
Stable Fair Graph Representation Learning with Lipschitz Constraint

Qiang Chen * 1 Zhongze Wu * 1 Xiu Su † 1 Xi Lin † 2 Zhe Qu 1 Shan You 3 Shuo Yang 4 Chang Xu 5

Abstract
Group fairness based on adversarial training has
gained significant attention on graph data, which
was implemented by masking sensitive attributes
to generate fair feature views. However, exist-
ing models suffer from training instability due
to uncertainty of the generated masks and the
trade-off between fairness and utility. In this
work, we propose a stable fair Graph Neural
Network (SFG) to maintain training stability
while preserving accuracy and fairness perfor-
mance. Specifically, we first theoretically de-
rive a tight upper Lipschitz bound to control
the stability of existing adversarial-based mod-
els and employ a stochastic projected subgradi-
ent algorithm to constrain the bound, which op-
erates in a block-coordinate manner. Addition-
ally, we construct the uncertainty set to train the
model, which can prevent unstable training by
dropping some overfitting nodes caused by chas-
ing fairness. Extensive experiments conducted on
three real-world datasets demonstrate that SFG
is stable and outperforms other state-of-the-art
adversarial-based methods in terms of both fair-
ness and utility performance. Codes are available
at https://github.com/sh-qiangchen/SFG.

1. Introduction
Graph Neural Networks (GNNs)(Kipf & Welling, 2017;
Hamilton & Ying, 2017) have recently emerged as a cru-
cial tool for modeling and representing graph-structured
data, which are widely used in various applications such as
recommendation systems(Gao et al., 2022) and drug discov-
ery(Rozemberczki et al., 2022). Despite significant success,

*Equal contribution 1Central South University, Chang-
sha, Hunan, China 2Shanghai Jiaotong University, Shanghai,
China 3SenseTime Research, Shanghai, China 4Harbin Insti-
tute of Technology (Shenzhen), Shenzhen, China 5University
of Sydney, Sydney, Australia. Correspondence to: Xiu Su
<xiusu1994@csu.edu.cn>, Xi Lin <linxi234@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

170 175 180 185 190 195 200
Epoch

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 A
cc

ur
ac

y

German
Bail
Credit

(a) Training accuracy curve

t-3 t-2 t-1 t t+1 t+2 t+3
Epoch

20

40

60

80

Tr
ai

ni
ng

 A
cc

ur
ac

y

German
Bail
Credit

(b) Accuracy near the optimum

Figure 1. Instability of the existing adversarial-based model utility
on German/Bail/Credit dataset. (a) visualizes the accuracy curve
in the convergence phase. (b) visualizes the accuracy near the
optimal model.

GNNs can suffer from fairness issues that can be divided
mainly into individual fairness(Dong et al., 2021) and group
fairness(Dai & Wang, 2021). Group fairness highlights mit-
igating bias in the demographic groups defined by sensitive
attributes, e.g., gender, race(Agarwal et al., 2021). In other
words, group fairness concentrates on ensuring that the out-
puts of GNNs are independent of the sensitive attribute.

Recent studies(Dai & Wang, 2021; Wang et al., 2022; Zhu
et al., 2024; Li et al., 2024) have revealed that the removal
of sensitive attribute-related information can force GNNs
to make decisions independently of the sensitive attribute.
The core idea behind most of these approaches is masking
sensitive-relevant features by a learnable mask and adopting
adversarial learning(Ling et al., 2023) to learn fair node
representations. However, in our empirical investigations,
we observed that when employing learnable masks and
adversarial-based methods to optimize the framework for
both model fairness and utility on real datasets, the training
process suffers from significant instability. This instabil-
ity results in the selection of an optimal model becoming
largely accidental and not trustworthy(Zhang et al., 2024;
Jing et al., 2024). As shown in Figure 1, we see that the ac-
curacy curve in the convergence phase is still very unstable,
and the accuracy near the optimal model fluctuates greatly.

To ensure the reliability of the model in the trade-off be-
tween model utility and fairness, it is urgently needed to
maintain the stability of the training process. Most exist-
ing methods(Scaman & Virmaux, 2018; Zhao et al., 2021;
Agarwal et al., 2021; Jia et al., 2024) maintain stability by
constraining the Lipschitz bound of the model, which is a
separable accumulation form of each component parameter,
or using the Jacobian matrix to approximate. These forms

1

https://github.com/sh-qiangchen/SFG

Stable Fair Graph Representation Learning with Lipschitz Constraint

are loose and need a tight Lipschitz bound. In the context
of GNNs, the Lipschitz constraint is mainly used to control
the stability of the GNN encoder(Jia et al., 2023; Juvina
et al., 2024; Su et al., 2024), and is not suitable when there
are other modules, such as generator in adversarial-based
methods.

In this work, we propose Stable Fair GNN(SFG), a sta-
ble graph representation learning framework for preserving
fairness while maintaining training stability. We first the-
oretically derive an easy-to-compute non-separable upper
Lipschitz bound based on GNN message passing mechanism
and graph spectral theory for fair graph representation learn-
ing. The derived bound can control the overall stability of
the GNN encoder and mask generator of adversarial-based
methods, and it’s tight compared to separable bound.

Motivated by our theoretical insights, we use a stochas-
tic projected subgradient strategy that operates in a block-
coordinate manner to constrain the weights of adversarial-
based fair graph model. This method can convert non-covex
problems into multi-convex ones. Additionally, we con-
struct the uncertainty set within the chi-squared divergence
ball surrounding the generated fair view distribution to
enhance encoder robustness, which can prevent unstable
training of the encoder by dropping some overfitting nodes
caused by chasing fairness. Our contributions are as follows:

• To the best of our knowledge, this is the first attempt
to study the stability of graph fairness learning with
generator. We theoretically derive an easy-to-compute
tight upper Lipschitz bound to control the stability of
the framework, which is suitable for fair graph model
with generator. Based on theoretical insights, we use
the block coordinate approach to operate layerwise.

• To further enhance robustness, we construct the uncer-
tainty set within the chi-squared divergence ball sur-
rounding the generated fair view distribution to avoid
overfitting caused by chasing fairness and instability
caused by distribution shifts due to generated mask.

• We conducted extensive experiments on three real-
world datasets, demonstrating the superior stability
of SFG over the existing adversarial-based model
FaiVGNN, which outperformed other state-of-the-art
fairness models in fairness and accuracy performance.

2. Preliminary
Let G = (V,E,X) denote an undirected attributed graph,
comprised of a set of |V | = K nodes V = {v1, ..., vK}
and a set of |E| edges E. X ∈ RK×N0 represents the
nodes features matrix, where N0 is the dimension of the
node feature. A ∈ {0, 1}K×K is the adjacency matrix
where Auv = 1 indicates that there is an edge euv ∈ E

between the node u and v, and Auv = 0 otherwise. For
every node v, we define its neighborhood N(v) as the set
of nodes u such that there exists an edge going from u
to v. The goal of graph node classification is to learn a
representation vector hv of v such that v’s label can be
predicted as yv = f(hv) ∈ {1, ..., C}. In this work, we
focus on the node classification task while learning fair
node representations.

Graph Neural Network. Modern GNNs follow the mes-
sage passing mechanism (Gilmer et al., 2017), which itera-
tively updates the representation of a node by aggregating
representations of its neighbors. Formally, node v ∈ V at
the i-th layer of a GNN is updated by:

h(i)
v = ReLu(w

(i)
0 h(i−1)

v + w
(i)
1

∑
u∈N(v)

ρv,uh
(i−1)
u), (1)

where h
(i)
v ∈ RNi is the embedding vector of node v at the

i-th layer, w(i)
0 and w

(i)
1 are weight matrices in RNi×Ni−1 .

The activation function for all layers is Relu, which is 1-
Lipschitz, except for the last layer. Equation (1) can be
expressed under the vector form:

H(i) = ReLu(W
(i)
0 H(i−1) +W

(i)
1 H(i−1)), (2)

where H(i) ∈ RKNi , W (i)
0 and W

(i)
1 are matrices with

dimensions KNi ×KNi−1, and the total amount of param-
eters remains the same, except that they are tiled K × K
times. Thus, we can have follow expression:

W
(i)
0 = IdK ⊗ w

(i)
0 ,W

(i)
1 = M ⊗ w

(i)
1 , (3)

where ⊗ denotes the standard matrix Kronecker product. It
is easy to see that M is a graph shift operator(Gama et al.,
2020; Jing et al., 2023), such as a normalized Laplacians
matrix, and it is closely related to stable representations.

Lipschitz Constant. A function f : Rn → Rm is said to be
Lipschitz continuous on an input set X ⊆ Rn if there exists
a bound L ≥ 0 such that for all δ, x ∈ X , and δ is a small
perturbation of x, f satisfies:

∥ f(x+ δ)− f(x) ∥≤ L ∥ (x+ δ)− x ∥, (4)

where ∥ · ∥ is the distance norm and L is a Lipschitz con-
stant of the function, denoted as Lip(f). The Lipschitz
constant essentially quantifies the maximum change in the
output of a function corresponding to a small perturbation
in its input. In adversarial-based fair models, softly masking
node features is equivalent to imposing a perturbation on
the features, so the difference of masks can be viewed as
δ. Due to the fact that an exact Lipschitz bound is com-
putationally expensive(Virmaux & Scaman, 2018), recent
works(Szegedy et al., 2014; Juvina et al., 2024; Jia et al.,
2024) propose some approximate bounds. However, these
bounds are loose and only suitable for the GNN encoder.

