
Under review as submission to TMLR

NgIohTuned: a Highly Reproducible Black-box Optimization
Wizard

Anonymous authors
Paper under double-blind review

Abstract

Inspired by the observations in neuro-control and various reproducibility issues in black-box
optimization in the machine learning community, we revisit black-box optimization with
rigorous benchmarking in mind. We (i) compare real-world (RW) benchmarks with artifi-
cial ones, emphasizing the success of Differential Evolution, Particle Swarm Optimization,
and bet-and-run in the former case; (ii) introduce new artificial benchmarks, dubbed multi-
scale benchmarks, with a focus on scaling issues (where scale refers to the unknown distance
between the optimum and the origin), akin to real-world benchmarks such as those arising
in neural reinforcement learning; (iii) demonstrate the performance of quasi-opposite sam-
pling and of mathematical programming methods (Cobyla and direct search) on multi-scale
continuous benchmarks; (iv) showcase the robustness and performance of algorithms focus-
ing on a carefully chosen decreasing schedule of the mutation rate on discrete benchmarks;
(v) design novel continuous black-box optimization strategies combining optimization algo-
rithms with good scaling properties in the first phase, robust optimization techniques in
the intermediate phase, and methods with fast convergence in the final optimization phase.
Our methods are included in a public optimization wizard, available in two versions: NgIoh4
(which does not leverage information about the type of variables) and NgIohTuned (leverag-
ing all conclusions of the present paper, including choosing algorithms thanks to high-level
information on the real-world nature of a problem and/or its neuro-control nature and ap-
plying recent direct-search methods). They are integrated into a platform with complete
reproducibility on a large benchmarking suite.

1 Introduction

Black-box optimization is the optimization of functions on discrete or continuous domains without any
gradient or white-box information. Inspired by the Dagstuhl seminar 23251 Challenges in Benchmarking
Optimization Heuristics (July 2023), we develop additional benchmarks within the black-box optimization
platform Nevergrad (Rapin & Teytaud, 2024) (including problems from reinforcement learning, tuning for
machine learning, planning, etc.) and improve algorithms accordingly. The contributions of this paper are
twofold.

First, benchmarks investigation. After formalizing black-box optimization (BBO) benchmarks (Sec-
tion 4.1), Section 4.2 discusses the necessary diversity of benchmarking suites. Then, following (Meunier
et al., 2022), we observe that one can significantly alter the conclusions of a benchmark by changing the
distribution of the optima, in particular by scaling its variables (e.g., by placing them closer to zero or closer
to the boundary of the domain). The distribution of the optima, typically induced by the random shifts
used in benchmarking platforms, has a major impact on the experimental results. Section 4.2 illustrates this
issue using multi-scale benchmarks with results described in Section 5.1, thereby avoiding comparisons where
algorithms overfit to a specific scale. We also analyze key insights brought from real-world benchmarks, as
discussed in e.g., (Ungredda et al., 2022; Dagstuhl participants, 2023). Section 5.2 and Appendix G present
results in real-world cases within Nevergrad.

1

Under review as submission to TMLR

Secondly, algorithmic design exploration. Section 2.2 reviews algorithms that perform well on a
variety of multiscale benchmarks (discrete/continuous domains, synthetic/real-world scenarios). These ap-
proaches are integrated into a state-of-the-art optimization wizard (see Section 2) for black-box optimization
that improves over state-of-the-art algorithms on average on numerous benchmarks (results in Section 5 and
later): NgIoh4, which incorporates our improvements regarding multi-scale problems into the existing NGOpt
wizard (as detailed in Section 3), and NgIohTuned, which incorporates further algorithmic enhancements
(specifications in Section 3.1).

2 Background & Related Works

Black-box optimization (BBO) tasks arise in various components of AI, such as reinforcement learning,
hyperparameter tuning, and planning. The scale of a black-box optimization problem, which corresponds to
the distance between its optimal solution(s) and the origin, has a major impact on algorithmic performance.

2.1 Black-box optimization wizards

Scaling and mutation rates. Rahnamayan et al. (2007) focus on initializing population-based methods
for robustness to the scale in the continuous context. In the discrete case, Doerr et al. (2019); Einarsson et al.
(2019); Doerr et al. (2017b); Dang & Lehre (2016) are entirely based on scheduling the scale of mutations.
Methods focusing on a fixed schedule are particularly robust in the discrete setting, especially when compared
to adaptive methods (Kruisselbrink et al., 2011a), which have excellent results in some cases.

Black-box based optimization algorithms. In terms of continuous BBO methods, Differential Evolu-
tion (DE) (Storn & Price, 1997) and Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) are
well-known. Compared to CMA (Hansen & Ostermeier, 2003), the method focuses on rapidly approximat-
ing the appropriate scale and is well-suited for high-dimensional settings. In contrast, CMA is primarily
robust against conditioning and rotation challenges. Bayesian methods (Jones et al., 1998) and machine
learning-based methods are another branch of the state-of-the-art: among them, SMAC3 (Lindauer et al.,
2022) and HyperOpt (Bergstra et al., 2015) perform particularly well. Cobyla (Powell, 1994) comes from
the mathematical programming community and frequently performs well in low-budget cases (Raponi et al.,
2023). Sequential Quadratic Programming (SQP) is another well-known approach with an excellent local
convergence rate (Nocedal & Wright, 2006). Several direct-search methods are already included in Never-
grad, and we add a recent one from (Roberts & Royer, 2023). A summary of the other standard optimization
techniques considered in this paper is given in Appendix I.

Black-box optimization wizards. Recently, optimization wizards (inspired by algorithms from other
areas such as (Xu et al., 2008)) have become common. These tools combine various base algorithms, designed
to be immediately effective on a wide range of benchmarks without tuning, regardless of noise, parallelism,
computational budget, variable types, or number of objectives. Wizards typically rely on a diverse set of
static portfolio strategies (Liu et al., 2020; Meunier et al., 2022) and employ bet-and-run techniques (Weise
et al., 2019) We note that the best-performing method in the BBO challenge (AX-team, 2021) is a wizard
termed Squirrel (Awad et al., 2020) combining, among others, DE and SMAC3.

Black-box optimization platforms In terms of platforms, many libraries exist (e.g., (Johnson, 1994;
FacebookResearch, 2020; Virtanen et al., 2020)). Nevergrad (Rapin & Teytaud, 2024) imports these li-
braries and others. Concerning benchmarks/applications, the BBO Challenge (AX-team, 2021) (close to
real-world, with best performance obtained by a wizard including differential evolution in Awad et al. (2020)),
Keras (Chollet et al., 2015), scikit-learn (Pedregosa et al., 2011), COCO/BBOB (Hansen et al., 2009a) (arti-
ficial, best performance by CMA variants (Hansen & Ostermeier, 2003)), LSGO (Li et al., 2013), IOH (Doerr
et al., 2018), OpenAI Gym (Brockman et al., 2016) are well known. The benchmarks in the present paper
include them or some of their variants and many others, and, with our present work, including quasi-opposite
forms of DE, SQOPSO (Zhang et al., 2009), NgIoh wizards mentioned above, Carola algorithms (see Sec-
tion 2.2 for these algorithms) and new benchmarks including multi-scale benchmarks (Section 4.2).

2

Under review as submission to TMLR

2.2 Algorithms for multi-scale benchmarks

We highlight here only a few selected algorithms. A brief description of each algorithm used can be found
in Appendix I.

Opposite and quasi-opposite sampling. Rahnamayan et al. (2007) propose to initialize the population
in DE as follows: (i) randomly draw half the population independently identically distributed (as usual)
and (ii) for each point x in this half population, also add −x (opposite sampling) or −r × x (quasi-opposite
sampling, where r is chosen i.i.d. uniformly at random in the interval [0, 1]). A key advantage of the
quasi-opposite method is that the resulting population includes points with many different norms, which is
beneficial for multi-scale settings. We use quasi-opposite sampling in DE and PSO, with variants termed
QODE, QNDE, SPQODE, LQODE, SODE, QOTPDE, QOPSO, SQOPSO, fully described in Appendix C.
SQOPSODCMA is a chaining: it contains SQOPSO, followed by diagonal CMA for local convergence. We
observe good results, overall, for SQOPSO and various quasi-opposite tools (Section 5.3), in particular in
the real-world context (Section 5.2), including neuro-control (Section 5.2 and Appendix G.5).

Direct-search methods. New tools from the direct-search community have been added into the direct-
search part of Nevergrad, namely the Direct-search (DS) methods from (Roberts & Royer, 2023). These
methods are based on iteratively moving (polling) along fixed or varying directions. The moves are controlled
by means of a stepsize sequence, and are accepted if they reduce the function by any amount (simple decrease)
or a prescribed amount (sufficient decrease). The included methods are:

• DSbase: Method based on sufficient decrease and adaptive step size. At every iteration, polls along
all coordinate directions and their negatives.

• DSproba: Method based on sufficient decrease and adaptive step size. At every iteration, polls two
opposite random directions uniformly distributed on the unit sphere.

• DSsubspace: Method based on sufficient decrease and adaptive stepsize. At every iteration, polls
opposite Gaussian directions generated in a random subspace (default: 1D subspace).

• DS3p: Method based on simple decrease and predefined, decreasing step size sequence (α0/(k + 1)
at iteration k). At every iteration, the method polls opposite Gaussian directions.

DSproba and DSsubspace have analogies and differences with the (1 + 1) evolution strategy. DSproba is
randomized, whereas DSsubspace is not. Both accept an iterate only if it satisfies a sufficient decrease
condition (essentially, reducing the function value by an amount proportional to the square of the stepsize).
Opposite directions are used in DSproba/DSsubspace, which is crucial for the theoretical guarantees to hold.

We here test them on our multi-scale benchmarks (MS-BBOB and ZP-MS-BBOB) for which several known
algorithms have difficulties if they do not know the scale a priori. Results are shown in Figure 1.

Continuous multi-scale benchmarks. Cobyla is good when the scale of the optimum is unknown, as
shown by later results and by (Dufossé & Atamna, 2022; Raponi et al., 2023), and we have seen that quasi-
opposite sampling is designed for helping DE in that same context. Another solution for guessing the scaling
of the optimum is to assume that the scaling of the optimum x for different variables might be similar, i.e.,
log |xi| ≃ log |xj | for i ̸= j. Inspired by this observation, we propose RotatedTwoPointsDE, a variant of DE
using a 2-point crossover (Holland, 1975), with the possibility of moving the cut part to other variables. Thus,
more precisely, DE typically mixes the ith variable of an individual and the ith variable of another individual
and the child gets the result at the ith position (Algorithm 3). This happens for several indices i, but the ith

variable has no impact on the jth variable if j ̸= i. TwoPointsDE uses the two-points crossover, which has a
similar property: the difference with the classical DE is that the variables impacted by the crossover are in
a segment of consecutive variables rather than randomly distributed in the list of variables. Both DE and
TwoPointsDE find scales by working somehow separately on variables. RotatedTwoPointsDE can move this
segment of consecutive variables, and therefore it might combine the ith variable of an individual and the
ith variable of another individual and the child gets the result at the jth position where j = i + k (modulo

3

Under review as submission to TMLR

Figure 1: NgIohTuned and DSproba tested on continuous multi-scale benchmarks (average nor-
malized loss as in Section 4.3). DSproba (Roberts & Royer, 2023) performs well on MS-BBOB and ZP-MS-
BBOB compared to all base algorithms. Carola3 is good, though weaker than DSproba for low budgets:
compared to DSproba, it can be used also in the parallel case. NgIohTuned, which is a wizard using all
improvements described in the present paper (DSproba, Carola3, and leveraging high-level information on
the nature of the problem for switching to quasi-opposite initializations and bet-and-run in neuro-control and
other real-world problems), outperforms all methods on all budgets, including the previous wizard NGOpt.

Algorithm 1 Three variants of Carola. MetaModel refers to the MetaModel implementation in (Rapin &
Teytaud, 2024), based on quadratic approximations built on the best points so far.
Carola1:
Require: Budget b

Apply Cobyla with budget
b/2.
Apply CMA with Meta-
Model with budget b/2 and
initial point the best point
so far.

Carola2:
Require: Budget b

Fast approximation: apply Cobyla
with budget b/3.
Robust local search: Apply CMA with
MetaModel with budget b/3 and initial
point the best point so far.
Fast local search: Apply SQP with ini-
tial point the best point so far and budget
b/3.

Carola3:
Require: Budget b, number

w of workers
Apply w copies of Carola2
in parallel, with budget b/w

the number of variables) for some k ̸= 0. The assumption behind RotatedTwoPointsDE is that the scale is
not totally different, at least in terms of order of magnitude, for different variables: we can carry variables
from a position to another. Another variant, GeneticDE, uses RotatedTwoPointsDE during 200 candidate
generations for finding the correct scale, before switching to TwoPointsDE.

