who already rely on large
language models and are now seeking equally powerful
tools for structured data and design optimization.
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(a)

(b)

Figure 3. Optimization results on the (a) synthetic and (b) real-
world benchmarks comparing GIT-BO against baseline algorithms.
The solid line represents the median best function value achieved
over 20 trials, with shaded regions indicating the 95% confidence
interval. Out of the fifteen experiments here, GIT-BO ranks the
top for eight and the second for six, showing better performance at
higher dimensional problems and faster convergence for the first
100 iterations. GIT-BO also has a lower variance compared to other
baselines, meaning GIT-BO converges faster in expectation and
delivers reliably strong results without requiring multiple restarts,
reducing computational cost and risk. Full statistical tests and
per-problem plots are provided in the Appendix.

5.2. Limitations

Our approach, although effective, faces several practical lim-
itations. First, the computational requirements of TabPFN

v2 present significant hardware constraints. As a large foun-
dation model, TabPFN requires GPU acceleration for effi-
cient inference. This limits accessibility for users without
GPUs. Second, the current implementation imposes a hard
dimensionality cap of 500D, as the foundation model was
trained specifically with this input dimension limit. Prob-
lems exceeding this dimensionality cannot be directly ad-
dressed without architectural modifications or using ensem-
bles. Third, although GIT-BO is largely parameter-free, the
rank r of the GI subspace and the choice of reference point
xref for back-projection could influence the algorithm’s per-
formance. We provide an initial sensitivity analysis in the
Appendix. However, future work will explore using an auto-
mated heuristic or meta-learning of these hyperparameters.

5.3. Conclusion and Future Work

In this paper, we introduced Gradient-Informed Bayesian
Optimization using Tabular Foundation Models (GIT-BO),
a method integrating the computational efficiency of tabu-
lar foundation models with an adaptive, gradient-informed
subspace identification strategy for Bayesian optimization.
Our comprehensive evaluations across synthetic and real-
world benchmarks demonstrate that GIT-BO consistently
surpasses state-of-the-art Gaussian process-based methods
in high-dimensional optimization scenarios (up to 500 di-
mensions). By eliminating iterative surrogate retraining and
dynamically identifying critical subspaces, GIT-BO also
accelerates convergence and reduces computational costs by
orders of magnitude compared to traditional GP methods.

The capability to effectively handle previously intractable
high-dimensional optimization tasks broadens the practical
applicability of Bayesian optimization. This advancement
is particularly impactful for automated machine learning
pipelines, scientific experimentation, and complex engineer-
ing design problems where dimensionality has historically
impeded efficient optimization. As tabular foundation mod-
els continue to grow in model size and improve the pre-
diction accuracy, we anticipate even greater optimization
performance from approaches like GIT-BO, further extend-
ing Bayesian optimization to even more challenging real-
world scenarios. Future work can leverage our method in
multiple directions, such as constrained, mixed-integer, and
multi-objective optimization, by modifying the acquisition
functions and embedding techniques.

Software and Data
If the paper is accepted, we will migrate the code to repro-
duce every experiment to a public GitHub repository under
an open-source license.
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A. The GIT-BO Algorithm Details
In this section, we detail our GIT-BO high-dimensional BO framework. The framework consists of four main components:
the surrogate model (TabPFN v2), the gradient-based subspace identification, the choice of acquisition function, and the
algorithm that ties these together.

A.1. Surrogate Modeling with TabPFN

We use TabPFN, specifically the 500-dimensional TabPFN v2 TFM model from (Hollmann et al., 2025), as our surrogate
model to predict the objective function values using in-context learning. The optimization objective is defined as minimizing
an unknown function f(x) over a domain x ∈ X ⊂ RD. At any BO iteration, let Dn = (xi, yi)

n
i=1 be the dataset of points

sampled so far and their observed function values yi = f(xi). In a standard BO setting, one would fit a GP posterior
p(f |Dn) to these data. Here instead, we leverage TabPFN to obtain a predictive model. We provide the dataset Dn to
TabPFN as input context (taking a set of labeled examples as part of its input sequence) and query the model for its prediction
at any candidate point x. TabPFN then returns an approximate posterior predictive distribution PFN(y | x,Dn) informed by
both the new point x and the context of observed samples. In practice, TabPFN produces a prediction in a single forward
pass as an approximation to the Bayesian posterior mean µn(x) for f(x) as this predictive mean given the provided data. In
our method, we review the previous series of PFN work (Müller et al., 2023) and implement the calculation of predictive
mean µn(x) and predictive variance σ2

n(x) with the latest TabPFN v2 regressor model.

