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ABSTRACT

Diffusion models have found extensive use in solving numerous inverse problems.
Such diffusion inverse problem solvers aim to sample from the posterior distribu-
tion of data given the measurements, using a combination of the unconditional
score function and an approximation of the posterior related to the forward pro-
cess. Recently, consistency models (CMs) have been proposed to directly predict
the final output from any point on the diffusion ODE trajectory, enabling high-
quality sampling in just a few NFEs. CMs have also been utilized for inverse
problems, but existing CM-based solvers either require additional task-specific
training or utilize data fidelity operations with slow convergence, not amenable
to large-scale problems. In this work, we reinterpret CMs as proximal operators
of a prior, enabling their integration into plug-and-play (PnP) frameworks. We
propose a solver based on PnP-ADMM, which enables us to leverage the fast con-
vergence of conjugate gradient method. We further accelerate this with noise in-
jection and momentum, dubbed PnP-CM, and show it maintains the convergence
properties of the baseline PnP-ADMM. We evaluate our approach on a variety of
inverse problems, including inpainting, super-resolution, Gaussian and nonlinear
deblurring, and magnetic resonance imaging (MRI) reconstruction. To the best of
our knowledge, this is the first CM trained for MRI datasets. Our results show
that PnP-CM achieves high-quality reconstructions in as few as 4 NFEs, and can
produce meaningful results in 2 steps, highlighting its effectiveness in real-world
inverse problems while outperforming comparable CM-based approaches.

Figure 1: Representative results of our method (PnP-CM) on four distinct noisy inverse problems:
Gaussian deblurring, inpainting, and super-resolution (all with Gaussian noise σ = 0.05), as well as
MRI reconstruction with inherently noisy measurements.

1 INTRODUCTION

Diffusion models (DMs) have established themselves as state-of-the-art generative models, capa-
ble of synthesizing high-fidelity and diverse samples across a wide range of domains (Ho et al.,
2020; Song et al., 2021a;b; Dhariwal & Nichol, 2021; Karras et al., 2022). Beyond unconditional
generation, DMs have also been widely adopted as powerful priors for solving imaging inverse
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problems (Chung et al., 2023a; Song et al., 2023a; Wang et al., 2023), where the goal is to recover
clean images from degraded measurements. Conventional DM-based solvers typically combine the
unconditional score function with a data-consistency term tied to the forward operator, and generate
reconstructions by integrating either the reverse stochastic differential equation (SDE) or the proba-
bility flow ordinary differential equation (ODE) (Song et al., 2021b). While highly effective, these
approaches are computationally expensive, often requiring hundreds of neural function evaluations
(NFEs) to achieve competitive results, which limits their practicality in large-scale or time-sensitive
applications (Salimans & Ho, 2022; Song et al., 2023b).

Several approaches have been proposed to accelerate DM sampling, including progressive distilla-
tion (Salimans & Ho, 2022; Meng et al., 2023), rectified flow (Liu et al., 2023b; 2024), and diffusion
matching distillation (DMDs) (Yin et al., 2024b;a). Among these, consistency models (CMs) (Song
et al., 2023b; Lu & Song, 2025) distill the generative power of DMs into a consistency function
that maps any point on the diffusion ODE trajectory directly to its clean origin. This design enables
high-quality sampling in as few as one to four NFEs, which has made CMs particularly attractive
as efficient priors for inverse problems. However, existing CM-based methods face limitations. For
instance, CoSIGN (Zhao et al., 2024) incorporates an external ControlNet (Zhang et al., 2023) to
encode measurement operators, requiring task-specific training for each degradation. This restricts
its generalization across inverse problems, since adapting to a new measurement operator typically
entails retraining or fine-tuning the ControlNet. Similarly, CM4IR (Garber & Tirer, 2025) leverages
a form of pseudo-inverse guidance for measurement consistency, a strategy fundamentally tied to the
conditioning of the forward operator. Thus, its use in highly ill-conditioned systems is nontrivial, as
the pseudo-inverse becomes unstable, thereby limiting its reliability in more complex imaging tasks.

In this work, we propose PnP-CM, a novel framework that reinterprets consistency models (CMs)
as proximal operators within a learned prior setting. This perspective allows CMs to be seamlessly
embedded into plug-and-play (PnP) optimization (Venkatakrishnan et al., 2013), combining their
sampling efficiency with the convergence guarantees of PnP methods. Our solver builds on the
alternating direction method of multipliers (ADMM), with enhancements to speed-up convergence
while preserving theoretical guarantees. Representative results of our method are shown in Fig. 1.
Our main contributions are as follows:

• We introduce PnP-CM, a PnP-ADMM solver that reinterprets consistency models (CMs) as prox-
imal operators of a prior. This allows the use of conjugate gradient methods for data fidelity en-
abling fewer outer iterations. We further enhance the runtime of PnP-CM using Nesterov momen-
tum, and controlled noise injection, while showing that they maintain the convergence properties
of the baseline algorithm.