The scaling of mutations in the context of discrete optimization. In discrete optimization, the good
old 1/d mutation consists in randomly mutating each variable with probability 1/d in dimension d. Typically,
a single variable is mutated; it rarely includes more than two variables. Some algorithms, in particular after
the good results described in (Dang & Lehre, 2016), use a fixed random distribution of mutation rates.
The adaptation of FastGA (Doerr et al., 2017b) in Nevergrad consists in randomly drawing a probability p
(instead of using p = 1/d) in [0, 1

2] (in [0, 1], if the arity is greater than two). DiscreteLenglerOnePlusOne,
inspired by (Einarsson et al., 2019), consists in using a schedule. In this case, the probability p decreases
during the optimization run.

3 NgIoh

From observations on IOH (Doerr et al., 2018), we propose some new principles for the design of BBO
wizards. NGOpt (Nevergrad Optimizer) is the current wizard of Nevergrad, and NGOptRW is another
wizard, specialized on real-world benchmarks, doing a bet-and-run between DE, PSO and NGOpt during

4

Under review as submission to TMLR

Figure 2: Various methods (86 algorithms run; only the best 12 ones are presented, and the single worst)
on the Bonnans (discrete) function (average normalized loss as in Section 4.3). The softmax representation
(i.e., converting the problem to a continuous one, as optionally proposed in Nevergrad) performs poorly here
compared to the standard discrete representation (termed TransitionChoice in Nevergrad). The Discrete-
LenglerOnePlusOne method (and its variant with modified parameters, with similar names) performs well
on Bonnans functions (Bonnans et al., 2023).

33% of the budget before switching to the best of them (unless the benchmark is noisy or discrete, in which
case it simply uses NGOpt).

First, whereas it is classical (e.g., Memetic algorithms (Moscato, 1989)) to run evolution strategies first and
local methods afterwards (as Nevergrad’s NGOpt frequently does), we observe that Cobyla is excellent for
low budget and multi-scale problems and looks like a natural candidate for a warmup stage before other
optimization tools. Therefore, we proposed Carola (Cost-effective Asymptotic Randomized Optimization
with Limited Access), a method running Cobyla first and then other methods, as presented in Algorithm 1.

Second, our insights are gathered in a new BBO wizard, which we dub NgIoh. Ng stands for Nevergrad (Rapin
& Teytaud, 2024), while Ioh stands for IOH (Doerr et al., 2018). NgIoh differs from NgOpt by applying
Carola methods instead of CMA + metamodels in sequential cases in which NGOpt was using such a variant
of CMA. NgIoh4 is basically the same as NGOpt (Nevergrad’s wizard), except that it switches to Carola2
depending on some rules (see Algorithm 2). The constants in the rules were chosen based on the observations
described in (Doerr et al., 2018). The different variants (performing similarly) are available in (Rapin &
Teytaud, 2024). NgIoh4 performs slightly better overall, so we keep it as a reference in our experiments.
More details about NgIoh variants can be found in Appendix I.

Algorithm 2 NgIoh4, combining NGOpt and ideas extracted from results in IOH (Doerr et al., 2018).
Require: Budget b, dimension d, domain D, number w of workers.

if w = 1 and D is continuous and the problem is deterministic and (d < 100 and 20d ≤ b ≤ 1000d) or
(d < 50 and b < 1000d). then

Apply Carola2.
else

Apply NGOpt.
end if

Ablation for Carola4. Carola3 is an adaptation of Carola2 for the parallel case, so let us focus on the
comparison between Carola1, Carola2, and algorithms on which they are based, namely Cobyla, CMA and
MetaModel. Essentially, our results in Figure 3 validate Carola2: we refer to Appendix A for more variants
and their results.

5

Under review as submission to TMLR

Ablation for NgIoh variants. We tested NgIoh4 and variants (Wiz, NgIoh2, NgIoh3, NgIoh5, NgIoh6,
NgIoh and others): they are defined in Appendix I and compared in Figure 3 and Appendix F: basically, we
validate NgIoh4.

3.1 NgIohTuned

NgIoh4 is important for validating Carola and its warmup by Cobyla, with all other parts of NgOpt being
equal. However, it makes sense, once this validation is made, to switch to an optimized wizard. So, we also
define the NgIohTuned wizard (more details in Appendix H). NgIohTuned is similar to NgIoh4, but leverages
ideas derived from external benchmarks (Appendix G) and recent papers:

• DSproba is a promising direct-search method for low budgets, more recent than the direct-search
methods that were available in Nevergrad when NGOpt was built. Given results in Figure 1, NgIo-
hTuned uses DSproba instead of CMA in sequential continuous cases when the budget is lower than
the dimension.

• Based on the results described in Figure 24 (Appendix H), we observe that for large budgets, we
might afford large population sizes which improve the robustness: so NgIohTuned uses VLPCMA
(i.e., CMA with population size multiplied by 100) instead of CMA when the budget is greater than
2000 times the dimension.

• The parameters of the chaining in Carola are tuned: 10% for Cobyla, 80% for the CMA with
MetaModel, 10% for the final convergence with SQP, instead of 1/3 for each.

• Given the results on real-world benchmarks in Appendix G, NgIohTuned leverages additional infor-
mation provided by the user (if any) for switching to different algorithms: it switches to SQOPSO
(for deterministic neural control) and to NGOptRW (for other deterministic continuous real-world
problems).

4 Experimental Setup

Motivated by recent warnings such as Kapoor & Narayanan (2023); Li & Talwalkar (2019), we first take a
moment in Section 4.1 to reflect on reproducibility. Then, we present the selected benchmark suites (Sec-
tion 4.2) and the algorithms.

4.1 Reproducibility

Reproducible benchmarking is essential for scientific development, yet the machine learning community often
faces poor reproducibility practice, especially when dealing with black-box optimization (see discussion
in (Swan et al., 2022; Bäck et al., 2023)). A discussion of poor reproducibility in deep learning-assisted
optimization is available in (Markov, 2023); see also (Liu et al., 2021; Li & Talwalkar, 2019; Pham et al.,
2018; Real et al., 2019). These works show how some simple methods might, in spite of promising claims,
outperform black-box optimization methods backed by intensive GPU-based machine learning. In addition,
Kapoor & Narayanan (2023); Haibe-Kains et al. (2020) mention various examples of results in the machine
learning community that are difficult to reproduce. Meunier et al. (2022) mentions misleading results when
initialization issues alter baselines in some papers.

We propose a code fully available in open access. A PDF with all experimental results is available at tinyurl.
com/dagstuhloid. Though our focus is on the ability to rerun everything, the entire data is available
at tinyurl.com/bigdagstuhloid1. As these URLs are automatically updated, they might differ thanks to
additional work by contributors and re-runs, so upon acceptance of this submission, a “frozen” version of
code and data will be store in a permanent storage facilities such as Zenodo. Similarly, packages version
(e.g., PyPI) can have an impact on the results, and dependency upon a specific version of a given package is
detrimental to reproducibility. Thus, following practice in Nevergrad, our code requires a minimum version

1Warning: > 300MB, representing data from more than 20 million runs.

6

tinyurl.com/dagstuhloid
tinyurl.com/dagstuhloid
tinyurl.com/bigdagstuhloid

Under review as submission to TMLR

number for each package rather than a fixed version number. Further details about reproducibility of our
results are mentioned in Appendix B.

4.2 Benchmark Suites (a.k.a. Problem Collections)

We aim to develop a diverse set of benchmark suites that encompass a wide range of problem settings
encountered in practice. This includes diversity regarding budget, performance measure, distribution of the
optima, among others. Table 1 summarizes the diversity of our benchmarks and their parameters. For each
benchmark suite, the detailed setup is described on the GitHub page at tinyurl.com/2p8xcdrb.

Budgets and diversity. Ungredda et al. (2022); Dagstuhl participants (2023) showed that cases with
budget with more than 100 times the dimension (which is frequent in artificial benchmarks) might be the
exception rather than the norm. In real-world applications, we may even face settings in which the total
number of function evaluations may not exceed a fraction of the dimension. We therefore consider a large
variety of different scalings of the budget, including cases with budget far lower than the dimension. More
generally, Appendix D shows the diversity of the benchmarks used in our results.

Scaling and distribution of optima in continuous domains: multi-scale problems. Although the
key issue of the optimum at zero is solved by randomizing its position (Kůdela, 2022; 2023), the way the
optimum is randomly drawn brings new issues. Throughout the discussion, we assume that the center of the
domain is zero. This is not the case in all benchmarks and assumed without loss of generality: this is just a
simplification for shortening equations, so that we can use −x for symmetries instead of 2c−x with c being the
center, and ||x|| instead of ||x − c||. We observe that scaling is an important issue in benchmarks. Typically,
in real-world scenarios, we do not know in advance the norm of the optimum (Kumar, 2017): in particular,
initializing different algorithms with different scales (and not the best one for baselines) makes conclusions
unreliable, as pointed out in Meunier et al. (2022). Assuming that the optimum has all coordinates randomly
independently drawn with center zero implies that the squared norm of the optimum is, nearly always, close to
the sum of variances: this is the case in many artificial benchmarks. Consequently, it reduces the generality of
results: conclusions drawn on such benchmarks are valid essentially on problems for which there is a nearly
constant norm of the optimum. To address these issues and drawing inspiration from various real-world
benchmarks (Cotton, 2020a;b; Raponi et al., 2023), we propose the following new artificial benchmarks:

Different distributions of the optimum: MS-BBOB. MS-BBOB is quite similar to BBOB (Hansen
et al., 2009b) or YABBOB (Rapin & Teytaud, 2024). However, MS-BBOB (multi-scale BBO benchmark), has
different scales for the distribution of the optima. This is done by introducing a scaling factor τ which varies
in {0.01, 0.1, 1.0, 10.0}. This scaling factor is applied to the random drawing of the optima. For example,
in some benchmarks, Nevergrad uses a normal random variable as a shift for choosing the optimum. Thus,
this random variable is multiplied by τ .

Zero-penalization: ZP-MS-BBOB. Many benchmarks, including our benchmarks in MS-BBOB, are
symmetrical w.r.t. zero. The optimum might be translated, but that translation has zero mean. This special
role of the center might imply that the neighborhood of zero provides too much information. Actually, many
real-world problems have misleading values close to zero, in particular in control or neuro-control (e.g., for
neuro-control the control is just zero if all weights in a layer are zero). Therefore, we consider zero-penalized
problems: this means we add a penalty close to the optimum (which changes the actual optimum), so that
the shape of the objective function close to zero cannot tell the algorithm where is the optimum. This variant
is called ZP-MS-BBOB (zero-penalized MS-BBOB).

Real-world benchmarks. We use the suffix “(RW)” to denote real-world benchmark problem. Note that
the definition of “real-world” is not so simple. All experiments are entirely in silico, and in some cases the
model has been simplified. RW thus means that we consider the benchmark as sufficiently real-world for
being tagged as such. Our experiments include neuro-control with OpenAI Gym (Brockman et al., 2016),
policy optimization with Aquacrop (Raes et al., 2009), PCSE (de Wit, 2021), and hyperparameter tuning
with Keras (Chollet et al., 2015) and scikit-learn (Pedregosa et al., 2011). Note that an additional real-world

7

tinyurl.com/2p8xcdrb

Under review as submission to TMLR

benchmarking is performed in Appendix G, for checking the validity of our conclusions on completely distinct
problems outside Nevergrad.

4.3 Performance criteria

For each benchmark, we consider two figures. First, the Normalized simple regret figure. A convergence
curve, with the budget on the x-axis and the average (over all budgets) normalized (linearly, to [0, 1]) loss.
Note that some benchmarks do not have the same functions for the different values of the budget. Therefore,
we might have a rugged curve, not monotonous. This is even more the case for wizards such as NGOpt
or NGOptRW, which make decisions based on the budget: they might make a bad choice for some values
of the budget, leading to irregular curves. Curves are named with (i) the algorithm name (ii) the average
normalized loss for the maximum budget of the experiment, and (iii) the average normalized loss for the
penultimate budget of the experiment. The point of the score for the penultimate budget is to check the
stability between the penultimate and the last budget.

Second, in appendix only, the Frequency of winning figure. A heatmap, showing the frequency fm,m′ at
which a method m (row) outperforms on average (over the different problems and replicas) another method
m′(column). Frequencies are computed over all instances and all budgets. Methods are then ordered by the
average scorem of these frequencies fm,m′ over all other methods m′. The columns show the names of the
methods, appended with the number of settings they were able to tackle (for example, some methods have
no parallel version and therefore do not run on all settings).

The complete archive (see links in Appendix B) shows many competence maps. Given the hyperparameters
of a benchmark (e.g., dimension, budget, level of noise, among others), the competence maps in the full
archive show, for a given pair of hyperparameter values, which algorithms perform the best on average.

