
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WORLDGUI: AN INTERACTIVE BENCHMARK FOR
DESKTOP GUI AUTOMATION FROM ANY STARTING
POINT

Anonymous authors
Paper under double-blind review

ABSTRACT

GUI agents have achieved outstanding performance in GUI element grounding.
However, planning remains highly challenging, especially due to the sensitivity
to the initial state of the environment. Specifically, slight differences in the initial
state-such as the target software not being open or the interface not being in
its default state, often lead to planning errors. This issue is widespread in real
application scenarios, but existing benchmarks fail to evaluate it. To address
this gap, we introduce WorldGUI, a comprehensive GUI benchmark containing
tasks across ten widely used desktop and web applications (e.g., PowerPoint,
VSCode, Acrobat), each instantiated with diverse initial states to simulate authentic
human–computer interactions. Complementing this, we propose WorldGUI-Agent,
a universal framework that unifies three core modules: Planner-Critic for high-level
plan refinement, Step-Check for intermediate verification, and Actor-Critic for
action-level optimization to proactively detect and correct errors. Experimental
evaluation shows that WorldGUI-Agent outperforms the outstanding existing model
(Claude-3.5-Sonnet CCU) by 12.4% in success rate on WorldGUI, and achieves a
31.2% overall success rate on WindowsAgentArena, surpassing the prior state-of-
the-art by 11.7%. Our analysis further reveals that dynamic augmentation tasks
and desktop environments pose substantial hurdles, underscoring the necessity of
adaptive planning and feedback-driven execution for advancing real-world GUI
automation.

O
ff
ic

e
43

%

Web Browsing

20%

W
in
do
w
s

18
%

Media

10%

Coding
9%

Excel

11%

Ac
ro

ba
t

11
%

Pow
erPoint

10%

W
ord10%

Youtube
10%

Web Stock

10%

Se
tt

in
g

11
%

File M
anagem

ent

7%

VLC Player

10%

VSCode9%

+12.4 +11.7

Figure 1: Software taxonomy of WorldGUI and the performance comparison of GUI agents. The
left shows 5 main groups and 10 software in our WorldGUI. The right shows that WorldGUI-Agent
surpasses previous SOTA GUI agents significantly.

1 INTRODUCTION

Graphical User Interface (GUI) automation has become a prominent research area, driven by the
need to enhance user productivity. This domain encompasses software usage, file management, office
design, coding, and web browsing. Building upon Multimodal Large Language Models (MLLMs)
such as GPT-4o (OpenAI, 2023) and Claude-3.5-Sonnet (Anthropic, 2024), GUI agents have the
potential to solve various computer tasks to avoid repetitive work or as an AI assistant to enhance
productivity efficiency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

User Query Final State

Go to the pexels website
and download a photo
about sky.

Initial State

Instructional
Video

Pre-Actions

None

Click(933, 78)
…

write('pexels.co
m', 0.1)...

Observe

Act
Agent

(e.g., 4o)
Evaluation

Successful Rate

WorldGUI Benchmark

PyAutoGUI

Interface
Software

Platform

Interactions

Figure 2: WorldGUI. Left: WorldGUI creates pre-actions for each meta task, leading to different
initial states. It successfully reflects the real-world human-computer interaction process. Right:
components in WorldGUI.

GUI automation operates in a dynamic environment, which goes beyond the traditional computer
vision tasks like image recognition (He et al., 2016) and visual question answering (Antol et al.,
2015; Goyal et al., 2017). However, current online GUI benchmarks such as WebArena (Zhou et al.),
WebVoyager (He et al., 2024), and WindowsAgentArena (Bonatti et al., 2024) do not capture this
dynamism. Currently, most GUI benchmarks (Xie et al., 2024; Bonatti et al., 2024; Gao et al., 2024;
Zhou et al.; Koh et al., 2024; He et al., 2024) focus on initial and final states, measuring success rates
but overlooking the state variety in real GUI scenarios. These benchmarks often ignore situations
where: (1) The software interface is not in its default state. (2) The human-computer interactions
may start from the intermediate state of a specific task. (3) Differences in agent robustness, where
agents with the same low success rate (e.g., 20%) may vary in their ability to self-reflection, but these
abilities cannot be measured in a static setting. As a result, these benchmarks fail to comprehensively
assess the GUI agents.

In this paper, we take the first step toward comprehensive GUI evaluation by designing GUI tasks
with various initial states. We consider that the testing process of WorldGUI can be featured: (1)
Intermediate Starting States: Real user interactions with GUI assistants do not always begin
from default initial conditions, allowing tasks to start from intermediate states where users may
seek assistance at any point. (2) Contextual Variability: In some cases, tasks may originate from
entirely different contexts or interfaces, requiring the agent to adapt by modifying existing plans or
introducing new steps to ensure task execution. By incorporating these situations into the benchmark
design, WorldGUI better mirrors real-world GUI interactions, enabling a more accurate and thorough
assessment of GUI agent capabilities. Specifically, WorldGUI embraces 10 widely-used desktop
applications with 611 tasks in total. For each task, we create a user query, an instructional video, and
the corresponding project file. We engaged four trained annotators skilled in using these applications
for annotation. To simulate the dynamic testing scenarios, we demonstrate each task to obtain
ground-truth (GT) plans and then conduct the augmentations for each task using pre-actions.

In addition, we introduce a new GUI agent framework, WorldGUI-Agent, which builds upon critical
thinking design principle, an aspect less emphasized in previous GUI agents (Hong et al., 2024; Cheng
et al., 2024; Lai et al., 2024; Agashe et al., 2025a; Wu et al., 2024). In dynamic GUI environments,
application settings may not be in default configurations. This unpredictability requires agents to
have the essential ability to detect and adapt to such changes to ensure task accuracy. Through
our analysis of real-world GUI scenarios, we identify three design principles for GUI agents: (1)
Post-Planning Critique, (2) Pre-Action Validation, and (3) Post-Action Evaluation. We argue
that these components are fundamental and universal for GUI agents.

To summarize, our key contributions are the following: (1) We are the first to stress the dynamic
testing processes in the online GUI testing and propose a new benchmark called WorldGUI; (2) We
introduce WorldGUI-Agent, a fundamental and universal GUI framework that incorporates critical
thinking into the overall agent design, providing valuable insight and guidance for future development;
(3) We explore the essential property of critical thinking in GUI agents and empirically show that
critical thinking is extremely useful for handling GUI tasks (see Figure 1).

2 WORLDGUI BENCHMARK

2.1 TASK FORMULATION

GUI Automation Definition. The GUI automation task can be considered a partially observable
Markov decision process (POMDP) (S,O,A, T ,R) with state space S , observation O, action space

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison with other interactive GUI benchmarks. WorldGUI is a unique benchmark
that embraces diverse initial states and better reflects the authentic interactions in GUI scenarios.
Env?: Indicates whether an environment is required to be deployed.

Benchmarks Softwares Tasks Platform Env? Inst. Video? GT Plan Diverse Contextual
Init. State? Variability?