• We evaluate PnP-CM on LSUN Bedroom (Yu et al., 2015) and fastMRI (Knoll et al., 2020) for
inpainting, super-resolution, Gaussian and nonlinear deblurring, and magnetic resonance imaging
(MRI) reconstruction. To the best of our knowledge, this is the first work to train a consistency
model directly for MRI.

• PnP-CM achieves state-of-the-art results in as few as four NFEs and produces meaningful outputs
in just two steps, consistently outperforming comparison baselines in both quality and efficiency.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

DMs (Ho et al., 2020; Song et al., 2021b; Karras et al., 2022) define a generative process by progres-
sively corrupting data with Gaussian noise and then learning how to invert this process. Let pdata(x)
denote the data distribution. The forward noising process is often described by the stochastic differ-
ential equation (SDE) (Song et al., 2021b)

dxt = µ(xt, t) dt+ σ(t) dwt, t ∈ [0, T ], (1)

where wt is standard Brownian motion, and µ and σ specify the drift and diffusion schedules. This
ensures that the marginal distribution of xt, denoted pt(x), evolves smoothly from p0(x) = pdata(x)
to a tractable prior pT (x), typically close to a Gaussian distribution. An important observation is
that the SDE in Eq. 1 is associated with a deterministic probability flow ODE (Song et al., 2021b),

dxt =
[
µ(xt, t)− 1

2σ
2(t)∇ log pt(xt)

]
dt, (2)
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which shares the same marginal distributions as the SDE. Because the drift term involves the score
function ∇ log pt(x), diffusion models are often viewed as score-based generative models. In prac-
tice, one learns a neural score network sϕ(x, t) to approximate ∇ log pt(x) using denoising score
matching. Substituting this estimate into Eq. 2 yields the empirical probability flow ODE:

dxt

dt
= − t sϕ(xt, t). (3)

To generate new samples, one initializes from the prior distribution xT ∼ π(x) ≈ N (0, T 2I) and in-
tegrates Eq. 3 backward in time to t = 0 using a numerical solver such as Euler (Song et al., 2021a;b)
or Heun’s (Karras et al., 2022) method. The terminal point x0 is then regarded as a sample from
pdata(x). For stability, the integration is typically stopped at a small ε > 0 instead of exactly at zero.

2.2 CONSISTENCY MODELS

Consistency models (CMs) (Song et al., 2023b; Lu & Song, 2025) were proposed to accelerate
diffusion sampling while preserving sample quality. Instead of sequentially denoising through the
entire diffusion trajectory, CMs learn a single mapping that directly projects a noisy sample xt at
any timestep t to its corresponding clean origin x0. Formally, a consistency function fθ(xt, t) is
trained to satisfy

fθ(xt, t) = fθ(xt′ , t
′), ∀t, t′ ∈ [ϵ, T ], (4)

with the boundary condition fθ(xϵ, ϵ) = xϵ. Here xt and xt′ are drawn from the forward process
defined in Eq. 1. Training can be carried out either via consistency distillation (CD) by distilling
the behavior of an existing DM or by consistency training (CT) which learns fθ directly from data.
In both cases, the objective enforces that predictions from different noisy inputs of the same target
agree, leading to the consistency loss

LCM = Ex0,t,xt,t′,xt′

[
w(t)d(fθ(xt, t), fθ−(xt′ , t

′))
]
, (5)

where (xt, t) and (xt′ , t
′) are two independently sampled noised versions of x0 at timesteps t and

t′, w(t) is a weighting function, d(·, ·) is a distance function such as ℓ2 or LPIPS, and fθ− describes
a corresponding “teacher” network achieved by exponential moving average (EMA). At inference,
sampling does not need to begin from pure Gaussian noise. Instead, CMs allow initialization from
any intermediate state xt, and the consistency function maps it directly toward the clean estimate:

x̂0 = fθ(xt, t), t ∈ (0, T ]. (6)

In practice, one may start from xT ∼ π(x), where π(x) denotes the prior distribution at time T
or from a measurement-dependent initialization, and apply fθ either once or over a few discretized
steps for improved stability. This flexibility enables high-quality image generation in as few as 1–4
NFEs, in stark contrast to the hundreds typically required by diffusion-based methods.

2.3 GENERATIVE APPROACHES TO INVERSE PROBLEMS

Inverse problems aim to recover an unknown signal x ∈ Rn from a set of degraded observations
y ∈ Rm. The measurement process is typically modeled as

y = Ax+ n, (7)

where A ∈ Rm×n is the forward operator, and n is measurement noise. For m < n, the problem is
ill-posed, and a common strategy to make it tractable is maximum a posteriori (MAP) estimation:

x̂ = argmax
x

p(x | y) = argmin
x
− log p(y | x)− log p(x), (8)

where the likelihood term − log p(y | x) is the data fidelity and the prior term − log p(x) enforces
natural image statistics.