A.2. Gradient-Informed Subspace Identification and Sampling

For active subspace identification, we leverage gradient information ∇xµn(x) obtained through one-step backpropagation
on TabPFN’s predictive mean values, which naturally varies across data points at each iteration. Inspired by studies on
dimension reduction in nonlinear Bayesian inverse problems, which employs techniques ϕ-Sobolev inequalities and gradient-
based approaches, we approximate the diagnostic (Fisher information) matrix H = Eµ[∇xµn(x)∇xµn(x)

⊤] (Zahm et al.,
2022; Li et al., 2024a;b; Ly et al., 2017). In this study of high-dimensional problems with only D > 100, we select the
top r (D >> r) dominant eigenvectors in H as the principal vectors Vr that span our gradient-informed active subspace
(GI subspace). Next, we restrict the next exploration to this subspace and map the search candidates back to the original
space by xcand = x̄ref + Vrz, z ∼ U([−1, 1]r), where the reference point x̄ref is the centroid of the observed data. Finally,
we pass xcand to the acquisition function for determining the next sample to evaluate. In GIT-BO, we recalculate the GI
subspace at each iteration as the subspace changes when observed data increases. For computational practicality and
exploration-exploitation balance, we default to r = 15 in GIT-BO; a detailed sensitivity analysis on the choice of r is
presented in the Appendix.

A.3. Acquisition Function

We implement the Thompson Sampling (TS) acquisition as our acquisition function due to its previous success in high-
dimensional BO (Eriksson et al., 2019). For TS, we approximate it by sampling from the predictive distribution at each
sample x and draw a fixed number of 512 random samples f̃(·) from the surrogate’s posterior. The candidate xnext with
the highest sampled value is selected as the next query f̃(xnext). This leverages the full predictive uncertainty and tends to
balance exploration and exploitation implicitly (Shahriari et al., 2015; Eriksson et al., 2019). The key difference here is that
we restrict x to our learned GI subspace. After selecting the next query point xnext, we evaluate the true objective function to
obtain ynext.

A.4. GIT-BO Implementation Details

The GIT-BO algorithm was implemented using Python 3.12 with the TabPFN v2.0.6 implementation and
model (link: https://github.com/PriorLabs/TabPFN and https://huggingface.co/Prior-Labs/
TabPFN-v2-reg, license: Prior Lab License (a derivative of the Apache 2.0 license (http://www.apache.org/
licenses/))). Instead of using the off-the-shelf TabPFN code for GIT-BO, we make a wrapper that converts the numpy
calculations to PyTorch for torch.backward() gradient calculations. The system uses BoTorch v0.12.0 and PyTorch
2.6.0+cu126 for the underlying optimization framework. For the gradient-informed subspace identification, a rank of 15 was
selected for the GI subspace matrix. All experiments were conducted on a GNU/Linux 6.5.0-15-generic x86 64 system
running Ubuntu 22.04.3 LTS as the operating system, ensuring a consistent computational environment across all benchmark
tests.
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B. Experiment Details
This section describes how we evaluate GIT-BO’s performance on a diverse collection of synthetic optimization benchmarks
and real-world engineering problems.

B.1. Experiment Setups

This section outlines our empirical approach to evaluating and comparing different high-dimensional Bayesian optimiza-
tion algorithms, specifically focusing on assessing their performance across various complex synthetic and engineering
benchmarks.