2

Stable Fair Graph Representation Learning with Lipschitz Constraint

view i⋯

Generator

Channel Mask Weight

 ��(�0
(1) + ℎ���(�)�1

(1))⋯(�0
(�) + ℎ���(�)�1

(�))
�
≤ �� � �=1

�
 �0

(�) + ℎ���(�)�1
(�)

�

����(�) =
�=1

�
��(�(���[[�(�(��), ��) − �]+2])1/2 + �)

� = (�, �, �)

0

0.2

0.4

0.6

0.8

1

Age Height Race Gender

��

GNN Encoder

Step Ⅰ

Ⅱ. Learn fair node representation

Shrink Distribution Discrepancy

Real Fair View Distribution

Ⅳ. Adversarial training

Lipschitz
Constraint

Chi-squared Ball of Generated Fair View Distribution

�0
(�)

�1
(�)

�0
(�−1)

�1
(�+1)

��

�0
(�)

�1
(�)

�0
(�−1)

�1
(�+1)

��

stochastic
projected

subgradient

Tight Lipschitz Bound

Multi-view DRO

Non-convex Multi-convex

Ⅲ. Learn stable node representationⅠ. Generate sensitive channel mask

Step Ⅱ Step Ⅲ

Step Ⅳ

Node label prediction
Adversarial training

Discriminator
 input channels

sensitive attributes

Sensitive attributes prediction

Classifier

node label

Loss

10

5

1

view 1

view �

⋯ view i

DRO

view 1

view �

���� =
�����
+⋯
+ �����
+ �����

Figure 2. The framework of the Stable Fair Graph Neural Net Work(SFG). Compared to FairVGNN(Wang et al., 2022), our model uses
two methods to maintain stability. (1) A tight Lipschitz bound is derived to control fluctuations in the representation learned by the
encoder and generator. (2) DRO makes the encoder robust to different fair views.

3. Method
In Section 3.1, we theoretically derive a tight upper Lips-
chitz bound to control the stability of a fair graph model. In
Section 3.2, we employ a stochastic projected subgradient
algorithm to control the Lipschitz bound in the presence
of a mask generator, which operates in a block-coordinate
manner. In Section 3.3, we propose to train the worst-case
distribution within the chi-squared divergence ball surround-
ing the generated fair view distribution to further enhance
stability.

3.1. Estimating Lipschitz Constant

To analyze the stability of the output of the fair graph model,
we check the details of these models. As shown in Figure 2,
these models typically use a generator to create a sensitive
channel mask, an encoder for learning fair node representa-
tion, a discriminator for sensitive attribute prediction and a
classifier for node label prediction. All components above
consistently employ the Binary Cross-Entropy (BCE) loss
function(Su et al., 2021c;d) for optimization. For detailed
implementation of these fundamental components in this
work, refer to Appendix D.5.

The uncertainty of generator and the trade-off between
model fairness and utility may lead learned the embeddings

of nodes to fluctuate dramatically. Obviously, controlling
Lipschitz bound is a promising direction to keep the model
training process stable. Compared to weight climbs of
FairVGNN, Lipschitz bound constraint does not lead to
suboptimal solutions. Truncating large weights element-
wise can weaken the influence of features with significant
weights and alter the update direction of parameters(Su et al.,
2021b), which causes the optimization path to deviate from
the true direction guided by the gradients, and these would
lead to suboptimal solutions.

Theorem 3.1. Let Y be the output of a mask generator
and an m-layer GNN encoder (denoted as f(·)) with X
as input. Assuming that the matrix M in Equation (3) is
symmetric with nonnegative elements and the weights of
the mask generator and GNN encoder are also nonnegative,
and the activation function (represented in ρ(·)) is ReLU
with a Lipschitz bound of Lip(ρ) = 1, then the cumulative
Lipschitz bound of the mask generator and the GNN encoder,
Lip(f), satisfies the following:

Lip(f) =∥ (w
(m)
0 + hmax(λ)w

(m)
1)

. . . (w
(1)
0 + hmax(λ)w

(1)
1)⊙ wg ∥S ,

(5)

where ∥ · ∥S denotes the spectral norm, ⊙ represents
element-wise product supporting broadcast, wg denotes
the weights of mask generator, w(i)

0 and w
(i)
1 (i ∈ 1, . . . ,m)

3

Stable Fair Graph Representation Learning with Lipschitz Constraint

Tight Lipschitz
Bound Constraint

Mask Uncertainty

Fairness Objective

Utility Objective

���0
(�)

�1
(�)

� = �� ⊙ (��
(�) + ����(�)��

(�))⋯(��
(�) + ����(�)��

(�))
�

Fairness Objective

Utility Objective

�
View i

Figure 3. Comparison of weights variation space.

are the weights of the GNN encoder, and hmax(λ) is the
maximal frequency response of the graph filter from graph
spectral theory perspectives, and λ is the eigenvalue of
symmetric normalized Laplacians matrix.

Proof Sketch: The weights of generator and encoder at layer
i are represented as wg ∈ R1×N0 and W (i) = W

(i)
0 +

W
(i)
1 respectively. W (i) = (U ⊗ IdNi

)(IdK ⊗ w
(i)
0 +

h(Λ)⊗w
(i)
1)(UT ⊗IdNi−1), which is obtained on the basis

of the distributive and associative laws of the Kronecker
products. Since the dimensions of generator’s weights do
not match encoder’s, we cannot multiply them directly. We
first form it into a diagonal matrix Wg1 ∈ RN0×N0 . Then
we tile it along the diagonal K times and get a matrix Wg ∈
RKN0×KN0 , which is also a diagonal matrix. This is the
most critical step. Finally, we get the following expression:

W (m) . . .W (1)Wg

= (U ⊗ IdNm
)(IdK ⊗ w

(m)
0 + h(Λ)⊗ w

(m)
1)

. . . (IdK ⊗ w
(1)
0 + h(Λ)⊗ w

(1)
1)(UT ⊗ IdN0

)Wg

= (U ⊗ IdNm)(IdK ⊗ w
(m)
0 + h(Λ)⊗ w

(m)
1)

. . . (IdK ⊗ w
(1)
0 + h(Λ)⊗ w

(1)
1)Wg(U

T ⊗ IdN0).

(6)

Equation (6) showns that k-th block diagonal matrix
of eigenvalue matrix of W (m) . . .W (1)Wg is (w

(m)
0 +

hk(λ)w
(m)
1) . . . (w

(1)
0 + hk(λ)w

(1)
1)Wg1 . So we get our

result:

Lip(f) =∥ W (m) . . .W (1)Wg ∥S
=∥ (w

(m)
0 + hmax(λ)w

(m)
1)

. . . (w
(1)
0 + hmax(λ)w

(1)
1 Wg1) ∥S

=∥ (w
(m)
0 + hmax(λ)w

(m)
1)

. . . (w
(1)
0 + hmax(λ)w

(1)
1)⊙ wg ∥S

≤∥ wg ∥S
m∏
i=1

∥ w
(i)
0 + hmax(λ)w

(i)
1 ∥S .

(7)

The result shows the Lipschitz bound of the encoder with
the participation of the mask generator weight. Compared

with just restricting the encoder, SFG can comprehensively
consider the uncertainty of the generated mask so that the
encoder can be robust to different masks. Additionally,
our non-separable upper Lipschitz bound is tighter than the
separable counterpart. Figure 3 illustrates how the Lips-
chitz bound controls the size of the weight variation space,
thereby enabling the learning of stable representations.

For detailed proof processes, please refer to Appendix B.2.
According to Theorem 3.1, for the low-pass graph filter,
h(λ) = 1 − λ ∈ [−1, 1] due to the eigenvalue of sym-
metric normalized Laplacians matrices λ ∈ [0, 2], which
corresponds to M = D−1/2AD−1/2, it is actually Graph-
SAGE graph convolution operator using the mean aggrega-
tor function. For the high-pass graph filter, h(λ) ∈ [0, 2]

and w
(i)
0 = 0 for all i ∈ 1, . . . ,m. For a band-pass filter

like BernNet(He et al., 2021), h(λ) ∈ [0, 1] and w
(i)
0 = 0.

Another interesting point is that this approach can somewhat
bridge the gap between GNN spatial and spectral domains.

3.2. Controlling Lipschitz Constant

To control the stability of the output of the fair graph model,
we consider maintaining the stability of the GNN encoder
with the participation of the mask generator. Specifically, we
use a gradient descent algorithm to optimize the generator
parameters wg and the GNN encoder parameters w0(i) and
w1(i) for all i. Then after each epoch, consider controlling
the Lipschitz bounds of the GNN encoder in the presence of
the generated mask. In this work, we study the most widely
used GNN, namely GraphSAGE, it satisfies:

∥ (w
(m)
0 + w

(m)
1) . . . (w

(1)
0 + w

(1)
1)⊙ wg ∥S≤ τ , (8)

where τ is manually-set thresholds.