WebArena (Zhou et al.) 6 812 Web Yes ✗ ✗ ✗ ✗
VisualWebArena (Koh et al., 2024) 3 910 Web Yes ✗ ✗ ✗ ✗
WebVoyager (He et al., 2024) 15 643 Web Yes ✗ ✗ ✗ ✗
AutoDroid (Wen et al., 2024) 13 158 Android OS Yes ✗ ✗ ✗ ✗
AndroidWorld (Rawles et al., 2024) 20 116 Android OS Yes ✗ ✗ ✗ ✗
AgentStudio (Zheng et al., 2025) 9 205 Desktop + Web Yes ✗ ✗ ✗ ✗
Mobile-Eval (Wang et al., 2024) 10 30 Android OS Yes ✗ ✗ ✗ ✗
APPAgent (Zhang et al., 2023) 10 50 Android OS Yes ✗ ✗ ✗ ✗
OSWorld (Xie et al., 2024) 10 369 Desktop Yes ✗ ✗ ✗ ✗

AssistGUI (Gao et al., 2024) 9 100 Windows No ✓ ✗ ✗ ✗
WindowAgentArena (Bonatti et al., 2024) 11 154 Windows Yes ✗ ✗ ✗ ✗
WorldGUI 10 611 Win. + Web No ✓ ✓ ✓ ✓

A, transition function T : S ×A → S, and reward function R: S ×A → R. In our setting, given a
natural language query q, eg., Format the slide background with gradient fill that describes a specific
task in high-level, along with an instructional video v as a supplement that more detailed illustrates
how to complete it, the agent first get the observation ot ∈ O from the state st ∈ S in the execution
environment and then generate the executable action at ∈ A, resulting in a new state st+1 ∈ S and a
new observation ot+1 ∈ O. The process repeats until the task is finished or fails. The reward function
R: S ×A → [0, 1] here returns a binary integer at the final step ,indicating the task completion status.

WorldGUI Task Definition. As illustrated in Figure 2, to achieve state diversity within each task,
we generate various initial states that converge to the same final state, resulting in distinct ground
truth (GT) plans for each case. This is accomplished through the use of pre-actions, which consist of
a sequence of executable code to initialize tasks from different initial states. With the augmentation
of initial states, WorldGUI is capable of mimicking the different testing scenarios. We additionally
summarize the differences between WorldGUI and other close interactive benchmarks in Table 1.

Observation Space. The observation space O indicates the information of the operating system
(OS) available to the agent in each state st. In this paper, we follow the previous work of Assist-
GUI (Gao et al., 2024), encompassing two types of information: metadata mt from the application
and screenshot Vt of the current state st. The metadata mainly includes the layout of panels and UI
trees. The screenshot Vt offers holistic visual information of the current state used for planning and
action generation.

Table 2: The action types and their example in
WorldGUI.

Action Type Example

Mouse Movement moveTo(120, 200)
Mouse Clicks click(200, 300)
Keyboard Type write(’classes’)
Hotkey hotkey(’ctrl’, ’a’)
Scrolling scroll(-100)
Drag dragTo(120, 220, 2)
Mouse Down and Up mouseDown(); mouseUp()
Press Keys press(’delete’)
Key Down and Up keyDown(’shift’)

Action Space. Our action space includes all
raw mouse and keyboard actions, such as left-
click, right-click, double-click, drag, keystrokes,
and key combinations for shortcuts, among oth-
ers. Mouse-related actions also specify the
target position in the pixel space of the ob-
served screenshot. To ensure a universal and
comprehensive representation of actions, we
adopted the widely used Python library, PyAu-
toGUI1, for controlling mouse and keyboard in-
puts. Each action is represented using the syntax
action_type(arguments) as in Table 2.

2.2 DATA SOURCE

WorldGUI consists of a broad spectrum of widely-used desktop applications, which can be categorized
into five main groups: (i) Office, includes PowerPoint, Word, Excel, and Adobe Acrobat; (ii) Windows
Usage, includes System Settings and File Management; (iii) Web Usage, includes the configuration
of Youtube and website operations; (iv) Coding, focus on the customization, configuration and editing
of Visual Studio Code (VSCode); (v) Media, operating VLC player for video editing and creation.

1https://pyautogui.readthedocs.io

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 PIPELINE OF DATA CONSTRUCTION

We engaged four annotators and developed the necessary scripts to structure and format the data. Ad-
ditionally, to facilitate ground truth (GT) plan generation and pre-action generation, we implemented
simple agent-based methods to collect the relevant data. The overall data construction pipeline
comprises six steps, as detailed below.

Raw Video Collection. We collect raw videos from the YouTube website as there are a lot of high-
quality tutorials for desktop applications with high views. For each software, we ask the annotators
to watch the videos first and download them via the diversity of software usage.

Instruction Video Preparation. After obtaining the raw videos, we write the script codes to cut the
lengthy and noisy videos into the sub-clips (30 seconds to 3 minutes) that serve as the instructional
video.

User Query Generation. After obtaining the instructional videos, annotators are asked to manually
write user queries corresponding to each video. For example, a user query for a task involving File
Explorer might be: “Please compress the project.mp4 into an MPEG-4 file optimized in 1080p.”

Project File Preparation. Following the AssistGUI (Gao et al., 2024), we create the project file
for each task to ensure reproducibility without relying on resource-intensive virtual machines (Xie
et al., 2024) or Docker environments (Bonatti et al., 2024). This approach guarantees that the testing
process begins from a consistent state. When combined with pre-actions, it enables augmentation of
the same task with various initial states.

GT Plan Generation. We write the script to accept user query q and instructional video v as input
and generate the raw plans by agent (powered by GPT-4o). Since the raw plans are not flawless,
annotators are asked to watch the videos and manually execute the tasks following the raw plans.
During this process, annotators edit the plans to correct any inaccurate steps or descriptions, ultimately
producing the finalized GT plans.

Pre-Actions Generation. To vary the task, we propose introducing pre-actions before the task begins.
These pre-actions are created by annotators and involve corresponding scripts and agents. They are
written in Python code, for example: from pyautogui import click, rightClick\n
rightClick(800,400). The pre-actions primarily serve two purposes: 1) Simulating Interme-
diate Task States: Pre-actions can complete specific steps of a task, creating a starting point from an
intermediate state. This approach addresses scenarios where users may invoke GUI assistant at any
time. For example, if the task involves opening a dropdown menu, the pre-action may pre-open the
menu. If the agent fails to recognize this precondition and follows its plan to click the menu again, it
might inadvertently close the menu, causing task failure. 2) Introducing Diverse Initial Context
States: Pre-actions can also introduce variations in the initial state, such as opening random tabs
or settings. This ensures that the starting state is unconventional, challenging the agent to adapt by
modifying its plan or adding necessary new steps. See example in Figure 8.

2.4 EVALUATION

WorldGUI employs an execution-oriented evaluation approach followed by AssistGUI (Gao et al.,
2024) and WindowsAgentArena (Bonatti et al., 2024) by utilizing post-processing scripts to assess
task completion. Specifically, for tasks like Office work and Web Browsing, we adopt exact matching
to compare the differences between the ground-truth (GT) screenshots and the final screenshots. For
tasks like File Management, which would produce new folders or change the locations of files, etc.
We create the shell script to check the status of files.