DM-based approaches. These adapt generative DMS to approximate the posterior distribution
p(x|y) by combining score-based priors with data-consistency terms. A pioneering example is
diffusion posterior sampling (DPS) (Chung et al., 2023a), which modifies the denoising step by in-
corporating the gradient with respect to xt of the measurement likelihood evaluated at the denoised
Tweedie estimate of the clean data, as an approximation to log p(y|xt). Intuitively, this adjustment
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encourages each denoising update to remain consistent with the observed measurements while fol-
lowing the learned data prior. While effective, DPS typically requires hundreds of NFEs to achieve
stable reconstructions, which severely limits its practicality. More recent approaches (Song et al.,
2023a; Zhu et al., 2023; Mardani et al., 2024; Alçalar & Akçakaya, 2024; Moufad et al., 2025)
have reduced the computational cost to roughly 20–100 NFEs, but this is still far from the effi-
ciency required for large-scale or real-time applications. A complementary line of work formulates
inverse problems as Schrödinger bridge problems, interpolating between natural image priors and
measurement-conditioned distributions through coupled forward–reverse dynamics. Approaches
such as I2SB (Liu et al., 2023a) and CDDB (Chung et al., 2023b) achieve faster sampling by initial-
izing from measurements rather than Gaussian noise, but since the generative model must be trained
from scratch for each forward operator, they generalize poorly to new or out-of-domain tasks.

CM-based solvers. CMs (Song et al., 2023b; Lu & Song, 2025) offer another direction by distill-
ing diffusion trajectories into a direct mapping from noisy states to clean reconstructions, enabling
sampling in as few as 1–4 NFEs. CoSIGN (Zhao et al., 2024) extends this framework by integrating
a ControlNet to encode forward operators, but requires retraining or fine-tuning for each new mea-
surement model. CM4IR (Garber & Tirer, 2025) instead combines CMs with back-projection using
a pseudo-inverse to enforce measurement consistency, a formulation that is effective for linear oper-
ators but does not readily extend to nonlinear or ill-conditioned cases. These limitations underscore
the need for CM-based methods that are general and efficient.

3 PNP-CM: A CONSISTENCY MODEL INVERSE PROBLEM SOLVER VIA
PLUG-AND-PLAY ADMM

In this work, we propose a PnP-ADMM-based inverse problem solver that reinterprets consistency
models (CMs) as a proximal operator of a prior. To restore images in only a few NFEs, we fur-
ther accelerate the method using noise injection and Nesterov momentum (Nesterov, 1983), while
preserving convergence guarantees.

3.1 USING CMS IN PNP-ADMM

An alternative optimization-centric way to view the MAP estimation of Eq. 8 is:

argmin
x

f(x) + λg(x), (9)

where f(·) is a data fidelity term, while g(·) is a regularizer/prior (Tibshirani, 1996; Wipf & Rao,
2004; Bishop & Nasrabadi, 2006; Park & Casella, 2008). In particular, for additive i.i.d. Gaussian
noise, commonly encountered in computational imaging problems (Chung et al., 2023a; Hammernik
et al., 2023), f(x) = 1

2 ||y − Ax||22. ADMM solves (9) by variable splitting with an augmented
Lagrangian penalty, and alternating minimization:

z(k+1) = argmin
z

f(z) + ρ
2∥z− x(k) + u(k)∥22, (10)

x(k+1) = argmin
x

g(x) + ρ
2∥z

(k+1) − x+ u(k)∥22, (11)

u(k+1) = u(k) + z(k+1) − x(k+1), (12)

where the z-update enforces data fidelity, the x-update applies the proximal operator associated
with the prior, and u is the dual variable (Boyd et al., 2011; Hong et al., 2016; Eckstein & Yao,
2015). In practice, the proximal operator of g(·) is often intractable. Plug-and-Play (PnP) methods
(Venkatakrishnan et al., 2013; Kamilov et al., 2017; Chan et al., 2016) overcome this by replacing
the proximal update with an off-the-shelf denoiser Dσ(·):

x(k+1) = Dσk

(
z(k+1) + u(k)

)
(13)

Such denoisers can also be based on deep neural networks, thus allowing to utilize ability to learn
rich image priors for improved restoration quality (Chan et al., 2016). Thus, PnP-ADMM provides
a framework that integrates deep denoisers, enabling stable and high-quality reconstructions across
a wide range of inverse problems (Chan, 2019).
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One of the other advantages of the ADMM baseline is related to the quadratic penalty in Eq. 10.
This effectively results in Tikhonov regularization for the data fidelity, improving the conditioning
of the minimization sub-problem, making it less sensitive to the conditioning of the forward oper-
ator compared to methods based on proximal gradient descent (PGD) (Deng & Yin, 2016; Hong
& Luo, 2017). In fact, existing CM-based methods, such as CM4IR (Garber & Tirer, 2025) can
be seen as a type of preconditioned PGD with data fidelity based on a backprojection objective,
1
2 ||A

†(y −Ax)||22 (Tirer & Giryes, 2020), which inherits the dependencies of the baseline algo-
rithm on the conditioning of the forward operator. Furthermore, it is well-understood that ADMM
requires fewer iterations compared to PGD in practice for convergence to modest accuracy, suffi-
cient for imaging inverse problems (Boyd et al., 2011). Finally, for large-scale systems, on which
singular value decomposition is challenging, Eq. 10 can be solved with the conjugate gradient (CG)
method, whose speed-up benefits over gradient descent-type approaches has also been noted in the
context of DM-based inverse problem solvers (Chung et al., 2024).