The bound on the product in Equation (8) is a non-convex
function, we use a projected stochastic subgradient algo-
rithm to optimize the weights, which converts a non-convex
problem into a multi-convex problem. The detailed pro-
cess of parameter constraint is described as follows. At
epoch t > 0, we use the layer-wise operating block coor-
dinate approach to control the weights, and denote w

(i,t)
0

and w
(i,t)
1 as the unconstrained weight matrices for layer

i at epoch t, and w
(t)
g are the mask generator weights and

define W (i,t) = [w
(i,t)
0 , w

(i,t)
1]T . Therefore, Equation (8)

can re-express as:

∥ A
(i,t)
old W (i,t)B(i,t)

new ∥S≤ τ, (9)

where matrices A
(i,t)
old and B

(i,t)
new represent the product of

the cumulative weights for the next and previous layers,

4

Stable Fair Graph Representation Learning with Lipschitz Constraint

Algorithm 1 The accelerated DFB algorithm with mask
generator

Input: W (i,t), A
(i,t)
old , B

(i,t)
new , Y0 ∈ RNm×N0

Initialize: γ = 1/(∥ A
(i,t)
old ∥s∥ B

(i,t)
new ∥s)2, α ∈ [2,∞)

for i = 1 to nit do
ζ = 1/(i+ 1 + α)
Zl = Yl + ζ(Yl − Yl−1)

Vl = projD(W
(i,t) −A

(i,t)
old

T
ZlB

(i,t)
new

T
)

Ŷl = Zl + γA
(i,t)
old

T
VlB

(i,t)
new

T

Yl+1 = Ŷl − γprojB(0,τ)(γ
−1Ŷl)

end for
Return: Vl

respectively:

B(i,t)
new = [INi−1 , INi−1]W

(i−1,t+1) . . . [IN0 , IN0]⊙ w(t)
g ,

A
(i,t)
old = [INm

, INm
]W (m,t) . . .W (i+1,t)[INi

, INi
].
(10)

Accordingly, for the first layer with i = 1, we have B(0,t)
new =

[IN0 , IN0]⊙ w
(t)
g .

The weights set is a closed convex set based on Equation (9)
and the non-negativity assumption. We utilize an instance
of the accelerated iterative dual forward-backward (DFB)
algorithm, as proposed by (Neacşu et al., 2024), to update
W (i,t). The projection algorithm is detailed in Algorithm 1.

Here, projD represents the projection onto the cone of non-
negative weights, whereas projB(0,τ) represents the projec-
tion onto the spectral ball of radius τ > 0.

3.3. Fair View Distributional Robust Optimization

To enhance the model’s adaptability to mask variations,
we employ Distributionally Robust Optimization (DRO)
to bolster the robustness of the encoder. We use Gv as a
random variable of node v ego-graphs whose realization is
Gv = (Av, Ev, Xv) ⊆ G, and a whole graph can be frag-
mented as a set of instances (Gv, yv)v∈V . Therefore, the
conditional distribution P (Y |G) can be decomposed as a
product of |V | independent and identical marginal distribu-
tions P (y|Gv). Typically, adversarial-based fair graph mod-
els employ ERM to find a optimal model f that minimizes
the average risk under the training distribution P (Y |G):

min
f∈F

{Rerm(f) := E(Gv,yv)∈P (Y |G)[l(f(Gv), yv)]}. (11)

The use of mask generator in the fair graph model will
cause the distribution shifts for P (y|Gv), i.e., different fair
feature view will be used as input to the GNN encoder.
However, models trained through ERM are highly based on
spurious correlations that do not always hold under distri-
butional shifts(Arjovsky et al., 2019), which would cause

training instability. To further enhance the stability of the
fair graph model, we use DRO minimizes the worst-case
risk over an uncertainty set Q by solving:

min
f∈F

{Rdro(f) := sup
Q∈P(P)

E(Gv,yv)∈Q[l(f(Gv), yv]}.

(12)
Here the uncertainty set Q approximates potential fair fea-
ture view distributions, which is usually formulated as a di-
vergence ball with a radius of r surrounding the training dis-
tribution P(P) = {Q : D(Q,P (Y |G)) ≤ r} limited with
a distance metric D(·, ·) such as f-divergence(Namkoong &
Duchi, 2016) or Wasserstein distance(Abadeh et al., 2018).
Unless otherwise specified, P or P (Y |G) denotes the dis-
tribution of a generated view. In this work, we use χ2-
divergence as instance of D(·, ·), which given by:

Dχ2(Q||P) =

∫
(
dQ

dP
− 1)2dP. (13)

Lemma 3.2 (See (Duchi & Namkoong, 2021)). Let αmin

be the ratio between the size of the smallest domain and the
size of the training data,Rdro(f) is equal to the following
expression:

inf
η∈R

{F (f, η) := C(EP [[l(f(Gv), yv)−η]2+])
1
2 +η}, (14)

where C = (2(1/αmin − 1)2 + 1)1/2 .

Denoting by η∗ the optimal dual variable in Equation (14),
it is easy to see that large losses above η∗ are upweighted
due to the squared term.
Lemma 3.3 (See (Zhai et al., 2021)). Let Rmax(f) denotes
the worst-case risk on P , then we have:

Rmax(f) ≤ Rdro(f) ≤ F (f, η). (15)

Proposition 3.4. Let the distribution of the fair feature
view generated be denoted by Pi, i ∈ 1, . . . , µ. Minimizing
the worst-case risk on all views, is equal to minimize the
following expression:

Rsfg(f) :=

µ∑
i=1

vi(C(EPi
[[l(f(Gv), yv)− η]2+])

1/2 + η),

(16)
where C = (2(1/αmin − 1)2 + 1)1/2, and αmin is the
smallest size of the entire group among all views. v ∈ ∆µ,
∆µ is a (µ−1)-dimensional probability simplex, and vi rep-
resents distance between the true mask and i-th generated
mask.

For detailed proof processes, please refer to Appendix C.
We can see from Proposition 3.4 that our proposed robust
model actually ignores some views and the nodes that cause
overfitting during fairness training. This overfitting would
cause the accuracy performance to deteriorate dramatically,
leading to an unstable graph fair model. For simplicity,
we choose uniform v in our work, and we use Brent’s
method(Brent, 1971) to find the η∗.

5

Stable Fair Graph Representation Learning with Lipschitz Constraint

170 175 180 185 190 195 200
Epoch

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 G
er

m
an

FairVGNN
SFG

(a) German

130 135 140 145 150 155 160
Epoch

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 B
ai

l

FairVGNN
SFG

(b) Bail

170 175 180 185 190 195 200
Epoch

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 C
re

di
t

FairVGNN
SFG

(c) Credit

Figure 4. Training accuracy curve on German, Bail and Credit datasets. The shaded area represents the rolling standard deviation with a
window size of 5, which can be used to measure the stability between epochs.

Table 1. Comparison results of SFG with baseline fairness methods. In each row, the best result is indicated in bold, while the runner-up
result is marked with an underline.

Dataset Metric GCN Nifty FairGNN FairVGNN FairSAD SFG

German

Acc 68.72± 2.38 69.92± 0.81 71.32 ± 0.16 69.84± 0.74 68.29± 2.80 70.32± 0.46
AUC 67.64± 6.49 72.05± 2.15 69.30± 8.60 66.74± 4.08 72.20 ± 3.42 69.38± 4.77
∆DP 13.91± 12.24 4.21± 2.51 7.12± 8.25 2.54± 1.75 0.00 ± 0.00 1.36± 2.61
∆EO 11.01± 11.16 2.66± 2.17 5.67± 5.16 3.06± 1.50 0.00 ± 0.00 0.54± 0.74

Bail

Acc 82.01± 0.24 77.38± 1.65 83.59± 0.86 89.24± 0.49 83.73± 1.22 89.49 ± 1.74
AUC 85.91± 0.12 80.43± 0.39 87.55± 0.60 91.99± 0.34 88.46± 0.81 93.98 ± 1.41
∆DP 9.21± 0.16 5.74± 0.38 6.51± 0.76 4.39± 0.96 2.08 ± 1.24 3.55± 0.58
∆EO 6.29± 0.04 4.07± 1.28 4.50± 1.09 2.49± 1.06 2.14± 1.18 1.11 ± 0.43

Credit

Acc 73.67± 0.03 69.63± 0.75 76.16± 1.82 80.13± 0.32 77.41± 0.78 80.34 ± 0.11
AUC 73.87± 0.02 69.08± 0.15 74.62± 0.87 74.17± 0.54 71.72± 0.51 74.37 ± 0.37
∆DP 12.86± 0.09 10.34± 1.15 6.87± 5.01 5.74± 1.44 2.39 ± 2.43 5.44± 1.04
∆EO 10.63± 0.13 9.36± 1.23 5.14± 5.35 3.18± 1.02 1.39 ± 1.66 2.71± 0.58

4. Experiments
4.1. Settings

Datasets. We conduct experiments on three commonly used
datasets(Dong et al., 2022), including German, Bail, and
Credit. The statistics of datasets are shown in Table 2.