2.5 DATA STATISTICS

WorldGUI compiles GUI tasks from 10 widely used applications on the Windows platform, including
productivity software such as PowerPoint, Word, Excel, and VSCode. A total of 111 meta tasks
were collected from these applications, with each task being augmented 5 times based on the task’s
functionality, resulting in 500 augmented tasks. In total, WorldGUI comprises 611 tasks, and every
task has almost 6 variation instances, which is capable of reflecting the real-world interactions of the
GUI environment. See the details in Table 11 (more details in the Supplementary Material).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Task 1: Adjust text wrapping around a Word table
Subtask 1: Click within the table to select it.
Subtask 2: Click on the 'Layout' tab in the toolbar.
Subtask 3: Click 'Properties' from the options available.
…

Task 1: Adjust text wrapping around a Word table
Subtask 1: Click on the 'Table Layout' tab in the
toolbar.
Subtask 2: Click within the table to select it.
Subtask 3: Click 'Properties' from the options
available.
…

3. Step-Check
Check the task completion and redundancy

4. Actor
Generate action represented by code
Correct the action with critic feedback

Desktop Environment 5. Actor-Critic
Assess the success of the last action
If wrong, correct the action

2. Planner-Critic
Assess the correctness of plans generated
by Planner

1. Planner
Generate the plans based on current state

Observe

Observe

Act

Observe

Feedback

Observe

User Query + Instructional Video

Figure 3: WorldGUI-Agent. The Planner module receives the user query and an instructional video
as input and generates an initial plan. This plan is then refined and executed step by step. Before each
step is passed to the Actor module, it undergoes a Step-Check. After the Actor produces an action,
the Actor-Critic module iteratively verifies the completion of the action and makes corrections.

3 WORLDGUI-AGENT: THINKING BEFORE DOING

In this section, we introduce an universal GUI framework WorldGUI-Agent with a core and essential
designing principle: critical thinking, which is vital for designing GUI agents capable of handling
dynamic environments that have been overlooked in prior GUI agents (Hong et al., 2024; Cheng
et al., 2024; Lin et al., 2024; Zhang et al., 2023; Agashe et al., 2025a). The WorldGUI-Agent includes
the five fundamental but essential components as in Figure 3 and an Interaction reasoning loop
detailed in Algorithm 1. We summarize our critical designs in the following:

State-Aware
Planner

Planner
Critic

User Query: Make the text around the table

Instructional Video

Task 1: Adjust text wrapping around a Word table
Subtask 1: Click within the table to select it.
Subtask 2: Click on the 'Layout' tab in the toolbar.
Subtask 3: Click 'Properties' from the options
available.
Subtask 4: In the 'Table Properties' dialog, go to the
'Table' tab.
Subtask 5: Click 'Around' button.
Subtask 6: Confirm the changes to apply the text
wrapping around the table.

Initial Plan

Corrected Plan

You need to verify whether the provided plans can fulfill the user query. If not, please revise the
plans.
<Flag>: should be set to either true or false. If the plans are correct, selecting true, else selecting
false.
<Feedback>: If the plan is correct, please explain why. If the plan is incorrect selecting one of the
following error types: 'Wrong steps', 'Missing steps', or 'Redundant steps'.
<Correction>: If the plans are correct or the task is finished, output 'None', else output the
corrected plans.
<Reason>: Please give your reasons.

Task 1: Adjust text wrapping around a Word table
Subtask 1: Click on the 'Table Layout' tab in the toolbar.
Subtask 2: Click within the table to select it.
Subtask 3: Click 'Properties' from the options available.
Subtask 4: In the 'Table Properties' dialog, go to the
'Table' tab.
Subtask 5: Click 'Around' under 'Text Wrapping'.
Subtask 6: Confirm the changes to apply text wrapping
around the table.

Initial Screenshot

Instructional Video

Figure 4: State-Aware Planner and Planner-
Critic. The Planner generates an initial plan. Then,
the Planner-Critic provides necessary corrections.

• Post-Planning Critique: After the planning
phase, a critique module verifies and, if neces-
sary, self-corrects the generated plans to ensure
their accuracy.

• Pre-Action Validation: Before executing
each subtask, a validation module determines
whether the subtask should be executed. This
step is crucial, as the current GUI environment
may indicate that the subtask is unnecessary or
requires modification to align with the current
state.

• Post-Action Evaluation: After each action
execution, a mechanism evaluates whether the
action was successfully completed before pro-
ceeding to the next subtask.

These critique designs ensure the reliability and
adaptability of WorldGUI-Agent in complex
GUI environments.

3.1 STATE-AWARE PLANNER

The State-Aware Planner processes the instruc-
tional video v and the user query q generates an initial plan as shown in the left of Figure 4. We
use the speech recognition model Whisper (Radford et al., 2023) to translate the video v into the
subtitle and then send it to the MLLM for task planning. The task plan is hierarchically structured as
p = [p1, p2, ..., pN] where pi is a text string describing the i-th milestone of the task. Under each pi,
there is a list of subtasks [Si

1, S
i
2, S

i
N], where Si

j is the j-th subtask in the i-th milestone. To ensure
the produced plans fit the GUI environment, we propose incorporating an initial screenshot V0 to
represent the current state. This additional context allows the agent to output plans that align with
the actual state. For example, if the instructional video suggests clicking on the “Layout” tab in the
Word application, but the current state (as indicated by the screenshot) shows that the “Layout” tab is
already selected, there is no need to perform this action again. By utilizing the visual information

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

from the screenshot, the State-Aware Planner can modify the plans accordingly, rather than strictly
following the guidance in the instructional video or the existing knowledge from backbone MLLMs.
It also avoids the occlusion issue when not seeing the screenshot.

3.2 PLANNER-CRITIC

Post-Planning Critique. The goal of the Planner-Critic is to assess the correctness of the initial plans
generated by the State-Aware Planner and provide corrections if needed. This module is designed
to ensure the accuracy of the plans while leveraging the self-reflection capabilities of MLLMs. As
illustrated in Figure 4, for each Initial Plan, the output consists of four components:

(1) <Flag>: Indicates whether the Initial Plan is correct.

(2) <Feedback>: Identifies the error type, categorized into one of three options: “Wrong Steps,”
“Missing Steps,” or “Redundant Steps.”

(3) <Correction>: Provide the corrected plans if the Flag indicates that the Initial Plan is incorrect.

(4) <Reason>: In addition to giving the corrected plans, we force the model to give the reasons. As
previous studies (e.g., CoT (Wei et al., 2022), Deepseek-R1 (DeepSeek-AI et al., 2025)) demonstrate
that generating reasoning steps along with the answer would enhance the performance.

3.3 STEP-CHECK

MLLM

Current Screenshot

Region
Search

#Cannot confirm

New Screenshot

You need to verify, based on the screenshot, whether the current task has been
completed or requires modification.
The output should be one of the following states.
<Modify>: If require modification, please either add more plans or modify current step.
<Pass>: If you think current task is unnecessary.
<Continue>: No change
<Finished>: Already Finished.
If you think current screenshot is not give all information to check the current task
completion, please output '#Cannot confirm'.

