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ABSTRACT

We show that a stochastic version of optimistic mirror descent (OMD), a variant
of mirror descent with recency bias, converges fast in general games. More
specifically, with our algorithm, the individual regret of each player vanishes at
a speed of O(1/T 3/4) and the sum of all players’ regret vanishes at a speed of
O(1/T ), which is an improvement upon the O(1/

√
T ) convergence rate of prior

stochastic algorithms, where T is the number of interaction rounds.
Due to the advantage of stochastic methods in the computational cost, we sig-
nificantly improve the time complexity over the deterministic algorithms to ap-
proximate coarse correlated equilibrium. To achieve lower time complexity, we
equip the stochastic version of OMD in (AM21) with a novel low-variance Monte-
Carlo estimator. Our algorithm extends previous works (AM21; CJST19) from
two-player zero-sum games to general games.

1 INTRODUCTION

How does a player in a game interact with others, and selfishly maximize its own utilities? This is
one central problem in online learning and game theory and has intimate connections to economics,
auction design, and machine learning. The study of this problem was pioneered by (Bro49; Rob51).
Robinson (Rob51) shows that fictitious play asymptotically converges to Nash equilibrium in two-
player zero-sum games. But its convergence rate is exponentially slow and it may not even converge
in non-zero-sum games (Sha64).

Another natural choice for each player is to use no-regret learning algorithms. With some well-known
families of no-regret learning algorithms, e.g., mirror descent (NY83) and follow-the-regularized-
leader (KV05), the average regret of each player vanishes at a speed of O(1/

√
T ) where T is the

number of interaction rounds. This regret bound implies an O(1/
√
T ) convergence rate to the coarse

correlated equilibrium in general games (or Nash equilibrium in two-player zero-sum games). And it
is noteworthy that Chen and Peng (CP20) show that these algorithms’ convergence rate is Ω(1/

√
T ).

Players can do even better with some special no-regret algorithms tailored for games. The most
representative one is known as optimistic mirror descent (OMD) which is a variant of mirror descent
with recency bias. Syrgkanis et al. (SALS15) and Rakhlin et al. (RS13) show that OMD approaches
optimal social welfare (or equivalently, minimizes the sum of all players’ regrets) at a speed of
O(1/T ) and minimizes each player’s individual regret at a speed of O(1/T 3/4). Several works
(CP20; HAM21; DFG21) improve the results in (SALS15) under different settings or assumptions.
Remarkably, Daskalakis et al. (DFG21) improve the convergence rate of players’ individual regret of
OMD to O(poly log T/T ) in general games.

However, the computational cost of players to use OMD, as well as other deterministic no-regret
algorithms, could be not manageable. Since each player needs to compute the exact loss vector to
update its strategy in OMD. And the time complexity of computing this exact loss vector is, in the
worst case, exponential in the number of players in the game. One standard method to accelerate the
computation is to estimate the loss vector with Monte-Carlo methods. But a Monte-Carlo estimator
with an uncontrolled variance will immediately make the convergence rate degenerate to O(1/

√
T ).
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To alleviate the effect of Monte-Carlo estimator’s variance, Carmon et al. (CJST19) and Alacaoglu
et al. (AM21) propose variance reduced stochastic no-regret algorithms with a convergence rate of
O(1/T ) for two-player zero-sum games. As a result, they improve the time complexity of computing
ϵ-Nash Equilibrium in two-player zero-sum games from O(Cost/ϵ) of deterministic algorithms to
O(Cost +

√
Cost/ϵ) (some lower order terms are omitted) where Cost is the time complexity of

computing the loss vector.

While Carmon et al. (CJST19) and Alacaoglu et al. (AM21) make a huge step towards developing
efficient stochastic algorithms for games, their algorithms are tailored for the simplest two-player
zero-sum games and could not cover more practical settings, such as auctions, which may involve
multiple players and not be zero-sum. One crucial factor of the algorithms in Carmon et al. (CJST19)
and Alacaoglu et al. (AM21) is a stochastic loss estimator with small variance. However, the time
complexity of calculating this estimator is O(AN−1) where N is the number of players, which is
exponentially large in general games. The high complexity of the estimator becomes a major obstacle
to developing efficient stochastic algorithms for general games.

Contributions. We consider general normal-form games with an arbitrary number of players.
Compared to the two-player zero-sum case, this is more challenging and practically significant. We
show that in general games, a stochastic version of OMD converges to the optimal social welfare
(or equivalently, minimizes the sum of all players’ regrets) at a rate of Õ(1/T ) and minimizes the
individual regret at a speed of O(1/T 3/4) in contrast to the O(1/

√
T ) convergence rate of existing

stochastic algorithms. Due to the advantage of stochastic methods in the computational cost, this
significantly improves the time complexity to approximate coarse correlated equilibrium in general
games. Please see Table 1 for the comparison of the time complexity of our algorithm against prior
works. Specifically, our result improves previous works for weak ϵ-CCE when Cost ≥ NA and for
strong ϵ-CCE when Cost ≥ NA2/ϵ.

To achieve the above regret bounds, we make two main technical contributions. Firstly, we extend the
theoretical framework of analyzing regret bounds of stochastic OMD in (AM21) from two-player
zero-sum games to general games. Secondly, we propose a novel low-variance Monte-Carlo estimator
for general games. The computational complexity of this estimator is exponentially faster than
Carmon et al. (CJST19) and Alacaoglu et al. (AM21) while the variance is only slightly larger. The
stochastic OMD algorithm equipped with our novel estimator achieves the above results.

The rest of the paper is organized as follows: In Section 2, we discuss prior works related to this
problem. In Section 3, we provide necessary preliminaries for games, coarse correlated equilibrium
and optimistic mirror descent. In Section 4, we introduce our algorithm and present a general regret
upper bound in Theorem 1. In Section 5, we introduce our low-variance Monte-Carlo estimator and
analyze its variance in Lemma 3. In Section 6, by combining the results in Theorem 1 and Lemma 3,
we present our final regret bounds in Theorem 2 and 3, as well as the time complexity to approximate
coarse correlated equilibrium in Corollary 1 and 2.

2 RELATED WORK

Comparisons to existing algorithms. Table 1 compares the time complexity of our algorithm to
compute ϵ-coarse correlated equilibrium for general games (and ϵ-Nash equilibrium for two-player
zero-sum games) against prior no-regret algorithms. The time complexity is determined by two
terms: the convergence rate (or the regret) and the computational cost in each round. Deterministic
algorithms (PSS21; DFG21; SALS15) converge fast, but with a relatively higher per round time
complexity since they have to compute the loss in each round. Stochastic algorithms exploit the
Monte-Carlo approach to accelerate the computation of loss. However, the variance of the estimated
loss may slow down the convergence rate. To alleviate the effect of the variance, Carmon et al.
(CJST19) and Alacaoglu et al. (AM21) develop variance reduced stochastic no-regret learning
algorithms. Their algorithms significantly accelerate the computation of ϵ-Nash equilibrium in
two-player zero-sum games.