Table 2. Statistic information of three real-world datasets.

Dataset German Bail Credit

#Nodes 1,000 18,876 30,000
#Edges 22,242 321,308 1,436,858
#Attr. 27 18 13
Sens. Gender Race Age

Evaluation Metrics. We use accuracy and AUC-ROC to
evaluate the utility performance of the model, and the sta-
bility is measured by the curve of accuracy changes. To
evaluate fairness, we use two commonly used fairness met-
rics, that is, ∆DP = |P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1)|
and ∆EO = |P (ŷ = 1|y = 1, s = 0) − P (ŷ = 1|y =
1, s = 1)|. ŷ and y denote the prediction of node embedding
and label. For ∆DP and ∆EO, a smaller value indicates a
better fairness.

Baselines. In our work, we utilize FairVGNN(Wang et al.,

2022), a representative adversarial-based model, as the foun-
dation for our proposed SFG. Subsequently, we compare
the accuracy and fairness performance of SFG with several
state-of-the-art fair graph learning models. Specifically, we
compare the performance of SFG with five baseline meth-
ods, i.e., GCN, NIFTY(Agarwal et al., 2021), FairGNN(Dai
& Wang, 2021), FairVGNN(Wang et al., 2022), FairSAD(Li
et al., 2024). For evaluation of stability, we only compared
with adversarial-based model FairVGNN.

Implementation Details. We conduct all experiments 5
times and reported average value and variance. For a fair
comparison, we tuned the hyperparameters for all methods
according to metric ∆ = ACC + AUC + F1−∆DP −
∆EO on the validation set. For SFG, we use a 2-layer
GraphSAGE encoder with hidden dimensions 16 and set
the number of generated fair feature views µ = 10 for all
datasets. We set the range of the Lipschitz constant τ is
{1, 2, 4, 5, 6, 20, 50}, which should not be larger than the
unconstrained counterpart, for German, Bail, Credit.

4.2. Overall Results

We compare the stability of the improved FairVGNN, en-
hanced with a tighter Lipschitz bound and DRO, against

6

Stable Fair Graph Representation Learning with Lipschitz Constraint

(a) FairVGNN

(b) SFG

Figure 5. The weight patch of encoder for FairVGNN and SFG on
German dataset.

its original counterpart. For the utility and fairness of the
model, we compare the performance of SFG with four base-
line methods and vanilla GCN on the node classification
task. As illustrated in Figure 4, the training curve is sta-
ble compared to FairVGNN during the convergence stage.
Specifically, the amplitude and frequency of fluctuations
are better, and the accuracy is generally better than the orig-
inal model. Table 1 summarizes the results of the SFG
comparison against all the baseline methods for real-world
datasets. It is evident that SFG outperforms all baseline
methods across most evaluation metrics, which indicates the
superiority of SFG in achieving better stability and trade-off
between model utility and fairness. Compared to FairSAD,
our model achieves 5.76% and 2.93% improvement in accu-
racy for Bail and Credit dataset. FairSAD excels in handling
fairness because it utilizes disentangled layers with multi-
plicatively increasing parameters in the encoder and incor-
porates an additional neighbor assigner. More experiments
results can be found in Appendix D.1.

Notably, SFG not only reduces the frequency of fluctuations,
but also significantly reduces the magnitude of fluctuations.
In Bail datasets, we can see that the SFG dramatically im-
proved worst accuracy, which may be caused by the gen-
eration of a mask that leads to overfitting during fairness
training. This enhanced stability and fairness can be at-
tributed to two reasons:(1) By constraining the Lipschitz
bound of the generator and encoder during training, we
minimize changes of the learned embeddings in trade-off
between fairness and utility, thereby enhancing the overall
stability of the training process and making it more reliable
and trustworthy. (2) Our proposed DRO objective is equiva-

Table 3. Ablation results for performance on German, Bail, and
Credit. Reults indicate the DRO module needs to be used together
with the Lipschitz constraint module to improve accuracy.

Dataset Metric SFG w/o ct SFG w/o dro SFG

German

Acc 69.76± 0.32 70.24± 0.32 70.32± 0.46
AUC 70.36± 2.79 67.67± 3.49 69.38± 4.77
∆DP 2.68± 2.89 1.82± 2.73 1.36± 2.61
∆EO 2.96± 2.53 1.47± 2.50 0.54± 0.74

Bail

Acc 88.76± 0.76 89.06± 1.20 89.49± 1.74
AUC 91.78± 0.59 93.32± 0.67 93.98± 1.41
∆DP 3.10± 1.42 3.74± 0.95 3.55± 0.58
∆EO 1.50± 0.98 1.27± 0.90 1.11± 0.43

Credit

Acc 80.37± 0.05 80.20± 0.23 80.34± 0.11
AUC 74.27± 0.49 73.74± 0.15 73.88± 0.12
∆DP 6.71± 0.90 5.48± 0.54 5.44± 1.04
∆EO 3.81± 0.65 2.97± 0.52 2.71± 0.58

Figure 6. The learned mask of the generator on Credit dataset.

lent to removing the nodes that caused the overfitting, so the
stability of the worst-case can be improved. In summary, the
experimental results demonstrate the effectiveness of SFG
in enhancing stability fairness while preserving trade-off
between fairness and utility.

In order to verify whether the Lipschitz bound limits the
range of weight changes and leads to the stability of the
model, we compared the weight changes of each epoch. As
shown in Figure 5, we compared the optimal model weights
with the counterpart of the previous epoch, and the German
dataset is used. The results indicate that SFG does con-
strain the fluctuation of weights and can clearly distinguish
different features. Specifically, compared to the weight
range of [-1, 0.75](FairVGNN) in Figure 5(a), the range of
[0, 0.75](Our SFG) in 5(b) exhibits smaller overall fluctu-
ations(43% of FairVGNN). From a micro perspective, the
relative weight change(FairVGNN: 7.64%, SFG:1.08%) in
the red boxes is calculated as the weight difference between
two epochs divided by the total range of variation. This av-
erage comparison also reflect that our SFG exhibits smaller
fluctuations(14% of FairVGNN) between two epochs. De-
tailed comparison can be seen in the Appendix D.6.

As shown in Figure 6, we can see that the mask value (prob-
ability of keep the channel) of the sensitive attribute (Age)

7

Stable Fair Graph Representation Learning with Lipschitz Constraint

is close to 0, which means that the sensitive attribute is ef-
fectively masked. In addition, most of the features’ masks
are consistent with the previous models.

4.3. Ablation Study

We perform an ablation study to evaluate the impact of each
SFG component on enhancing stability and preserving ac-
curacy and fairness. Concretely, we denote SFG w/o ct as
removing the Lipschitz bound constraint of the generator
and encoder, SFG w/o dro as removing the proposed opti-
mization objective, and SFG w/o ct&dro as removing both
of these two modules, i.e., FairVGNN. The training curve
of there variants is presented in Figure 7, and the utility and
fairness performance are summarized in Table 3.

170 175 180 185 190 195 200
Epochs

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 G
er

m
an

w/o ct&dro
w/o dro
w/o ct
with ct&dro

Figure 7. Ablation results for stability on German.

We observe that SFG w/o ct is just as bad as the original
model in stability, which validates the effectiveness of Lips-
chitz bound constraint for learning fair node representations
stably. Furthermore, SFG with ct&dro perform better than
SFG w/o dro, indicating that the proposed DRO module
needs to be used with Lipschitz bound constraint, and has
played a great role in mitigating extremely unstable anoma-
lies. For fairness performance, SFG with ct&dro is better,
except for the German dataset. The accuracy metrics are
essentially equivalent.

4.4. Parameters Sensitivity Study

The sensitivity of two parameters, i.e. τ in Equation (9) and
αmin in Equation (16), was studied mainly. In SFG, the Lip-
schitz bound τ controls the contribution of training stability.
Specifically, we vary the values of τ as {50, 20, 5, 2} in
the German data set and vary the values of τ as {6, 4, 2, 1}
in the Bail and Credit datasets. Figure 8 presents the sta-
bility results of the parameter τ analysis of the sensitivity
on Credit dataset, the details of the accuracy and fairness
performance can be found in the Appendix D.2.

We make the following observation: (1) The SFG remains
stable across a wide range of variations in τ , and the overall

170 175 180 185 190 195 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 C
re

di
t

w/o
=6
=4
=2
=1

Figure 8. Hyperparameter analysis w.r.t. τ on Credit.

performance gains a slight improvement. (2) When the
value of τ is small, the stability and performance of SFG
is worse compared to scenarios where the value of τ is
relatively large.

This observation highlights that Lipschitz bound constraint
τ has a great positive effect on improving the stability of the
model and can improve the performance of the model.

Figure 9 presents the stability results of the parameter αmin

analysis of the sensitivity on Bail dataset, and the accuracy
and fairness performance details can be found in the Ap-
pendix D.3. The results indicate the dro has significantly
improved the stability of the abnormal epoch, which is im-
plemented by removing overfitting nodes.