5 Experimental Results

We believe that Section 4.2 points out an important and generic issue for improving BBO benchmarks: so,
Section 5.1 presents multi-scale continuous benchmarks, added inside Nevergrad. Section 5.2 presents the
results on real-world benchmarks: they illustrate the gaps between real-world and artificial benchmarks.
Then, Section 5.3 validates our wizards on all benchmarks.

The appendix contains additional figures for a more extensive view of our results, and detailed data can
be found in the automatically generated tinyurl.com/dagstuhloid. All our code is merged in Never-
grad (Rapin & Teytaud, 2024), and tinyurl.com/2p8xcdrb contains a description of all benchmarks inte-
grated in Nevergrad (previous benchmarks and ours).

5.1 Multi-scale BBO benchmarks: dealing with the scaling issues, and validating Carola and NgIoh

In the case of continuous optimization, we present new benchmarks, adapted from YABBOB (Rapin &
Teytaud, 2024) using comments from Section 4.2. While CMA variants dominate in BBOB (Hansen et al.,
2009a) (small scale, large budget, focus on frequency of solving with a given precision) and DE variants
dominate in LSGO (Li et al., 2013) (larger scale, groups of variables), we propose a benchmark close to
BBOB or YABBOB, but with a specific effort to not make the scale of the norm of the optimum to be
known in advance (as detailed in Section 4.2). The principle of our proposed and open-sourced multi-
scale BBOB (MS-BBOB) benchmark is that it contains four different scales (0.01, 0.1, 1.0, 10.0), and the
algorithms are not informed of which scale is used for each instance. We also apply the zero-penalization,
as discussed in Section 4.2. The resulting benchmark is termed ZP-MS-BBOB.

Experiments are presented in Figure 3. The best methods are all based on Carola (Section 3), on NgIoh
(which introduces Carola inside NGOpt), or on quasi-opposite sampling. We conclude that the Carola
method (using Cobyla first) and quasi-opposite samplings are both good for adapting a method to the right
scaling of the variables. Carola2 is the best of the Carola variants for most budgets by a small margin
(Figure 3, and Figure 18 in appendix). Quasi-opposite PSO variants perform well in these benchmarks,
whereas it does not always perform well on non-multi-scale benchmarks: this coincides with the results

8

tinyurl.com/dagstuhloid
tinyurl.com/2p8xcdrb

Under review as submission to TMLR

Figure 3: Comparing Carola variants and NgIoh variants (except NgIohTuned, later) on multi-
scale benchmarks (average normalized loss as in Section 4.3). The best performing methods for MS-BBOB
(left) and for ZP-MS-BBOB (right) for normalized regret. Both: we include the 12 best methods and (for
reference) the worst: NGOpt and CMA are not in the 12 best, e.g., on the right NGOpt is ranked 15th and
CMA is ranked 49th (out of 58 methods: more details in Figure 18, and more complete results including
NgIohTuned in Figure 17, and an ablation in Figure 6). The good performances of Carola and NgIoh variants
(including Wiz, also based on Carola2) are visible in both.

described in (Raponi et al., 2023), and it suggests that PSO is less robust to rotation but good for multi-
scale problems. Appendix H.1 presents additional comparative results quantifying how much our tools
dedicated to multi-scale problems work better than previous tools on multi-scale benchmarks.

Regression: validating NgIoh variants in non multi-scale benchmark. Figure 4 also shows that we
do not deteriorate the performance too much on YABBOB (which does not have a multi-scaling) and Figure 5
shows that we improve results on the complete family of benchmarks (in particular with NgIohTuned, right
of Figure 5). For additional regression testing on non multi-scale benchmarks:

• Figures 7 and 8 in the appendix present outcomes for various YABBOB variants in Nevergrad.

• Appendix H.3 confirms our results on COCO/BBOB benchmarks.

• Moreover, Section 5.3 demonstrates that, among the extensive family of benchmarks in Nevergrad,
NgIoh4 outperforms NGOpt.

These results indicate that the results are not deteriorated when compared to NGOpt.

9

Under review as submission to TMLR

Figure 4: YABBOB, original benchmark (average normalized loss as in Section 4.3): our codes are less
impressive on this initial benchmark not equipped with multi-scaling, but they still perform well. In Fig-
ure 5 we observe that on average on many benchmarks NgIoh4 outperforms NGOpt (whereas it just differs
by integrating Cobyla as a warmup in Carola methods). We also observe in Figure 5 that NgIohTuned
(which, compared to NgIoh4 which only leverages the multi-scale part of the present work, leverages all our
conclusions, including taking into account the real-world nature and/or neuro-control nature of problems)
outperforms all other methods by a bigger margin.

5.2 Real-world benchmarking in Nevergrad: successes of DE, PSO, bet-and-run, quasi-opposite
sampling

We present in Figure 5 (left) the number of times each algorithm was ranked best among the list of real-
world benchmarks in Nevergrad. Other real-world tasks (external to the Nevergrad benchmarks) are available
in Appendix G and confirm our conclusions on these independent benchmarks.

For the real-world benchmarks of Nevergrad, we note that PSO and DE variants (in particular those with
quasi-opposite sampling) perform better than in artificial benchmarks. We also note that NGOptRW, de-
signed by adapting NGOpt for real-world instances by bet-and-run (Weise et al., 2019) of PSO/DE/NGOpt,
performs very well. NGOptRW runs these three algorithms for one third of the budget, and keep the best
of them for the rest. It vastly outperforms NGOpt and all others on RW benchmarks, though Carola3 (the
possibly parallel adaptation of Carola2) is not bad.

5.3 Statistics over all Nevergrad benchmarks: validating NgIoh and NgIohTuned

Comparison without knowing the type of problems and the type of variables In Figure 5
(middle), we consider the number of times each method was ranked first when we add in Nevergrad solely our
methods designed for multi-scale benchmarks, namely Carola and NgIoh (excluding NgIohTuned). NgIoh4
performs best with 10 times the first position, with a clear gap specifically for problems such that the scale
of the optimum cannot be known in advance, i.e., multi-scale benchmarks (as detailed in Section 5.1). As
an ablation, we build several variants, which perform similarly: NgIoh4 performs slightly better than or
equivalently to other NgIoh variants (NgIoh5, NgIoh6, Wiz) and outperforms NGOpt: there is a domination
of NgIoh variants. We note than due to many artificial benchmarks, NGOpt is here better than NGOptRW.
NgIoh4 is also the best for the number of times it is ranked in the top 2 and for the number of times it is
ranked in the top 3: the full details are reported in Appendix E. NgIoh4 performs even better if we remove
the variants Wiz, NgIoh6, and NgIoh5 (documented in the codebase (Rapin & Teytaud, 2024)) from the
statistics because they are quite similar.

When we allow algorithms to use all available information. When we allow algorithms to use
the information “is real-world” or “is neuro-control” (Figure 5, right), NgIohTuned outperforms all other

10

Under review as submission to TMLR

Figure 5: Statistics aggregated over Nevergrad benchmarks. Left, real-world: number of times each
algorithm is ranked best, on the real-world part of the Nevergrad benchmarks (before adding NgIohTuned):
NGOptRW clearly dominates, quasi-opposite tools are good, and NGOpt disappears: this validates the
choices made by NgIohTuned in real-world cases. Middle, all benchmarks, no information on the
type of problem: number of times each algorithm is ranked best (limited to algorithms ranked 1st at
least 5 times), in the complete Nevergrad benchmarks, without including algorithms (such as NgIohTuned)
using high-level information: NgIoh4 performs best. Right, all benchmarks, full information: number
of times each algorithm is ranked best in the complete Nevergrad benchmarks when we remove Carola
algorithms and NgIoh4 and just compare our main tool NgIohTuned (allowed to use information on the type
of problems) to the previous methods: NgIohTuned dominates.

methods. This shows that such prior knowledge is relevant for a wizard. More statistics confirm this
superiority in appendix.

5.4 Discrete benchmarks in Nevergrad

Our work essentially impacts the continuous optimization benchmarks. However, we present results asso-
ciated to discrete benchmarks as depicted in Section 2.2. We observe good results for DiscreteLenglerOne-
PlusOne, for example for the Bonnans benchmark (Bonnans et al., 2023) (Figure 2), which is completely
different from the functions used for testing and designing DiscreteLenglerOnePlusOne that is mathemati-
cally derived on simpler functions. Results of DiscreteLenglerOnePlusOne are also good on InstrumDiscrete,
SequentialInstrumDiscrete, and PBOReduced problems. In terms of ablation and robustness, we observe
that most of the variants of DiscreteLenglerOnePlusOne with perturbed hyperparameters also perform well.

6 Discussions

In a reproducibility crisis, designing vast benchmarks that identify scaling issues is critical, and optimization
wizards are a tool for aggregating the knowledge of the community in a single code.

Multi-scale benchmarks. We note that in both continuous and discrete benchmarks, the scale is impor-
tant, even more specifically in the black-box case. For the continuous case, Figure 3 and Figure 6 and global
statistics in Section 5.3 validate our approach (Cobyla as a warm-up step before other tools, or quasi-opposite
sampling, or modern direct-search methods in the sequential case) for multi-scale benchmarks.

In spite of (actually, even because of) the random shift method, many continuous benchmarks
have roughly the same norm of the optimum for all instances leading to a poor evaluation of
the “scaling” properties of the algorithms (in the sense: being robust to different scales of the
distance to the optimum). If we define the position of optima by e.g., a multivariate normal distribution
with mean zero and identity covariance matrix (or more generally, independent coordinates with all roughly
the same variance, so that variants of the central limit theorem can be applied), then in large dimension
the optimum has, almost always, a norm scaling as

√
dimension (see Section 4.2). This is not observed

in real-world benchmarks, hence the great real-world performance of the methods above (quasi-opposite
sampling) which tackle such issues. We advocate MS-BBOB or ZP-MS-BBOB for designing continuous
artificial benchmarks close to scaling issues found in the real-world: their results are closer to real-world
results (Section 5.2) than other artificial continuous benchmarks in the sense that quasi-opposite sampling

11

Under review as submission to TMLR

or a warm-up by Cobyla are helpful in both cases. More precisely, comparing Figure 5 (left, real-world)
and Figure 3 (multi-scale): in both cases, the methods based on quasi-opposite sampling and warmup by
Cobyla (such as Carola and NgIoh variants) perform well, though we also note independently (see Reality
Gap below) good results for DE and PSO and their combination into NGOptRW in real-world settings.

In the discrete case, the best methods are frequently based on Lengler (Einarsson et al., 2019), which
is based on a predefined schedule of mutation scales. This schedule differs from the classical 1/d mutation,
in particular in early stages. We note that the mathematically derived Lengler method outperforms some
empirically handcrafted methods in Nevergrad (with “BSO” in the name) based on the same principle of a
decreasing rate, and many methods with adaptive mutation rates. It also frequently outperforms methods
such as (Doerr et al., 2017b; Dang & Lehre, 2016), which use a fixed probability distribution of the mutation
rates. We see the chaining of methods with different regimes in continuous domains as analogous to the
predetermined schedule of (Einarsson et al., 2019) in the discrete case. In any case, both approaches perform
well.

Quasi-opposite sampling. An unexpected result of our multi-scale work is the good performance of quasi-
opposite sampling (Rahnamayan et al., 2007) (see QODE, QNDE, QOPSO, SQOPSO in Section 5.3). We
adapted it from DE to PSO (as (Zhang et al., 2009)), with SQOPSO using, for each particle p with speed
v, another particle with position −r × p and speed −r × v (see Section 2.2). Equipped with quasi-opposite
sampling, DE and PSO perform quite well in the real-world part of our benchmarking suite (Section 5.2
and Appendix G), with particularly good results of SQOPSO in the case of neuro-controllers for OpenAI
Gym (confirmed in Figure 20). A posteriori, this is consistent with the importance of scale.

Optimization wizards. As in SAT competitions and as discussed in the Dagstuhl seminar (Hoos, 2023), we
observe excellent results for wizards. All methods performing well on a wide range of benchmarks (without
tuning for each benchmark separately) are wizards. NgIoh4 is based on NGOpt, a complex handcrafted
wizard based on experimental data, and it adds insights related to multi-scaling from the present paper. It
performs well on many benchmarks (Section 5.3). We see in the detailed logs that (similarly to NGOpt)
it uses CMA, DE, PSO, Holland crossover, bandit methods for handling noise, discrete (1 + 1) methods
with mutation rates schedules, meta-models, Cobyla, multi-objective adaptations of DE, the simple (1 + 1)
evolution strategy with one-fifth rule (Rechenberg, 1973) in some high-dimensional contexts, bet-and-run,
and others. NgIohTuned shows that NgIoh can still be improved by importing ideas from NGOptRW or
quasi-opposite sampling, or by tuning its rules in favor of Carola2 or Carola3 in more general cases, and
by incorporating DSproba instead of CMA in the sequential low-budget case. Appendix H.3 confirms that
NgIoh4 and other wizards, besides outperforming NGOpt and non-wizard methods on many Nevergrad
benchmarks, also outperform them on BBOB/COCO. NgIohTuned, using high-level information on the type
of problem and the types of variables, outperforms all other wizards and aggregates in a single code all the
conclusions in the present paper.

