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ABSTRACT

The ability to perceive scenes in terms of abstract entities is crucial for us to
achieve higher-level intelligence. Recently, several methods have been proposed
to learn object-centric representations of scenes with multiple objects, but most
of them focus on static images. In this paper, we work on object dynamics and
propose Object Dynamics Distillation Network (ODDN) which distills explicit
object dynamic representations (e.g., velocity) from raw video input. Further-
more, we build a relation module that calculates object-pair interactions and ap-
plies it to the corresponding dynamic representations of objects. We verify our
approach on tasks of video events reasoning and video prediction, which are
two important evaluations for video understanding. The results show that vi-
sual representations of ODDN perform better in answering reasoning questions
around physical events in a video compared to representations of the previous
scene representation methods. And, ODDN could generate reasonable future
frames given two input frames, considering occlusion and objects collision. In
addition, using the object dynamic clues allows the model to obtain better scene
decomposition quality in segmentation and reconstruction. Code is available at
https://github.com/tqace/ODDN.

1 INTRODUCTION

Figure 1: ODDN could be used to handle multiple
downstream tasks.

Humans learn to decompose the scene into in-
dependent objects to understand the environ-
ment at a very early age. This cognitive pat-
tern promotes the generation of common sense
of physics, for example, the speed of the object
will change after a collision. However, the neu-
ral networks seem to lack the ability to acquire
a compositional understanding of the world in
terms of structured objects, which is crucial
for generalizing and higher-level tasks such as
planning and reasoning(Greff et al., 2020). To
tackle this problem, many scene decomposi-
tion approaches have been proposed to segment
an image with ground-truth segmentation labels
as supervision(Ronneberger et al., 2015; Long
et al., 2015; Badrinarayanan et al., 2017; Chen et al., 2017; Zhang et al., 2020a;b). However, the ac-
quisition of semantic segmentation labels is costly. Besides, these methods do not provide structured
representations of segmented areas. Recently, several unsupervised methods have become popular
in learning decomposition and object-centric representations of scenes with multiple objects(Hsieh
et al., 2018; Van Steenkiste et al., 2018; Burgess et al., 2019; Locatello et al., 2020; Greff et al.,
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2017; Eslami et al., 2016; Kosiorek et al., 2018), and some of those methods learn disentangled
features which represent crucial properties (e.g., ’color’, ’size’) of object in the same format. The
work of Van Steenkiste et al. (2019) has proved that disentangled representations do in fact lead to
better downstream task performance.

Beyond static scenes (images), people understand dynamic physical events and predict how the fu-
ture might unfold(Battaglia et al., 2013). Even infants have the intuition that temporarily occluded
objects remain coherent wholes and follow spatially contiguous paths(Baillargeon, 1987). This com-
mon sense of physics is inseparable from the understanding of object dynamics. However, existing
scene decomposition and representation work focus on images, which means that when interpreting
videos, those approaches process one frame at a time, and do not encode objects’ dynamic proper-
ties. We argue that representing object dynamics is significant for tasks such as video reasoning or
predicting the future.

In this work, we aim to distill and disentangle object dynamics in an unsupervised manner and
present ODDN (Object Dynamics Distillation Network). ODDN is built on a spatial mixtures frame-
work(Greff et al., 2019), a prime example of VAE(Kingma & Welling, 2013) based architecture of
decomposing scenes into object-centric latent representations. Formally, the model clusters and
decodes pixels into latent representations through an iterative amortized variational inference pro-
cedure then reconstructs the latent vectors into input images. In this way, scenes are segmented and
represented as object-centric disentangled features. Based on this, our key insight is that the object
dynamics hide in variations between objects’ static latent representations of different frames, thus,
we design our model to distill object dynamics from their representations of the current and previous
frames. With the distilled object dynamics as part of the representation, we further build a relation
module to model object interactions.

We evaluate ODDN on different downstream tasks as shown in Figure 1. Results show that rep-
resentations with object dynamics perform better in reasoning task than representations with static
properties only, and the relation module endows ODDN with the capability of predicting the fu-
ture. In addition, we notice that incorporating object dynamics and relations into the basic scene
decomposition framework benefits the segmentation and reconstruction quality.

We highlight contributions of our approach:

• Distillation of disentangled object dynamics from raw video input in an unsupervised man-
ner.

• State-of-the-art performance on CLEVRER(Yi et al., 2019) which focus on video under-
standing and causal reasoning.