130 135 140 145 150 155 160
Epochs

0.80

0.82

0.84

0.86

0.88

0.90

Tr
ai

ni
ng

 A
cc

ur
ac

y
on

 B
ai

l

w/o
=0.4
=0.5
=0.6

Figure 9. Hyperparameter analysis w.r.t. αmin on Bail.

4.5. Time and Space Complexity

Table 4 outlines the time and space complexity(Derrick
et al., 2019; Wu et al., 2020) of the GNN encoder for SFG
compared to other baseline fairness methods. We assume
Ni = F for layer i ∈ {1, . . .m} and F ≪ K. E denotes the
number of all edges in graph and n represents the number of
independent channels in the disentangled layers of FairSAD.
We observe that: (1) Compared to FairVGNN, our model
introduces only a marginal amount of additional computa-
tional and storage overhead during the forward propagation

8

Stable Fair Graph Representation Learning with Lipschitz Constraint

Table 4. Time and space complexity analysis of SFG with baseline fairness methods.

Model Forward Time Forward Space Backward Time Backward Space Parameter Count

FairVGNN mEF +mKF 2 E +mF 2 +mKF mEF +mKF 2 E +mF 2 +mKF mF 2

FairSAD n(mEF +mKF 2) n(E +mF 2 +mKF) n(mEF +mKF 2) n(E +mF 2 +mKF) mnF 2

SFG mEF +mKF 2 +mF 3 E +mF 2 +mKF +mF 2 mEF +mKF 2 E +mF 2 +mKF mF 2

process, which is attributed to the decoupling of the derived
bound from the number of nodes K. The increased overhead
stems from the complexity associated with performing sin-
gular value decomposition (SVD) on the weight matrices.
(2) In contrast to FairSAD, we achieve a reduction in the
parameter count and computational and storage costs by a
factor of the number of independent channels n.

5. Conclusion
In this paper, we first theoretically derive an easy-to-
compute tight upper Lipschitz bound to control the stability
of generator and encoder, and use the block coordinate
approach which operates in a block-coordinate manner to
control weights. Additionally, we use multi-view DRO ob-
jective to further enhance the robustness of GNN encoder.
Experiments on three real-world datasets demonstrate supe-
rior stability and performance of our model.

Acknowledgements
This research is funded by National Natural Science Foun-
dation of China (No. 62406347).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. All the work and data are based
on existing public datasets and methods, thus there are no
potential adverse societal consequences.

References
Abadeh, S. S., Nguyen, V. A., and Esfahani, P. M. M.

Wasserstein distributionally robust kalman filtering. In
NeurIPS, 2018.

Agarwal, C., Lakkaraju, H., and Zitnik, M. Towards a
unified framework for fair and stable graph representation
learning. In UAI, PMLR, pp. 2114–2124, 2021.

Arghal, R., Lei, E., and Bidokhti, S. S. Robust graph
neural networks via probabilistic lipschitz constraints.
In Learning for Dynamics and Control Conference, pp.
1073–1085, 2022.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz,

D. Invariant risk minimization. In arXiv preprint
arXiv:1907.02893, 2019.

Brent, R. P. An algorithm with guaranteed convergence for
finding a zero of a function. In the Computer Journal,
1971.

Chen, Z., Chen, F., Zhang, L., Ji, T., Fu, K., Zhao, L.,
Chen, F., Wu, L., Aggarwal, C., , and Lu, C. T. Bridging
the gap between spatial and spectral domains: A unified
framework for graph neural networks. In Association for
Computing Machinery, 2023.

Dai, E. and Wang, S. Say no to the discrimination: Learning
fair graph neural networks with limited sensitive attribute
information. In ACM WSDM, 2021.

Derrick, B., Jack, L., and Yanjun, Q. Time and
space complexity of graph convolutional networks.
2019. URL https://api.semanticscholar.
org/CorpusID:269411067.

Dong, Y., Kang, J., Tong, H., and Li, J. Individual fairness
for graph neural networks: A ranking based approach. In
ACM SIGKDD, 2021.

Dong, Y., Liu, N., Jalaian, B., and Li, J. Edits: Modeling
and mitigating data bias for graph neural networks. In
WWW, 2022.

Duchi, J. C. and Namkoong, H. Learning models with uni-
form performance via distributionally robust optimization.
In The Annals of Statistics, 2021.

Gama, F., Bruna, J., and Ribeiro, A. Stability properties of
graph neural networks. In IEEE Transactions on Signal
Processing, 2020.

Gao, C., Wang, X., He, X., and Li, Y. Graph neural networks
for recommender system. In ACM WSDM, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. A., Vinyals, O.,
and Dahl, G. E. Neural message passing for quantum
chemistry. In ICML, 2017.

Hamilton, W. and Ying, Z. Inductive representation learning
on large graphs. In NeurIPS, 2017.

9

https://api.semanticscholar.org/CorpusID:269411067
https://api.semanticscholar.org/CorpusID:269411067

Stable Fair Graph Representation Learning with Lipschitz Constraint

He, M., Wei, Z., Huang, Z., and Xu, H. Bernnet: learning ar-
bitrary graph spectral filters via bernstein approximation.
In NeurIPS, 2021.

Jia, Y., Zou, D., Wang, H., and Jin, H. Enhancing node-level
adversarial defenses by lipschitz regularization of graph
neural networks. In ACM SIGKDD, 2023.

Jia, Y., Zhang, C., and Vosoughi, S. Aligning relational
learning with lipschitz fairness. international conference
on learning representations. In ICLR, 2024.

Jing, Y., Yuan, C., Ju, L., Yang, Y., Wang, X., and Tao, D.
Deep graph reprogramming. In CVPR, pp. 24345–24354,
2023.

Jing, Y., Hong, S.-H., and Tao, D. Deep graph mating.
NeurIPS, 37:9753–9772, 2024.

Juvina, S., Neacs, u, A. A., Pesquet, J. C., Corneliu, B., Rony,
J., and Ayed, I. B. Training graph neural networks subject
to a tight lipschitz constraint. In Transactions on Machine
Learning Research Journal, 2024.

Kang, J., He, J., Maciejewski, R., and Tong, H. Inform:
Individual fairness on graph mining. In ACM SIGKDD,
2020.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Li, Y., Wang, X., Xing, Y., Fan, S., Wang, R., Liu, Y., and
Shi, C. Graph fairness learning under distribution shifts.
In WWW, pp. 676–684, 2024.

Liao, N., Liu, H., Zhu, Z., Luo, S., and Lakshmanan, L. V.
Benchmarking spectral graph neural networks: A com-
prehensive study on effectiveness and efficiency. In arXiv
preprint arXiv:2406.09675, 2024.

Ling, H., Jiang, Z., Luo, Y., Ji, S., and ZHou, N. Learning
fair graph representations via automated data augmenta-
tions. In ICLR, 2023.

Mandal, D., Deng, S., Jana, S., Wing, J., and Hsu, D. J.
Ensuring fairness beyond the training data. In NeurIPS,
2020.

Namkoong, H. and Duchi, J. C. Stochastic gradient
methods for distributionally robust optimization with f-
divergences. In NeurIPS, 2016.

Neacşu, A., Pesquet, J. C., and Burileanu, C. Emg-based
automatic gesture recognition using lipschitz-regularized
neural networks. In ACM Transactions on Intelligent
Systems and Technology, 2024.

Rozemberczki, B., Hoyt, C. T., Gogleva, A., Grabowski, P.,
Karis, K., Lamov, A., Nikolov, A., Nilsson, S., Ughetto,
M., Wang, Y., Derr, T., , and Gyori, B. M. Chemicalx:
A deep learning library for drug pair scoring. In ACM
SIGKDD, 2022.

Scaman, K. and Virmaux, A. Lipschitz regularity of deep
neural networks: analysis and efficient. In NeurIPS, 2018.

Su, J., Zou, D., and Wu, C. Pres: Toward scalable memory-
based dynamic graph neural networks. In ICLR, 2024.

Su, X., Huang, T., Li, Y., You, S., Wang, F., Qian, C.,
Zhang, C., and Xu, C. Prioritized architecture sampling
with monto-carlo tree search. In CVPR, pp. 10968–10977,
2021a.

Su, X., You, S., Huang, T., Wang, F., Qian, C., Zhang, C.,
and Xu, C. Locally free weight sharing for network width
search. arXiv preprint arXiv:2102.05258, 2021b.

Su, X., You, S., Wang, F., Qian, C., Zhang, C., and Xu,
C. Bcnet: Searching for network width with bilaterally
coupled network. In CVPR, pp. 2175–2184, 2021c.

Su, X., You, S., Zheng, M., Wang, F., Qian, C., Zhang, C.,
and Xu, C. K-shot nas: Learnable weight-sharing for nas
with k-shot supernets. In ICML, pp. 9880–9890. PMLR,
2021d.

Su, X., You, S., Xie, J., Wang, F., Qian, C., Zhang, C.,
and Xu, C. Searching for network width with bilaterally
coupled network. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(7):8936–8953, 2022a.

Su, X., You, S., Xie, J., Zheng, M., Wang, F., Qian, C.,
Zhang, C., Wang, X., and Xu, C. Vitas: Vision trans-
former architecture search. In European Conference on
Computer Vision, pp. 139–157. Springer, 2022b.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties
of neural networks. In ICLR, 2014.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. In
NeurIPS, 2018.