Low-budget optimization (LBO), and first part of a chaining in continuous domains. SMAC3
got better results than other Bayesian Optimization methods in many of our LBO experiments. Bayesian
Optimization methods are often limited to low budget / low dimension contexts, and a strong competitor for
LBO is Cobyla (Dufossé & Atamna, 2022; Raponi et al., 2023) which is computationally fast and frequently
better even relatively to the number of iterations. Therefore, we propose to use Cobyla as a warm-up
before other methods: it is good at understanding the global shape of a problem (Sections 3 and 5.1).
Carola2 is a chaining of 3 stages: Cobyla for a fast first approximation, CMA with MetaModel for a robust
optimization, and SQP for a final fast local search. Carola2 performs very well as a component of NgIoh4,
and its counterpart Carola3 (compatible with parallel settings) performs well in many real-world benchmarks
(Section 5.2). Chaining was already present in (Rapin & Teytaud, 2024), for both: (a) the classical fast
local convergence at the end in many cases, and also (b) for noisy optimization, with a classical algorithm
(not taking care of noise) as a first step before switching to a real noisy optimization method in the wizard
of Meunier et al. (2022), but application of a mathematical programming algorithm as a warmup is rarer.
Appendix H.3 shows that it is also valid for the BBOB/COCO benchmarks.

Reality gap. The gap between real world and artificial benchmarks is still large, as shown by the different
best algorithms in real-world vs artificial contexts. In particular, in the continuous context, NGOpt/NgIoh4

12

Under review as submission to TMLR

dominate the artificial benchmarks whereas a bet-and-run (termed NGOptRW) of DE, PSO, and NGOpt is
better in the real-world context. Also, quasi-opposite sampling appears to be great for the real-world context,
more than for artificial benchmarks based on random shifts. Random shifts with all components of the shift
being independent (or other methods than random shifts provided that many coordinates are independent
and have roughly the same variance), lead to nearly the same norm of the optimum for all replicas. Our
zero-penalized and multi-scale variants of BBO benchmarks, described in Section 5.1, do not suffer from
the central limit theorem which makes the optimum to have always approximately the same norm, thanks
to the random factor applied to all coordinates. They are therefore a step against the reality gap and we
plan to add more of such benchmarks. Another important point in terms of bridging the reality gap is that
including cases with budget far lower than the dimension is also essential (Ungredda et al., 2022).

An element related to the reality gap is that in most works on wizards, and in our proposed NgIoh4, the algo-
rithm does not use information such that “this problem is real world” or “these variables are the weights of a
neural net”. Using such information is feasible thanks to the vast empirical results, and NgIohTuned leverages
this information (Figure 5, right, and Appendix H). We note that in (AX-team, 2021; Awad et al., 2020),
the best performing method was using the names of variables for choosing between the different options.
Appendix H.2 presents results on real-world benchmarks with more details, confirming the gap between the
global statistics (Section 5.3, dominated by NgIoh4) and the real world case (Section 5.2 and Appendix G,
dominated by NgOptRW). The algorithm NgIohTuned (the only one among our methods which uses high
level information about the problem provided by the user, such as “neuro-control” or “real-world”), modified
for switching to NGOptRW in the real world case and to SQOPSO in the neuro-control case, performs best
overall (Figure 5 (right) and Appendix H).

Validating NgIohTuned. We see in Figure 5 (right) that NgIohTuned (combining, by design, NgIoh4 in
artificial benchmarks and NGOptRW in the real-world case and SQOPSO for neuro-control) outperforms
NGOpt and all previous algorithms. Details: SODE, SQOPSO, QODE, QOPSO are defined in Section 2.2
and Appendix C. LargeCMA is CMA with greater initial variance. BAR is a bet-and-run of the (1 + 1)
evolution strategy and DiagonalCMA and OpoDE, where OpoDE runs the (1 + 1) strategy with one-fifth
rule during half the budget followed by differential evolution.

Good benchmarks exist, with a lot of diversity (including real-world and artificial, budget
≫ dimension and budget ≪ dimension, with and without noise, with applications from com-
pletely different fields, see Table 1): they should be used, in particular in machine learning
papers. Reproducibility is a growing concern in machine learning (Kapoor & Narayanan, 2023), specifically
in BBO (Markov, 2023): we confirm a necessary special emphasis on scaling discussed in (Meunier et al.,
2022). In spite of efforts in the 2000s for creating better benchmarks, benchmarks with optimum at zero,
or ad-hoc experiments with a heavily tuned method with parameters optimized for each benchmark sepa-
rately, or with completely different initialization distributions for the baselines, are still published in many
conferences.

7 Conclusions

We propose multi-scale continuous benchmarks, such as our MS-BBOB. They have the property that the
distance between the center and the optimum significantly varies over the instances. We note the excellent
performance of DE and PSO and bet-and-run on many real-world problems, with excellent results of quasi-
opposite sampling on neuro-control problems. These two conclusions are used for deriving NgIohTuned,
a black-box optimization wizard performing well on many benchmarks, in Nevergrad, in the wild, and in
BBOB/COCO. All benchmarks are automatized and integrated into an open source benchmarking platform.

References
Noor Awad, Gresa Shala, Difan Deng, Neeratyoy Mallik, Matthias Feurer, Katharina Eggensperger, André

Biedenkapp, Diederick Vermetten, Hao Wang, Carola Doerr, Marius Lindauer, and Frank Hutter. Squirrel:
A switching hyperparameter optimizer. arXiv:2012.08180, 2020.

AX-team. Black-box optimization challenge. bbochallenge.com/altleaderboard, 2021.

13

bbochallenge.com/altleaderboard

Under review as submission to TMLR

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a Python library
for model selection and hyperparameter optimization. Computational Science and Discovery, 8(1):014008,
2015.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509, 2020.

J Frédéric Bonnans, Kang Liu, Nadia Oudjane, Laurent Pfeiffer, and Cheng Wan. Large-scale nonconvex
optimization: randomization, gap estimation, and numerical resolution. SIAM Journal on Optimization,
33(4):3083–3113, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

Thomas H. W. Bäck, Anna V. Kononova, Bas van Stein, Hao Wang, Kirill A. Antonov, Roman T. Kalkreuth,
Jacob de Nobel, Diederick Vermetten, Roy de Winter, and Furong Ye. Evolutionary Algorithms for
Parameter Optimization–Thirty Years Later. Evolutionary Computation, 31(2):81–122, 06 2023.

Marie-Liesse Cauwet and Olivier Teytaud. Population control meets Doob’s martingale theorems: The
noise-free multimodal case. In Genetic and Evolutionary Computation Conference Companion, pp. 321–
322, 2020a.

Marie-Liesse Cauwet and Olivier Teytaud. Population control meets doob’s martingale theorems: the noise-
free multimodal case. In Genetic and Evolutionary Computation Conference Companion, pp. 321–322,
2020b.

Francois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Petter Cotton. An introduction to z-streams (and collective micropredictions). https://www.linkedin.
com/pulse/short-introduction-z-streams-peter-cotton-phd/, 2020a.

Petter Cotton. Micropredictions elo ratings. https://microprediction.github.io/
optimizer-elo-ratings/, 2020b.

Dagstuhl participants. Challenges in benchmarking optimization heuristics. In Dagstuhl Seminars. Dagstuhl
Publishing, 2023.

Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates in non-elitist populations. In
14th International Conference on Parallel Problem Solving from Nature, pp. 803–813, 2016.

Allard de Wit. Python crop simulation environment. github.com/ajwdewit/pcse, 2021.

Benjamin Doerr, Carola Doerr, and Timo Kötzing. Provably optimal self-adjusting step sizes for multi-valued
decision variables. In Proceedings of PPSN, volume 9921, pp. 782–791, 09 2016. ISBN 978-3-319-45822-9.
doi: 10.1007/978-3-319-45823-6_73.

Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation strengths for multi-
valued decision variables. Algorithmica, 80, 07 2017a. doi: 10.1007/s00453-017-0341-1.

Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In Genetic
and Evolutionary Computation Conference, pp. 777–784, 2017b.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably optimal
success rules. In Genetic and Evolutionary Computation Conference, pp. 1479–1487, 2019.

Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOHprofiler: A Benchmarking
and Profiling Tool for Iterative Optimization Heuristics. arXiv:1810.05281, 2018.

Paul Dufossé and Asma Atamna. Benchmarking several strategies to update the penalty parameters in
al-cma-es on the bbob-constrained testbed. In Genetic and Evolutionary Computation Conference Com-
panion, pp. 1691–1699, 2022.

14

https://www.linkedin.com/pulse/short-introduction-z-streams-peter-cotton-phd/
https://www.linkedin.com/pulse/short-introduction-z-streams-peter-cotton-phd/
https://microprediction.github.io/optimizer-elo-ratings/
https://microprediction.github.io/optimizer-elo-ratings/
github.com/ajwdewit/pcse

Under review as submission to TMLR

Hafsteinn Einarsson, Marcelo Matheus Gauy, Johannes Lengler, Florian Meier, Asier Mujika, Angelika
Steger, and Felix Weissenberger. The linear hidden subset problem for the (1+1)-EA with scheduled and
adaptive mutation rates. Theoretical Computer Science, 785:150–170, 2019.

David Eriksson, David Bindel, and Christine A. Shoemaker. pySOT and POAP: An event-driven asyn-
chronous framework for surrogate optimization, 2019.

FacebookResearch. Ax - adaptive experimentation. ax.dev, 2020.

Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Thakkar Shrad-
dha, Thakkar Shraddha, Rebecca Kusko, Susanna-Assunta Sansone, Weida Tong, Russ D. Wolfinger,
Christopher E. Mason, Wendell Jones, Joaquin Dopazo, Cesare Furlanello, Levi Waldron, Bo Wang, Chris
McIntosh, Anna Goldenberg, Anshul Kundaje, Casey S. Greene, Tamara Broderick, Michael M. Hoffman,
Jeffrey T. Leek, Keegan Korthauer, Wolfgang Huber, Alvis Brazma, Joelle Pineau, Robert Tibshirani,
Trevor Hastie, John P. A. Ioannidis, John Quackenbush, and Hugo J. W. L. Aerts. Transparency and
reproducibility in artificial intelligence. Nature, 586(7829):E14–E16, October 2020. ISSN 0028-0836. doi:
10.1038/s41586-020-2766-y. Funding Information: Acknowledgements We thank S. McKinney and col-
leagues for their prompt and open communication regarding the materials and methods of their study.
This work was supported in part by the National Cancer Institute (R01 CA237170). Funding Information:
Competing interests This study was funded by Google LLC. S.M.M., A.K., D.T., C.J.K, Y.L., G.S.C. and
S.S. are employees of Google and own stock as part of the standard compensation package. The authors
have no other competing interests to disclose.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 11(1), 2003.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization
benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, France, 2009a.

Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-Parameter Black-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Technical Report RR-6829, INRIA, 2009b. URL
hal.inria.fr/inria-00362633.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

Holger Hoos. Inconvenient truths on algorithm competitions and ways of improving on known weaknesses.
Presentation at Dagstuhl seminar 23251, 2023.

Steven G. Johnson. The NLopt nonlinear-optimization package, 1994. URL github.com/stevengj/nlopt.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-learning-based
science. Patterns, 4(9):100804, 2023.

James Kennedy and Russell Eberhart. Particle swarm optimization. In International Conference on Neural
Networks, volume 4, pp. 1942–1948, 1995.

Johannes W. Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, and Thomas Bäck. On the log-normal
self-adaptation of the mutation rate in binary search spaces. In 13th Annual Conference on Genetic and
Evolutionary Computation, pp. 893–900, 2011a.

Johannes W. Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, and Thomas Bäck. On the log-normal
self-adaptation of the mutation rate in binary search spaces. In 13th Annual Conference on Genetic and
Evolutionary Computation, pp. 893–900, 2011b.

Siddharth Krishna Kumar. On weight initialization in deep neural networks. arXiv:1704.08863, 2017.

15

ax.dev
hal.inria.fr/inria-00362633
github.com/stevengj/nlopt

Under review as submission to TMLR

Jakub Kůdela. A critical problem in benchmarking and analysis of evolutionary computation methods.
Nature Machine Intelligence, 4:1–8, 12 2022.

Jakub Kůdela. The evolutionary computation methods no one should use. arXiv:2301.01984, 2023.