B.1.1. BENCHMARK ALGORITHMS

We benchmark GIT-BO against random search (Bergstra & Bengio, 2012) and four high-dimensional BO methods,
including SAASBO (Eriksson & Jankowiak, 2021), TURBO (Eriksson et al., 2019), HESBO (Nayebi et al., 2019), and
ALEBO (Letham et al., 2020). For HESBO and ALEBO, we varied dembedding ∈ {10, 20} and denote the choice as
HESBO/ALEBO (d={10, 20}). The implementation of SAASBO and TURBO is taken from BoTorch tutorials (Balandat
et al., 2020). The implementation of HESBO and ALEBO are taken from their original published paper and code (Nayebi
et al., 2019; Letham et al., 2020). Additional details of the algorithm implementation are listed in the supplemental material.

B.1.2. TEST PROBLEMS

This study incorporates a diverse set of high-dimensional optimization problems, including 11 synthetic problems and 12 real-
world benchmarks. Synthetic and scalable problems include: Ackley, Rosenbrock, Dixon-Price, Levy, Powell, Griewank,
Rastrigin, Styblin-Tang, and Michalewicz. Additionally, we tested on two Synthetic problems in LassoBench (LassoSynthet-
icMedium and LassoSyntheticHigh) and one real-world hyperparameter optimization (HPO) problem LassoDNA. The rest
of the application problems are collected from previous optimization studies and conference benchmarks: the power system
optimization problems in CEC2020, Rover, SVM HPO, MOPTA08 car problem, and two Mazda car problems. As this study
focus on the high-dimensional characteristic of problem, we make all our benchmark problems single and unconstrained for
testing. Therefore, we have applied penalty transforms to all real-world problems with constraints and perform average
weighting to the two multi-objective Mazda problems. The details of benchmark transformation and implementation are
detailed in the Appendix. Among the 23 benchmarks, 10 (Synthetic + Rover) are scalable problems. To evaluate the
algorithms’ performance with respect to dimensionality, we solve the scalable problems for D = {100, 200, 300, 400, 500}.
Therefore, we have experimented with a total of 5 × 10 + 13 = 63 different variants of the benchmark problems. The
benchmarks’ details and implementations are listed in the Appendix.

B.1.3. ALGORITHM TESTS

The algorithm evaluation aims to thoroughly compare GIT-BO to current SOTA Bayesian optimization techniques. This
study focuses on minimizing the objective function for the given test problems. For each test problem, our experiment
consists of 20 independent trials, each utilizing a distinct random seed. To ensure fair comparison, we initialize each
algorithm with an identical set of 200 samples, generated through Latin Hypercube Sampling with consistent random seeds
across all trials. During each iteration, each algorithm selects one sample to evaluate next.

To execute this extensive benchmarking process, we utilized a distributed server infrastructure featuring Intel Xeon Platinum
8480+ CPUs and NVIDIA H100 GPUs. Individual experiments were conducted with the same amount of compute allocated:
a single H100 GPU node with 24 CPU cores and 250GB RAM.

B.2. Evaluation Metrics

B.2.1. OPTIMIZATION FIXED-BUDGET CONVERGENCE ANALYSIS

Fixed-budget evaluations is a technique for comparing the efficiency of optimization algorithms by allotting specific
computational resources for their execution (Hansen et al., 2022).

We apply a “fixed-iteration” budget approach in our study, initially running all algorithms (GIT-BO, TurBO, HESBO,
SAASBO, and ALEBO) for 100 iterations. Additionally, we run GIT-BO, TurBO, and HESBO for an extra 100 iterations
(total of 200 iterations) because these methods are roughly two orders of magnitude faster than SAASBO and ALEBO,
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allowing us to explore their long-term convergence behavior more thoroughly.

B.2.2. STATISTICAL RANKING

For comprehensively compare and evaluate the performance of the Bayesian optimization algorithms, statistical ranking
techniques are employed instead of direct performance measurements of the optimization outcome. In this study, we define
the optimization performance result as the median of the minimum result found (final incumbent) across the 20 optimization
trials of each algorithm. By statistically ranking the results, we were able to standardize the comparisons across different
problems, since various optimization challenges can produce objective values of vastly different magnitudes. Furthermore,
using this ranking allowed us to reduce the distorting effects of unusual or extreme data points that might influence our
evaluation.