Wang, Y., Zhao, Y., Dong, Y., Chen, H., Li, J., and Derr,
T. Improving fairness in graph neural networks via miti-
gating sensitive attribute leakage. In ACM SIGKDD, pp.
1938–1948, 2022.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24, 2020.

10

Stable Fair Graph Representation Learning with Lipschitz Constraint

Zhai, R., Dan, C., Kolter, Z., and Ravikumar, P. Doro:
Distributional and outlier robust optimization. In ICML,
2021.

Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., and Pei, J.
Trustworthy graph neural networks: Aspects, methods,
and trends. Proceedings of the IEEE, 112(2):97–139,
2024.

Zhao, X., Zhang, Z., Zhang, Z., Wu, L., Jin, J., Zhou, Y.,
Jin, R., Dou, D., and Yan, D. Expressive 1-lipschitz
neural networks for robust multiple graph learning against
adversarial attacks. In ICML, pp. 12719–12735, 2021.

Zheng, M., Su, X., You, S., Wang, F., Qian, C., Xu, C., and
Albanie, S. Can gpt-4 perform neural architecture search?
arXiv preprint arXiv:2304.10970, 2023.

Zhu, Y., Li, J., Zheng, Z., and Chen, L. Fair graph represen-
tation learning via sensitive attribute disentanglement. In
WWW, 2024.

11

Stable Fair Graph Representation Learning with Lipschitz Constraint

A. Related Work
Fairness in Graph. Fairness in graph can be mainly divided into two categories, i.e., group fairness(Mandal et al., 2020)
and individual fairness(Kang et al., 2020). Group fairness, which emphasizes model’s prediction neither favor nor harm
certain groups defined by the sensitive attribute, is investigated in this work. As a crucial issue in the field of graph learning,
several recent state-of-the-art fair graph models have been proposed to solve fairness. We divide them into two categories:
augmentation-based models and adversarial-based models. Augmentation-based models mitigate discrimination through
graph augmentation, where sensitive-related information is removed by altering the graph topology or node features, such
as NIFTY(Agarwal et al., 2021) and EDITS(Dong et al., 2022). The adversarial-based models force the fairness of node
representations by alternatively training the generator and encoder to fool the discriminator and the discriminator to predict
the sensitive attributes, and the classifier is used to guarantee the model utility. These models include FairGNN(Dai & Wang,
2021), FatraGNN(Li et al., 2024) and FairVGNN(Wang et al., 2022), which is the main object of our study of stability.
Compared to NIFTY, Our model achieves fairness through adversarial training, rather than by learning fair representations
via a specific objective function. Additionally, the bound of NIFTY is loose.

Lipschitz constant. To the best of our knowledge, there is a relative paucity of literature on the Lipschitz bounds of GNNs,
especially for fairness. Pioneering work(Szegedy et al., 2014) points out that the Lipschitz constant of the neural network can
be derived as the accumulation of parameters at each layer. Arghal et al. (2022) focused on controlling the Lipschitz constant
of GNN filters in the frequency domain, Zhao et al. (2021) proposed a separable Lipschitz bound for GNNs, constraining
both the weight and gradient norms of each layer to 1, and Jia et al. (2024) investigated the approximation of the Lipschitz
bound via the Jacobian matrix to enhance individual fairness in GNNs from a ranking perspective. There bounds are loose,
and have not yet been applied to the stability of graph fairness. Additionally, these bounds are only used to constrain the
stability of the encoder and do not take into account other modules associated with the encoder, such as the generator.

B. Proof of Theorem 1
B.1. Preliminary Results

Define L as the normalized Laplace matrix, U as the orthogonal matrix after spectral decomposition, where the column
vectors are unit eigenvectors and Λ as the diagonal matrix of the eigenvalue. In spectral graph theory, graph convolution can
be expressed by:

y = σ(Ug(θ)U
Tx), (17)

where g(θ) is graph filter with learned parameters, and σ is activation function. To represent the above convolution kernel
using a k-th order polynomial, we have the following expression:

y = σ(U

K∑
k=0

θkΛ
kUTx)

= σ(

K∑
k=0

θk(UΛkUT)x)

= σ(

K∑
k=0

θk(UΛUT)kx)

= σ(

K∑
k=0

θkL
kx).

(18)

Expanding to matrix form, we have:
Y = σ(h(L)XW), (19)

where h(L) is a polynomial function of L, and W is learned parameter matrix. Let σ is Relu, and the node v’s embedding at
layer i is

H(i)
v = Relu(

K∑
u=1

εvuf
(i)
u), (20)

where f
(i)
u ∈ R1×Ni is neighbor node’s embedding of v after mapping, and εvu is element of h(L).

12

Stable Fair Graph Representation Learning with Lipschitz Constraint

In the spatial domain, the expression of the graph convolution is Equation (2). Then

H(i) = Relu(W
(i)
0 H(i−1) +W

(i)
1 H(i−1))

= Relu((IdK ⊗ w
(i)
0)H(i−1) + (M ⊗ w

(i)
1)H(i−1)).

(21)

the node v’s embedding at layer i is

H(i)
v = Relu(f (i)

v +
∑

u∈N(v)

ρvuf
(i)
u), (22)

where f
(i)
v is the embedding of node v after mapping, and ρvu is element of M in Equation (3).

If spectral domain graph convolution is equivalent to spatial domain graph convolution, then we have:

H(i)
v = Relu(f (i)

v +
∑

u∈N(v)

ρvuf
(i)
u)

= Relu(
∑

u∈N(v)∪{v}

ρvuf
(i)
u)

= Relu(

K∑
u=1

εvuf
(i)
u).

(23)

Equation (18) indicates h(L) contains a self-loop. Expanding to matrix form, we have,

M + I = h(L), (24)

where the parameters of mapping are assumed to be same. This is only suitable for the GraphSAGE.

For a more general expression, w(i)
0 is 0 for every i ∈ 1, . . . ,m, and M contains a self-loop, then M = h(L). This is

consistent with previous work(Gama et al., 2020) where L can be considered as a graph shift operator(GSO).

According to Liao et al. (2024) and Chen et al. (2023), h(L) can cover low-pass, high-pass, and band-pass graph filters.
Taking BernNet as an example,

h(L) =

K∑
k=0

θk
1

2K

(
K

k

)
(2I − L)K−kLk. (25)

When θK/2 = 1 and other θk = 0, h(L) = 1
2K

(
K

K/2

)
(2I − L)K/2LK/2 is an impulse bandpass filter, and h(λ) ∈ [0, 1] is

the element of the diagonal matrix h(Λ).

Therefore, we have:

M =

{
h(L)− I if model is GraphSAGE,
h(L) otherwise,

(26)

and the graph frequency response of the filter is h(λ)− 1 and h(λ) respectively.

B.2. Proof of Theorem 1

Since M is equivalent to the graph filter h(L), the M is symmetric with non-negative elements. For GraphSAGE, M =
D−1/2AD−1/2 = I −L = h(L)− I , so h(L) = 2I −L, and h(λ)− 1 ∈ (−1, 1). This implies that its trace is zero, and it
has negative and positive eigenvalues. For the sake of clarity, we use h(λ) as the frequency response function of the graph
filter. By performing spectral decomposition on M, we obtain the following expression:

M = h(L) = Uh(Λ)UT , (27)

where h(Λ) is a diagonal matrix of eigenvalues, and h(λ) is a element of the diagonal matrix. For example, h(λ) is in range
of 0-2 when h(L) = L, and it is a high-pass graph filter.

13

Stable Fair Graph Representation Learning with Lipschitz Constraint

Suppose that M satisfies the above conditions. According to Equation (2) and Equation (3), we have:

W (i) = W
(i)
0 +W

(i)
1

= IdK ⊗ w
(i)
0 + h(L)⊗ w

(i)
1

= (UUT)⊗ w
(i)
0 + (Uh(Λ)UT)⊗ w

(i)
1

= (U ⊗ IdNi
)(IdK ⊗ w

(i)
0)(UT ⊗ IdNi−1

) + (U ⊗ IdNi
)(h(Λ)⊗ w

(i)
1)(UT ⊗ IdNi−1

)

= (U ⊗ IdNi
)(IdK ⊗ w

(i)
0 + h(Λ)⊗ w

(i)
1)(UT ⊗ IdNi−1

).

(28)

The fourth equality above is obtained based on the distributive and associative laws of Kronecker products, i.e., (A ⊗
B)(C ⊗ D) = (AC) ⊗ (BD), and the matrices have compatible dimensions for multiplication. Additionally, we get
following expression:

(U ⊗ IdNi)(U ⊗ IdNi) = (UUT)⊗ (IdNiIdNi)

= IdK ⊗ IdNi

= IdKNi .