Denis Langevin, Pauline Bennet, Abdourahman Khaireh-Walieh, Peter Wiecha, Olivier Teytaud, and An-
toine Moreau. PyMoosh: a comprehensive numerical toolkit for computing the optical properties of
multilayered structures. arXiv:2309.00654, 2023.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In Amir
Globerson and Ricardo Silva (eds.), Uncertainty in Artificial Intelligence, volume 115, pp. 367–377, 2019.

Xiaodong Li, Ke Tang, Mohammmad Nabi Omidvar, Zhenyu Yang, and Kai Qin. Benchmark functions for
the CEC’2013 special session and competition on large-scale global optimization. GENE, 01 2013.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
jamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile Bayesian optimization package
for hyperparameter ptimization. Journal of Machine Learning Research, 23:54:1–54:9, 2022.

Jialin Liu, Antoine Moreau, Mike Preuss, Jeremy Rapin, Baptiste Roziere, Fabien Teytaud, and Olivier
Teytaud. Versatile black-box optimization. In Genetic and Evolutionary Computation Conference, pp.
620–628, 2020.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and Kay Chen Tan. A survey on evolu-
tionary neural architecture search. arXiv:2008.10937, 2021.

Igor L. Markov. The False Dawn: Reevaluating Google’s Reinforcement Learning for Chip Macro Placement.
arXiv:2306.09633, 2023.

Laurent Meunier, Iskander Legheraba, Yann Chevaleyre, and Olivier Teytaud. Asymptotic convergence rates
for averaging strategies. In 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 2021.

Laurent Meunier, Herilalaina Rakotoarison, Pak-Kan Wong, Baptiste Rozière, Jérémy Rapin, Olivier Tey-
taud, Antoine Moreau, and Carola Doerr. Black-box optimization revisited: Improving algorithm selection
wizards through massive benchmarking. IEEE Trans. Evol. Comput., 26(3):490–500, 2022.

Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms. Technical Report 826, Caltech Concurrent Computation Program, California Institute of
Technology, 1989.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Ser. Oper. Res. Financ. Eng.
Springer-Verlag, New York, second edition, 2006.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing, 2018.

M. J. D. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions
by Linear Interpolation, pp. 51–67. Springer Netherlands, 1994.

Dirk Raes, Pasquale Steduto, Theodore C. Hsiao, and Elias Fereres. AquaCrop—The FAO Crop Model to
Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agronomy Journal,
101(3):438–447, 2009.

S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. Quasi-oppositional differential evolution. In IEEE
Congress on Evolutionary Computation, pp. 2229–2236, 2007.

16

Under review as submission to TMLR

Jeremy Rapin and Olivier Teytaud. Nevergrad - A gradient-free optimization platform. github.com/
facebookresearch/nevergrad, 2024.

Elena Raponi, Nathanaël Carraz Rakotonirina, Jérémy Rapin, Carola Doerr, and Olivier Teytaud. Optimiz-
ing with Low Budgets: a Comparison on the Black-box Optimization Benchmarking Suite and OpenAI
Gym. IEEE Transactions on Evolutionary Computation, 2023.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. arXiv:1802.01548, 2019.

Ingo Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biologischen
Evolution. Fromman-Holzboog Verlag, 1973.

Lindon Roberts and Clément W. Royer. Direct search based on probabilistic descent in reduced spaces.
SIAM Journal on Optimization, 33(4):3057–3082, 2023.

Adam H Sparks. NasaPower: a NASA power global meteorology, surface solar energy and climatology data
client for R. The Journal of Open Source Software, 3(30):1035, 2018.

Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global optimiza-
tion over continuous spaces. Journal of Global Optimization, 11(4):341–359, 1997.

Jerry Swan, Steven Adriaensen, Alexander E.I. Brownlee, Kevin Hammond, Colin G. Johnson, Ahmed
Kheiri, Faustyna Krawiec, J.J. Merelo, Leandro L. Minku, Ender Özcan, Gisele L. Pappa, Pablo García-
Sánchez, Kenneth Sörensen, Stefan Voß, Markus Wagner, and David R. White. Metaheuristics “in the
large”. European Journal of Operational Research, 297(2):393–406, 2022.

Juan Ungredda, Juergen Branke, Mariapia Marchi, and Teresa Montrone. Single interaction multi-objective
Bayesian optimization. In Günter Rudolph, Anna V. Kononova, Hernán Aguirre, Pascal Kerschke, Gabriela
Ochoa, and Tea Tušar (eds.), Parallel Problem Solving from Nature, pp. 132–145, 2022.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

Thomas Weise, Zijun Wu, and Markus Wagner. An improved generic bet-and-run strategy with performance
prediction for stochastic local search. In AAAI Conference on Artificial Intelligence, pp. 2395–2402, 2019.

Dietmar Wolz. fcmaes - a python-3 derivative-free optimization library. Available at https://github.com/
dietmarwo/fast-cma-es, 2022. Python/C++ source code, with description and examples.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. J. Artif. Int. Res., 32(1):565–606, June 2008.

Chang Zhang, Zhiwei Ni, Zhangjun Wu, and Lichuan Gu. A novel swarm model with quasi-oppositional
particle. In 2009 International Forum on Information Technology and Applications, volume 1, pp. 325–330,
2009.

17

github.com/facebookresearch/nevergrad
github.com/facebookresearch/nevergrad
https://github.com/dietmarwo/fast-cma-es
https://github.com/dietmarwo/fast-cma-es

Under review as submission to TMLR

A Ablation regarding ZP and MS: the importance of scaling in continuous domains

We observe in Figure 3 good results for Carola2. MetaModel and several CMA variants are absent of the
figure because we keep only the 25 best of the 57 tested methods: CMA, OldCMA (the previous version
of CMA in Nevergrad before some tuning), LargeCMA (with larger initialization scale) and MetaModel
(CMA plus a quadratic surrogate model, as used as a component of Carola2) are ranked 43, 29, 40 and
33 respectively (vs 3 for Carola2). We also tested several variants of Carola (Carola4+, available in the
codebase and visible in some of our plots), without much difference.

Figure 6 presents more ablation results for selected algorithms.

(a) (b)

(c)

Figure 6: Ablation for Figure 3 with the same functions and budgets in all three cases, and with a restricted
set of algorithms (average normalized loss as in Section 4.3): (a) no ZP and no MS; second (b), we add
MS; third (c), we add ZP. While ZP has less impact, we observe that switching from (a, vanilla) to MS (b,
multi-scale) makes NgIohTuned or NgIoh4 vastly better than NGOpt, which is still the case after adding also
ZP (c, MS, and ZP). We believe that such multi-scaling should be part of artificial benchmarks for bridging
a part of the gap with real-world benchmarks. ZP has a smaller impact than MS.

B Reproducibility

How to reproduce the results in the present paper:

• Install Nevergrad by cloning the git repository (see details at (Rapin & Teytaud, 2024)).

• Running:

– Without cluster: python -m nevergrad.benchmark yabbob --num_workers=67 if you want
to run YABBOB on 67 cores.

– With cluster equipped with Slurm: Run “sbatch scripts/dagstuhloid.sh” script for launching
experiments with Slurm. It is written assuming that Slurm is installed: it should be feasible

18

Under review as submission to TMLR

to adapt it to other job scheduling tools. Running this script several times will increase the
number of replicas and increase precision.

• For plotting results, run “scripts/dagstuhloid_plot.sh”. Some data might be missing if not enough
runs are complete.

• To modify the parallelism, dimension, budget, list of tested algorithms, you might edit nevergrad_
repository/nevergrad/benchmark/experiments.py.

The present paper in LATEX is automatically generated by the commands above. Then, the authors have
edited the created file for the text and rearranged sections, in particular, moving to the appendix or to an
URL many of the individual results on specific benchmarks. An example of the huge original PDF file can
be found at tinyurl.com/dagstuhloid. We emphasize that reproducibility is not limited to the possibility
of reproducing the exact same numbers: results that can only be obtained for certain random seeds are less
interesting. We therefore do not fix the seeds. NGOpt, and more generally Wizards in Nevergrad, contain
many specific cases, e.g. for bounded problems or very low budget cases: we refer to (Rapin & Teytaud,
2024) for all details.

C Additional information on quasi-opposite algorithms

We use quasi-opposite DE, in several flavors:

Algorithm 3 The QODE algorithm, with Curr-to-best, F1 = F2 = .8, CR = .5.
Require: Budget b, population size p (p = 30 by default), dimension d, objective function l to be minimized

Randomly draw p/2 points (uniformly at random by default) x1, . . . , xp/2.
Define xp/2+i = −rixi, with ri randomly independently uniformly drawn in [0, 1].
Run differential evolution as usual:
while Budget not elapsed do

for each point x in the population, if the budget b is not elapsed do
Randomly draw a and b in the population, different from x
Let t be the best point so far
Define x′ = x + F1 ∗ (b − a) + F2 ∗ (t − x)
Define, for 1 ≤ i ≤ d, x′′

i = x′
i with probability CR and x′′

i = xi otherwise.
Enforce x′′

i = x′
i for some randomly drawn i ∈ {1, . . . , d}

If l(x′′) ≤ l(x), then replace x by x′′.
end for

end while

• QODE, the classical quasi-opposite DE, presented in Algorithm 3.

• QNDE, which is QODE during half the budget and then BFGS with finite differences.

• SPQODE (SPecial QODE), which is QODE with population size 1 +
√

log(d + 3) in dimension d.

• LQODE (Large QODE), which is QODE with initialization range multiplied by 10 (each individual
is multiplied by 10).

• SODE (Special Opposite DE), in which r is exp(−5×U(0, 1)) instead of U(0, 1) (with U(0, 1) uniform
in [0, 1]).

• QOTPDE combines TwoPointsDE (DE with Holland 2-points crossover) and QODE.

We also consider quasi-opposite sampling for PSO:

• Randomly draw half the population as usual.

19

nevergrad_repository/nevergrad/benchmark/experiments.py
nevergrad_repository/nevergrad/benchmark/experiments.py
tinyurl.com/dagstuhloid

Under review as submission to TMLR

Algorithm 4 SQOPSO. By default, p = 40, ω = 0.5/ log(2), ϕp = 0.5 + log(2), ϕg = 0.5 + log(2).
Require: Budget b, population size p, dimension d, objective function l to be minimized

Randomly draw p/2 points (uniformly at random by default) x1, . . . , xp/2, and their speeds v1, . . . , vp/2..
Define xp/2+i = −rixi and vp/2+i = −rivi, with ri randomly independently uniformly drawn in [0, 1].
Initialize bi = xi for all i (bi is the best past position of the ith particle and g the best of the bi

Run particle swarm optimization as usual:
while Budget not elapsed do

for each point xi with speed vi in the population, if the budget b is not elapsed do
for each coordinate 1 ≤ j ≤ d do

Randomly draw rp and rg in [0, 1]
Update (vi)j = p × ω(vi)j + ϕprp(bij − xij) + ϕgrg(gij − xij)

end for
Update xi = xi + vi

If l(xi) < l(pi), then update pi = xi

If l(xi) < l(g), then update g = xi

end for
end while

• QOPSO (Quasi-Opposite PSO): for each point p with velocity v in this half population, also add
−r × p with a randomly drawn velocity, with r randomly drawn uniformly in [0, 1].

• SQOPSO (Special Quasi-Opposite PSO, defined in Algorithm 4): for each point p with velocity v
in this half population, also add −r × p with velocity −r × v, with r randomly drawn uniformly in
[0, 1].

D Additional information on benchmarks

Table 1 discusses the diversity of the benchmarks in Nevergrad (left), and categorizes them (right).

Table 1: Diversity of our benchmarking platform in Nevergrad and of our automatic report.

(a)

Min Max

Dimension 1 20 × 103

Budget 10 3 × 106

objectives 1 6
Noise dissymetries False True

Noise False True⋆

blocks of variables♯ 1 16
of workers 1 500

⋆many different levels of noise
♯with independent rotations

(b)

Category Examples of benchmarks

Real-world, ML tuning Keras, Scikit-learn (SVM,
Decision Trees, Neural nets)

Real-world, not ML tuning Gym, rockets, energy, fishing,
photonics, games

Discrete PBO, Bonnans, others (in-
cludes: unordered variables)

Continuous, artificial LSGO, Deceptive, YABBOB
Multiobjective Several problems with 2 to 7

objectives and dim from 2 to
200.

E Statistics over all benchmarks: full details

We point out that NGOpt and its variants are wizards (automatic algorithm selectors and combinators)
created by the same authors as Nevergrad and their (good) results might therefore be biased: we recognize
that common authorship for benchmarks and algorithms implies a bias, and, given that our tools are based
on NGOpt and other tools in Nevergrad, this applies to us as well. Another issue is that statistics based on
frequencies of performing in the top k are a risky thing: when two codes are very close to each other, they
are both penalized by each other: we must, therefore, be careful while interpreting the results. Nonetheless,
we provide aggregated results for convenience (Figure 5, and details in the present section).