We conduct our statistical analysis using the Friedman and Wilcoxon signed-rank tests, complemented by Holm’s alpha
correction. These non-parametric approaches excel at processing benchmarking result data without assuming specific
distributions, which is critical for handling optimization results with outliers. These statistical methods effectively handle
the dependencies in our setup, where we used the same initial samples and seeds to test all algorithms. The Wilcoxon
signed-rank test addresses paired comparisons between algorithms, while the Friedman test manages problem-specific
grouping effects. For multiple algorithm comparisons, we used Holm’s alpha correction to control error rates (Ismail Fawaz
et al., 2019; Brockhoff & Tušar, 2023; Picard & Ahmed, 2024).

B.2.3. ALGORITHM RUNTIME RECORDING

Each algorithm is timed for the total time it takes to run one experiment trial. We take the overall mean over the 20 trials
and over all benchmark problems, resulting in a single value average time (tavg) to represent the average runtime of each
algorithm.

C. Benchmark Algorithms and Problems Implementation Details
C.1. GP-based Benchmark Algorithms Implementation Details

We benchmark GIT-BO against four high-dimensional BO methods, including SAASBO (Eriksson & Jankowiak, 2021),
TURBO (Eriksson et al., 2019), HESBO (Nayebi et al., 2019), and ALEBO (Letham et al., 2020).

• SAASBO: The implementation is taken from (Balandat et al., 2020) (link: https://github.com/pytorch/
botorch/blob/main/tutorials/saasbo/saasbo.ipynb, license: MIT license, last accessed: May 1st,
2025)

• TURBO: The implementation is taken from (Balandat et al., 2020) (link: https://github.com/pytorch/
botorch/blob/main/tutorials/turbo_1/turbo_1.ipynb, license: MIT license, last accessed: May
1st, 2025)

• HESBO: The implementation is taken from the original implementation (Nayebi et al., 2019) (link: https://
github.com/aminnayebi/HesBO, license: none, last accessed: May 1st, 2025)

• ALEBO: The implementation is taken from the original implementation (Letham et al., 2020) (link: https://
github.com/facebookresearch/alebo, license: CC BY-NC 4.0, last accessed: May 1st, 2025)

As most BO code is archived in the BoTorch or Ax Platform1 library, we use Botorch 0.12.0 for SAASBO and TURBO.
However, to successfully replicate ALEBO, we make another environment using Ax 0.1.17 and other incompatible packages.

C.2. Benchmark Problems Implementaion Details

The source and license details of our benchmark problems are described in the following paragraphs.

C.2.1. SYNTHETIC PROBLEMS:

The implementations for the nine synthetic functions are taken from Botorch (Balandat et al., 2020) (link: https://
github.com/pytorch/botorch/blob/main/botorch/test_functions/synthetic.py, license: MIT

1https://github.com/facebook/ax
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license, last accessed: May 1st, 2025). The bounds of each problems are the default implementation in Botorch. Detailed
equations for each problem can be found here: https://www.sfu.ca/˜ssurjano/optimization.html.

C.2.2. CEC2020 POWER SYSTEM PROBLEMS:

We examine a subset of six problems, specifically those with design spaces exceeding 100 dimensions,
from the CEC2020 test suite (Kumar et al., 2020) (link: https://github.com/P-N-Suganthan/
2020-Bound-Constrained-Opt-Benchmark, license: no licence, last accessed: May 1st, 2025). The code
is initially in MATLAB, and we translate it into Python, running pytest to ensure the implementations are correct. While
these problems incorporate equality constraints (hj(x)), they are transformed into inequality constraints (gj(x)) using the
methodology outlined in the original paper (Kumar et al., 2020), as constraint handling is not the primary focus of this
research. These transformed constraints are subsequently incorporated into the objective function f(x) as penalty terms.

gj(x) = |hj(x)| − ϵ ≤ 0 , ϵ = 10−4 , j = 1 ∼ C

fpenalty(x) = f(x) + ρ

C∑
j=1

max(0, gj(x))

Each problem has different ρ penalty factor respectively to make the objective and constraints values have similar effect on
fpenalty(x).