• Capability of future frames prediction in 3D scenes including physical events (occlusion,
collision).

• Better scene decomposition quality for spatial mixture architecture in terms of segmenta-
tion and reconstruction.

2 RELATED WORK

Object representation of static scenes. Representation learning is an important topic in deep
learning. Several recent lines of work making breakthroughs in this area learns representations
without explicit supervision. NEM(Greff et al., 2017) builds a spatial mixture model based on EM
algorithm to discover a compositional object representation but fails to cope with colored or 3D
data. AIR(Eslami et al., 2016) achieves scene interpretation by using a recurrent neural network
that attends to one element at a time and disentangles positions and appearances explicitly in latent
variables. AIR can decompose 3D scenes, however, it generates partial images separately and adds
them together to form the final image, which leads to its restriction: it can’t be applied to scenes
with occluded objects. MoNet(Burgess et al., 2019) uses multiple attention steps to tackle complex
3D scene, which is the first being capable of discovering object masks and completing partially
occluded objects. IODINE(Greff et al., 2019) does the same thing as MoNet by using iterative
variational inference to refine the inferred latent representation in each encoding step.

Object representation of dynamic scenes. Methods mentioned above are designed to de-
compose static scenes, hence they do not encode object dynamics in the latent space. R-
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Figure 2: Overview of ODDN. The inference model assigns inputs into K slots per image, each
slot encodes object or background into latent space, shown in different colors. We take use of the
attention mechanism of transformer to align objects’ latents of two input images and encode the
aggregated representation into a low-dimensional vector to obtain disentangled object dynamics.
Object latents (sta) and dynamics (dyn) are used to model interactions between object-pairs, we
show the relation module with three slots as an example, which compute the effects z2 and z3 have
on z1. We concat the updated object dynamics and object latents to predict the next frame object
latents. The Generative model outputs both reconstructions of input images and prediction of future
frame images.

NEM(Van Steenkiste et al., 2018) applies RNN to NEM to encode object dynamics implicitly, and
models relations between objects to learn physical interaction which enables the model to predict
future frames for video input. Similarly, SQAIR(Kosiorek et al., 2018) extends AIR to image se-
quence to discover and track objects throughout the video frames. Both R-NEM and SQAIR bear
the drawbacks of their predecessors. ViMON(Weis et al., 2020) is a video-extension of MoNet by
building temporal connections between latent representations with GRU(Cho et al., 2014). ViMON
learns a linear transformation to predict next time-step image, encouraging dynamics encoded. PRO-
VIDE(Zablotskaia et al., 2020) applies 2D-LSTM(Graves et al., 2007) to IODINE and is capable of
simulating future video frames. Although ViMON and PROVIDE encode object dynamics, they
do not model interactions between objects, thus, they can’t handle datasets with object collisions.
Besides, object dynamics of both methods are spread in latent space implicitly, which lacks inter-
pretability. It has been proved that disentangled representations allow one to learn models with better
performance and fewer samples for downstream reasoning tasks(Wu et al., 2021; Chen et al., 2021b;
Gan et al., 2017; Ding et al., 2021b). Therefore, in this work, we aim to represent object dynamics
explicitly. Instead of using RNNs, we match objects’ latent representations between the current and
previous frames and distill their dynamics by applying a single-layer transformer encoder.

3 METHOD

Our goal is to decompose dynamic scenes into object-centric representations purely based on visual
observations. And the representation contains interpretable object dynamics. Recent works decom-
pose static scenes by randomly assigning objects to a fixed number of slots, which share weights to
obtain latent vectors with a common format. However, these works do not encode object dynamics
for objects of sequential input. Our key idea is that building upon these successful multi-object
scenes decomposing and representation approaches, object dynamics could be distilled from the
corresponding latent representations of two consecutive frames.

3.1 OBJECT DYNAMICS DISTILLATION NETWORK

We illustrate the framework of ODDN in Figure 2. Formally, ODDN takes as input a video, then the
inference model processes all frames x1:N independently to obtain K object latent vectors which
encode object static properties. For frames x2:N , we distill objects’ dynamics from their latent
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vectors of the current and the previous frames. The relation module takes the object latent vectors
and the object dynamics of frames x2:N−1 as input, calculates the interaction between objects and
predicts object latent representations of frames x3:N .