20

Under review as submission to TMLR

E.1 NGOpt versus Base algorithms: validating wizards

Here base algorithms have no metamodel and no complex combinations: wizards are excluded, except
NGOpt. NGOpt is the only sophisticated combination: this section is dedicated to validating NGOpt and
validates that NGOpt performs better than the base algorithms it is built on. We consider statistics on the
top k methods, for k = 1, k = 2, k = 3: all results confirm the performance of NGOpt compared to base
algorithms.

E.1.1 Number of times each algorithm was ranked first: NGOpt and base algorithms

• 29 NGOpt

• 8 HyperOpt

• 8 Cobyla

• 7 QODE

• 6 OnePlusOne

• 5 SODE

• 4 SPQODE

• 4 QOTPDE

E.1.2 Number of times each algorithm was ranked among the 2 first: NGOpt and base algorithms

• 45 NGOpt

• 16 QODE

• 16 OnePlusOne

• 16 Cobyla

• 12 HyperOpt

• 10 QORealSpacePSO

• 9 SQOPSO

• 8 QOPSO

E.1.3 Number of times each algorithm was ranked among the 3 first: NGOpt and base algorithms

• 51 NGOpt

• 23 Cobyla

• 20 QODE

• 20 OnePlusOne

• 19 SQOPSO

• 15 HyperOpt

• 14 QORealSpacePSO

• 12 SODE

E.2 Comparing simple algorithms only: wizards, multi-levels, specific standard deviations, and
combinations excluded

Simple algorithms might be less overfitted and more robust: we consider the same experiments as above
but with only “simple” algorithms: no chaining, no metamodel, no tuned parameters, no bet-and-run, no
wizard. The success (robustness) of quasi-opposite sampling (for PSO or DE) is visible. in the results below.
We also note the excellent performance of Cobyla, thanks to great results for a moderate budget.

E.2.1 Number of times each algorithm was ranked first: no wizard, no combination

• 14 Cobyla

• 9 QODE

• 8 OnePlusOne

• 8 HyperOpt

• 6 QORealSpacePSO

• 5 SODE

• 5 QNDE

• 4 SPQODE

E.2.2 Number of times each algorithm was ranked among the 2 first: no wizard, no combination

21

Under review as submission to TMLR

• 17 QODE

• 17 OnePlusOne

• 17 Cobyla

• 13 QORealSpacePSO

• 12 SQOPSO

• 12 HyperOpt

• 10 GeneticDE

• 10 DiscreteLenglerOnePlusOneT

E.2.3 Number of times each algorithm was ranked among the 3 first: no wizard, no combination

• 23 QODE

• 23 Cobyla

• 20 SQOPSO

• 20 OnePlusOne

• 16 QORealSpacePSO

• 15 HyperOpt

• 15 DiagonalCMA

• 13 OldCMA

E.3 Everything included except NgIohTuned

For the results of this section, we include all codes, wizards as well as base algorithms. All strong methods
are wizards, except tools based on quasi-opposite samplings. The only algorithms making it to the top are
(i) wizards, (ii) bet and run/aggregations (such as SQPCMA), (iii) HyperOpt, (iv) quasi-opposite tools, and
(v) Carola variants. We observe that the variants of NgIoh4 with different parameters (such as NgIoh2,
NgIoh5, NgIoh6, or Wiz) do not bring improvements.

E.3.1 Number of times each algorithm was ranked first: everything included

• 10 NgIoh4

• 9 SQPCMA

• 7 NgIoh6

• 6 NGOptRW

• 6 NGOpt

• 6 Carola3

• 5 Wiz

• 5 NgIoh5

E.3.2 Number of times each algorithm was ranked among the two first: everything included

• 22 NgIoh4

• 14 NgIoh5

• 12 NgIoh6

• 11 SQPCMA

• 11 NGOpt

• 10 Shiwa (an old wizard, anterior to NGOpt,
designed in Liu et al. (2020))

• 8 QODE

• 8 NgIoh2

E.3.3 Number of times each algorithm was ranked among the three first: everything included

• 29 NgIoh4

• 27 NgIoh5

• 21 NgIoh6

• 16 Shiwa

• 14 NGOpt

• 12 HyperOpt

• 11 SQPCMA

• 11 QODE

22

Under review as submission to TMLR

F Additional experimental figures for artificial problems in Nevergrad

Figures 7 and 8 present results on variants of YABBOB with small ratio budget/dimension and LSGO. We
observe a robust performance of NgIoh variants.

Ya
B

ox
B

B
O

B
(5

0
al

gs
.)

Ya
H

dB
B

O
B

(6
7

al
gs

.)

Ya
M

eg
aP

en
B

ox
B

B
O

B
(6

7
al

gs
.)

Ya
M

eg
aP

en
H

dB
B

O
B

(1
3

al
gs

.)

Ya
O

ne
Pe

nB
ox

B
B

O
B

(6
6

al
gs

.))

LS
G

O
(3

9
al

gs
.)

Figure 7: Validating NgIoh algorithms on variants of YABBOB with small ratio budget/dimension and
LSGO. Other variants of BBOB are presented in Figure 8. This is the average normalized loss (see details
in Section 4.3), with only the best methods (NgIoh4 is always there) and the single worst; see Figures 9
to 11 for more methods in the frequency of winning figures. On the right hand side: name of benchmark
and number of algorithms run.

Figures 9 to 11 present results on variants of YABBOB in a format presenting more (though not all)
algorithms. NgIoh variants (and to a lower extend wizards including Wiz and Shiwa and CMandAS2)
perform well.

23

Under review as submission to TMLR

Ya
O

ne
Pe

nS
m

al
lB

B
O

B
(7

5
al

gs
)

Ya
Pe

nB
ox

B
B

O
B

(6
8

al
gs

)

Ya
Pe

nS
m

al
lB

B
O

B
(5

8
al

gs
)

Ya
Sm

al
lB

B
O

B
(9

2
al

gs
)

Ya
B

ig
B

B
O

B
(7

3
al

gs
)

Figure 8: Validating NgIoh algorithms on other variants of YABBOB with small ratio budget/dimension.
The last one, YaBigBBOB, is the opposite, with a large ratio budget/dimension. Only the 12 best methods
and the worst are presented, all benchmarks include several variants of CMA, DE, PSO and others (see
referenced URLs or Figure 11 for all details and more algorithms). Overall, NgIoh variants are excellent.

24

Under review as submission to TMLR

Ya
B

ox
B

B
O

B
(5

0
al

gs
)

Ya
H

dB
B

O
B

(6
7

al
gs

)
Ya

M
eg

aP
en

B
ox

B
B

O
B

(6
7

al
gs

)

Figure 9: Validating NgIoh algorithms on variants of YABBOB with small ratio budget/dimension (different
presentation than Figure 7). Other variants of YABBOB in Figures 10 and 11. This is the frequency of
winning figure (see the detailed setup in Section 4.3), with the best methods on the left. NgIoh variants
dominate.

25

Under review as submission to TMLR

Ya
M

eg
aP

en
H

dB
BO

B
(1

3
al

gs
)

Ya
O

ne
Pe

nB
ox

BB
O

B
(6

6
al

gs
)

Ya
O

ne
Pe

nS
m

al
lB

BO
B

(7
5

al
gs

)
Ls

go
(3

9
al

gs
)

Figure 10: Validating NgIoh variants on other variants of YABBOB with small ratio budget/dimension
and LSGO (Li et al., 2013) (different presentation than Figure 7). Other variants of YABBOB in Figure 9
and Figure 11. This is the frequency of winning figure (see details in Section 4.3), with the best methods on
the left. Total number of methods run on the right.

26

Under review as submission to TMLR

Ya
Pe

nB
ox

B
B

O
B

(6
8

al
gs

)
Ya

Pe
nS

m
al

lB
B

O
B

(5
8

al
gs

)
Ya

Sm
al

lB
B

O
B

(9
3

al
gs

)
Ya

B
ig

B
B

O
B

(7
3

al
gs

)

Figure 11: Top: 3 variants of YABBOB with small ratio budget/dimension (different presentation than
Figure 8). Bottom: YaBigBBOB, is the opposite, with a large ratio budget/dimension. Frequency of
winning figure as detailed in Section 4.3, with the best methods on the left. NgIoh variants and (except for
the last) Cobyla dominate.

27

Under review as submission to TMLR

G Outside Nevergrad: application to external real-world problems

Finally, we include a few use cases by Nevergrad users. The benchmarks and setups have been developed
independently of the benchmarking platform included in Nevergrad. The plotting tools, functions, and
criteria, are frequently different from the rest of the paper. They, on purpose, quantify the robustness
of the conclusions drawn on our update of the Nevergrad benchmark, specifically for the real-world cases.
Overall, results in Appendices G.1, G.2, G.4 and G.6 confirm the conclusion, in Nevergrad benchmarks,
that DE performs well on many real-world problems; the discrete problem in Appendix G.3 confirms the
good performance of Lengler though FastGA (Doerr et al., 2017b) is also good; Appendix G.5 confirms the
performance of SQOPSO when the scale of the optimum is unknown, in particular in the neuro-control case.

G.1 Infrastructure: optimizing a caching policy

In this application, Nevergrad is used to optimize a caching strategy. The problem comprises 84 decision
variables for the optimization. These variables encode the cache strategy. We run each method in several vari-
ants, with random parameters a, b, and c so that constraints are penalized by a × constraintV iolationb × ic,
with i being the iteration index. With this dynamical constraint penalization scheme, constraints viola-
tions are increasingly penalized so that eventually solutions without any violations are found. Compared
to artificial benchmarks above, the setting has been influenced by the computational cost. All methods
including GeneticDE, PSO, DE, TwoPointsDE, DiagonalCMA were run the same number of times, and the
11 best results are presented. We observe (Figure 15, left) that GeneticDE performs best and in general,
DE variants perform well. One of the conclusions from this experiment is how much most Bayesian methods
cannot be used for large budgets and dimension spaces larger than 84 (none of the methods available in
Nevergrad was usable here), and computing gradients by finite differences (introducing a factor 85 in the
computational cost) is also unfeasible. The results are consistent with the effectiveness, in our benchmarking
suite, of DE variants for real-world problems with similar size/budget (Section 5.2). However, we would
not have guessed the good performance of GeneticDE for this specific problem. Another observation is that
we get a strong improvement compared to the handcrafted heuristic implemented before using the standard
algorithm (+70%) and also better than the manually designed solution (initial point). The problem is re-
peated: there are frequently new versions to be solved, so that doing this experiment is useful for doing a
choice of algorithm for the future. We note (unpresented experiments) that Inoculation (Inoculation, here,
consists in adding in the population 8 points obtained in previous optimization runs) roughly reduces the
computational cost by a factor of five. We get roughly the same performance with 20% of the budget.

G.2 Crop optimization

This application combines Nevergrad, PCSE (de Wit, 2021), and NASA data (Sparks, 2018) for optimizing
the choice of crops in many countries. Figure 12 presents a specialization of the code to Kenya, including
choosing crops and their varieties, depending on climate. Compared to the original code in Nevergrad,
there are additional variables, for choosing the crop and the variety. After the present performance check
(confirming the good behaviour of NGOptRW), a forthcoming publication is under work for various crops
and continents.

G.3 Mobile Network Base Station Placement Optimization

Figure 13 presents the experimental results regarding the optimization of the placement of base stations
for a mobile network. An original ad-hoc implementation already existed before testing Nevergrad on this
problem. The method which typically performs best in our discrete benchmarks, namely Lengler (Doerr
et al., 2019; Einarsson et al., 2019), which uses a fixed, predefined mutation schedule and FastGA (Doerr
et al., 2017b), which is also a method with a fixed mutation schedule, but here the schedule is a stationary
stochastic random variable. We observe that while methods in Nevergrad perform well for low budget and
outperform the original method by far, the original method performs best for greater budgets. Seemingly,
the key point is that it uses specific mutation operators, whereas Nevergrad focuses on lists of variables with

28

Under review as submission to TMLR

Figure 12: Comparison between optimization methods for crop optimization in the case of Kenya (left:
2011, corresponding to a particularly dry year; right: 2006). Setup as in Section 4.3: the heatmap shows
the frequency at which method X (row) outperforms method Y (col). Rows and cols are ranked by average
frequency against all other methods: top/left is best. As in many real-world cases, NGOptRW is excellent.

Figure 13: Placement of base stations of a mobile network: optimization with budget 50 (left) and 400
(right): the greater, the better, average best score between parentheses. We observe that Nevergrad methods
performed quite well for the low budget case, but the specific method (Simulated Annealing with ad hoc
mutation operator, in orange) developed for the problem at hand is the best for budget 400. Between
parenthesis, the best obtained value. Llr is short for Lengler (Doerr et al., 2019; Einarsson et al., 2019).

generic operators. Nevergrad improves results on this 200-dimensional problem when the budget is 50, but
not with budget 400.