Table 1. CEC2020 Benchmark Problems Penalty Transform Factor ρ

Problems CEC34 CEC35 CEC36 CEC37 CEC38 CEC39

ρ 0.01 0.0002 0.001 0.04 0.02 0.04

C.2.3. LASSOBENCH BENCHMARKS:

The implementation is taken from the original implementation (Šehić et al., 2022) (link: https://github.com/
ksehic/LassoBench, license: MIT and BSD-3-Clause license, last accessed: May 1st, 2025).

C.2.4. ROVER:

The implementation is taken from (Wang et al., 2018) (link: https://github.com/zi-w/
Ensemble-Bayesian-Optimization, license: MIT license, last accessed: May 1st, 2025).

C.2.5. MOPTA08 CAR:

The MOPTA08 executables are taken from the paper (Papenmeier et al., 2022)’s personal website (link: https://
leonard.papenmeier.io/2023/02/09/mopta08-executables.html, license: no license, last accessed:
May 1st, 2025). The MOPTA08 Car’s penalty transformation follows the formation of (Eriksson & Jankowiak, 2021)’s
supplementary material.

C.2.6. MAZDA BECHMARK PROBLEMS:

The implementation is taken from (Kohira et al., 2018) (link: https://ladse.eng.isas.jaxa.jp/benchmark/,
license: no license, last accessed: May 1st, 2025). The Mazda problem has two raw forms: a 4-objectives problem 148D
(Mazda SCA) and a 5-objectives 222D problem (Mazda), and both of them have inequality constraints. For both problems,
we equally weight each objective to form a single objective and perform a penalty transform:

fmultiobj penalty(x) =
1

N

N∑
i=1

f(x) + ρ

C∑
j=1

max(0, gj(x))
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where N is the number of objectives, C is the number of inequality constraints, and we use ρ = 10 for both variants of
Mazda problem.

Table 2 summarizes the type of problems and their respective tested dimensions.

Table 2. High-Dimensional Benchmark Problems

Problems Source Type Dimension (D) Tested

Ackley Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Dixon-Price Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Griewank Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Levy Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Michalewicz Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Powell Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rastrigin Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rosenbrock Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Styblinski-Tang Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
CEC34 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 118
CEC35 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 153
CEC36 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 158
CEC37 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
CEC38 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
CEC39 CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
LassoSyntMedium LassoBench (Šehić et al., 2022) Synthetic 100
LassoSyntHigh LassoBench (Šehić et al., 2022) Synthetic 300
LassoDNA LassoBench (Šehić et al., 2022) Real-World 180
Rover Previous BO studies (Wang et al., 2018) Real-World 100, 200, 300, 400, 500
MOPTA08 CAR Previous BO studies (Eriksson et al., 2019) Real-World 124
MAZDA Mazda Car Bechmark (Kohira et al., 2018) Real-World 222
MAZDA SCA Mazda Car Bechmark (Kohira et al., 2018) Real-World 148
SVM Previous BO studies (Eriksson & Jankowiak, 2021) Real-World 388

D. Ablation Studies
To rigorously assess the necessity of gradient-informed subspace exploration, we conducted an ablation study comparing
GIT-BO with a variant employing the vanilla TabPFN v2 model without adaptive gradient-informed subspace identification.
Two acquisition functions are tested with the vanilla TabPFN v2: expected improvement acquisition (EI) (used in the
original PFNs4BO (Müller et al., 2023)) and Thompson Sampling (TS), which is used by GIT-BO. The convergence plot
results shown in Figure 4 clearly indicate that both vanilla TabPFN v2 with EI and TS has failed the high-dimensional
search significantly compared to GIT-BO. Specifically, we observe a drastic degradation in convergence speed and final
optimization outcomes. This confirms our hypothesis that vanilla TabPFN v2, regardless of the selection of the acquisition
function, fails to capture crucial directions in high-dimensional spaces without the assistance of the GI subspace. This
reinforces the critical role of our proposed gradient-based refinement strategy in achieving robust performance.