The input image x ∈ RD could be reconstructed by K latent vectors zk ∈ RM , each of which
corresponds to one object or background area after training, and each latent vector is also called a
slot. Firstly, latent zk is decoded into pixel-wise mean µik and pixel-wise mask logit m̂ik . Then,
the K mask logits are normalized with a softmax function to ensure that the sum of K mask logits
for each pixel is 1. At last, µ and m parameterize the final spatial Gaussian mixture distribution:

p(x|z) =
D∏
i=1

K∑
k=1

mikN (xi;µik, σ
2), (1)

where σ is the same and fixed for all i and k. The input image can be reconstructed as x̂ =∑K
k=1 mkµk.

The inference model of ODDN follows previous work (Greff et al., 2019) by using amortized vari-
ational inference to infer and refine posterior qλ(z|x) iteratively where λ = {µz, σz}. The main
reason to use such an iterative process is that the standard variational inference framework leads
to the multi-modal problem, which means that any pixel could be captured by any slot. IODINE
updates posterior as follows:

zt ∼ qλ(z
t|x), (2)

λt+1 ← λt + fϕ(z
t, x, a), (3)

where the posterior parameters λ start with an arbitrary guess, and the first latent representations z1
are sampled from qλ. In each refinement step, input x together with a set of variables a(means µ,
masks m, mean gradient ∇µL, mask gradient ∇mL), which are computed from zt are fed into a
refinement network fϕ to obtain the additive updates for the posterior.

ODDN predicts future objects state in latent space given first two frames:

ẑnk = Wpred([z
dyn
(n−1)k; z

sta
(n−1)k]); n > 2, (4)

where zdyn is the distilled object dynamic representation and zsta refers to the object latent repre-
sentation output by the inference model. The next-frame latent vectors are predicted with a learnable
transformation Wpred, details will be introduced in Section 3.2 and Section 3.3. The whole network
is trained end-to-end and the final loss consists of prediction loss Lp and reconstruction loss Lr, in
detail:

Lr(x) =
N∑

n=1

T∑
t=1

[
−log(p(xn|ztn·)) + βKL(qλ(z

t
n·|xn, z

<t
n· )||p(z)

]
, (5)

Lp(x) =

N∑
n=3

[−log(p(xn|ẑn))] , (6)

where T is the maximum refinement step number during the inference stage. We measure and
optimize the KL divergence between the variational posterior and the prior in Lr.

3.2 DYNAMIC DISTILLATION

In this section, we describe how ODDN derive object dynamics from sequential object latent repre-
sentations. For existing scene decomposition and representation approaches, object-to-slot assign-
ments usually switch unpredictably in a video. Thus, we draw support from the Transformer to
match object latent representations in different frames correctly and further distill object dynamics.

Revisit attention mechanism of Transformer. The key component of the Transformer is the
attention module which could be mathematically described as:

Attention(q,K, V ) =

|V |∑
i=1

αiWvvi; αi ∝ exp
[
(Wqq)

T (Wkki)
]
, (7)
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where q ∈ Rd; K consists of |K| elements (k1, k2, · · · , k|K|) with ki ∈ Rd; V consists of |V |
elements (v1, v2, · · · , v|V |) with vi ∈ Rd.

This attention function maps the input query q and a set of key(k)-value(v) pairs to an updated
representation, Wq , Wk , Wv are learnable parameters. Besides, αi ≥ 0,

∑|v|
i=1 αi = 1, and usually

|K| = |V |.
Model architecture. The inference model decomposes the input video into N×K latent vectors,
where K is the slot number for each frame and N is the number of frames of the video. We put these
sequence consisting latent vectors {z11, · · · , z1K , · · · , zN1, · · · , zNK} into one single Transformer
encoder layer to match the corresponding slots which usually switch their assignments with objects
several times in a video. After finding object correspondence in different frames, the Transformer
aggregates latent information and distills object dynamics which are encoded into a low-dimensional
representation space. Mathematically, the dynamic distillation process for the k-th slot in the n-th
frame could be described as:

z′nk = Attention(znk, {zn−1, zn}, {zn−1, zn}); n > 1, (8)

zdynnk = FFN(Norm(z′nk + znk)), (9)

where zdyn is a low-dimensional vector transformed by the fully connected feed-forward network
(FFN). This learning process is performed in parallel by pre-defining an attention mask to ensure
that latent representations of the current frame only attend to ones one frame before.