Variance reduction. Variance reduction is one of the most useful techniques to accelerate stochastic
algorithms (see (GSBR20) for a comprehensive survey). Typically, when optimizing the finite sum
problem minx F (x) =

∑N
i=1 Fi(x), instead of estimating the gradient by ∇Fi(x) like Stochastic

Gradient Descent (SGD), the variance reduction method proposes to use ∇̃F (x) = ∇F (wk) +
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ϵ-Nash equilibrium Weak ϵ-CCE Strong ϵ-CCE
Two-player zero-sum General games General games

(D)(SALS15) Õ(Cost/ϵ) Õ(N3Cost/ϵ) Õ(N3/2Cost/ϵ4/3)

(D)(DFG21) Õ(Cost/ϵ) Õ(N3Cost/ϵ) Õ(N2Cost/ϵ)

(D)(PSS21) Õ(Cost/ϵ) Õ(N3Cost/ϵ) Õ(N2Cost/ϵ)

(S)(AM21) Õ(Cost +
√
ACost/ϵ) - -

(S)(CJST19) Õ(Cost +
√
ACost/ϵ) - -

(S) Ours Õ(Cost +
√
ACost/ϵ) Õ(Cost +N

7
2

√
ACost/ϵ) O(Cost + Cost

2
3 N

7
3 A

2
3

ϵ4/3
)

Table 1: Comparisons of time complexity to compute ϵ-CCE for general games and ϵ-Nash equi-
librium for two-player zero-sum games. Cost denotes the time complexity of computing the loss
vector. N is the number of players and A is the number of actions for each player. (S) means the
algorithm is stochastic and (D) means the algorithm is deterministic. For stochastic algorithms, the
time complexity is the expected running time to achieve an expected approximation error, which
directly follows (AM21). Õ hides factors which are polynomial in terms of log(1/ϵ) and log(A).

∇Fi(x)−∇Fi(w
k), where wk is called the “snapshot". In many cases, e.g., when Fi’s are convex,

sampling i from a uniform distribution is sufficient to reduce the variance. When dealing with games,
it turns out that one has to be meticulous to design a low-variance sampling distribution, even when
the game is two-player zero-sum (CJST19; AM21). And it remains unclear how to design such
a low-variance distribution for general games. One of our main contributions is a low-variance
Monte-Carlo estimator for general games, which ensures fast convergence in general games.

Stochastic no-regret learning for large-scale sequential decision-making. Counterfactual regret
minimization (CFR) (ZJBP07) generalizes no regret learning to games with sequential decision-
making, namely extensive-form games. A long list of works study the variants of CFR (LWZB09;
BS19a; ZRL+19; MSB+17; TBJB15). And these works lead to the superhuman AI, Libratus (BS18)
and Pluribus (BS19b), for two-player and six-player heads-up no-limit Texas Hold’em (HUNL).
Since the state space of HUNL is super huge, both Libratus and Pluribus adopt the Monte-Carlo
CFR with external sampling (LWZB09). And the experimental results suggest that the variance of
Monte-Carlo sampling significantly slows down the convergence rate. Several works empirically
reduce the variance of Monte-Carlo sampling (SBL+19; BS19b). However, these algorithms do not
enjoy any theoretical guarantees on the convergence rate. We hope our algorithms could provide
insights into the development of low-variance stochastic algorithms for large-scale games.

3 PRELIMINARY

Notation. For any vector v ∈ Rd, denote v(j) as its jth coordinate, ∥v∥1 =
∑d

j=1 |v(j)| as its

ℓ1-norm, ∥v∥2 =
√∑d

j=1 v
2(j) as its ℓ2-norm, and ∥v∥∞ = maxj=1,··· ,d |v(j)| as its ℓ∞ norm.

For a general norm ∥ · ∥, let ∥ · ∥∗ represent its dual norm. Denote ⟨v, w⟩ =
∑d

i=1 v(i)w(i) as the
standard inner product of two vectors v, w ∈ Rd. For a positive integer n, let [n] = {1, · · · , n}. For
a discrete set S, let ∆(S) be the set of distributions over S.

Basics of game. We consider general games with N players. The action space of each player i ∈
[N ] is Ai. Denote A = maxi|Ai| as the cardinality of the largest action space. The joint action space
of all players is A = A1×A2×· · ·×AN . For simplicity, let A−i = A1×· · ·×Ai−1×Ai+1×· · ·×AN

be the joint action space of all players except for player i ∈ [N ]. The loss of players can be specified
by the functions F1, F2, · · · , FN : A → [0, 1], which map the joint action space to a real value.
Specifically, if each player j selects action aj ∈ Aj , then Fi(a) is the loss of player i where
a := (a1, a2, . . . , aN ).
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A mixed strategy σi is a probability distribution over Ai. We say a player pi plays according to
σi if it selects action ai ∈ Ai with probability σi(ai). For any strategy profile σ := (σi)i∈[N ],
let σ−i := (σ1, . . . , σi−1, σi+1, . . . , σN ) denote the strategy profile σ after removing σi. And for
convenience, let (σ′

i, σ−i) denote the strategy profile σ after replacing σi with σ′
i. Similarly, given an

action profile a := (ai)i∈[N ], let a−i := (a1, . . . , ai−1, ai+1, . . . , aN ) denote the action profile after
removing ai and (a′i, a−i) be the action profile a after replacing ai with a′i.

With a little abuse of notation, for a strategy profile σ, let Fi(σ) := Ea∼σ

[
Fi(a)

]
be the expected

loss of player i if each player j ∈ [N ] plays according to σj . For convenience, define the vector
Fi(a−i) ∈ [0, 1]|Ai| with [Fi(a−i)](a

′
i) = Fi((a

′
i, a−i)) representing the loss of player i when each

player j ̸= i selects aj and i selects a′i ∈ Ai. Similarly, define the vector Fi(σ−i) ∈ [0, 1]|Ai|

with [Fi(σ−i)](a
′
i) = Ea−i∼σ−i

[
Fi((a

′
i, a−i))

]
representing the expected loss of player i if each

player j plays according to σj and i selects action a′i. Further, denote Cost as the time complexity of
computing the vector Fi(σ−i).

No-regret learning. In online learning, N players play the game for T rounds. In round k ∈ [T ],
player i plays according to the strategy σk

i and suffers the expected loss ⟨Fi(σ
k
−i), σ

k
i ⟩. Each player

aims to minimize its cumulative loss, which is equivalent to minimizing its regret maxσi
Ri(σi) :=

maxσi

∑T
k=1⟨Fi(σ

k
−i), σ

k
i −σi⟩ where Ri(σi) is the cumulative loss difference between the adopted

strategies and the fixed strategy σi.