In this study, we use the CMs as the denoisers in Eq. 13. However, the use of CMs alone in the
PnP-ADMM framework, even with all its inherent advantages, does not lead to desirable quality in
a few NFEs. Thus, to improve performance with limited outer iterations, we propose enhancements
based on noise injection and Nesterov momentum to accelerate the algorithm, as described next.

3.2 ENHANCEMENTS FOR FASTER PNP-CM

Since our goal is to perform CM-based reconstruction in as few as 2 NFEs, we take additional steps
to accelerate ADMM. The aim is to ensure a good solution is reached within a few outer iterations
of PnP-CM, while also maintaining any convergence properties of the baseline PnP-ADMM if run
until convergence.

Noise Injection. A common strategy in CMs is noise injection to improve generative quality (Song
et al., 2023b; Song & Dhariwal, 2024; Lu & Song, 2025; Garber & Tirer, 2025). This idea has also
been explored in the context of image restoration and inverse problems for a longer time (Egiazarian
et al., 2007; Atchadé et al., 2017). In broader optimization community, noise injection was shown
to help iterative optimization methods escape saddle points and explore the solution space more
effectively (Huang, 2021; Guo et al., 2020). We build on the ideas from these works, and add
controlled perturbations for the CM to operate at higher noise levels, improving its performance in
the limited iteration regime, with the following guarantee:
Theorem 1. Consider the PnP-ADMM algorithm, where the proximal operator is replaced by an
L-Lipschitz continuous denoiser Dσ . Suppose noise injection is applied to the denoiser input, i.e.

x(k+1) = Dσ(z
(k+1) + u(k) + ηk)

where x and z are the primal variables, u is the dual variable, η is an injected noise term and
k counts the iterations. If the PnP-ADMM algorithm without noise injection converges to a fixed
point, then the algorithm with noise injection still converges, provided the noise sequence {ηk} is
diminishing and satisfies

∑∞
k=0 ||ηk||2 <∞.

This result states that noise injection does not compromise the existing convergence properties of
ADMM, if the noise amplitudes are chosen to satisfy an energy bound. The proof is provided in
Appendix A. We note that in addition to the theoretical guarantees we provided, our approach has
a practical difference to noise injection in existing CM-based inverse problem solvers (Garber &
Tirer, 2025), which uses a correction term based on the previous noise instance. Our approach, on
the other hand, generates the noise in a random manner, consistent with previous works from inverse
problems (Egiazarian et al., 2007; Atchadé et al., 2017).

Nesterov Momentum. To accelerate convergence and reduce the number of neural function eval-
uations (NFEs), we augment the ADMM updates with a Nesterov-type momentum term. While
momentum is well known to improve convergence speed (Nesterov, 1983; Thorley et al., 2021), it
can also introduce the risk of divergence if applied indiscriminately (Assran & Rabbat, 2020; Wang
et al., 2022). Several algorithms have been proposed to mitigate this risk, such as restart schemes
that monitor the progress of the iterates and reset the momentum when divergence is detected (Gold-
stein et al., 2014; Su et al., 2016). These methods provide theoretical guarantees by ensuring that
momentum does not degrade convergence. Drawing from these insights, we conclude that with
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Algorithm 1 PnP-ADMM with Consistency Models (PnP-CM)

Require: Consistency model fθ(·, t), sequence of time points {tn}Nn=0, penalty parameters
{ρn}Nn=1 > 0, momentum coefficients {βn}Nn=1 > 0, forward operator A, measurement y

1: Initialize: x̂N ← 0, ûN ← 0, xN ← 0, uN ← 0
2: for n from N − 1 to 0 do
3: zn =

(
A⊤A+ ρn+1I

)−1(
A⊤y + ρn+1(x̂n+1 − ûn+1)

)
# Data-fidelity update

4: νn ∼ N
(
zn + ûn+1, t

2
n+1I

)
# Noise injection

5: xn = fθ(νn, tn+1) # CM proximal operator
6: un = ûn+1 + zn − xn # Dual variable update
7: x̂n = xn + βn+1(xn − xn+1) # Primal momentum update
8: ûn = un + βn+1(un − un+1) # Dual momentum update
9: end for

10: Return: x0

carefully chosen momentum coefficients, divergence can be avoided while still benefiting from the
acceleration effect. In our limited iteration setup, the empirical acceleration from momentum is
achieved by fine-tuning the associated coefficients heuristically.