Current Task: Subtask 1: Click on
the 'Table Layout' tab in the toolbar.

1. Check the Step Completion.

Crop

If <Pass> or <Finished>

2. Subtask Navigation If #Cannot confirm

Invoke Region Search
Retry

Next Subtask

If <Modify> or <Continue>

Execute current subtask,
go to next module (Actor)

Go to next Subtask

Retry

Figure 5: Step-Check. This module first checks
the step completion status via an MLLM and
then navigates to the current task processing.

Pre-Action Validation. After the plan assessment,
a navigation mechanism is crucial before sending
each subtask St = Si

j at the time step t to the
Actor module. To address this, we designed a new
module called Step-Check. Through extensive in-
vestigation, we discovered that during GUI task
testing, perfect execution plans are rarely feasible
due to the unpredictable nature of real application
environments. Most software retains user pref-
erences (e.g., remember the last configuration of
user), meaning that when executing a specific task,
the plan p generated by the Planner might not align
with the actual state of the software. Therefore,
the model must determine whether to proceed with
a subtask St based on the current state (screenshot:
Vt, metadata: Mt).

As illustrated in Figure 5, we employ an MLLM
to determine whether the current task has been
completed or requires modification. We systematically categorize the possible outcomes into:

(1) <Modify>: Indicates that the subtask should be modified or additional subtasks should be added.

(2) <Pass>: Indicates that the current subtask is unnecessary and can be skipped.

(3) <Continue>: Indicates that the subtask is valid and should be executed as planned.

(4) <Finished>: Indicates that the subtask has already been completed and requires no further
action.

In cases where the screenshot does not provide sufficient visual information for the MLLM to
determine the output, the model outputs “#Cannot confirm”. When this occurs, we design a Region
Search module implemented by an LLM. This module takes the corresponding GUI information
extracted by the GUI parser and the task description of the current subtask to identify the relevant
region. It then crops the region using the generated bounding box as the center coordinate, with the
maximum width and height set to half of the original screenshot dimensions (ensure the region is
smaller than the original screenshot). The cropped screenshot is subsequently sent to the Step-Check
module to regenerate the decision.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Success rate (%) of different agents on WorldGUI. Human∗ denotes the average performance
of four expert participants who have watched the instructional video only once, similar to the model.
Meta represents the meta task, while Aug. represents the augmented task.

Method Office Win. Usage Web Coding Media Overall
Meta Aug. Meta Aug. Meta Aug. Meta Aug. Meta Aug.

Plan-Act w/ Gemini-2.0 8.9 3.2 8.3 3.4 28.6 16.2 18.2 2.2 10.0 2.0 6.9
Plan-Act w/ GPT-4o 13.3 10.1 8.3 2.3 23.8 11.1 9.1 2.2 10.0 2.0 8.5
AssistGUI w/ GPT-4o 26.7 16.1 29.2 7.9 33.3 20.2 27.3 11.1 10.0 8.2 16.5
CCU w/ Claude-3.5-Sonnet 28.9 19.3 29.2 14.6 71.4 32.3 54.6 22.2 30.0 6.1 23.6
UI-TARS-1.5 28.9 16.1 12.5 2.2 28.6 9.1 36.7 6.7 0.0 0.0 12.3
Agent S2 33.3 16.5 70.8 59.6 52.4 45.5 45.5 37.8 20.0 16.3 34.2

WorldGUI-Agent (Ours)
w / Gemini-2.0 31.1 17.0 20.8 9.0 38.1 29.3 36.4 11.1 20.0 10.2 19.1
w / GPT-4o 42.2 24.3 41.7 11.2 47.6 35.4 45.5 15.6 40.0 12.2 26.0
w / Claude-3.5-Sonnet 57.8 32.6 50.0 19.1 76.2 46.5 54.6 26.7 50.0 18.4 36.0

Human∗ 88.9 83.5 100.0 89.9 95.2 80.8 81.8 77.8 90.0 85.7 85.3

3.4 ACTOR

The goal of the Actor is to translate natural language subtask St into executable code Ct. Using an
MLLM as the backbone model, the Actor processes metadata mt and screenshot Vt as GUI context
to generate precise executable actions, such as click(100, 200). Additionally, it leverages the
history of previous actions as memory to aid in generating subsequent actions. The generated actions
will be executed in the environment, and then the new screenshot Vt+1 and metadata mt+1 will be
captured for the next processing.

3.5 ACTOR-CRITIC

MLLM
Current Task: Subtask 3: Click
'Properties' from the options
available.

Locate GUI
Elements

<Success>

Based on the screenshots before and after the action, task description, software
name, please check the task completion status.
Current Task: <Subtask St-1>
Screenshots: <Screenshot Vt-1> <Screenshot Vt>
Output:
<Success> bool (Current task completion status) </Success>
<Reason> str (Analysis of possible mistakes if action is wrong) </Reason>

Step1: Verify the Action

Actor
Correction

Properties... [161, 127];

If <Success> and t < max trials

Click(161, 127)

is true,
State =<Next>

is false,
 State =<Critic>

Actor-Critic
Next Subtask

Act&Observe

Step2: Iteratively Action Correction

Figure 6: Actor-Critic. This module includes two
parts: task verification and task correction. The
design follows the verify-then-correct mechanism.

Post-Action Evaluation. After generating an
action, the Actor-Critic module evaluates sub-
task St−1 completion and makes corrections if
necessary. As illustrated in Figure 6, in the first
step, the module implemented by an MLLM
compares screenshots Vt−1 (before action exe-
cution) and Vt (after execution) while processing
each subtask St to determine the action correct-
ness. The model outputs a <Success> flag to
indicate task completion. If the <Success>
flag is true, the current state st = <Next>.
If the <Success> flag is false (set st =
<Critic>) and the number of trial steps is be-
low the maximum limit, the Actor-Critic module
activates the Locate GUI Elements and Actor
Correction processes. We introduce the module
Locate GUI Elements to identify the relevant
GUI elements and regenerate actions using the
Actor Correction module. The corrected ac-
tions are then executed in the environment, gen-
erating updated observations (Ot) that include
new screenshots and metadata for the continued
Actor-Critic iteration. The process repeats until
the <Success> flag is true or the maximum number of trials is reached.

4 EXPERIMENTAL RESULTS

Implementation Details. We implement the MLLM in our WorldGUI-Agent by using GPT-4o (Ope-
nAI, 2023) (gpt-4o-2024-08-06) by default. For the computer mouse and keyboard control, we use
the Python library PyAutoGUI. Following the AssistGUI (Gao et al., 2024), we use the GUI parser
to obtain the position information of elements, e.g., buttons, icons, and text. We use some vision
foundation models, such as Google OCR, to extract the text. By default, we use the center coordinates

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Success rate (%) of our WorldGUI-Agent with the ablation of different critical modules.

Method Office Win. Usage Web Coding Media OverallMeta Aug. Meta Aug. Meta Aug. Meta Aug. Meta Aug.