Given the strategy at round 1, ..., k, the optimistic mirror descent (OMD) (RS13; SALS15) method
calculates the strategy in round k + 1 as:

σk+1
i = argmin

σi∈∆(Ai)

D(σi, σ
′k+1
i ), where ∇h(σ′k+1

i ) = ∇h(σk
i )− τ(2Fi(σ

k
−i)− Fi(σ

k−1
−i ))) . (1)

where τ is the step size and D(x, y) is the Bregman divergence induced by some mirror map
h(·) 1. Without loss of generality, we mainly consider two common mirror maps in this paper:
negative entropy h1(x) =

∑d
a=1 x(a) log x(a) and squared ℓ2-norm h2(x) =

∑d
a=1 x

2(a). Their
corresponding Bregman divergences are D1(x, y) =

∑d
a=1 x(a) log(x(a)/y(a)) and D2(x, y) =∑d

a=1(x(a)− y(a))2, respectively. Our analyses apply to other mirror maps as well.

Coarse correlated equilibrium (CCE). A correlated strategy ζ is a distribution over the joint
action space A. We call ζ a coarse correlated equilibrium (CCE) if no player can benefit from
unilaterally deviating from ζ given that others take actions according to ζ. There are two versions of
approximate CCE: one corresponds to the social welfare and is referred to as weak ϵ-CCE; the other
corresponds to the individual loss and is referred to as strong ϵ-CCE. Intuitively, weak ϵ-CCE states
that the averaged difference among all players i ∈ [N ] between the expected loss Ea∼ζ

[
Fi(a)

]
by

following ζ and the least expected loss mina∗
i
Ea∼ζ

[
Fi((a

∗
i , a−i))

]
by deviating from ζ is no more

than ϵ. And strong ϵ-CCE requires that the maximum difference among all players i ∈ [N ] between
these two types of expected loss to be smaller than ϵ. The formal definitions are as follows.
Definition 1. A correlated strategy ζ is a weak ϵ-CCE (corresponding to social welfare) if

N∑
i=1

(
Ea∼ζ

[
Fi(a)

]
−min

a∗
i

Ea∼ζ

[
Fi((a

∗
i , a−i))

])
≤ ϵ

and it is a strong ϵ-CCE (corresponding to individual loss) if

max
i∈[N ]

(
Ea∼ζ

[
Fi(a)

]
−min

a∗
i

Ea∼ζ

[
Fi((a

∗
i , a−i))

])
≤ ϵ .

Here for convenience, we simply multiply the average difference by N as the sum over all
players in the definition of Weak ϵ-CCE. Thus a strong ϵ-CCE is a weak Nϵ-CCE. Strong-
CCE ensures that each player will not suffer a large loss, and weak-CCE guarantees the con-
vergence to the global optimal strategy within a large class of smooth games (SALS15). Since

1h : Rd → R is called a mirror map if h is strongly convex with respect to some norm and ∇h(Rd) = Rd.
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this work mainly focuses on the stochastic method, we study the expected performance of the
generated strategy. Specifically, a randomly generated correlated strategy ζ is called a weak
ϵ-CCE if

∑N
i=1

(
Eζ,a∼ζ

[
Fi(a)

]
−mina∗

i
Eζ,a∼ζ

[
Fi((a

∗
i , a−i))

])
≤ ϵ and a strong ϵ-CCE if

maxi∈[N ]

(
Eζ,a∼ζ

[
Fi(a)

]
−mina∗

i
Eζ,a∼ζ

[
Fi((a

∗
i , a−i))

])
≤ ϵ, where the expectation is addi-

tionally taken over the randomness of the generated strategy ζ.

Connection between no-regret learning and CCE. The following Lemma 1 shows a well-known
connection between no-regret learning and CCE.
Lemma 1. Let σ1, · · · , σT denote an arbitrary collection of strategy profiles and ζ(a) :=
1
T

∑T
k=1

∏N
i=1 σ

k
i (ai). It holds that

Ea∼ζ

[
Fi(a)

]
−min

a∗
i

Ea∼ζ

[
Fi((a

∗
i , a−i))

]
≤ max

σi

Ri(σi)/T, ∀i ∈ [N ] . (2)

Lemma 1 shows that the running time to approximate CCE depends on both the regret and the running
time in each round. Deterministic algorithms, such as OMD, though enjoy excellent regret bounds,
take a long running time for computation in each round. In the next sections, we will show how to use
the Monte-Carlo method to accelerate the calculations without significantly hurting the regret bound.

4 OPTIMISTIC MIRROR DESCENT WITH MONTE-CARLO ESTIMATION

In this section, we present our algorithm. We first introduce some necessary notations. Let
Fi,a−i(σ−i) = Fi(a−i)σ−i(a−i)/q(a−i) where a−i ∈ A−i denotes a random variable drawn from
a sampling distribution q−i.

The algorithm is presented in Algorithm 1, which is a stochastic version of OMD shown in equation 1
with variance reduction. There are two crucial modifications over the vanilla OMD to accelerate
calculation: one is on the estimated loss and the other is on the update starting points.

Algorithm 1 Optimistic mirror descent with variance reduction
1: Input: hyper-parameters p, τ and α; mirror map h
2: Initialize: w1

i (a) = 1/A and σ1
i (a) = 1/A

3: for k = 1, 2, · · · , T do
4: Sample u from uniform distribution over [0, 1].
5: for i = 1, · · · , N do
6: Compute σ̂k

i such that ∇h(σ̂k
i ) = α∇h(σk

i ) + (1− α)∇h(wk
i ).

7: Sample ak−i ∼ LVE(i, σk, wk−1). {See section 5 for the definition of LVE.}
8: Compute σ̃k+1

i such that

∇h(σ̃k+1
i ) = ∇h(σ̂k

i )− τ(Fi(w
k
−i) + Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )).

9: Compute σk+1
i = argminσi∈∆(Ai) D(σi, σ̃

k+1
i ).

10: Update wk+1
i = σk+1

i if u < p and wk+1
i = wk

i if u ≥ p.
11: end for
12: end for

Estimated loss. As can be seen in Line 8, Algorithm 1 updates the strategy using the estimated loss
Fi(w

k
−i) + Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i ) instead of 2Fi(σ
k
−i)− Fi(σ

k−1
−i ) in the vanilla OMD equa-

tion 1. By constructing appropriate distribution q−i to sample ak−i (Line 7), it can be shown that the
adopted estimated loss Fi,ak

−i
(σk

−i)−Fi,ak
−i
(wk−1

−i ) where Fi,a−i
(σ−i) = Fi(a−i)σ−i(a−i)/q(a−i)

and a−i ∼ q−i in the algorithm is an unbiased estimator of Fi(σ
k
−i)− Fi(w

k−1
−i ) in the vanilla OMD.