(29)

Finally, we get the accumulation of all parameters when the fair graph model is equipped with a generator of mask, it’s

W (m) . . .W (1)Wg = (U ⊗ IdNm)(IdK ⊗ w
(m)
0 + h(Λ)⊗ w

(m)
1) . . . (IdK ⊗ w

(1)
0 + h(Λ)⊗ w

(1)
1)(UT ⊗ IdN0)Wg,

(30)
where wg ∈ R1×N0 is the parameter of generator, and we first form it into a diagonal matrix Wg1 ∈ RN0×N0 . Then we tile
it along the diagonal K times and Wg ∈ RKN0×KN0 is also a diagonal matrix.

Let us analyze the interchangeability of (UT ⊗ IdN0
) and Wg . (UT ⊗ IdN0

) can be seen as IdN0
being tiled K ×K times.

Since the product of two diagonal matrices is commutative, so we have

IdN0
Wg1 = Wg1IdN0

. (31)

For (UT ⊗ IdN0)Wg, its each block is UT
ijIdN0Wg1 , and UT

ij is the element of UT at position (i, j). Therefore, (UT ⊗
IdN0)Wg is commutative, i.e.,

(UT ⊗ IdN0
)Wg = Wg(U

T ⊗ IdN0
). (32)

times For every i ∈ 1, . . .m, IdK ⊗ w
(i)
0 + h(Λ)⊗ w

(i)
1 is a block diagonal matrix of size (KNi)× (KNi−1) having K

block diagonal elements, and Its k-th diagonal block is expressed as w(i)
0 + hk(λ)w

(i)
1 .

In summary, k-th diagonal block of eigenvalue matrix of W (m) . . .W (1)Wg is expressed as:

(w
(m)
0 + hk(λ)w

(m)
1) . . . (w

(1)
0 + hk(λ)w

(1)
1)Wg1

= (w
(m)
0 + hk(λ)w

(m)
1) . . . (w

(1)
0 + hk(λ)w

(1)
1)⊙ wg,

(33)

where ⊙ represents element-wise product supporting broad-cast.

Acording to the Perron-Frobenius theorem, we have

| hk(λ) |≤ hmax(λ), (∀k ∈ 1, . . . ,K), (34)

where hmax(λ) is the maximal frequency response of the graph filter.

So we get the Theorem 1:

Lip(f) =∥ W (m) . . .W (1)Wg ∥S
=∥ (w

(m)
0 + hmax(λ)w

(m)
1) . . . (w

(1)
0 + hmax(λ)w

(1)
1)⊙ wg ∥S .

(35)

14

Stable Fair Graph Representation Learning with Lipschitz Constraint

C. Proof of Proposition 4
Define Pk as the distribution of the k-th domain group, Pall is the distribution of all views, αk

i is the k-th group’s size of i-th
view and vi is the represents distance between the true mask and i-th generated mask. We set:

Pall =

µ∑
i=1

vi
K∑
j=1

αj
iPj . (36)

Then, wee have:

Dχ2(Pk||Pall) =

∫
x

(
Pk(x)

Pall(X)
− 1)2Pall(x)dx

=

∫
x

(
Pk(x)∑µ

i=1 vi
∑K

j=1 α
k
i Pj(x)

− 1)2Pall(x)dx

≤
∫
x

(
Pk(x)∑µ

i=1 viαk
i Pk(x)

− 1)2Pall(x)dx

=

∫
x

(
1∑µ

i=1 viαk
i

− 1)2Pall(x)dx.

(37)

For simplicity, we assume that vi follows a uniform distribution, then:

Dχ2(Pk||Pall) ≤
∫
x

(
1

(αk)min
− 1)2Pall(x)dx

= rk,

(38)

where (αk)min is the smallest size of the k-th group among all views, and where rk := (1/(αk)min − 1)2 is the robustness
radius. Therefore, rmax := (1/αmin − 1)2 where αmin is the smallest size of the entire group among all views. It is easy
to see that the distribution v is not uniform, and this conclusion still holds.

We proved Pk ∈ B(Pall, rk). Since the sup is over all Q ∈ B(Pall, rk), the upper bound is consistent.

According to Lemma 3.2 and Lemma 3.3, we can get the following proposition.

Let the distribution of the fair feature view generated be denoted by Pi, i ∈ 1, . . . , µ. Minimizing the worst-case risk on all
views, is equal to minimize the following expression:

Rsfg(f) :=

µ∑
i=1

vi(C(EPi
[[l(f(Gv), yv)− η]2+])

1/2 + η), (39)

where C = (2(1/αmin − 1)2 + 1)1/2, and αmin is the smallest size of the entire group among all views. v ∈ ∆µ, ∆µ is a
(µ− 1)-dimensional probability simplex, and vi represents distance between the true mask and i-th generated mask.

D. Additional Results
D.1. Effect of Each Component for Stability and Performance

We provide detailed training stability for different components on all datasets.

15

Stable Fair Graph Representation Learning with Lipschitz Constraint

Figure 10. Training accuracy curve of the convergence phase on Bail

As shown in Figure 10, we observe that SFG w/o ct is just as bad as the original model in stability for Bail dataset, which
validates the effectiveness of Lipschitz bound constraint for learning fair node representations stably. Furthermore, SFG
with ct&dro perform better than SFG without dro, indicating that the proposed DRO module needs to be used with the
Lipschitz bound constraint and has played an important role in mitigating extremely unstable anomalies.

Figure 11. Training accuracy curve of the convergence phase on Bail

As shown in Figure 11, We observe that SFG w/o ct is just as bad as the original model in stability for Credit dataset, which
validates the effectiveness of Lipschitz bound constraint for learning fair node representations stably. Furthermore, SFG
with ct&dro perform better than SFG w/o dro, indicating that the proposed DRO module needs to be used with Lipschitz
bound constraint, and it has played a great role in mitigating extremely unstable anomalies.

In summary, the Lipschitz module is to improve the overall stability, and the DRO module is to improve the stability of a
few abnormal epochs.

16

Stable Fair Graph Representation Learning with Lipschitz Constraint

D.2. Effect of the Lipschitz Constraint τ for Stability and Performance

We provide detailed training stability and performance for different the Lipschitz constraint τ on all datasets.

(a) Complete training accuracy curve on German (b) Training accuracy curve of the convergence phase on German

Figure 12. Stability of SFG on German. (a) visualizes complete the accuracy curve. (b) visualizes the accuracy curve in the convergence
phase.

Table 5. Detailed result of parameter τ sensitivity analysis for performance on German.

Dataset Metric SFG w/o ct τ = 2 τ = 5 τ = 20 τ = 50

German

Acc 70.00 70.80 70.00 70.40 69.60
AUC 71.81 70.60 70.29 69.18 66.34
∆DP 0 5.95 0 3.60 1.06
∆EO 0 3.68 0 0.21 1.79

In Figure 12, we plot the complete accuracy curve of FariVGNN and SFG with the Lipschitz constraint against epochs, and
the accuracy curve in the convergence phase. SFG with the Lipschitz constraint is significantly more stable than FairVGNN
on German dataset, and the best stability is achieved when the τ is in the range of 20-50. As τ decreases, the stability gains
diminish. As summarized in Table 5, in all ranges of τ , the accuracy is comparable to the original model, and the fairness is
slightly reduced.

(a) Complete training accuracy curve on Bail (b) Training accuracy curve of the convergence phase on Bail

Figure 13. Stability of SFG on Bail. (a) visualizes complete the accuracy curve. (b) visualizes the accuracy curve in the convergence
phase.

17

Stable Fair Graph Representation Learning with Lipschitz Constraint

Table 6. Detailed result of parameter τ sensitivity analysis for performance on Bail.

Dataset Metric SFG w/o ct τ = 1 τ = 2 τ = 4 τ = 6

Bail

Acc 89.43 89.26 90.36 89.34 89.09
AUC 92.23 93.94 94.21 93.46 92.81
∆DP 5.26 4.49 5.08 4.83 4.73
∆EO 4.21 2.55 1.96 1.06 1.25

In Figure 13, we plot the complete accuracy curve of FariVGNN and SFG with the Lipschitz constraint against epochs, and
the accuracy curve in the convergence phase. SFG with the Lipschitz constraint is significantly more stable than FairVGNN
on Bail dataset, and the best stability is achieved when the τ is in the range of 4-6. As τ changes, the stability is generally
unchanged. As summarized in Table 6, in all ranges of τ , both accuracy and fairness have been improved, especially ∆eo.

(a) Complete training accuracy curve on Credit (b) Training accuracy curve of the convergence phase on Credit

Figure 14. Stability of SFG on Credit. (a) visualizes complete the accuracy curve. (b) visualizes the accuracy curve in the convergence
phase.

Table 7. Detailed result of parameter τ sensitivity analysis for performance on Credit.

Dataset Metric SFG w/o ct τ = 1 τ = 2 τ = 4 τ = 6

Credit

Acc 80.35 80.03 80.19 79.83 80.29
AUC 74.37 72.09 74.07 73.85 73.59
∆DP 6.00 4.30 4.81 4.58 4.61
∆EO 3.48 1.61 2.63 1.95 1.94

In Figure 14, we plot the complete accuracy curve of FariVGNN and SFG with the Lipschitz constraint against epochs, and
the accuracy curve in the convergence phase. SFG with the Lipschitz constraint is significantly more stable than FairVGNN
on Credit dataset, and the best stability is achieved when the τ is in the range of 4-6. As τ changes, the stability is generally
unchanged. As summarized in Table 7, in all ranges of τ , both accuracy and fairness have been improved, especially ∆eo.