Full Model 42.2 24.3 41.7 11.2 47.6 35.4 45.5 15.6 40.0 12.2 26.0
– w/o Planner-Critic 31.1 17.0 20.8 9.0 38.1 25.3 36.4 11.1 20.0 10.2 18.5
– w/o Step-Check 31.1 19.3 20.8 9.0 33.3 28.3 45.5 13.3 20.0 8.2 19.8
– w/o Actor-Critic 15.6 7.8 4.2 3.4 28.6 17.2 0.0 8.9 10.0 6.1 9.7

Table 5: Success rate (%) of our WorldGUI-Agent with the ablation of Instructional Video.
Method PPT Word Excel Acrobat VSCode Overall
Full Model 45.5 36.4 50.0 36.4 45.5 42.9
w/o Inst. Video 45.5 27.3 25.3 18.2 27.3 28.6

to represent the location of each element. All the testing is under the same screenshot resolution
(1920 × 1080). In all experiments, we set the max trials of the Actor-Critic to 3 for light interaction
costs. For the total trials of each task, we set it to 4×N + 1, where N is set empirically.

Evaluation. Given that our WorldGUI includes 611 GUI tasks, we engaged four participants with
strong coding and software backgrounds to test all tasks and document their evaluation results.
Metric. Following the previous works of OSworld and AssistGUI, we use Success Rate (SR) as the
metric.

Baselines. We implement the baseline approach called Plan-Act with different MLLMs as the
base model. It focuses on investigating the basic capabilities of task planning and action prediction.
Additionally, we compare our WorldGUI-Agent with two agentic frameworks and two SOTA GUI
models: AssistGUI (Gao et al., 2024), Agent-S2 (Agashe et al., 2025b), Computer Use (Claud-3.5-
Sonnet) (Anthropic, 2024), and UI-TARS-1.5 (Qin et al., 2025). AssistGUI and Agent-S2 are two
prominent agentic frameworks designed for Desktop GUI Automation, which can plan the task and
then execute the task step by step by following the query. We increase the base model to GPT-4o
for AssistGUI and Claude-Sonnet-4 of Agent-S2 for fair performance. Claude Computer Use
(CCU) is the leading proprietary model specially designed for computer use. We use the open-source
implementation OOTB (Hu et al., 2024) as the codebase and then add the subtitle of instructional
videos into the input prompt for a fair comparison. We also implement our WorldGUI-Agent with
three different MLLMs to illustrate the effectiveness of our proposed universal agent framework.

4.1 MAIN RESULTS ON WORLDGUI

Table 3 reports the success rates (SR) of different agents and human experts on our WorldGUI
benchmark, broken down by task type (Meta vs. Aug.) across five categories: Office, Win. Usage,
Web, Coding, and Media. From these results we draw the following main conclusions.

A large gap remains between agents and humans. The best-performing agent (WorldGUI-Agent
with Claude-3.5-Sonnet) achieves an overall SR of only 36.0%, which is less than half of the 85.3%
attained by human experts. This stark contrast underscores the difficulty of our tasks and the need for
further advances in desktop GUI automation.

Agents generalize poorly to augmented tasks. Across all methods, performance on Augmentation
tasks (which introduce interface or context variations) is substantially lower than on their correspond-
ing Meta tasks. For example, Claude-3.5-Sonnet in the Win. Usage category attains 50.0% on Meta
tasks but drops to just 19.1% on Aug. tasks. This highlights the importance of dynamic testing to
capture realistic human–computer interaction.

Desktop applications pose a greater challenge than web tasks. Every agent scores higher on Web
tasks than on desktop application tasks. WorldGUI-Agent with Claude-3.5-Sonnet, for instance, jumps
from 76.2% on Web Meta to only 57.8% on Office Meta, and the gap widens on their Augmentation
counterparts. Thus, desktop GUI automation remain a frontier for computer use research.

WorldGUI-Agent consistently outperforms a naive Plan-Act baseline. By incorporating our
three critical modules into the planning and execution loop, WorldGUI-Agent substantially improves
success rates over the basic Plan-Act approach. Relative to Plan-Act, WorldGUI-Agent raises
overall SR by +12.2% with Gemini-2.0, +17.5% with GPT-4o, and +12.4% with Claude-3.5-Sonnet,
demonstrating the effectiveness of our design across multiple MLLMs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Experimental results on WindowsAgentArena (Bonatti et al., 2024). The reported results are
from the (Bonatti et al., 2024) and (Agashe et al., 2025b).

Method Office Web Win. System Coding Media Win. Utils Overall

Phi3-V (Bonatti et al., 2024) 0.0 6.9 8.3 0.0 6.2 0.0 3.5
GPT-4o-mini (Bonatti et al., 2024) 0.0 14.9 8.3 0.0 0.0 0.0 4.2
GPT-4o (Bonatti et al., 2024) 0.0 13.7 29.2 0.0 10.3 0.0 8.6
NAVI (Bonatti et al., 2024) 0.0 27.3 33.3 27.3 30.3 8.3 19.5
Agent S (Agashe et al., 2025a) w/ GPT-4o 0.0 13.3 45.8 29.2 19.1 22.2 18.2
Agent S2 (Agashe et al., 2025b) w/ Claude-3.7-Sonnet 7.0 16.4 54.2 62.5 28.6 33.3 29.8
WorldGUI-Agent w/ Claude-3.5-Sonnet 7.0 53.3 45.8 33.3 28.6 33.3 31.2

4.2 ABLATION STUDY

Impact of different critical modules. Table 4 presents the results of an ablation study on the three
core components of WorldGUI-Agent across five application categories (Office, Windows Usage,
Web, Coding, Media). The full model achieves an overall success rate (SR) of 26.0%. The effects
of removing each component are as follows: Planner-Critic: Eliminating this module reduces
overall SR to 18.5% (–7.5%), with substantial drops in Office (42.2% → 31.1%) and Web (47.6% →
38.1%) tasks, indicating its importance for refining initial plans. Step-Check: Without step-wise
verification, SR decreases to 19.8% (–6.2%). The relatively smaller decline on Coding and Win.
Usage tasks suggest that Step-Check excels at intercepting and correcting multi-step interaction
errors. Actor-Critic: Removing the action-level critic causes SR to collapse to 9.7% (–16.3%).
Performance on Coding Meta drops to 0.0% and Windows Usage Meta to 4.2%, highlighting the
critical role of reward-driven action correction for action-level GUI operations. These results confirm
that Planner-Critic, Step-Check, and Actor-Critic each contribute complementary benefits—plan
refinement, intermediate validation, and action optimization—that are essential for the robustness
and overall effectiveness of WorldGUI-Agent.

Impact of Instructional Video. In Table 5, we study the impact of removing the instructional video
by modifying the prompt to include only the user query for generating the initial plan. In the Excel
applications, we observe a significant performance decline, as their tasks are complex and difficult,
and rely more heavily on additional domain knowledge for successful planning. In contrast, the
MLLM performs relatively well on Win. Usage tasks, such as Settings and File Management, are
where it has more inherent familiarity. These findings underscore the necessity of instructional videos
for complex tasks like visual effect design, mirroring how users learning to build a slide often rely on
tutorial videos.