The objective to introduce such estimated loss is to reduce the computation complexity. Since wk+1

is only updated with probability p at each round (Line 10), the running time to compute Fi(w
k
−i) over

T rounds is just O(pTCost). It is also worth noting that such an estimator may bring high variance.
So how to construct q−i to accelerate convergence while ensuring low variance is the key innovation
of our algorithm. We postpone the descriptions and discussions on this estimator to Section 5.

5



Published as a conference paper at ICLR 2023

Different update starting points. As in Line 8, Algorithm 1 updates σk+1
i from the starting

point σ̂k
i instead of σk

i in OMD equation 1. This modification was first introduced by (AM21) for
two-player zero-sum games. We prove its effect in general games is to admit a faster learning rate in
the case of maximizing social welfare. The detailed proof for this part can be seen in the full analysis.

It is remarkable that under special settings of hyper-parameters, our Algorithm 1 degenerates to
standard OMD (SALS15) and stochastic OMD for two-player zero-sum games (AM21). Specifically,
when setting p = 1, α = 1 and using the exact value of Fi(σ

k
−i)− Fi(w

k−1
−i ) in Line 8, Algorithm 1

is equivalent to standard OMD (SALS15). And when the underlying game is two-player zero-sum,
our constructed unbiased estimator for Fi(σ

k
−i)− Fi(w

k−1
−i ) is equivalent to that in (AM21) and thus

Algorithm 1 can also recover their stochastic OMD.

In the following, we show how to compute σk+1 by taking two common examples of the mirror
map function: negative entropy h1(x) =

∑d
a=1 x(a) log x(a) and square of ℓ2-norm h2(x) =∑d

a=1 x
2(a). When the mirror map is h1, it is easy to verify that ∇x(a)h1(x) = 1 + log x(a). Then

according to Line 6, σ̂k
i (a) = (σk

i (a))
α(wk

i (a))
1−α. So we can update σk+1

i in O(A) time as

σk+1
i (a) ∝ (σk

i (a))
α(wk

i (a))
1−α exp

(
−τ [Fi(w

k
−i) + Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )](a)
)
.

Similarly, when the mirror map is h2, we can directly compute σ̂k
i (a) = ασk

i (a) + (1− α)wk
i (a).

The computation of σ̃k+1
i is easy according to the gradient of the ℓ2-norm and σk+1

i can then be
obtained by standard procedure of projecting σ̃k+1

i to the simplex.

4.1 THEORETICAL ANALYSIS

We first provide a general regret upper bound for Algorithm 1 in the following Theorem 1. The final
results (Theorem 2 and Theorem 3) will be postponed in later sections by combining this general
upper bound and the variance upper bound for the unbiased estimator in Lemma 3 as well as some
delicate derivations.
Theorem 1. If D(x, y) ≥ γ∥x− y∥2 for all x, y and some norm ∥ · ∥ with γ > 0 being a constant,
then the expected regret of Algorithm 1 is upper-bounded by

τ max
σi

E
[
Ri(σi)

]
≤ Ui − (1− α)E

 T∑
k=1

D
(
σk
i , w

k−1
i

)
+ τ2

(
1 +

1

αγ

)
E

 T∑
k=1

∥Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗

 , (3)

where Ui := maxσi E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]
+maxσi D(σi, σ

0
i ), σ

0, w0 are uniform and

ϕk
i (σi) =αD(σi, σ

k
i ) + (1− α)/p ·D(σi, w

k
i ) + (1− α)D(σk

i , w
k−1
i )

+ τ⟨Fi(σ
k
−i)− Fi(w

k−1
−i ), σi − σk

i ⟩ . (4)

Due to the space limit, the full proof of Theorem 1 is deferred to Appendix A.2. To obtain the
main order of the above general upper bound, we first bound Ui, i.e., the first term in equation 3.
According to the following Lemma 2, it is easy to see that Ui is of order Õ

(
1 + τ + (1− α)/p

)
.

When adopting hyper-parameters such that α ≥ 1 − p and τ = O(1), we would have Ui = Õ(1).
Therefore, the key to bound the regret in Theorem 1 is to control the variance of the estimator, i.e.,
the third term in equation 3, which will be completed by our estimator introduced in Section 5.
Lemma 2 (Bounds for ϕk

i defined in equation 4). For any k and σi, ϕ
k
i (σi) ≥ −4τ . If the mirror

map is h1 and wk
i (a) = 1/A, then ϕk

i (σi) ≤ 4τ + (1 + (1− α)/p) logA. If the mirror map is h2

and wk
i (a) = 1/A, then ϕk

i (σi) ≤ 4τ + 2(1 + (1− α)/p).

5 LOW-VARIANCE MONTE-CARLO ESTIMATOR

In this section, we present our low-variance estimator for Fi(σ−i)− Fi(w−i) where σ and w are two
strategy profiles. For convenience, we assume σ ̸= w. It is standard to use importance sampling
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to construct an unbiased estimator. Specifically, let q−i denote a distribution over A−i such that
q−i(a−i) = 0 only if σ−i(a−i) = 0 and w−i(a−i) = 0. Recall Fi,a−i(σ−i) = Fi(a−i)

σ−i(a−i)
q(a−i)

.
Clearly, we have Ea−i∼q−i

[
Fi,a−i

(σ−i)
]
=
∑

a−i
Fi(a−i)σ−i(a−i) = Fi(σ−i) .

Therefore, Fi,a−i
(σ−i)− Fi,a−i

(w−i) is an unbiased estimator for Fi(σ−i)− Fi(w−i) when a−i ∼
q−i. However, for an arbitrary q−i, the variance of the estimator can be very large. For example, let
q−i denote the uniform distribution over A−i. Then, in the worst case, the variance of Fi,a−i

(σ−i)−
Fi,a−i

(w−i) can be AN . So we need to carefully design q−i to ensure low variance.

Note the variance Ea−i∼q−i

[
∥Fi,a−i

(σ−i)− Fi,a−i
(w−i)∥2∞

]
2 is upper bounded by∑

a−i
∥Fi(a−i)∥2∞(σ−i(a−i) − w−i(a−i))

2/q−i(a−i). Intuitively, to control the variance,
we should allocate a large probability mass to a−i where (σ−i(a−i) − w−i(a−i))

2 is large.
With the observation that the difference between σ−i(a−i) and w−i(a−i) can be decomposed
as σ(a) − w(a) =

∑N
i=1(σi(ai) − wi(ai))

∏
x<i σx(ax)

∏
y>i wy(ay) (see Lemma 10 for more

details), we propose to sample a−i according to the following distribution:

q−i(a−i) =
1∑

j′ ̸=i Zj′

∑
j ̸=i

|σj(aj)− wj(aj)|
∏

x<j,x ̸=i

σx(ax)
∏

y>j,y ̸=i

wy(ay) , (5)

where Zj =
∑

aj
|σj(aj)− wj(aj)|. It is easy to verify that q−i(a−i) ≥ 0 and

∑
a−i

q−i(a−i) = 1.