3.3 RELATION MODULE

ODDN models interactions between object pairs by computing all object-pair effects and letting
them act on and update object dynamics. ODDN learns a soft attention coefficient for each effect.
The object dynamics are updated as:

embki,kj = Wemb([z
dyn
ki

; zstaki
; zdynkj

; zstakj
]), (10)

attki,kj = Sigmoid(Wattn(embki,kj )), (11)

effki,kj
= Weff (embki,kj

), Eki
=

∑
i ̸=j

attki,kj
∗ effki,kj

, (12)

zdyn
′

nki
= zdynnki

+Wdyn(Eki
), (13)

where Wemb first embeds representations of object-pair, then Watt learns the attention coefficient
based on the object-pair embedding, and Weff learns the effect zkj has on zki . At last, the summed
effects output an update value with Wdyn.

We draw inspiration from NPE(Chang et al., 2016) and R-NEM(Van Steenkiste et al., 2018), both
architectures model object relations. NPE has access to ground truth representations of scenes and
computes effect for each neighborhood object-pair with a neighborhood mask based on ground-truth
object position, and finally, the summed effects act on object velocity. R-NEM represents objects
in an unsupervised fashion and implicitly encodes sequential information with an RNN(Hochreiter
& Schmidhuber, 1997). Instead of using a neighborhood mask, R-NEM learns soft attention for all
object-pairs. Our approach learns to represent object dynamics explicitly. Thus, we compute all
object-pair effects and let it act on object dynamics as NPE, and learn an attention coefficient for
each effect as R-NEM.

After distilling and updating object dynamics, we predict next-frame object latents by simply learn-
ing a transformation Wpred, and Wpred ∈ R(L+l)×L, ẑsta(n+1)· = Wpred([z

dyn′

n· ; zstan· ]), where l

indicates the dynamics dimension (l = 4 in our experiments).

To alleviate error accumulating when implementing multi-step predicting in the inference stage, we
use student forcing strategy during training: instead of only using zn to predict ẑn+1, ẑn is also used
to iteratively roll out a predicted image sequence.
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Table 1: Performance (per question/option accuracy) comparison with the state-of-the-art methods
MAC (V+), NS-DR, DCL, and ALOE on CLEVRER, ALOE takes static scene representations from
Monet as visual input while ODDN-ALOE use representations of ODDN.

Model Descriptive Explanatory Predictive Counterfactual
per opt. per ques. per opt. per ques. per opt. per ques.

MAC(V+)(Yi et al., 2019) 86.4 70.5 22.3 59.7 42.9 63.5 25.1
NS-DR(Yi et al., 2019) 88.1 87.6 79.6 82.9 68.7 74.1 42.2
DCL(Chen et al., 2021a) 90.7 89.6 82.8 90.5 82.0 80.4 46.5

ALOE(Ding et al., 2021a) 94.0 98.5 96.0 93.5 87.5 91.4 75.6
ODDN-ALOE 95.8 98.9 97.0 95.7 91.8 93.0 80.1

Table 2: Ablations of how different object representations perform on CLEVRER, all experiments
are conducted based on ALOE without self-supervision. “ODDN w/o relation” is ODDN trained
without relation module (with only dynamic distillation module). −dyn means reducing distilled
dynamic representations (only static representations remained). “MoNet w/o ss” is the result of
ALOE without self-supervision from original paper with MoNet features.

Feature Dim Dyn Descriptive Explanatory Predictive Counterfactual
per opt. per ques. per opt. per ques. per opt. per ques.

PROVIDE 16 ✓ 75.2 91.6 77.4 80.5 65.4 76.4 39.4
MoNet w/o ss 16 91.0 - 92.8 - 82.8 - 68.7
IODINE 20 92.8 98.3 95.6 89.1 80.2 89.7 71.3
IODINE 16 93.5 98.1 95.0 91.6 84.5 90.6 73.4
ODDN w/o relation(−dyn) 16 92.8 97.6 93.6 90.6 82.8 89.2 70.1
ODDN w/o relation 20 ✓ 93.9 98.2 95.1 93.6 88.0 90.7 73.6
ODDN(−dyn) 16 95.1 98.5 96.1 94.1 89.1 91.7 76.8
ODDN 20 ✓ 95.8 98.9 97.0 95.7 91.8 93.0 80.1

4 EXPERIMENTS

In this section, we design experiments in the perspective of representation, prediction, and scene
decomposition. In particular, we study how ODDN performs on tasks of video understanding and
reasoning, video prediction, reconstruction, and segmentation. To quantify segmentation quality,
we measure the similarity between ground-truth (instance) segmentations and our predicted object
masks using the Adjusted Rand Index(Rand, 1971) (ARI) and The Foreground Adjusted Rand Index
(F-ARI) which is a modification of the ARI score ignoring background pixels.