4.3 RESULTS ON WINDOWSAGENTARENA BENCHMARK

Table 6 compares WorldGUI-Agent against four leading agents on the WindowsAgentArena bench-
mark. WorldGUI-Agent achieves a 31.2% overall SR, far surpassing GPT-4V (19.5%), GPT-4o
(8.6%), GPT-4o-mini (4.2%), and Phi3-V (3.5%). Its gains are most pronounced in desktop categories:
Office tasks (7.0% vs. 0%), Windows System (45.8% vs. 33.3%), and Windows Utilities (33.3%
vs. 8.3%). On web browser, it reaches 53.3%, nearly double GPT-4V’s 27.3%, and on coding tasks,
it records 33.3% versus 27.3%. In media tasks, WorldGUI-Agent posts 28.6%, closely matching
GPT-4V’s 30.3%. These results underscore the necessity of integrated planning critique, step-check
verification, and action-level feedback. These results demonstrate that our framework robustly handles
both desktop GUI tasks and dynamic web environments, highlighting its versatility for real-world
GUI automation.

CONCLUSION

In this paper, we take the first step toward comprehensive GUI agent evaluation by introducing
WorldGUI. In addition to the standard static testing processes, we incorporate dynamic testing
procedures to ensure that WorldGUI effectively captures the complexity and dynamism of real-world
GUI environments. Furthermore, we propose a universal agent framework, WorldGUI-Agent, built
upon the critical thinking principle. This framework enables the agent to dynamically identify
uncommon states and adjust its plans or actions accordingly. Finally, we evaluate WorldGUI-Agent
powered by Claude-3.5-Sonnet on WorldGUI and WindowsAgentArena benchmarks, demonstrating
the effectiveness across a variety of GUI tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LIMITATION AND IMPACTS

In the current implementation of our agent, WorldGUI-Agent, more external tools have not been
integrated into the GUI planning and action prediction processes to prioritize computational efficiency.
Incorporating tools such as web search or file search into the agent’s design could be a valuable future
direction to improve performance. Additionally, due to the usage of the GUI Parser, which would
increase the time costs because of the response speed of experimental desktop computers, it is still a
tradeoff between performance and running time in the current GUI domain. We consider that if the
base MLLM model is specifically trained with stronger planning and grounding ability, the running
time would be sped up. It is noted that our agent framework is capable of working with any MLLM.

WorldGUI takes the first step of pushing the GUI automation into the dynamic testing process, as
we found that real-world human-computer interactions are dynamic and unpredictable; existing GUI
benchmarks fail to capture such dynamics to closely reflect the interactions. Our WorldGUI-Agent is
a straightforward and universal agent framework by considering incorporates three critical modules
to adaptively align the plan and actions with exact environment situations, which would be a good
baseline for future agent development. For instance, incorporating more tools such as web search or
file search into the planning module or action prediction module to realize more challenging tasks.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:
An open agentic framework that uses computers like a human. In The Thirteenth International
Conference on Learning Representations, 2025a. URL https://openreview.net/forum?
id=lIVRgt4nLv.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A
compositional generalist-specialist framework for computer use agents, 2025b. URL https:
//arxiv.org/abs/2504.00906.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024. URL
https://www.anthropic.com/news/3-5-models-and-computer-use.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.08264.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng

10

https://openreview.net/forum?id=lIVRgt4nLv
https://openreview.net/forum?id=lIVRgt4nLv
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/news/3-5-models-and-computer-use
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, Hengxu Wang, Luowei Zhou, and Mike Zheng Shou. Assistgui:
Task-oriented pc graphical user interface automation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 13289–13298, June 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In CVPR, 2017.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6864–6890, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.371. URL https://aclanthology.org/2024.acl-long.
371/.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
case study with claude 3.5 computer use, 2024. URL https://arxiv.org/abs/2411.
10323.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent, 2024. URL https://arxiv.org/abs/2404.03648.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent. arXiv preprint arXiv:2411.17465, 2024.

11

https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.acl-long.371/
https://aclanthology.org/2024.acl-long.371/
https://arxiv.org/abs/2411.10323
https://arxiv.org/abs/2411.10323
https://arxiv.org/abs/2404.03648

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4o, 2023. URL https://openai.com/index/hello-gpt-4o.

OpenAI. Openai o1 system card, 2024. URL https://openai.com/index/
openai-o1-system-card.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on
machine learning, pp. 28492–28518. PMLR, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2024. URL https://arxiv.org/abs/2405.14573.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
ACM MobiCom ’24, pp. 543–557, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704895. doi: 10.1145/3636534.3649379. URL https://doi.org/
10.1145/3636534.3649379.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. Advances in neural information processing
systems, 2022.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In
European Conference on Computer Vision, pp. 240–255. Springer, 2025.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

12

https://openai.com/index/hello-gpt-4o
https://openai.com/index/openai-o1-system-card
https://openai.com/index/openai-o1-system-card
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2405.14573
https://doi.org/10.1145/3636534.3649379
https://doi.org/10.1145/3636534.3649379
https://arxiv.org/abs/2410.23218

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2DlB.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng YAN.
Agentstudio: A toolkit for building general virtual agents. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=axUf8BOjnH.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In The Twelfth International Conference on Learning Representations.

13

https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=axUf8BOjnH
https://openreview.net/forum?id=axUf8BOjnH

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A Ethics Statement 14

B Reproducibility Statement 14

C LLM Usage Statement 15

D Related Work 15

D.1 GUI Benchmarks . 15

D.2 GUI Agents . 15

D.3 Critical Thinking in Agents . 15

E Additional Experiments 16

F Data 16

F.1 Annotators . 16

F.2 Creating Augmented Tasks . 16

F.3 Introducing Diverse Initial Context States . 17

G Data Statistics 17

G.1 Task taxonomy and lengths . 17

G.2 Augmentation tasks type analysis . 17

G.3 Task difficulty analysis . 18

H Detailed Experimental Results 19

I Computational Costs Discussion 19

J Examples of Augmentations 21

K WorldGUI-Agent Reasoning Loop Algorithm 22

L Qualitative Results 22

A ETHICS STATEMENT

This work introduces a benchmark for GUI interaction without involving any sensitive personal data
or human subject experiments. All data are derived from publicly available or synthetically generated
instructions, ensuring compliance with privacy and legal considerations. We acknowledge potential
risks of misuse (e.g., surveillance), and therefore release the benchmark with clear documentation and
intended use guidelines. We affirm adherence to the ICLR Code of Ethics throughout the research
process.

B REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Detailed dataset construction steps, task
definitions, and evaluation protocols are described in Section 2 and the Appendix. Implementation
details of experiments, including hyperparameters and evaluation scripts, are provided in Section

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

4. In addition, we release the benchmark dataset and evaluation code as anonymous supplementary
materials to enable independent verification of our results.

C LLM USAGE STATEMENT

We employed large language models (LLMs) as auxiliary tools during manuscript preparation. Their
use was strictly limited to surface-level editing tasks, including grammar correction, minor rephrasing,
and stylistic improvements to enhance readability. At no point did we rely on LLMs for generating
research ideas, methods, experiments, or conclusions. All technical content and analysis presented in
this paper are the sole work of the authors.