D.3. Effect of the DRO Objective αmin for Stability and Performance

We provide detailed training stability and performance for different hyper-parameter αmin on all datasets.

Table 8. Detailed result of parameter αmin sensitivity analysis for performance on German.

Dataset Metric SFG with ct αmin = 0.4 αmin = 0.5 αmin = 0.6

German

Acc 70.00 69.19 69.60 69.60
AUC 70.84 70.50 71.18 71.80
∆DP 0 1.26 1.06 1.06
∆EO 0 1.89 1.78 1.78

18

Stable Fair Graph Representation Learning with Lipschitz Constraint

Figure 15. Training accuracy curve of the convergence phase on German

In Figure 15, we plot the accuracy curve of SFG with different αmin in the convergence phase, and SFG is controlled by the
Lipschitz constraint(τ = 20). SFG has a positive effect on alleviating the stability of a few abnormal epochs, which may
be implemented by dropping some overfitting nodes in chasing fairness. The best stability is achieved when the αmin is
0.5, and 0.6 is an inappropriate value and the result is also bad. As summarized in Table 8, the accuracy is comparable to
SFG w/o ct, and the fairness is slightly reduced. In summary, the use of DRO objective can alleviate abnormal fluctuations
caused by very few epochs and make the model more stable. Notably, the anomalies in the last few epochs are likely due to
overfitting, a problem exacerbated by the exceptionally small size of the dataset.

Figure 16. Training accuracy curve of the convergence phase on Bail

19

Stable Fair Graph Representation Learning with Lipschitz Constraint

Table 9. Detailed result of parameter αmin sensitivity analysis for performance on Bail.

Dataset Metric SFG with ct αmin = 0.4 αmin = 0.5 αmin = 0.6

Bail

Acc 89.65 88.76 89.31 89.46
AUC 93.55 94.05 94.87 93.81
∆DP 4.49 1.26 4.20 4.73
∆EO 2.03 1.89 1.70 2.79

In Figure 16, we plot the accuracy curve of SFG with different αmin in the convergence phase, and SFG is controlled by
the Lipschitz constraint(τ = 4). SFG has a positive effect on alleviating the stability of a few abnormal epochs, and the
best stability is achieved when the αmin is in the range of 0.4-0.5. As summarized in Table 9, the accuracy and fairness
are comparable to SFG with ct, and even slightly improved when αmin is 0.5. In summary, the use of DRO objective can
alleviate abnormal fluctuations caused by very few epochs and make the model more stable.

Figure 17. Training accuracy curve of the convergence phase on Credit

Table 10. Detailed result of parameter αmin sensitivity analysis for performance on Credit.

Dataset Metric SFG with ct αmin = 0.4 αmin = 0.5 αmin = 0.6

Credit

Acc 80.32 80.53 80.36 80.62
AUC 73.71 73.50 73.64 73.87
∆DP 4.76 5.85 5.40 5.10
∆EO 2.16 3.02 2.73 2.59

In Figure 17, we plot the accuracy curve of SFG with different αmin in the convergence phase, and SFG is controlled by the
Lipschitz constraint(τ = 2). SFG has a positive effect on alleviating the stability of a few abnormal epochs, and the best
stability is achieved when the αmin is in the range of 0.4-0.5. As summarized in Table 10, the accuracy and fairness are
comparable to SFG with ct.

D.4. Accuracy Near the Optimal Model

We provide the accuracy near the optimal model on all datasets.

20

Stable Fair Graph Representation Learning with Lipschitz Constraint

Figure 18. Training accuracy near the optimal model

We observe that accuracy near the optimal model is stable in Figure 18, which validates the effectiveness of our proposed
model.

D.5. Model Implementation Details

Fairness-aware view generator aims to mask sensitive features by learning mask weight(gΘg) for each feature channel, and it
has a learnable sampling score si which denotes the probability of keeping channel i. To make the network differentiable,
we use the Gumbel-Softmax trick to approximate the categorical Bernoulli distribution. Therefore, the generated mask value
is:

pi = σ((log(
si

1− si
) + (g1i − g2i))/s), ∀i ∈ 1, . . . , d, (40)

where g1i , g
2
i ∼ Gumbel(0, 1), and σ is the sigmoid activation, and s is a parameter that controls the smoothness of samples.

Then, we could directly multiply the feature channelX:i by the mask weight pi to get the fair nodes features, i.e.,

X̃ = X ⊙ m, (41)

where m = [p0, p1, . . . , pd−1] is the learned mask.

In order to learn from both the topology structure and nodes features, we use 2-layer GraphSAGE as our encoder, i.e.,
GNN Encoder. In our work, we focus on constraining the weights of GNN Encoder to get a stable node representation. To
make encoder robust to different fair views, we employ a multi-view DRO objective to chase fairness.

The Classifier and Discriminator are designed to predict node labels and sensitive attributes, and both consist of a single-layer
MLP (dΘd

, cΘc). The objective of these two modules are BCE loss, can be expressed by:

Ld = −Evi∈V (Silog(S̃i) + (1− Si)log(1− S̃i)) (42)

and
Lc = −Evi∈V (yilog(ỹi) + (1− yi)log(1− ỹi)), (43)

where yi and Si denote the labels for nodes and sensitive attributes, respectively. H(L)
v = eΘe

(Gv,m) is learned embedding
of node v after generator and encoder. S̃i = dΘd

(H
(L)
i) is sensitive attribute prediction and ỹi = cΘc

(H
(L)
i) is the node

label prediction.

The goal of adversarial training is to learn fair view representation by generator and encoder, which masks as much
sensitive-relevant information as possible. This work focuses on optimizing the model using adversarial training while
also emphasizing fairness and utility. In other words, after encoding by the encoder, the stable representations should
consider both fairness and utility. The optimization objective of adversarial training can be expressed by:

max
Θd

Ld = Evi∈V (Silog(S̃i) + (1− Si)log(1− S̃i)), (44)

21

Stable Fair Graph Representation Learning with Lipschitz Constraint

and

min
Θg

Lg = Evi∈V (S̃i − 0.5)+ ∥ m − 1d ∥22, (45)

where m = gΘg
(X) is the mask weights of all channel generated by generator.

D.6. Weights Comparison Between FairVGNN and SFG

We list the absolute weight changes between two epochs in following table(both are uniformly rescaled to the range [0, 1]),
and the results reflect that our method can indeed limit the fluctuation range of the weights.

Table 11. Red box 1 in the weight patch

Model FairVGNN SFG
epoch optimal − 1 0.697 0.783 0.566 0.709 0.703 0.147 0.000 0.000 0.013 0.253

epoch optimal 0.760 0.846 0.714 0.737 0.623 0.120 0.000 0.000 0.000 0.267
absolute change 0.063 0.063 0.148 0.028 0.080 0.027 0.000 0.000 0.013 0.014

Table 12. Red box 2 in the weight patch

Model FairVGNN SFG
epoch optimal − 1 0.663 0.703 0.863 0.320 0.080 0.293

epoch optimal 0.754 0.777 0.790 0.293 0.093 0.307
absolute change 0.091 0.074 0.073 0.027 0.013 0.014

D.7. Baseline with Smaller Learning Rate

We added a baseline with a smaller learning rate(1e-4, FairVGNN), the three nearly unchanged weights in Figure 19
demonstrate that a smaller learning rate can cause the optimization process to get stuck at saddle points, preventing effective
learning of weights. Moreover, in the gradient descent algorithm(Su et al., 2022a; 2021a; 2022b; Zheng et al., 2023)
w = w0 − η∆w, large gradients can still lead to significant weight changes such as Figure 20. This is also the reason why
we propose the Lipschitz Constraint. Additionally, a smaller learning rate also reduces utility performance(e.g., 4.17% on
Credit) of baseline.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.1

0.0

0.1

0.2

0.3

W
ei

gh
t

Three Weights of Encoder Over Epochs

1-th weight from patch like Figure 5
2-th weight from patch like Figure 5
3-th weight from patch like Figure 5

Figure 19. Training weights with smaller learning rate

22

Stable Fair Graph Representation Learning with Lipschitz Constraint

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t/A

CC

Weight/ACC Over Epochs
Weight
ACC

Figure 20. Training accuracy/weights with smaller learning rate

D.8. The Consistent Performance

Table 13 demonstrates that increasing parameters(FairSAD’s encoder has four times the parameters of SFG) helps improve
performance on small dataset, which fails on large dataset such as Bail and Credit. When FairSAD uses the same number(1×)
of parameters as SFG on German, SFG outperforms FairSAD by 27% for AUC. The following table also demonstrates that
SFG outperforms FairSAD(2×) and FairSAD(3×), which uses two and three times the number of parameters, by 9.04% and
8.25%, respectively.

Table 13. Model Performance with Different Numbers of Parameters

Model AUC

SFG(1×) 69.38± 4.77
FairSAD(1×) 54.32± 2.55
FairSAD(2×) 63.63± 6.99
FairSAD(3×) 64.09± 3.19

23