Final Algorithm. The complete algorithm is outlined in Alg. 1. As detailed, our approach com-
bines ADMM-PnP with noise injection and Nesterov momentum to improve output quality with
fewer iterations, while preserving convergence properties under suitable conditions. Note that, to
maintain consistency with common DM and CM literature, we also adopt a reverse iteration order-
ing: unlike the standard ADMM algorithm, which counts iterations in ascending order, our algo-
rithm enumerates iterations from a fixed number down to zero. Additional implementation details
for PnP-CM are provided in Appendix B.

We also highlight that all the steps of our algorithm are consistent with optimization-based prin-
ciples. For instance, unlike CM4IR (Garber & Tirer, 2025), which initializes the algorithm with
median filtering of A†y, our PnP-CM can start from 0 initialization, and subsequently follow the
algorithm without heuristic modifications and converge in as few as two outer iterations/NFEs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND MODEL IMPLEMENTATION DETAILS

We conduct comprehensive evaluations on the LSUN Bedroom (Yu et al., 2015) and fastMRI (Knoll
et al., 2020) datasets, with image sizes of 256×256×3 and 320×320×2, respectively. In particular,
the New York University fastMRI dataset (Knoll et al., 2020) contains complex-valued images and
multi-coil k-space data from fully sampled coronal proton density (PD) and proton density with fat
suppression (PD-FS) knee MRI scans, obtained with relevant institutional review board approvals.

For natural images, we use the pre-trained unconditional CM on LSUN Bedroom provided by Song
et al. (2023b) without additional retraining. Likewise, we employ the pre-trained unconditional DM
on LSUN Bedroom from Dhariwal & Nichol (2021). For evaluation, we sampled 300 images from
the LSUN Bedroom validation set and normalized all inputs to the range [0,1].

For MRI, we trained a consistency model from scratch on the fastMRI dataset by first training an
EDM model (Karras et al., 2022). To train the EDM and CM models for MRI, we use all 973
volumes (subjects) from the training set of the fastMRI dataset, excluding the first and last five
slices of each volume, following the protocol of prior works (Chung & Ye, 2022; Chung et al.,
2024). We provide further details for training the EDM and CM networks for MRI in Appendix D.1.
For evaluation, we followed the mentioned slice exclusion protocol on 10 volumes from the fastMRI
validation set, yielding 228 slices for PD and 240 slices for PD-FS.

4.2 EXPERIMENTS ON INVERSE PROBLEMS

Problem setup. We evaluate our PnP-CM algorithm on a set of noisy inverse problems. The
following tasks are used on the LSUN bedroom dataset: (i) random inpainting with 70% masking,
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Figure 2: Representative results for Gaussian deblurring, inpainting (70%), and super-resolution
(×4). PnP-CM produces sharper and more coherent outputs than prior approaches, avoiding the over-
smoothing in DPS and recovering structures that CM-based methods fail to capture, while achieving
overall closer similarity to the ground truth.

(ii) bicubic super-resolution with 4× downsampling, and (iii) Gaussian deblurring using a 5 × 5
separable kernel with standard deviation σ = 10.0. All measurements are generated by applying
the forward operator to the ground-truth images, with additive Gaussian measurement noise levels
of σy ∈ {0.025, 0.05}. For a practical real-world application, multi-coil MRI reconstruction is
considered, which is an inherently noisy linear inverse problem. Multi-coil complex-valued MRI
datasets were retrospectively undersampled via 1D random subsampling using acceleration factors
of R = 4 and R = 8, retaining 24 and 12 central k-space lines, respectively, as implemented in
DDS (Chung et al., 2024).

Comparison methods. We conducted extensive comparisons with various methods. For experi-
ments on natural images, we compare our method with DPS (Chung et al., 2023a) as a DM-based
approach, and CM (Song et al., 2023b), CoSIGN (Zhao et al., 2024), and CM4IR (Garber & Tirer,
2025) as CM-based solvers. For MRI reconstruction, we benchmark against DPS (Chung et al.,
2023a) and DDS (Chung et al., 2024), both of which employ DM priors. All baselines were adopted
from their official public implementations. Further implementation details about are in Appendix B.

4.3 QUANTITATIVE AND QUALITATIVE RESULTS

Given the differing requirements of natural and medical image tasks, we employ separate evalua-
tion metrics for the two settings. For natural image tasks, reconstruction quality is assessed using
peak signal-to-noise-ratio (PSNR) and learned perceptual image patch similarity (LPIPS), while for
medical imaging tasks, we use PSNR and structural similarity index (SSIM) as evaluation metrics.
Quantitative results are reported as averages over the validation set, while qualitative examples are
provided to illustrate the visual fidelity of the reconstructions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results for different inverse problems on natural images (σy = 0.05). Best:
BOLD, second-best: Underlined.