Baselines. We compare our method with IODINE, PROVIDE and SRVP(Franceschi et al., 2020).
IODINE is designed for static images, thus it neither encodes object dynamics nor considers object
relations. PROVIDE is an extension of IODINE to fit sequential inputs. The major difference
between PROVIDE and our approach is that PROVIDE encodes object dynamics implicitly while
we distill object dynamics explicitly. In detail, PROVIDE uses 2D-LSTM to achieve temporally
conditioned and iterative amortized inference for posterior refinement, as a result, the final sampled
latents in every time-step contain dynamic information which could be used to predict the future.
Besides, PROVIDE does not model object relations, which means when predicting the future, object
latents are processed separately. SRVP is a dynamic latent model for stochastic video prediction
which decouples frame synthesis and dynamics based on residual updates of a small latent state.
Unlike ODDN and PROVIDE, SRVP reperesents the scene with a single latent.

4.1 VIDEO UNDERSTANDING AND REASONING

We study the representation power of ODDN on CLEVRER, which poses different types of ques-
tions for each video in CLEVRER dataset. Those questions could test the model’s understanding
of a video comprehensively, including descriptive questions (“how many objects are moving”), ex-
planatory questions(“the reason why certain collision happens”), predictive questions(“what will
happen next”), and counterfactual questions(“what would happen if”).

Table 1 shows that ODDN-ALOE outperforms ALOE on all question types even without self-
supervision, especially on predictive and counterfactual questions, and achieves state-of-the-art per-
formance. Both predictive and counterfactual types of questions are related to predicting how objects
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Figure 3: Illustration of video prediction results on CLEVRER. All models take as input the first two
frames and predict the next six frames. “IODINE linear” is implemented by simply concatenating
latent features of the current and the previous frames and predicting the future frame with a feed-
forward neural network. “ODDN w/o relation” is the version of ODDN without relation module. In
the video, a collision happens between the blue and brown cylinder from time step 6 to 8.

will move. This result proves that representations with object dynamics could help the neural model
to do better understanding and reasoning around physical events. We also do ablation experiments
to study how different representations affect the model’s performance, results are shown in Table
2. We can tell that representations of PROVIDE lead to a significant decline compared to IODINE,
and the reason will be discussed in Section 4.3. On the contrary, representations of ODDN which
encode object dynamics (dim=20) outperform IODINE (dim=16) by a large margin, especially on
predictive (91.8 vs 84.5) and counterfactual (80.1 vs 73.4) questions. In addition, we obtain ODDN
features without dynamics by reducing 4 dimension dynamics. Results show that ODDN without
dynamics still performs better than IODINE, which means that ODDN not only distills useful ob-
ject dynamics but also generates better static representations. static representations. “ODDN w/o
relation” outperforms “ODDN w/o relation −dyn” which further shows the significance of our dis-
tilled object dynamics. However, “DDN w/o relation −dyn” is no better than IODINE (dim=16),
which proves that the relation module is the main reason for the quality increase of the object static
representation.

4.2 PREDICTION

ODDN achieves predicting future frames in an iterative fashion. Unlike PROVIDE, ODDN mod-
els object dynamics and interactions explicitly. Results could be observed in Figure 3, where the
blue and brown cylinder collides. ODDN could output reasonable predictions and handle objects
collision. PROVIDE could only predict object’s future state independently, and the reason is that
PROVIDE does not cope with objects interaction, thus, objects blend when they suppose to collide
and change their dynamics. ODDN also generates more stable predictions comparing to PROVIDE
which fails to capture the object’s correct properties (shape, color) after a few frames. “IODINE lin-
ear” and SRVP generate identical pictures, which means that both methods are incapable of learning
object-level dynamics on CLEVRER. “ODDN w/o relation” learn some dynamics, but the gener-
ated results are not reasonable, which may be caused by the training noise: predicting the collision
without modeling object interactions. We calculated the average MSE of each of the predicted 6
frames over the entire test set, the quantitative results are shown in Figure 7.
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Figure 4: Comparison of reconstruction results of ODDN with IODINE and PROVIDE, we highlight
dense areas with dashed boxes.