The following Algorithm 2 summarizes an efficient sampling procedure from q−i in equation 5
with polynomial time complexity O((N − 1)A). It takes two main steps to sample a−i. Firstly, we
sample index j with probability Zj/

∑
j′ ̸=i Zj′ (Line 1). And then, we sample a−i with probability

proportional to |σj(aj)− wj(aj)|
∏

x<j,x ̸=i σx(ax)
∏

y>j,y ̸=i wy(ay) (Line 3-5).

Algorithm 2 LVE(i, σ, w)
1: Compute Zj =

∑
aj

|σj(aj)− wj(aj)| for j ̸= i.

2: Sample j with probability Zj∑
j′ ̸=i Zj′

.

3: For 1 ≤ j′ < j, j′ ̸= i, sample aj′ according to σj′ .
4: Sample aj with probability |σj(aj)−wj(aj)|∑

a′
j
|σj(a′

j)−wj(a′
j)|

.

5: For j < j′ ≤ N, j′ ̸= i, sample aj′ according to wj′ .
6: return : a−i

The following Lemma 3 provides an upper bound for the variance of the constructed estimator in
equation 5. We believe this result is also of independent interest since it is quite general and may be
used to control the variance of other stochastic algorithms for general games.

Lemma 3 (Variance bound). Sampling a−i ∼ q−i defined in equation 5 can be implemented by
Algorithm 2. Moreover, we can upper bound its variance by

Ea−i∼q−i

[
∥Fi,a−i

(σ−i)− Fi,a−i
(w−i)∥2∞

]
≤ (N − 1)

∑
j ̸=i

∥σj − wj∥21 . (6)

Proof. According to the definition of q−i, the variance of the estimated loss is

Ea−i∼q−i

[
∥Fi,a−i

(σ−i)− Fi,a−i
(w−i)∥2∞

]
≤
∑
a−i

∣∣(σ−i(a−i)− w−i(a−i))
∣∣2 /q−i(a−i) .

Further, recall that the difference between σ(a) and w(a) can be decomposed as
∑N

i=1(σi(ai) −
wi(ai))

∏
x<i σx(ax)

∏
y>i wy(ay) in Lemma 10 (Please see appendix for the statement and proof),

2In Theorem 1, we consider the general dual norm ∥ · ∥∗. Here, we only upper bound ∥ · ∥∞ because when
the mirror map is h1 or h2, the dual norm is ∥ · ∥∞ or ∥ · ∥2 ≤

√
A∥ · ∥∞, respectively.
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it holds that ∑
a−i

∣∣∣(σ−i(a−i)− w−i(a−i)
)∣∣∣2 /q−i(a−i)

=
∑
a−i

∣∣∣∣∣∣
∑

j ̸=i

(σj(aj)− wj(aj))
∏

x<j,x ̸=i

σx(ax)
∏

y>j,y ̸=i

wy(ay)

∣∣∣∣∣∣
2

/q−i(a−i)

≤
∑
a−i

∣∣∣∣∣∣
 N∑

i=1

∣∣σi(ai)− wi(ai)
∣∣ ∏
x<j,x ̸=i

σx(ax)
∏

y>j,y ̸=i

wy(ay)

∣∣∣∣∣∣
2

/q−i(a−i)

=

∑
j ̸=i

Zj

∑
a−i

∣∣∣∣∣∣
 N∑

i=1

|σi(ai)− wi(ai)|
∏

x<j,x ̸=i

σx(ax)
∏

y>j,y ̸=i

wy(ay)

∣∣∣∣∣∣
=

∑
j ̸=i

Zj

2

≤ (N − 1)
∑
j ̸=i

∥σj − wj∥21 .

Discussion on the optimality of LVE There are mainly two aspects to examine the optimality of a
Monte-Carlo estimator: the variance and computational complexity.

1. Variance: It is obvious that the smallest variance is (
∑

a−i
|σ−i(a−i) −

w−i(a−i)|)2 achieved by qCJST19
−i (CJST19). Then, after noticing that q−i(a−i) ≥

qCJST19
−i (a−i)(

∑
a−i

|σ−i(a−i)− w−i(a−i)|)/
∑

j ̸=i Zj ≥ qCJST19
−i (a−i)/(N − 1), the vari-

ance of our estimator is optimal within a multiplicative factor N − 1 according to Lemma 4.

Lemma 4. For any σ and w, we have the variance of estimator with q−i from equation 5 is no more
than (N − 1)(

∑
a−i

|σ−i(a−i)− w−i(a−i)|)2.

2. Computational complexity: The computational cost of our LVE is also optimal among estimators
with low variance. Intuitively, the time complexity of LVE equals to access each entry of σk

j and
wk−1

j for constant times, and it is unlikely to be improved. The following lemma formally shows this.

Lemma 5. We say j is agnostic to q′−i if there are at least two entries of σj are not accessed when
computing q′−i. Let m denote the number of j which is agnostic to q′−i. Then, there exists σ and w,
the variance of the estimator is Ω(2m).

It is remarkable that though the estimator of (CJST19) achieves the smallest variance, its compu-
tational complexity is O(|A|N−1) to access every configuration of a−i to compute |σ−i(a−i) −
w−i(a−i)|, which is impractical in general games with multiple players. Our LVE estimator simulta-
neously guarantees (near-)optimal variance and computational complexity.

6 REGRET UPPER BOUNDS AND TIME COMPLEXITY TO APPROXIMATE CCE

Now we are ready to provide our final guarantees to reach weak ϵ-CCE which corresponds to social
welfare and strong ϵ-CCE which corresponds to individual loss. In addition, we also provide an
adversarial regret bound of O(

√
T ) to show the robustness of our algorithm.

6.1 SOCIAL WELFARE

We first consider the time complexity to reach a weak ϵ-CCE. For this case, we take the mirror map
h1(x) =

∑d
a=1 x(a) log x(a) as an example. Recall that Lemma 1 shows that the time complexity to

approximate CCE depends on both the regret and the per-round running time. So we first provide an
upper bound for the regret

∑
i∈N maxσi

E
[
Ri(σi)

]
defined in weak ε-CCE.

Theorem 2. Let hyper-parameters α = 1 − p, τ =
√

γα(1− α)/2/
(
(N − 1)

√
1 + αγ

)
, γ ∈

(0, 1/2) be a constant and the mirror map be h1. Then there exists a constant C such that

maxσ E
[∑N

i=1 Ri(σi)
]
≤ CN2 logA/

√
p.