Method NFE↓ SR ×4
Gaussian

Deblurring Inpainting

PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓

DPS (Chung et al., 2023a) 1000 22.19 / 0.335 22.88 / 0.286 26.38 / 0.231

CM (Song et al., 2023b) 40 23.16 / 0.425 24.86 / 0.388 24.44 / 0.410

CoSIGN (Zhao et al., 2024) 2 20.33 / 0.569 23.32 / 0.416 25.56 / 0.339
4 20.90 / 0.545 23.08 / 0.441 25.68 / 0.339

CM4IR (Garber & Tirer, 2025) 2 25.00 / 0.387 26.90 / 0.320 25.84 / 0.304
4 25.60 / 0.320 27.37 / 0.270 26.78 / 0.303

PnP-CM (ours) 2 25.32 / 0.348 27.43 / 0.263 24.17 / 0.373
4 25.63 / 0.322 28.10 / 0.237 27.95 / 0.219

We implement PnP-CM, as shown in Alg. 1, for multiple ADMM iteration counts (N ∈ {2, 4, 8})
and independently fine-tune all coefficients for each task, including the injected noise level and the
CM noise level, as well as the momentum coefficients for the primal and dual updates.

Natural image tasks. Representative results in Fig. 2 demonstrate that PnP-CM consistently
yields sharper and more faithful reconstructions. Compared to DPS, our method avoids oversmooth-
ing while being significantly faster, and it generates coherent structures that CM-based approaches
often fail to recover. The reconstructions also preserve high frequency details without introducing
the grid-like artifacts seen in competing methods. These visual observations are reflected quan-
titatively in Tab. 1, where PnP-CM reaches state of the art quality with only a few evaluations.
Additional qualitative comparisons are provided in Appendix C.

MRI Reconstruction. Representative MRI reconstructions for R = 8 are depicted in Fig. 3,
showing that our method substantially reduces the blurring artifacts observed in DPS, as well as the
structured artifacts present in both DPS and DDS. Tab. 2 summarizes the performance of different
approaches on the Coronal PD and PD-FS datasets with acceleration rates of R = 4 and R = 8.
Across all settings, our proposed method with NFE = 4 consistently outperforms both DPS (NFE =
1000) and DDS (NFE = 100) in terms of PSNR and SSIM. Additional visual results, including those
at the more modest R = 4, are provided in Appendix D.2. We also note that CM4IR fails in this
scenario, as the backprojection for its data fidelity amounts to A†y − x in multi-coil MRI, where
m > n. In other words, the solution tries to move towards the linear least squares solution, A†y,
which suffers from substantial aliasing artifacts.

Figure 3: Qualitative comparisons of DPS, DDS, and PnP-CM. Top: Coronal PD with R = 8.
Bottom: Coronal PD-FS with R = 8. The proposed PnP-CM method effectively reduces artifacts
and blurring that are not removed by other methods (red and yellow arrows).
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Table 2: Quantitative comparison of reconstruction methods with R = 4 and 8 1D random under-
sampling for Coronal PD and Coronal PD-FS knee MRI. Best: BOLD, second-best: Underlined

Method NFE↓ R Cor PD Cor PD-FS

PSNR↑ SSIM↑ PSNR↑ SSIM↑

DPS (Chung et al., 2023a) 1000 ×4 31.21±4.81 0.847±0.097 31.17±3.25 0.778±0.079

×8 29.83±4.14 0.823±0.080 28.41±3.89 0.731±0.092

DDS (Chung et al., 2024) 100 ×4 31.93±4.94 0.865±0.113 31.00±2.78 0.768±0.090

×8 30.52±3.83 0.843±0.085 29.71±2.77 0.721±0.101

PnP-CM (ours) 4 × 4 32.69±3.29 0.902±0.038 31.82±3.02 0.820±0.054

× 8 31.10±3.16 0.872±0.047 30.80±2.62 0.782±0.067

Table 3: Comparison of ADMM strategies and highlighting the
effect of momentum and noise injection (σy = 0.05, N = 4).
Best: BOLD, second-best: Underlined.

Noise Inj. Momentum SR ×4
Gaussian

Deblurring Inpainting

PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓

✗ ✗ 20.95 / 0.581 27.46 / 0.274 17.34 / 0.547

✓ ✗ 20.83/ 0.581 27.58 / 0.260 17.52 / 0.541

✗ ✓ 25.10 / 0.357 28.05 / 0.243 27.75 / 0.232

✓ ✓ 25.63 / 0.322 28.10 / 0.237 27.95 / 0.219

Ablation Studies. We con-
ducted an ablation study to dis-
entangle the contributions of
momentum and noise injection
in our ADMM-based solver.
Specifically, we compared four
variants: (i) baseline PnP-
ADMM, (ii) PnP-ADMM with
momentum, (iii) PnP-ADMM
with noise injection, and (iv) our
PnP-CM combining both mo-
mentum and noise injection. Ex-
periments were performed on
the LSUN Bedroom dataset for
super-resolution, inpainting, and
Gaussian deblurring with NFE = 4 and σy = 0.05. The quantitative results given in Tab. 3 consis-
tently demonstrate that both momentum and noise injection improve reconstruction quality. Notably,
momentum provides a stronger boost than noise injection across all tasks, establishing ADMM with
momentum as the second-best performer after our full method. Our approach, which combines both
techniques, achieves the best results overall, highlighting their complementary benefits.