4.3 DECOMPOSITION

Reconstruction. We show how different architectures perform in terms of reconstruction quality
in Table 3. Comparing to IODINE, PROVIDE brings some negative effects, as shown in Figure
4. PROVIDE occasionally fails to capture the right object shape. Instead, we notice that ODDN
performs better than IODINE. Specifically, the reconstruction of close objects is more precise. We
believe that this benefits from the relation module which relies on object surface details to process
objects interaction (whether collision occurs and how object dynamics update). The reconstruc-
tion performance is positively correlated to object representation quality which has been verified in
Section 4.1.

Table 3: We compare ODDN with baseline models on
scene decomposition quality, ODDN-l indicates train-
ing with the long-range prediction (6 frames).

Model Dyn MSE ↓ ARI↑ F-ARI ↑
IODINE 0.000100 0.096 95.55
PROVIDE ✓ 0.000148 0.228 95.17
ODDN ✓ 0.000075 0.156 95.63
ODDN-l ✓ 0.000103 0.233 95.36

Segmentation. ODDN and baseline
models decode object latents into pixel val-
ues and segmentation masks. The major
contribution of PROVIDE is that it mod-
els temporal dependencies between latents
across frames to obtain better segmentation
results.

Table 3 indicates that PROVIDE hurts the
model’s reconstruction capability. Instead,
we show that the future frame prediction task in our architecture also improves the segmentation
performance and achieves good reconstruction quality at the same time.

The ARI further improves when increasing the steps of future object states to predict. We believe
that the long-range prediction supervision encourages ODDN to attend more on foreground objects
which may change its position and view over time. This temporal consistency is similar to PRO-
VIDE, which could be the main reason for both models to achieve better segmentation performance
than IODINE. Results are shown in Figure 5.

4.4 REAL BLOCK TOWERS

Setup. We further evaluate ODDN on the real block tower video dataset(Lerer et al., 2016). The
block tower dataset has 493 real-world videos and each video contains a block tower which may or
may not be falling. We train models on 393 randomly-selected videos and evaluate them on the rest
100 videos. We study how the models perform in reconstruction and predicting the future frames
with the physical concept of “falling”.

Results. We show reconstruction results by ODDN and baseline models of images with block
towers of different inclination in Figure 6. We found that all models can reconstruct images of
stable block towers precisely. However, for blocks with complex spatial position states (e.g., falling
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with interactions), IODINE and PROVIDE often fail to restore accurate block properties. ODDN
performs the best and is able to retain the shape and inclination angle of the object.

In Figure 8, we present prediction results of ODDN, PROVIDE and SRVP. SRVP predicts reasonable
object dynamics but is not accurate, and the generated images are not clear. The blocks predicted by
PROVIDE tend to be blurred and fused over time. ODDN models object interactions, thus predicted
blocks do not blend easily.

Figure 5: Unsupervised Segmentation re-
sults of ODDN, PROVIDE, and IODINE on
CLEVRER. Each color corresponds to one slot
index whose assignment is unpredictable. Both
PROVIDE and ODDN generate better segmen-
tation masks than IODINE.

Figure 6: Qualitative comparisons of recon-
struction of ODDN with IODINE and with
PROVIDE on realistic block towers.

Figure 7: Comparison of MSE for 6 predicted
frames of different models on CLEVRER.

Figure 8: Qualitative comparison of predic-
tion performance of ODDN with PROVIDE and
SRVP on realistic block towers.

5 DISCUSSION AND FUTURE WORK

We presented an unsupervised learning framework ODDN, a novel approach to decompose tempo-
ral scene of multiple objects with dynamics and interactions. ODDN distills disentangled object
dynamics which are significant in downstream video reasoning task. ODDN also models object
interactions which endows the model with the capability of predicting future frames. The incorpo-
rating of object dynamics and interactions benefits the model’s decomposing ability, reflecting in
better segmentation mask and reconstruction quality.