8



Published as a conference paper at ICLR 2023

With the above upper bound, we can then guarantee the time complexity to reach a weak ϵ-CCE.
Corollary 1. With p = NA/Cost and the hyper-parameters defined as Theorem 2, the time complex-

ity of Algorithm 1 to reach a weak ϵ-CCE is O
(

Cost +N7/2
√
ACost logA/ϵ

)
.

6.2 INDIVIDUAL REGRET

In this subsection, we provide the time complexity to reach a strong ϵ-CCE. As previous analysis,
we will also first give the upper bound for the individual regret. Here we take the mirror map
h2(x) =

∑d
a=1 x

2(a) as an example.

Before providing the upper bound for the individual regret, we first present a useful lemma to bound
the term E

[
∥σk

j − wk−1
j ∥21

]
appearing in the general upper bound in Theorem 1.

Lemma 6. If the hyper-parameter α = 1, then E
[
∥σk

j − wk−1
j ∥21

]
≤ 2τ2/p2.

With Lemma 6, we now provide an upper bound on individual regret.

Theorem 3. With τ =
(
A
(
2 + 1/γ

)
(N − 1)2T/p2

)−1/4

, α = 1, γ ∈ (0, 1/2) and mirror map h2,

we have maxσi
E
[
Ri(σi)

]
= O

(
A(N − 1)2T/p2

)1/4
for any i ∈ [N ].

The above individual regret upper bound in Theorem 3 implies the following time-complexity to
reach a strong ϵ-CCE.
Corollary 2. With p = NA/Cost and the hyper-parameters defined in Theorem 3, the running time

to reach a strong ϵ-CCE is O
(

Cost +N2ACost2/3/ϵ4/3
)

.

6.3 ADVERSARIAL REGRET

While this work mainly focuses on the case that every player adopts the same algorithm to optimize
its own strategy, it is also interesting to consider the case where some players play adversarially, i.e.,
∃ player j who updates σk

j and wk−1
j adversarially, to see if the algorithm is robust. According to

Lemma 3, we have

Ea−i∼q−i

[
∥Fi,a−i

(σ−i)− Fi,a−i
(w−i)∥2∞

]
≤ (N − 1)

∑
j ̸=i

∥σj − wj∥21 ≤ N(N − 1) ,

which also holds in the adversarial setting. Then, inserting this inequality into Theorem 1 and with
standard derivation, we have an O(

√
T ) adversarial regret which is formally presented below.

Lemma 7. With the mirror map h2, α = 1, τ = N
√
T and γ ∈ (0, 1/2), if player i follows

Algorithm 1, then for any σk
j , w

k−1
j , j ̸= i, k = 1, · · · , T , we have E

[
Ri(σi)

]
= O(N

√
T ).

7 CONCLUSION

In this paper, we propose a stochastic version of OMD with variance reduction. Our algorithm extends
prior works on variance-reduced stochastic algorithms from two-player zero-sum games to general
games. The key innovation of this work is a low-variance Monte-Carlo estimator. In comparison with
the prior estimator in (CJST19), our estimator is exponentially fast with a slightly larger variance.

There are several directions to extend our algorithm: Firstly, despite our algorithm enjoying an O(1/ϵ)
convergence rate to weak-CCE, its convergence rate to strong CCE is O(1/ϵ4/3) which seems to
be sub-optimal in comparison to the convergence rate in (DFG21) and (PSS21). Thus, developing
stochastic algorithms with an O(1/ϵ) convergence rate to strong-CCE is an interesting direction;
Secondly, we only consider normal-form games. However, it is more realistic to consider games with
sequential structures, e.g., extensive-form games. We hope this work could be a starting point for
developing more efficient stochastic algorithms for general games.
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A PROOF

Our regret bounds are derived from the following first-order optimality condition which is according
to the update rule in Line 9 in Alg. 1. We have

0 ≤ ⟨∇h(σk+1
i )−∇h(σ̃k+1

i ), σi − σk+1
i ⟩

= ⟨∇h(σk+1
i )−∇h(σ̂k

i ) + τ(Fi(w
k
−i) + Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )), σi − σk+1
i ⟩ . (7)

Adding τ⟨Fi(σ
k+1
−i ), σk+1

i − σi⟩ to both sides of equation 7, we immediately get an upper bound on
the regret.

τ⟨Fi(σ
k+1
−i ), σk+1

i − σi⟩ ≤⟨∇h(σk+1
i )−∇h(σ̂k

i ), σi − σk+1
i ⟩

+ τ⟨Fi(w
k
−i) + Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )− Fi(σ
k+1
−i ), σi − σk+1

i ⟩ .
(8)

The rest of our proof starts from equation 8.

A.1 USEFUL LEMMAS

The following lemmas are useful in the proof of Theorem 1 and Lemma 3.
Lemma 8. Define Ek[·] = E[·|σk, wk−1]. Recall ∇h(σ̂k

i ) = α∇h(σk
i ) + (1− α)∇h(wk

i ) and

ϕk
i (σi) = αD(σi, σ

k
i )+

1− α

p
D(σi, w

k
i )+(1−α)D(σk

i , w
k−1
i )+τ⟨Fi(σ

k
−i)−Fi(w

k−1
−i ), σi−σk+1

i ⟩,

we have
ϕk
i (σi)− ϕk+1

i (σi)

=⟨∇h(σk+1
i )−∇h(σ̂k

i ), σi − σk+1
i ⟩+ 1− α

p
Ek

[
D(σi, w

k+1
i )

]
+ αD(σk+1

i , σk
i ) + (1− α)D(σk

i , w
k−1
i )

− 1− α

p
D(σi, w

k+1
i ) + τ⟨Fi(σ

k
−i)− Fi(w

k−1
−i ), σi − σk

i ⟩+ τ⟨Fi(w
k
−i)− Fi(σ

k+1
−i ), σi − σk+1

i ⟩ .

Proof. We can decompose ⟨∇h(σk+1
i )−∇h(σ̂k

i ), σi − σk+1
i ⟩ as follows.