5 DISCUSSION

Limitations. Due to a lack of public availability of pre-trained CMs, we used LSUN-Bedroom for
inverse problems with natural images, as it was the only dataset with an associated CM. However,
evaluating the performance of the algorithms on a dataset with more detailed image-level features,
such as ImageNet or FFHQ would be desirable to investigate more subtle reconstruction differences.

Future directions. In principle, PnP-CM can work with nonlinear forward operators,A(·). In this
case, f(x) = ||y−A(x)||22, and Eq. 10 needs to be solved with a gradient descent type method. The
algorithmic details of such an implementation will be investigated in future work.

6 CONCLUSION

In this work, we introduce PnP-CM, a novel framework that integrates consistency models (CMs)
as proximal operators within the PnP optimization paradigm. By combining the efficiency of CMs
with the convergence properties of PnP-ADMM methods, PnP-CM offers a significant advance in
solving inverse problems. Our method, enhanced with noise injection and momentum, achieves
high-quality reconstructions in as few as 2–4 NFEs, demonstrating both precision and speed. We
show that PnP-CM excels across a diverse range of inverse problem tasks, including inpainting,
super-resolution, deblurring, and MRI reconstruction, with the latter being the first application of
a CM trained specifically for MRI data. Through extensive evaluations, we demonstrate that PnP-
CM surpasses existing state-of-the-art CM-based methods in reconstruction quality, setting a new
benchmark for high-fidelity inverse problem solving.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yaşar Utku Alçalar and Mehmet Akçakaya. Zero-shot adaptation for approximate posterior sam-
pling of diffusion models in inverse problems. In Proc. Eur. Conf. Comput. Vis., pp. 444–460,
2024.

Mahmoud Assran and Michael Rabbat. On the convergence of Nesterov’s accelerated gradient
method in stochastic settings, 2020. arXiv:2002.12414.
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A PROOF OF THEOREM 1

Proof. To analyze the effect of noise injection on the convergence behavior, we compare the com-
bined residuals in the presence and absence of noise, decomposing the residual into its primal and
dual components:

∆k =
1√
P

(
||zk+1 − zk||2︸ ︷︷ ︸

∆zk

+ ||xk+1 − xk||2︸ ︷︷ ︸
∆xk

+ ||uk+1 − uk||2︸ ︷︷ ︸
∆uk

)
. (14)

Since the primal variable z is updated prior to noise injection, it remains unaffected. We use the
superscripts 0 and η to denote the cases without and with noise injection, respectively.

For the x-update, we obtain

∆η
xk

= ||xk+1 − xk||2
= ||fθ(zk+1 + uk + ηk)− xk||2
= ||fθ(zk+1 + uk + ηk)− fθ(zk+1 + uk) + fθ(zk+1 + uk)− xk||2
≤ ||fθ(zk+1 + uk + ηk)− fθ(zk+1 + uk)||2 + ||fθ(zk+1 + uk)− xk||2
= ||fθ(zk+1 + uk + ηk)− fθ(zk+1 + uk)||2 +∆0

xk

≤ L||ηk||2 +∆0
xk
, (15)

where L is the Lipschitz constant of fθ.

Similarly, for the u-update we have

∆η
uk

= ||uk+1 − uk||2
= ||(uk + zk+1 − xk+1)− uk||2
= ||zk+1 − xk+1||2
= ||zk+1 − fθ(zk+1 + uk + ηk)||2
= ||zk+1 − fθ(zk+1 + uk) + fθ(zk+1 + uk)− fθ(zk+1 + uk + ηk)||2
≤ ||zn − fθ(zk+1 + uk)||2 + ||fθ(zk+1 + uk)− fθ(zk+1 + uk + ηk)||2
= ∆0

uk
+ ||fθ(zk+1 + uk)− fθ(zk+1 + uk + ηk)||2

≤ ∆0
uk

+ L||ηk||2 (16)

Hence, the additional divergence caused by noise injection at iteration n is at most

2L√
P
∥ηk∥2. (17)

Formally, the total deviation introduced across all iterations is bounded by∑
k

∆η
k −

∑
k

∆0
k ≤

2L√
P

∑
k

∥ηk∥2. (18)

The convergence is preserved as long as the cumulative effect of noise injection remains finite,∑∞
k=1 ∥ηk∥2 < ∞, and the noise injection is diminishing. This condition can be enforced by an

appropriate noise scheduling strategy, e.g., by decaying the noise magnitude over iterations. Then
the additional divergence introduced by noise injection remains bounded, ensuring that the overall
convergence behavior of the algorithm is unaffected.