G.4 Robust topology optimization

Figure 14 presents the results for the optimization of mirrors smaller than a micron aimed at reflecting light
at wavelength between 400nm and 650nm using only two materials.

Only the 7 best performing methods are presented, but actually 30 methods are run: There are 5 algorithms:
DE, BFGS, Chain (a chaining of DE during half budget, followed by BFGS) from Nevergrad and the DE and
Chain from Pymoosh (Langevin et al., 2023). For differentiating methods from Nevergrad, we add a prefix
Ng for those methods. Each of them is run with a sampling parameter in {−100, −60, −20, 20, 60, 100},
hence 30 methods. This parameter specifies how robustness to wavelength is taken into account and has
little impact here. The detailed description is beyond the scope of this paper. Another sampling parameter is

29

Under review as submission to TMLR

Figure 14: We perform photonics optimization (mirrors for various wavelengths) for 40, 50, 60, 70, 80 layers
respectively: we keep only 40 and 80 for short and refer to the appendix for more. For each algorithm, we
plot the results of 30 runs (best on the left, worst on the right): a horizontal curve means constant results,
whereas a sharp increase means variable results. Methods are ranked by median value. Only the few best
are presented for readability (legend: best at the end, i.e. bottom of the right column): extended version
with more algorithms in the ranking in appendix, Figure 16. For moderate numbers of layers, the ranking is
unclear (with Chaining of DE and BFGS frequently good), whereas for large-scale versions, DE dominates
(for 80 layers, the 6 codes based on DE corresponding to the 6 values of the sampling parameter dominate
all 24 other codes). The impact of the sampling parameter (suffix of the algorithm name) is unclear.

fixed at 316 (the square root of the budget) after preliminary experiments: it is actually the most important
choice in the optimization design, other values are removed from plots as this is not the point in the present
paper.

We observe that all strong methods, in the highest dimensional cases, are DE (either the one from Nevergrad,
which is quite standard, or the one in PyMoosh which has been optimized for the problem at hand). This
limited comparison validates the choice of DE in PyMoosh, though testing more algorithms could be possible.
In lower dimension, we observe that the chaining of DE and BFGS frequently performs better than DE or
BFGS alone.

G.5 Gym

Nevergrad contains OpenAI Gym problems, which were deprecated after the issues of Gym v0.24.0, so that
Gym was not included in recent exports of the Nevergrad benchmarks. We update the code importing Gym
and rerun the experiments. Our code is merged in the codebase. Results are presented in Figure 15 (right):
SQOPSO performs well. We observe an excellent performance of GeneticDE here, though this requires
further investigation: results are excellent for some benchmarks and not for others, as opposed to quasi-
opposite sampling which performs very well on most real-world problems, or as opposed to Carola2 and its
integration in the NgIoh4 wizard defined in Section 3, which performs excellently on many benchmarks as
discussed later.

G.6 Photonics

Figure 16 presents results on photonics optimization, validating the performance of DE (part of the real-
world bet-and-run used in NGOptRW) for this real-world problem, in particular in the higher dimensional
cases.

30

Under review as submission to TMLR

Figure 15: Left: Comparison of various methods on the infrastructure problem. The upper the better,
only the 11 best results are presented: though on many benchmarks it was not so good, we note that runs
based on GeneticDE are frequently among the 11 best, whereas all methods were run the same number of
times. Right: Experiments on Gym (more algorithms and more benchmarks in Figure 20), confirming the
good performance of SQOPSO (and existing wizards dedicated to reinforcement learning, with RL in the
name (Rapin & Teytaud, 2024)) for neuro-control.

31

Under review as submission to TMLR

40 50

60 70

80

Figure 16: Photonics optimization (mirrors for various wavelengths) for 40, 50, 60, 70, 80 layers respectively:
sorted result of the 30 runs of each method (best run on the left and worst run on the right). The 27 best (for
the median) are presented (best at the end, right column, bottom), this extends Figure 14. For moderate
numbers of layers, comparisons are unclear, whereas for large-scale versions DE dominates.

32

Under review as submission to TMLR

H Additional results with more variants

In the present section, we compare several new variants of NGOpt, including

• variants of NgOpt based on new direct-search methods from (Roberts & Royer, 2023) (see Sec-
tion 2.2), other than NgIohTuned, with NgDS in the name. These variants derive from our NgIoh
but use the direct-search method DSProba from Roberts & Royer (2023) instead of CMA in sequen-
tial cases.

• variants of NgOpt based on LogNormal mutations, such as NgLn, which are based on NgIoh but
with Cobyla replaced by LogNormal mutations (Kruisselbrink et al., 2011b) as a warmup step.

The present appendix also compares SQOPSO and NgIoh4 and two more algorithms based on them:

• NgIoh21 (name: NgIoh “to 1”, bringing all ideas into one single NgIoh) is NgIoh4 with constants
within Carola2 modified (10% for Cobyla, 80% for the CMA with MetaModel, 10% for the final
convergence with SQP), and replaces CMA by DSproba in the sequential case with budget lower than
the dimension. The difference with NgIohTuned is that it does not leverage high level information
such as “this is a real-world problem” or “this is a neuro-control problem”.

• NgIohTuned (available in Rapin & Teytaud (2024)) is similar to NgIoh21 but it uses (i) NgDS instead
of NGOpt in sequential cases (ii) VLPCMA (i.e. CMA with population size multiplied by 100)
instead of CMA when the budget is greater than 2000 times the dimension (iii) most importantly,
additional information provided by the user (if any) for switching to different algorithms: it switches
to SQOPSO for neural control and to NGOptRW for other real-world problems.

• SQOPSODCMA, a chaining of SQOPSO (half budget) and Diagonal CMA (second half of the
budget).

Basically we confirm with results below that NGOptRW (using a lot of DE and PSO) is preferable to NGOpt
in many real-world contexts, that SQOPSO is better in the neuro-control case, and NGOpt variants using
a first exploration step by Cobyla (as our method NgIoh4 does; LogNormal in lieu of Cobyla can also lead
to interesting results) perform better than NGOpt in particular for benchmarks such as MS-BBOB and
ZP-MS-BBOB which carefully control for the norm of the optimum.

H.1 Additional results: YABBOB, ZP-MS-BBOB, MS-BBOB

We observe in Figure 4 and Figure 17 that results on YABBOB are mixed (NgIoh variants sometimes better
than NGOpt and sometimes worse), whereas for MS-BBOB and ZP-MSBBOB all strong methods use either
Cobyla or quasi-opposite sampling as a first step, validating our contributions:

• MS-BBOB: NgIoh4, SQOPSODCMA, NgIohTuned, NgIoh21, SQOPSO, all outperform all other
methods, including NGOpt.

• ZP-MS-BBOB: NGIoh4, SQOPSODCMA, NgIoh21, NgIohTuned, all outperform all other methods,
including NGOpt.

We note that the succesful codes (outperforming NGOpt on multi-scale benchmarks) are exactly

• the codes using quasi-opposite sampling as a first stage (as SQOPSODCMA, in both benchmarks)
before using a local convergence method,v and

• the codes which use our chaining initiated by Cobyla (NgIoh variants),

except, in one of the two benchmarks only, SQOPSO, which still has quasi-opposite sampling but no second
stage. By contrast, all other codes, except SQOPSO for one of the two benchmarks, perform worse than
NGOpt. These results confirm the relevance of quasi-opposite sampling or Cobyla as a first stage for problems
equipped with multiple-scale such as MS-BBOB or ZP-MS-BBOB.

33

Under review as submission to TMLR

Figure 17: Additional results on ZP-MS-BBOB, MS-BBOB with more algorithms (see Figure 4 for the case of
YABBOB, i.e. without the multi-scale approach of ZP-MS-BBOB and MS-BBOB). NGOpt is competitive on
YABBOB (and our methods are not always at the top, though they are good), but fail (and many methods
as well) compared to our methods in the cases of MS-BBOB and ZP-MS-BBOB. This shows how much
results are different when we consider multi-scale benchmarks. Note the good performance of NgIoh4 and
NgIoh21 and NgIohTuned on ZP-MS-BBOB and MS-BBOB for most budgets.

Figure 18: Counterpart of Figure 3 for ZP-MS-BBOB with the frequency of winning (26 best, out of
58 methods) instead of the normalized average loss. This takes into account all budgets as detailed in
Section 4.3, hence the ranking is not the same as in Figure 3 which ranks only based on the results
for the maximum budget, We note that many mathematical programming methods (using SQP, Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) with finite differences, BOBYQA or Cobyla) are excellent for low
budget, which corroborates the idea of using Cobyla as a first step in Carola2. 58 algorithms are run (the
26 best are presented), and the previous wizard, NGOpt, is ranked 22 and CMA is ranked 38 (this differs
from statistics on normalized average loss as in Figure 3 but we still observe a superiority of NgIoh methods
compared to CMA or NGOpt, a conclusion which is not so clear on non multi-scale benchmarks such as e.g.
YABBOB).

34

Under review as submission to TMLR

H.2 Additional results: real-world problems from Nevergrad

Figure 19 presents results of many algorithms on Aquacrop. We observe that on this real-world problem, all
successful algorithms use DE or PSO, confirming the excellent behaviour of these algorithms in such settings.
Also, the top algorithms frequently use either quasi-opposite sampling or GeneticDE (as in NoisyRL3, a
wizard specifically designed for reinforcement learning), both aimed at taking care of the scale (NoisyRL3
and NGDSRW use GeneticDE, LQODE is a DE with quasi-opposite sampling, SQOPSODCMA uses quasi-
opposite samping).

35

Under review as submission to TMLR

Figure 19: NGOpt is outperformed on the Aquacrop problems by all algorithms based on DE or PSO, even
more when these algorithms use quasi-opposite sampling.

Figure 20 confirms the good performance of SQOPSO for neural control in deterministic contexts, with the
application to Gym.

36

Under review as submission to TMLR

Figure 20: In the case of neural control, NgIohTuned (which uses the knowledge that this is a neural problem)
switches to SQOPSO, hence its excellent performance. This figure confirms the excellent performance of
SQOPSO for neural control.

H.3 Additional results comparing NgIoh to NGOpt on the old BBOB/COCO

We compare

• NgIoh4,

• NgIoh21 which is a more recent version of NgIoh4 with a tuning of constants of the chaining (10%,
80% and 10% instead of three thirds in Carola2) and increasing the population of CMA by a factor
100 (compared to the default) for budget greater than 2000 times the dimension,

• NgIohTuned, a more sophisticated improvement based on NgIoh21, but also high level information
such as “is a real-world problem” or “is a neuro-control problem” for selecting NGOptRW and
SQOPSO respectively.

• NGOpt,

• b-cmafmin2 (the baseline CMA included in the code of BBOB/COCO),

• u-CmaFmin2 and r-CmaFmin2 correspond to the same CMA but with different restart schemes
(the same restart as for Scipy methods for rCma and uniform random restarts for rCma, whereas
CmaFmin2 uses a proposal function “propose-x0” from the objective in Coco/Bbob),

• and other variants of CMA found in Nevergrad (see Appendix I for more information).

We have 24 cases, corresponding to dimensions 2, 3, 5, 10, 20, 40 and budget/dimension 10, 100, 1000, 10000.
NgIoh4 and NgIoh21 both outperformed NGOpt in 19/24 cases, NgIohTuned outperformed NGOpt in 21/24
cases. NgIoh4 outperforms bCmaFmin2 in 14/24 cases. NgIoh21 outperforms bCmaFmin2 in 17/24 cases
and is frequently the best overall. NgIohTuned outperforms bCmaFmin2 in 19/24 cases and is frequently the
best overall. NgIoh21 and NgIohTuned are frequently very close, for a reason: note that on BBOB/COCO
(i.e. artificial benchmarks), they are equivalent. Overall, NgIoh4 and all its variants outperform NGOpt on
BBOB/COCO.

37

Under review as submission to TMLR

Results in low budget cases confirm the excellence of Cobyla already observed in (Dufossé & Atamna, 2022;
Raponi et al., 2023).

H.3.1 Additional results: BBOB with budget = 10× dimension

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CmaFmin2

MultiCMA

Carola2

bcmafmin2

MetaModel

NgIoh21

NgIohTune

NgIoh4

NGOptRW

NGOpt cbbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MultiCMA

CmaFmin2

MetaModel

bcmafmin2

Carola2

NGOptRW

NgIoh21

NgIohTune

NgIoh4

NGOpt cbbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CmaFmin2

MultiCMA

MetaModel

bcmafmin2

Carola2

NgIoh21

NGOpt c

NGOptRW

NgIoh4

NgIohTunebbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CmaFmin2

MultiCMA

MetaModel

bcmafmin2

Carola2

NGOptRW

NgIoh21

NGOpt c

NgIohTune

NgIoh4 bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MetaModel

CmaFmin2

MultiCMA

bcmafmin2

NgIoh21

NgIohTune

NGOptRW

NGOpt c

NgIoh4

Carola2 bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MultiCMA

MetaModel

CmaFmin2

bcmafmin2

NgIoh4

NGOpt c

NGOptRW

NgIohTune

NgIoh21

Carola2 bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.6.3

Figure 21: BBOB with budget 10× dimension. The higher the better on these BBOB/COCO figures.