⟨∇h(σk+1
i )−∇h(σ̂k

i ), σi − σk+1
i ⟩

=α⟨∇h(σk+1
i )−∇h(σk

i ), σi − σk+1
i ⟩+ (1− α)⟨∇h(σk+1

i )−∇h(wk
i ), σi − σk+1

i ⟩

=α
(
D(σi, σ

k
i )−D(σk+1

i , σk
i )−D(σi, σ

k+1
i )

)
+ (1− α)

(
D(σi, w

k
i )−D(σk+1

i , wk
i )−D(σi, σ

k+1
i )

)
=α

(
D(σi, σ

k
i )−D(σk+1

i , σk
i )−D(σi, σ

k+1
i )

)
+ (1− α)

(
D(σi, w

k
i )−D(σk+1

i , wk
i )−D(σi, σ

k+1
i )

)
+

1− α

p
Ek

[
D(σi, w

k+1
i )

]
− 1− α

p
Ek

[
D(σi, w

k+1
i )

]
=

(
αD(σi, σ

k
i ) +

1− α

p
D(σi, w

k
i )

)
−
(
αD(σi, σ

k+1
i ) +

1− α

p
Ek

[
D(σi, w

k+1
i )

])
− αD(σk+1

i , σk
i )− (1− α)D(σk+1

i , wk
i )

=

(
αD(σi, σ

k
i ) +

1− α

p
D(σi, w

k
i ) + (1− α)D(σk

i , w
k−1
i )

)
−
(
αD(σi, σ

k+1
i ) +

1− α

p
Ek

[
D(σi, w

k+1
i )

]
− (1− α)D(σk+1

i , wk
i )

)
− αD(σk+1

i , σk
i )− (1− α)D(σk

i , w
k−1
i ) ,
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where the first equality is based on the fact that ∇h(σ̂k
i ) = α∇h(σk

i ) + (1− α)∇h(wk
i ), the second

one is based on the definition of the Bregman divergence, the fourth one is according to the updating
rule of wk+1

i (Line 10 in Alg. 1) and the third and the last equality holds obviously. Further with the
definition of ϕk

i , we complete the proof.

Lemma 9 (Lemma 3.5 in (AM21)). Let F = {Fk}k≥0 be a filtration and (uk) be a stochastic
process adapted to F with E[uk+1|Fk] = 0. Then for any x0 and any compact set C,

E

max
x∈C

K−1∑
k=0

⟨uk+1, x⟩

 ≤ max
x∈C

D(x, x0) +
1

2

K−1∑
k=0

E
[
∥uk+1∥2∗

]
.

Lemma 10. For any σ(a) =
∏N

j=1 σj(aj), w(a) =
∏N

j=1 wj(aj), we have

σ(a)− w(a) =

N∑
i=1

(σi(ai)− wi(ai))
∏
x<i

σx(ax)
∏
y>i

wy(ay) . (9)

Proof. We prove this lemma by mathematical induction. The case when N = 1 holds obviously.
Further, assume Lemma 10 holds for N − 1, then for N , it holds that

N∏
j=1

σj(aj)−
N∏
j=1

wj(aj)

=

N∏
j=1

σj(aj)− wN (aN )

N−1∏
j=1

σj(aj) + wN (aN )

N−1∏
j=1

σj(aj)−
N∏
j=1

wj(aj)

=(σN (aN )− wN (aN ))

N−1∏
j=1

σj(aj) + wN (aN )

N−1∏
j=1

σj(aj)−
N−1∏
j=1

wj(aj)


=

N∑
i=1

(σi(ai)− wi(ai))
∏
x<i

σx(ax)
∏
y>i

wy(ay) .

A.2 PROOF OF THEOREM 1

If D(x, y) ≥ γ∥x − y∥2. Summing equation 8 over k = 1, · · · , T , applying Lemma 8 and taking
expectation on both sides, we have
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max
σi

E

 T∑
k=1

τ⟨Fi(σ
k+1
−i ), σk+1

i − σi⟩


1
≤max

σi

E

 T∑
k=1

(
ϕk
i (σi)− ϕk+1

i (σi) + τ⟨Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i ), σi − σk+1
i ⟩

−τ⟨Fi(σ
k
−i)− Fi(w

k−1
−i ), σi − σk

i ⟩ −
(
(1− α)D(σk

i , w
k−1
i ) + αD(σk+1

i , σk
i )
)

−
(
1− α

p
Ek

[
D(σi, w

k+1
i )

]
− 1− α

p
D(σi, w

k+1
i )

))
≤max

σi

E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]

+max
σi

E

 T∑
k=1

τ⟨Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )−
(
Fi(σ

k
−i)− Fi(w

k−1
−i )

)
, σi − σk

i ⟩


+max

σi

E

 T∑
k=1

(
τ⟨Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i ), σk
i − σk+1

i ⟩ −
(
(1− α)D(σk

i , w
k−1
i ) + αD(σk+1

i , σk
i )
))

+max
σi

E

 T∑
k=1

−
(
1− α

p
Ek

[
D(σi, w

k+1
i )

]
− 1− α

p
D(σi, w

k+1
i )

)
2
≤max

σi

E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]

+max
σi

E

 T∑
k=1

τ⟨Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )−
(
Fi(σ

k
−i)− Fi(w

k−1
−i )

)
, σi − σk

i ⟩


+ E

 T∑
k=1

(
τ2

αγ
∥Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗ + αγ∥σk+1
i − σk

i ∥2 −
(
(1− α)D(σk

i , w
k−1
i ) + αD(σk+1

i , σk
i )
))

≤max
σi

E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]

+max
σi

E

 T∑
k=1

τ⟨Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )− (Fi(σ
k
−i)− Fi(w

k−1
−i )), σi − σk

i ⟩


+ E

 T∑
k=1

(
τ2

αγ
∥Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗ − (1− α)D(σk
i , w

k−1
i )

)
3
≤max

σi

E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]
+max

σi

D(σi, σ
0
i ) + τ2E

 T∑
k=1

∥Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗


+ E

 T∑
k=1

τ2

αγ
∥Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗ − (1− α)D(σk
i , w

k−1
i )


≤max

σi

E
[
ϕ1
i (σi)− ϕT+1

i (σi)
]
+max

σi

D(σi, σ
0
i )

− (1− α)E

 T∑
k=1

D(σk
i , w

k−1
i )

+ τ2
(
1 +

1

αγ

)
E

 T∑
k=1

∥Fi,ak
−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2∗

 ,
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where 1 is based on Lemma 8; 2 is according to Young’s inequality and 3 is derived from Lemma
9.

B MISSING PROOFS

Proof of Lemma 2. The lower bound follows directly from the non-negativity of Bregman divergence
D(x, y). The upper bound of ϕk

i for h1 is based on the fact that maxσi
D(σi, w

k
i ) = logA when

wK
i (a) = 1/A. And the case of h2 can also be proved in a similar way.

Proof of Theorem 2. When the mirror map is h1(x) =
∑d

a=1 x(a) log x(a), it is known that
D(x, y) ≥ ∥x − y∥21 and the dual norm is ∥ · ∥∞. Thus a direct combination of Theorem 1
and Lemma 3 yields that

τ max
σi

E
[
Ri(σi)

]
≤ Ui − (1− α)E

 T∑
k=1

D(σk
i , w

k−1
i )


+ (N − 1)τ2

(
1 +

1

αγ

)
E

 T∑
k=1

∑
j ̸=i

∥σk
j − wk−1

j ∥21

 . (10)

Further, summing equation 10 over i = 1, · · · , N , we have
N∑
i=1

τ max
σi

E
[
Ri(σi)

]
≤

N∑
i=1

Ui −
1− α

2

N∑
i=1

E

 T∑
k=1

∥σk
i − wk−1

i ∥21


+ (N − 1)2τ2

(
1 +

1

αγ

)
E

 T∑
k=1

N∑
i=1

∥σk
i − wk−1

i ∥21

 =

N∑
i=1

Ui .