D RELATED WORK

D.1 GUI BENCHMARKS

GUI benchmarks are essential for evaluating the performance and robustness of GUI agents. For
web applications, WebShop (Yao et al., 2022), WebArena (Zhou et al.), and WebVoyager (He
et al., 2024) focus on creating the GUI tasks in a web browsing scenario. In OS environments,
OSWorld (Xie et al., 2024) is a comprehensive benchmark, including various operating systems with
real applications. Mobile benchmarks such as MobileAgent (Wang et al., 2024) and AppAgent (Zhang
et al., 2023) propose two GUI benchmarks of mobile applications. Windows-related benchmarks
like AssistGUI (Gao et al., 2024) and WindowAgentArena (Bonatti et al., 2024) propose a list of real
tasks in the Windows platform. However, these online testing GUI benchmarks primarily rely on
a static testing process and do not adequately capture the complexity and dynamic nature of GUI
environments. As a result, they are insufficient for comprehensively evaluating GUI agents.

D.2 GUI AGENTS

CogAgent (Hong et al., 2024) is a vision language model focused on GUI understanding to facilitate
GUI navigation, while SeeClick (Cheng et al., 2024) and SeeAct (Zheng et al., 2024) focus on
the GUI grounding for enhancing the task performance. MobileAgent (Wang et al., 2024) and
AppAgent (Zhang et al., 2023) are proposed to design the agent on the mobile device. Ferret-UI (You
et al., 2025) is another representative work focusing on enhancing the grounding ability in the
IOS platform. These agents have shown their ability in GUI understanding (e.g., GUI elements
grounding) or action prediction, but still face limitations in handling dynamic and complicated full
GUI tasks. Therefore, to enhance GUI automation in dynamic environments, we propose WorldGUI-
Agent, which improves adaptability in complex GUI settings and enables agents to effectively handle
unpredictable interface changes. The components comparison of our WorldGUI-Agent and other
closely related agents is shown in Table 7.

Table 7: Comparison with other closely related agents. Most existing agents solely focus on post-
action evaluation but omit the post-planning critique and pre-action validation in handling dynamic
GUI environments.

Method Post-Planning Critique Pre-Action Validation Post-Action Evaluation

Mobile-Agent (Wang et al., 2024) ✗ ✗ ✓
Mobile-Agent-V2 (Wang et al., 2024) ✗ ✗ ✓
AssistGUI (Gao et al., 2024) ✗ ✗ ✓
Agent-S (Agashe et al., 2025a) ✗ ✗ ✓
Mobile-Agent-E (Wang et al., 2025) ✗ ✗ ✓
WorldGUI-Agent (ours) ✓ ✓ ✓

D.3 CRITICAL THINKING IN AGENTS

Recent advancements in foundation models and agents, particularly in LLMs such as OpenAI-o1 (Ope-
nAI, 2024) and Deepseek-R1 (DeepSeek-AI et al., 2025), have increasingly incorporated thinking
processes before providing answers to effectively handle challenging reasoning tasks. The LLM-
based agents utilize verify-then-correct process to evaluate and refine intermediate reasoning steps

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison between WorldGUI-Agent (with Claude-3.5-Sonnet and Claude-
Sonnet-4) and Agent-S2 (Claude-Sonnet-4). Results are reported across five representative applica-
tions.

Method PPT VSCode Acrobat VLC File Explorer
Meta Aug. Meta Aug. Meta Aug. Meta Aug. Meta Aug.

Agent-S2 w/ Claude-Sonnet-4 45.5 18.9 45.5 37.8 18.2 14.5 20.0 16.3 60.0 64.7
WorldGUI-Agent w/ Claude-3.5-Sonnet 54.5 39.6 54.5 26.7 63.6 20.0 50.0 18.4 50.0 17.6
WorldGUI-Agent w/ Claude-Sonnet-4 63.6 52.8 54.5 28.9 54.5 30.9 40.0 28.6 70.0 26.5

Table 9: Performance comparison between WorldGUI-Agent (with UI-TARS-1.5) and UI-TARS-
1.5.

Method PPT Acrobat
Meta Aug. Meta Aug.

WorldGUI-Agent w/ UI-TARS-1.5 36.6 18.9 36.4 9.1
UI-TARS-1.5 27.3 17.0 9.1 1.8

or outputs, ensuring logical coherence and consistency. One notable LLM-based agent framework,
Reflexion (Shinn et al., 2024), demonstrates the effectiveness of self-reflection in solving complex
tasks. Furthermore, CRITIC (Gou et al., 2023) integrates external tools into the critique process,
leveraging them to improve performance. Noticing that the GUI task is lengthy and complicated, the
verify-then-correct process is highly suitable for the GUI scenario. Which is not only aims to enhance
the reasoning performance but is also indispensable to designing the key module Actor-Critic (Konda
& Tsitsiklis, 1999) to ensure task completion. A closely related work, AssistGUI (Gao et al., 2024),
integrates a critical module only after the Actor module to evaluate action completion. Building
upon it, we introduce two additional critical modules: Planner-Critic, applied after the Planner, and
Step-Check, applied before the Actor. These two modules lead to a universal and fundamental GUI
agent framework WorldGUI-Agent which will provide insights for future GUI agent design.

E ADDITIONAL EXPERIMENTS

As shown in Table 8, Agent-S2 (Agashe et al., 2025b) shows competitive results as compared with
our WorldGUI-Agent. We also test on two representative office software to compare the effectiveness
of our proposed agentic framework by replacing the base model with UI-TARS-1.5 (Qin et al., 2025)
in Table 9. It is noted that to improve the performance of UI-TARS-1.5, we use the GPT-4o to task
planning, as we found that UI-TARS struggles with understanding complex desktop software layout
and cannot capture the dynamic initial condition changes. We use GPT-4o for better implementation.

F DATA

F.1 ANNOTATORS

In this work, we have four annotators: A, B, C, and D. The team comprises one PhD student, one
Master’s student, and two undergraduate students. Prior to annotation, all annotators receive training
on using the applications in WorldGUI to ensure high-quality annotations. For the 10 desktop
applications, we divide the software into four parts, assigning each part to a different annotator. For
the human tests presented in Table 3, the annotators demonstrate tasks on software that they did not
annotate. As shown in Table 1, each annotator is responsible for different software during both the
annotation and human testing phases to make the soundness of the Human Test results.

F.2 CREATING AUGMENTED TASKS

In our study, to simulate dynamic testing processing in real GUI interactions, we propose to design
GUI tasks with various initial tasks. Specifically, we propose pre-actions before executing the
task. The pre-actions primarily serve two purposes: 1) Simulating Intermediate Task States:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: The annotation arrangement during the annotation and human testing phases by different
annotators.

Annotators Annotation Phase Human Test Phase

A PowerPoint, Word, Excel VSCode, VLC Player, Web
B Adobe Acrobat, VLC Player Excel, Settings
C Settings, Web PowerPoint, File Explorer, Youtube
D VSCode, File Explorer Word, Adobe Acrobat

01
02

03
04

05
06

Raw Video Collection:

 Find potential Computer Use Full

Videos from Youtube (PPT, Word, Excel)

or official software website.

Inst. Video Preparation: Human

checks to cut the Video Clips (30s to

maximum of 3 mins) as Inst. Video.