H.3.2 Additional results: BBOB with budget = 100× dimension

38

Under review as submission to TMLR

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MultiCMA

NGOptRW

bcmafmin2

CmaFmin2

MetaModel

NGOpt c

Carola2

NgIohTune

NgIoh4

NgIoh21 bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW

CmaFmin2

NGOpt c

MultiCMA

bcmafmin2

MetaModel

NgIoh4

NgIohTune

Carola2

NgIoh21 bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW

MetaModel

CmaFmin2

MultiCMA

NGOpt c

bcmafmin2

NgIohTune

NgIoh4

Carola2

NgIoh21 bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW

MultiCMA

CmaFmin2

MetaModel

NGOpt c

bcmafmin2

NgIoh4

Carola2

NgIoh21

NgIohTunebbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW

MultiCMA

CmaFmin2

MetaModel

NGOpt c

bcmafmin2

Carola2

NgIoh4

NgIoh21

NgIohTunebbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW

MultiCMA

CmaFmin2

NGOpt c

MetaModel

bcmafmin2

Carola2

NgIohTune

NgIoh21

NgIoh4 bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.6.3

Figure 22: BBOB with budget 100× dimension. The higher the better on these BBOB/COCO figures.

H.3.3 Additional results: BBOB with budget = 1000× dimension

39

Under review as submission to TMLR

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CmaFmin2
Carola2
NGOpt c
MetaModel
NgIoh4
NgIohTune
NgIoh21
ucmafmin2
rcmafmin2
MultiCMA
bcmafmin2bbob f1-f24, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
Carola2
NgIoh4
CmaFmin2
MetaModel
MultiCMA
bcmafmin2
ucmafmin2
NgIohTune
NgIoh21
rcmafmin2bbob f1-f24, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NgIoh4
Carola2
NGOpt c
MetaModel
CmaFmin2
MultiCMA
NgIoh21
bcmafmin2
rcmafmin2
ucmafmin2
NgIohTunebbob f1-f24, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
MultiCMA
Carola2
NgIoh4
rcmafmin2
MetaModel
NgIoh21
NgIohTune
ucmafmin2
bcmafmin2
CmaFmin2 bbob f1-f24, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NgIoh4
Carola2
MultiCMA
NGOpt c
CmaFmin2
NgIohTune
MetaModel
NgIoh21
bcmafmin2
rcmafmin2
ucmafmin2bbob f1-f24, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MultiCMA
CmaFmin2
NGOpt c
MetaModel
bcmafmin2
ucmafmin2
rcmafmin2
NgIoh4
Carola2
NgIoh21
NgIohTunebbob f1-f24, 40-D

51 targets: 100..1e-08
14, 15 instances

v2.6.3

Figure 23: BBOB with budget 1000× dimension. The higher the better on these BBOB/COCO figures.

H.3.4 Additional results: BBOB with budget = 10000× dimension

40

Under review as submission to TMLR

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
CmaFmin2
MetaModel
rcmafmin2
NgIoh21
NGOptRW
MultiCMA
bcmafmin2
NgIoh4
NgIohTune
ucmafmin2bbob f1-f24, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
NGOptRW
CmaFmin2
MetaModel
NgIoh4
bcmafmin2
ucmafmin2
MultiCMA
NgIohTune
rcmafmin2
NgIoh21 bbob f1-f24, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
NGOptRW
MultiCMA
CmaFmin2
MetaModel
NgIoh4
rcmafmin2
ucmafmin2
bcmafmin2
NgIoh21
NgIohTunebbob f1-f24, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOptRW
NGOpt c
MultiCMA
NgIoh4
MetaModel
CmaFmin2
rcmafmin2
ucmafmin2
NgIohTune
NgIoh21
bcmafmin2bbob f1-f24, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
NGOptRW
MultiCMA
NgIoh4
CmaFmin2
MetaModel
ucmafmin2
rcmafmin2
NgIohTune
NgIoh21
bcmafmin2bbob f1-f24, 20-D

51 targets: 100..1e-08
14, 15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NGOpt c
NGOptRW
MultiCMA
NgIoh4
MetaModel
CmaFmin2
rcmafmin2
bcmafmin2
ucmafmin2
NgIoh21
NgIohTunebbob f1-f24, 40-D

51 targets: 100..1e-08
14, 15 instances

v2.6.3

Figure 24: BBOB with budget 10000× dimension. The higher the better on these BBOB/COCO figures.

I List of methods

All details and implementations of the algorithms discussed here and more are available at Rapin & Teytaud
(2024).

• Carola1, Carol2, Carola3 (Section 3):
chaining of Cobyla, MetaModel and
SQP(Virtanen et al., 2020). Carola3 is the
parallel version. Other variants based on a
warmup by Cobyla have been tested (Car-
ola4+ in the codebase) without significant
improvement.

• Cobyla: Mathematical programming method
based on linear interpolation (Powell, 1994).

• DSproba: the direct-search method in Sec-
tion 2.2. Other variants include DSbase,
DSsubspace, DS3p.

• MetaModel: CMA, equipped with a Meta-
model. The meta-model is applied periodi-
cally, if and only if the quadratic model can
effectively learn the loss values. There are
variants with a random forest meta-model or
a neural-net meta-model.

41

Under review as submission to TMLR

• ChainMetaModelSQP: a chaining of Meta-
Model (most of the run) and SQP (fast local
search at the end).

• CMA: Covariance Matrix Adaptation Evo-
lution Strategy (oldCMA is an older vari-
ant). DiagonalCMA is a version which is
faster thanks to the usage of a covariance ma-
trix. MicroCMA is a variant with an initial-
ization with very small variance. MultiCMA
and PolyCMA are bet-and-runs(Weise et al.,
2019) of several CMA with different initial-
izations. LPCMA is a CMA with larger
population and VLPCMA has even greater
population. PymooBIPOP is the BIPOP-
CMA as implemented in Pymoo(Blank &
Deb, 2020). ECMA is a so-called elitist vari-
ant of CMA, and FCMA is the implementa-
tion of CMA in (Wolz, 2022).

• DiscreteLenglerOnePlusOne: a discrete opti-
mization method in (Einarsson et al., 2019)
for a decreasing schedule of the mutation
rate. BSODiscreteOnePlusOne is similar but
with a handcrafted schedule instead of a
mathematically derived one.

• Other discrete optimization methods include
FastGA (Doerr et al., 2017b), Lognormal
variants (Kruisselbrink et al., 2011a), Port-
folio (based on (Dang & Lehre, 2016)). Vari-
ants of these methods with various suffixes or
prefixes correspond to modifications or dif-
ferent parametrizations. Adaptive variants
from (Doerr et al., 2019; Einarsson et al.,
2019; Doerr et al., 2016; 2017a) are also avail-
able, with Adaptive in their name.

• DE: differential evolution. GeneticDE, Two-
PointsDE and others are defined in Sec-
tion 2.2. Variants include QNDE, QODE,
SPQODE defined in Appendix C. Memet-
icDE is a chaining of RotatedTwoPointsDE,
TwoPointsDE, DE, SQP.

• PSO: Particle Swarm Optimization. Vari-
ants include QOPSO and SQOPSO, defined
in Appendix C, and SQOPSODCMA which
chains SQOPSO and DiagonalCMA.

• HyperOpt (Bergstra et al., 2015): optimiza-
tion method based on Parzen estimators.

• NGOpt: the classical wizard from Never-
grad. Shiwa is an old variant of NGOpt. Spe-
cialized variants exist: NGOptRW: a wizard

in Nevergrad, created specifically for real-
world cases. NoisyRL (with various suffixes):
variants specialized for reinforcement learn-
ing with noise. MixDeterministicRL: variant
for deterministic RL.

• The BAR algorithms are bet-and-runs com-
bining DE, CMA and others (BAR1, BAR2,
BAR3, BAR4): they are detailed in the code-
base and are, overall, weaker than wizards.

• NgIoh2, NgIoh4, NgIoh5, NgIoh6: variants
of NgIoh, not using information about the
type of variables or the type of problems.
We present NgIoh4 in Section 3 and de-
tails about the other variants, tested for
ablation, are available in (Rapin & Tey-
taud, 2024): NgIoh5 and NgIoh6 differ from
NGIoh4 in the discrete case only and there-
fore equivalent to NgIoh4 in the continuous
case. NgIoh2 and Wiz differ more, are usu-
ally weaker, and are visible in the codebase.

• NgIohTuned: variant of NgIoh, using infor-
mation on the type of variables (e.g.,: neuro-
control weight) and the type of problem (e.g.:
real world or not). NgIoh21 is similar to
NgIohTuned, without using special cases for
real-world problems.

• OnePlusOne: The simple (1 + 1)-evolution
strategy with one-fifth update rule.

• SQPCMA: running in parallel several SQP
with different initializations and a CMA.

• SQP: Sequential Quadratic Program-
ming (Nocedal & Wright, 2006, Chapter
18)(Virtanen et al., 2020).

• NLOPT: methods in (Johnson, 1994) (the
suffix is the method name).

• MetaRecentering: a method for quasi-
random sampling combined with a mathe-
matically derived guess of the location of the
optimum (Meunier et al., 2021).

• pysot: a tool including Bayesian optimiza-
tion methods and others (Eriksson et al.,
2019).

• Zero: a baseline which always returns the
center of the domain. Loss values are ig-
nored.

• TBPSA: Test-Based Population Size Adap-
tation (Cauwet & Teytaud, 2020b), an algo-
rithm for continuous noisy optimization.

42

Under review as submission to TMLR

• NaiveTBPSA: an adaptation of TBPSA for
the deterministic but highly rugged land-
scape (Cauwet & Teytaud, 2020a).

• Stupid: a baseline which randomly draws a
point in the domain and returns it as a rec-
ommendation. Loss values are ignored.

• Many of these methods have counterparts
based on combinations with optimism in
front of uncertainty as in the bandit litera-
ture.

43

	Introduction
	Background & Related Works
	Black-box optimization wizards
	Algorithms for multi-scale benchmarks

	NgIoh
	NgIohTuned

	Experimental Setup
	Reproducibility
	Benchmark Suites (a.k.a. Problem Collections)
	Performance criteria

	Experimental Results
	Multi-scale BBO benchmarks: dealing with the scaling issues, and validating Carola and NgIoh
	Real-world benchmarking in Nevergrad: successes of DE, PSO, bet-and-run, quasi-opposite sampling
	Statistics over all Nevergrad benchmarks: validating NgIoh and NgIohTuned
	Discrete benchmarks in Nevergrad

	Discussions
	Conclusions
	Ablation regarding ZP and MS: the importance of scaling in continuous domains
	Reproducibility
	Additional information on quasi-opposite algorithms
	Additional information on benchmarks
	Statistics over all benchmarks: full details
	NGOpt versus Base algorithms: validating wizards
	Number of times each algorithm was ranked first: NGOpt and base algorithms
	Number of times each algorithm was ranked among the 2 first: NGOpt and base algorithms
	Number of times each algorithm was ranked among the 3 first: NGOpt and base algorithms

	Comparing simple algorithms only: wizards, multi-levels, specific standard deviations, and combinations excluded
	Number of times each algorithm was ranked first: no wizard, no combination
	Number of times each algorithm was ranked among the 2 first: no wizard, no combination
	Number of times each algorithm was ranked among the 3 first: no wizard, no combination

	Everything included except NgIohTuned
	Number of times each algorithm was ranked first: everything included
	Number of times each algorithm was ranked among the two first: everything included
	Number of times each algorithm was ranked among the three first: everything included

	Additional experimental figures for artificial problems in Nevergrad
	Outside Nevergrad: application to external real-world problems
	Infrastructure: optimizing a caching policy
	Crop optimization
	Mobile Network Base Station Placement Optimization
	Robust topology optimization
	Gym
	Photonics

	Additional results with more variants
	Additional results: YABBOB, ZP-MS-BBOB, MS-BBOB
	Additional results: real-world problems from Nevergrad
	Additional results comparing NgIoh to NGOpt on the old BBOB/COCO
	Additional results: BBOB with budget =10 dimension
	Additional results: BBOB with budget =100 dimension
	Additional results: BBOB with budget =1000 dimension
	Additional results: BBOB with budget =10000 dimension

	List of methods