Recall that Lemma 2 shows Ui is of order O
(
(1− α) logA/p+ τ

)
when adopting mirror map h1.

By choosing α = 1 − p and γ ∈ (0, 1/2), we can see that there exist constants C,C ′ such that∑N
i=1 maxσi

E
[
Ri(σi)

]
≤ C ′N

(
1 + logA/τ

)
≤ CN2 logA/

√
p .

Proof of Corollary 1. According to Theorem 2, to arrive a weak ϵ-CCE, we need to run Algorithm 1
for T =

(
CN2 logA

)
/
(
ϵ
√
p
)

rounds. Recall that the per round time complexity is O(pNCost +
N2A). Then the total running time is O(Cost + (pNCost + N2A)N2 logA/(ϵ

√
p) = O(Cost +

N7/2
√
ACost logA/ϵ) with p = NA/Cost.

Proof of Lemma 6. With α = 1, it holds that

E
[
∥σk

j − wk−1
j ∥21

]
=E

k−1∑
t=1

Prob[wk−1
j = σt

j ]∥σk
j − σt

j∥21


=E

k−1∑
t=1

p(1− p)k−1−t∥σk
j − σt

j∥21


=

k−1∑
t=1

p(1− p)k−1−t(k − t)2τ2 ≤ 2τ2/p2 .

Proof of Theorem 3. When the mirror map is h2(x) =
1
2

∑d
a=1 x

2(a), it is known that is D(x, y) =
1
2∥x− y∥22 and the dual norm is ∥ · ∥2. Combining the results of Theorem 1, Lemma 3 , Lemma 6,
and the fact that ∥Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥2 ≤
√
A∥Fi,ak

−i
(σk

−i)− Fi,ak
−i
(wk−1

−i )∥∞, we have

max
σi

E
[
Ri(σi)

]
≤ Ui/τ + 2τ3A

(
2 + 1/γ

)
(N − 1)2T/p2 .
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And Lemma 2 implies that Ui = O(1+ τ) when α = 1. Let τ = (A
(
2 + 1/γ

)
(N − 1)2T/p2)−1/4,

we have

max
σi

E
[
Ri(σi)

]
= O

(
A
(
2 + 1/γ

)
(N − 1)2T/p2

)1/4
.

Proof of Corollary 2. According to the upper bound in Theorem 3, it needs T = O((A(N −
1)/p)1/3ϵ−4/3) rounds to reach an expected strong ϵ-CCE. Recall that the per round time com-
plexity is O(pNCost +N2A). Thus the expected running time is

O

(
Cost +

(
A(N − 1)/p

)1/3
ϵ−4/3

(
pNCost +N2A

))
.

By replacing p with NA/Cost, we can conclude that the running time to reach an expected strong
ϵ-CCE is O

(
Cost +N7/3A2/3Cost2/3/ϵ4/3

)
.

Proof of Lemma 4. Recall

q−i(a−i) =
1∑

j′ ̸=i Zj′

∑
j ̸=i

|σj(aj)− wj(aj)|
∏

x<j,x ̸=i

σx(ax)
∏

y>j,y ̸=i

wy(ay)

and
qCJST19
−i (a−i) = |σ−i(a−i)− w−i(a−i)|/

∑
a′
−i

|σ−i(a
′
−i)− w−i(a

′
−i)| .

We have

q−i(a−i)

qCJST19
−i (a−i)

=

∑
a′
−i

|σ−i(a
′
−i)− w−i(a

′
−i)|∑

j′ ̸=i Zj′

∑
j ̸=i |σj(aj)− wj(aj)|

∏
x<j,x ̸=i σx(ax)

∏
y>j,y ̸=i wy(ay)

|σ−i(a−i)− w−i(a−i)|

≥

∑
a′
−i

|σ−i(a
′
−i)− w−i(a

′
−i)|∑

j′ ̸=i Zj′

|
∑

j ̸=i σj(aj)− wj(aj)
∏

x<j,x ̸=i σx(ax)
∏

y>j,y ̸=i wy(ay)|
|σ−i(a−i)− w−i(a−i)|

=

∑
a′
−i

|σ−i(a
′
−i)− w−i(a

′
−i)|∑

j′ ̸=i Zj′
,

where the last equality is according to Lemma 10. Further, let a−i,−j denote the action profile after
removing ai and aj , we have∑

j ̸=i

Zj =
∑
j ̸=i

∑
aj

|σj(aj)− wj(aj)|

=
∑
j ̸=i

∑
aj

|
∑

a−i,−j

(σ−i(a−i,−j , aj)− w−i(a−i,−j , aj))|

≤
∑
j ̸=i

∑
aj

∑
a−i,−j

|(σ−i(a−i,−j , aj)− w−i(a−i,−j , aj))|

=
∑
j ̸=i

∑
a−i

|(σ−i(a−i)− w−i(a−i))|

= (N − 1)
∑
a−i

|(σ−i(a−i)− w−i(a−i))| .

Therefore, we have q−i(a−i)

qCJST19
−i (a−i)

≥ 1/(N − 1). And the variance of our LVE estimator can be bounded
as∑

a−i

∣∣∣(σ−i(a−i)− w−i(a−i)
)∣∣∣2 /q−i(a−i)

≤(N − 1)
∑
a−i

∣∣∣(σ−i(a−i)− w−i(a−i)
)∣∣∣2 /qCJLS19

−i (a−i) = (N − 1)(
∑
a−i

|σ−i(a−i)− w−i(a−i)|)2.

We finish the proof.
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Proof of Lemma 5. Let AG denote the set of agnostic j. If j is agnostic to q′−i, we assume σj(aj) = 0
for all aj which has been accessed by q′−i. We further assume σj′ = wj′ for j′ /∈ AG. Then we can
construct a equivalent game G with |AG| + 1 = m + 1 players and |A−i| = 2m. Moreover, q′−i
does not know any entries of σ−i. Then for w−i(a−i) = 1/2m and q′−i, , we have

max
σ−i

∑
a−i

∣∣∣(σ−i(a−i)− w−i(a−i)
)∣∣∣2 /q−i(a−i)

≥max
a−i

∣∣∣(1− w−i(a−i)
)∣∣∣2 /q−i(a−i) +

∑
a′
−i ̸=a−i

w2
−i(a

′
−i)

q−i(a′−i)

=max
a−i

1

q−i(a−i)
− 2

w−i(a−i)

q−i(a−i)
+
∑
a′
−i

w2
−i(a

′
−i)

q−i(a′−i)

≥2m − 2 .
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