E. Parameter Sweep
We conducted a parameter sweep to evaluate the sensitivity of GIT-BO’s optimization performance to the chosen di-
mensionality (r) of the gradient-informed active subspace The results are presented in Figure 5. The empirical findings
suggest that very high-dimensional subspaces (e.g., r = 40 for 100-dimensional problems) result in significant performance
degradation due to diminished effectiveness of the gradient-informed search direction. Conversely, lower-dimensional
subspaces generally showed superior performance. Our default selection, r = 15, represents a balanced compromise
between efficiency and thoroughness, positioned roughly in the middle of performance rankings. Investigating adaptive or
context-dependent hyperparameter tuning strategies for r presents an exciting avenue for future work.
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Figure 4. Ablation studies of vanilla TabPFNv2 BO with GIT-BO. GIT-BO consistently outperform other algorithms without GI subspace
search across all tested problems (8.6 times better regrets), indicating GIT-BO is the best approach and vanilla TabPFNv2 is not an ideal
candidate for performing high-dimensional BO.

Figure 5. Performance comparison across various gradient-informed subspace dimensions (r) in GIT-BO. Median optimization results
across 20 trials are shown, with shaded regions depicting 95% confidence intervals. High-dimensional subspaces (e.g., r = 40) exhibit
notable performance deterioration, and lower subspace dimensions tend to perform consistently better.

Figure 6. Rank of the final optimization solution performance comparison across various gradient-informed subspace dimensions (r) in
GIT-BO.

F. Full Results
We present the comprehensive optimization results for all benchmark problems investigated in the main paper. Figures 7 to 10
provide the complete convergence curves for synthetic and real-world benchmarks, respectively. The results consistently
demonstrate GIT-BO’s robust performance across different classes of high-dimensional problems, clearly indicating its
advantage in both convergence speed and final solution quality compared to baseline methods. Notably, GIT-BO achieves
significant improvements on complex synthetic functions and demonstrates remarkable consistency on real-world engineering
benchmarks, validating our approach’s generalizability and practical efficacy.
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Figure 7. Full convergence curves on engineering benchmarks illustrating the median best solutions obtained across multiple trials.
Confidence intervals (95%) are shown as shaded areas around the median lines. The minimal median best solution among all algorithms at
the final iteration is marked in “x”. The results demonstrate that SAASBO excels in the Rover and car (MOPTA08 and Mazdas) problems,
and GIT-BO leads the CEC power system optimization problem. Though GIT-BO is second-best for real-world problems, engineers
might benefit from its 100x faster runtime if time is a hard constraint.

Figure 8. Violin plot statistical summary of final optimization performance for engineering functions, summarizing results over 20 trials.
GIT-BO exhibits less variance and top-or-second median results on most high-dimensional problems (except for Rover).
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Figure 9. Detailed optimization results for synthetic benchmarks demonstrating the relative performance of GIT-BO versus competing
algorithms. Median best-found function values are illustrated by solid lines, with shaded bands denoting 95% confidence intervals. The
minimal median best solution among all algorithms at the final iteration is marked in “x”. Results highlight the robustness of GIT-BO in
achieving superior performance across diverse synthetic problems, especially in challenging higher dimensional settings (D >300). The
only two exceptions that GIT-Bo fails dramatically in all Ds are Styblinski-Tang and Michalewicz, which can potentially be explained by
the “No Free Lunch” theorem (Wolpert & Macready, 1997).
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Figure 10. Violin plot representations of final optimization performance for synthetic functions, summarizing results over 20 trials.
GIT-BO shows narrower variance compared to the second-ranked (SAASBO) and third-ranked (ALEBO (d-10)) methods and improved
median performance across most benchmarks, underscoring its effectiveness in reliably navigating complex synthetic landscapes.
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