ODDN also has limitations. The prediction quality decrease over time because of the error accumu-
lation. ODDN can only generate deterministic predictions for dynamics obeying regular patterns.
Besides, ODDN needs two frames to firstly derive object dynamics then predict the future. However,
in the block tower case, humans can tell whether the tower will fall or stay stable with one frame by
commonsense. We leave this for future work.
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A DETAILS ON METHOD AND IMPLEMENTATION

A.1 ALGORITHM

Here we detail our algorithm with pseudocode:

Algorithm 1: ODDN Pseudocode
Input: video x1 · · ·xN , hyperparameters K,T
Input: trainable parameters λ(1), θ, ϕ, ρ, δ, σ

1 Function InferReconstruct(x):
2 for t = 1 to T do
3 z(t)k ∼ qλ(z

(t)
k |x)

4 µ
(t)
k , m̂

(t)
k ← Decoderθ(z

(t)
k )

5 m(t)← softmax(m̂
(t)
k )

6 p(x|z(t))←
∑

k m
(t)
k N (x;µ

(t)
k , σ2)

7 L(t)
r (x)← DKL(qλ(z

(t)|x)||p(z))− βlog(p(x|z(t)))
8 ak ← (x, z

(t)
k , λ

(t)
k )

9 λ
(t+1)
k , h(t+ 1)← fϕ(ak, h

(t)
k )

10 end for
11 return Lr, z

(T )

12 for n = 1 to N − 2 do
13 zn·,Lr(xn)← InferReconstruct(xn)
14 z(n+1)·,Lr(x(n+1))← InferReconstruct(xn+1)
15 dyn(n+1)· ← Transformerρ(zn·, z(n+1)·)
16 dyn′

(n+1)· ← Relationδ(dyn(n+1)·, z(n+1)·)

17 ẑ(n+2)k ← Predictorσ(dyn
′
(n+1)k, z(n+1)k)

18 Lp(x(n+2))← −log(p(x(n+2)|ẑ(n+2)))
Output: Lp + Lr

A.2 DATASET

CLEVRER is a synthetic video dataset of moving and colliding objects. Each video contains 128
frames at resolution 480 × 320. We pre-train ODDN on the entire CLEVRER training set, in order
to promote convergence of our Relation Module, we extract images every 4 frames and ensure
that at least one collision event is included forming CLEVRER-collision and we fine-tune ODDN
on CLEVRER-collision. For testing, we use the validation set which has ground truth masks, we
sample 1k sub-clips containing 6 objects, each sub-clip consists of 10 frames.

A.3 HYPER-PARAMETERS

We Generally follow the setting of PROVIDE. We initialize the parameters of the posterior by
sampling from U(0.5,0.5). In experiments in prediction tasks, we use a latent dimensionality of 64
and downscale the image into 64×64 after a center-crop preprocess as IODINE and PROVIDE, such
that dim(λ) = 128. And in experiments in video reasoning task, we use a latent dimensionality of
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Table 4: Computational complexity comparison between ODDN and IODINE and PROVIDE.
Model GFLOPs Parameters Model Size
IODINE 17.2187 2780052 10.61
PROVIDE 17.2251 2977940 11.36
ODDN 17.2189 2925365 11.16

16 as ALOE which makes dim(λ) = 32, and downscale the image into 64×96 without crop. The
variance of the likelihood is set to σ = 0.3 in all experiments. We keep the default number of iterative
refinements at R = 5, and use K = 7 slots for both training and testing. Furthermore, we set β =
100.0 for all experiments.

A.4 TRAINING

We train our models on 8 GeForce RTX 3090 GPUs, which takes approximately two days per
model. We use ADAM for all experiments, with a learning rate of 0.0003 and default values for all
remaining parameters. During training, we gradually increase the number of frames per video, as
we have found this to make the optimisation more stable. We train models with sequences of length
8 and the batch size is 12.

B MODEL COMPUTATIONAL COMPLEXITY

C MORE VISUALIZATION RESULTS

Figure 9: Addition prediction results of ODDN on CLEVRER and detailed attention coefficients
visualization for relation module. We plot attention the scores all objects have on the rubber sphere
from the second frame. The collision happens between the rubber sphere and the metal sphere.
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Figure 10: (a) Two consecutive frames with only the blue cylinder moving. (b) Visualization of
the Transformer attention map of the blue cylinder in the matching phase of dynamics distillation.
Latents of the second frame will update its representations by attending and merge information
from latents of the first frame. Line intensity indicates the magnitude of attention probability. (c)
Disentanglement visualization of the learned object dynamics. We adjust the feature value (from -2
to 2) of the corresponding dynamic representation dimension of the blue cylinder, and visualize the
effects on the predicted next frame. We use arrows to show the velocity direction each dimension
represents.
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