B IMPLEMENTATION DETAILS FOR COMPARISONS AND PROPOSED METHOD

PnP-CM. We implemented our method following Alg. 1. Step 3, which involves solving a linear
system, was carried out using singular value decomposition (SVD) for small-scale experiments,
consistent with prior works (Song et al., 2023a; Wang et al., 2023; Garber & Tirer, 2025). For large-
scale MRI reconstruction, we employed conjugate gradient (CG) method to ensure computational
efficiency. We tuned the related hyperparameters empirically, as described in the main text.
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DPS. We followed the official implementation provided by Chung et al. (2023a). Since the likeli-
hood weight was originally tuned for ImageNet and FFHQ, we re-tuned it for LSUN Bedroom and
FastMRI knee datasets, using η = 1.0 for natural images and η = 0.85 for medical imaging.

DDS. We used the official implementation of Chung et al. (2024) with γ = 1.0 and η = 0.85. In
contrast to clinical MRI reconstruction, where subsampled k-space measurements already contain
inherent noise and no clean reference is available, the original method adds Gaussian noise to clean
data. To better reflect the clinical setting, we applied DDS directly on the noisy subsampled k-space
measurements. We tuned the CG steps depending on the data SNR.

CM. The official public repositories provided by Song et al. (2023b) were followed during the
implementation. While the codebase includes iterative functions for inpainting and super resolution,
it does not provide one for Gaussian deblurring, which we implemented ourselves. We applied 40
steps for all inverse problems as advised by the authors.

CoSIGN. We used the official implementation provided by Zhao et al. (2024). Since they do not
provide any ControlNet training checkpoint for inpainting (70%) and Gaussian Deblurring tasks, we
trained them from scratch. We used the provided checkpoint for super-resolution (×4).

CM4IR. For CM4IR, we relied on the official implementation and hyperparameter settings pro-
vided by Garber & Tirer (2025). Since these configurations were extensively tuned by the authors,
we retained them without modification.

C ADDITIONAL RESULTS FOR LSUN BEDROOM DATASET

Tab. 4 reports extended quantitative results on the LSUN Bedroom dataset for varying noise levels
and sampling steps. PnP-CM maintains consistently strong performance across different inverse
tasks, showing robustness to both the number of function evaluations and measurement noise. In-
creasing the sampling steps generally improves quality as expected, while performance remains
competitive even in the few-step regime. In addition to these quantitative comparisons, we also pro-
vide further qualitative results against all baseline methods discussed in the main text, illustrating
that the visual trends observed there hold across a wider set of examples.

Table 4: Quantitative results on LSUN Bedroom for different measurement noise levels (σy) and
varying numbers of NFEs across super resolution (×4), Gaussian deblurring, and inpainting tasks.

NFE↓ σy SR ×4
Gaussian

Deblurring Inpainting

PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓

2 0.025 25.88 / 0.300 28.18 / 0.272 24.28 / 0.399
0.05 25.32 / 0.348 27.43 / 0.263 24.17 / 0.373

4 0.025 26.16 / 0.288 29.34 / 0.203 28.29 / 0.205
0.05 25.63 / 0.322 28.10 / 0.237 27.95 / 0.219

8 0.025 26.10 / 0.291 30.35 / 0.171 29.77 / 0.136
0.05 25.22 / 0.342 28.46 / 0.223 29.57 / 0.153

D ADDITIONAL DETAILS FOR MRI DATASETS

D.1 TRAINING DETAILS OF DIFFUSION AND CONSISTENCY MODELS FOR MRI

We train an EDM-based diffusion model for MRI (Karras et al., 2022), and for the first time, es-
tablish a robust consistency model specifically designed for MRI. Our implementation follows the
publicly available code from (Karras et al., 2022; Song et al., 2023b). For U-Net training hyper-
parameters, we adopt the protocol of CoSIGN (Zhao et al., 2024). Both models are trained on the
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fastMRI dataset, as described in Section 4.1. The diffusion model is trained for 1M iterations with
a batch size of 4, and is then distilled into a consistency model through an additional 7M iterations
using the same batch size.

D.2 ADDITIONAL QUALITATIVE RESULTS ON MRI RECONSTRUCTION

We provide additional qualitative reconstruction results for coronal PD and PD-FS datasets at accel-
eration factors R = 4 and R = 8, with representative examples from each case shown in Fig. 7.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Representative Gaussian deblurring results on LSUN Bedroom with σy = 0.05. Com-
parisons with all baseline methods show that PnP-CM restores textures more faithfully and avoids
oversmoothing.
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Figure 5: Illustrative inpainting results on LSUN Bedroom with σy = 0.05. Compared to other
methods, PnP-CM fills missing regions with coherent structures and yields reconstructions closer to
the ground truth.
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Figure 6: Demonstration of super resolution (×4) results on LSUN Bedroom with σy = 0.05.
Reconstructions are compared against all baseline methods, with PnP-CM producing sharper details
and closer resemblance to the ground truth.
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Figure 7: Qualitative comparisons for R = 4 and R = 8 on the Coronal PD and Coronal PD-
FS datasets across different methods. The proposed method, PnP-CM, consistently demonstrates
superior performance by effectively reducing artifacts.
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