User Query Generation:

Manually write a User Query

for each instructional video.

GT-Plan Generation:

Use the Agent to generate Initial Plans

and then ask the annotators to verify and

correct the error plans.

Project File Preparation:

Create the Project File for each

task. It ensures the reproducibility.

Pre-actions Generation:

 Augment each task and

generate Pre-actions.

Human

Code

Agent

Figure 7: Pipeline of Data Construction. Human: Represents the annotators. Code: Refers to the
scripts (e.g., Python Code) utilized to achieve the goal. Agent: We design an agent built upon the
MLLMs to achieve the goal.

Pre-actions can complete specific steps of a task, creating a starting point from an intermediate state.
This approach addresses scenarios where users may seek AI assistance because they are unable to
complete a task. For example, if the task involves opening a dropdown menu, the pre-action may
pre-open the menu. If the agent fails to recognize this precondition and follows its plan to click the
menu again, it might inadvertently close the menu, causing task failure.

F.3 INTRODUCING DIVERSE INITIAL CONTEXT STATES

Pre-actions can also introduce variations in the initial state, such as opening random tabs or settings.
This ensures that the starting state is unconventional, challenging the agent to adapt by modifying its
plan or adding new steps. We illustrate one example in Figure 8. Here, the meta task and augmented
task, have the same user query and instructional video and it will ideally have the same final state.
We additionally provide more examples about augmenting the meta task in Figure 9.

G DATA STATISTICS

G.1 TASK TAXONOMY AND LENGTHS

We present the detailed data statistics about WorldGUI in Figure 10 and Table 12. In total, we
have 111 meta tasks across 10 widely-used desktop software to construct the data of WorldGUI. By
augmenting the default task state 5 times, we obtain 500 augmented tasks. In summary, we have 611
tasks in WorldGUI for testing GUI agents. The task lengths are shown on the left of Figure 10. The
average length of meta tasks is 6, and it would be increased by 1 due to the context variety. As the
overall performance of WorldGUI is around 36%

G.2 AUGMENTATION TASKS TYPE ANALYSIS

As we summarize, the real GUI scenarios include: (1) The software interface is not in its default
state. (2) The human-computer interactions may start from the intermediate state of a specific task.
We propose to create the augmented tasks for each meta task to simulate authentic GUI interactions.
Our augmentations lie in two main groups: (1) simulating the intermediate states and (2) introducing
diverse initial states. We divide the two groups into three exact types: Add-step, Trim-step, and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

User Query “Set the document to Two Page View from the View menu.”

Task 1: Change the page display to two-page
view in Adobe Acrobat
Subtask 1: Click 'View' in the top menu.
Subtask 2: Hover over 'Page Display' from the
dropdown menu.
Subtask 3: Click 'Two Page View' to display the
document in a two-page layout.

GT Plans Initial State Pre-Action

Task 1: Change the page display to two-page
view in Adobe Acrobat
Subtask 1: Hover over 'Page Display' from
the dropdown menu.
Subtask 2: Click 'Two Page View' to display the
document in a two-page layout.

Task 1: Change the page display to two-page
view in Adobe Acrobat
Subtask 1: Ignore the Tool Page and Click
'View' in the top menu.
Subtask 2: Hover over 'Page Display' from the
dropdown menu.
Subtask 3: Click 'Two Page View' to display the
document in a two-page layout.

Original Data

Augmented
Data

Figure 8: An example of augmenting one GUI task with manually aug the initial state and then using
the execution scripts and corresponding agents to obtain the pre-action for each augmented case.

Adjust-step. For Add-step, it represents various unrelated state augmentations to simulate the scenario
that we may start the agent-computer interactions in another unrelated task or interfaces, the agent
should replan the task to add necessary steps. For Trim-step, it represents that we finish several
steps of a long task and make the task in an intermediate state. For Adjust-step, it is usually a small
modification of the existing state, such as changing the interface by clicking another Tab or clicking
a button to open an unrelated dropdown menu. Most of the time, it would not require new steps to
return to the target task progress. This augmentation may mislead the agent in state understanding,
making them jump or miss the key steps. As shown in Figure 11, the manually created augmentations
mainly belong to the add-step. Adjust-step could be the second-largest application, except for the
File Explorer. Due to the low complexity of the interfaces of File Explorer, we cannot create many
augmentations for adjust-step.

G.3 TASK DIFFICULTY ANALYSIS

Figure 12 shows the distribution of the task difficulty across desktop applications. We annotated the
task difficulty level based the subjective software usage experience. The results indicate that the tasks
in Adobe Acrobat and VLC player are more challenging. The tasks in Excel, PowerPoint, and Word
are more at the medium and simple levels. By considering the Success Rate and task length on these
tasks, one can know that the tasks are easy for humans, but hard for current GUI agents. According to
VSCode and File Explorer, and YouTube applications, the tasks are easier than in other applications.
Overall, the task difficulty of created data is diverse across different applications, and there is still a
need for stronger agents focusing on handling desktop-oriented GUI tasks.

The task details about the user query and the pre-actions are included in the metadata JSON file in
the supplementary materials. The project file, instruction video, and augmentation files can be found
in the provided data link.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Meta Aug 1 Aug 2

Meta Aug 1 Aug 2

Query 1: Add a note to the second ppt, the content of the note is 123

Query 2: Make the text around the table

Pre-actions: None Pre-actions: Click on slide 3.
It may mislead the planner to omit adding the
step 'click on slide 2' because of the concept of
slide 1, 2, 3 is not easy to obtain only from
screenshot.

Pre-actions: Click on the “Replace” button in the
Home ribbon.
It augments the context of performing the task.
The agent should understand the current state
and then close the pop-up window to continue
the process.

Pre-actions: None Pre-actions: Click on “Design” Tab.
It make the context changed. The agent should
not mislead by current state.

Pre-actions: Click on “Table Layout” to stimulate
the intermediate initial state.

Figure 9: We present the examples of conducting the augmentations from the meta task.

Table 11: Task category, task activities, and project file of the desktop applications in WorldGUI.
Category Applications All Task Task Activities Project File Type

Office PowerPoint 64 Change the content style and layout; Design new effects project.pptx
Office Word 63 Formatting the content style and layout project.docx
Office Excel 70 Table formatting; Data management and processing project.xlsx
Office Adobe Acrobat 66 Automatic add electric signature; Document management project.pdf
Coding VSCode 56 Code editing; Software configuration vscode.exe
Windows Usage Settings 69 Advanced personalized and safety settings; ms-Settings
Windows Usage File Explorer 44 File management: Add, delete, rename, and move files explorer.exe
Web Usage Web Browser 59 Web operation web browser + URL
Web Usage Youtube (Online) 61 Video and account configurations web browser + URL
Media VLC Player 59 Video editing and creation project.mp4

H DETAILED EXPERIMENTAL RESULTS

Table 13 shows the detailed results of WorldGUI-Agent across individual applications in Win-
dowsAgentArena (Bonatti et al., 2024) benchmark. The results of this related Windows-centric
interactive GUI benchmark indicate that current the desktop GUI tasks are more challenging than web
tasks. As we complete 11 out of 17 tasks in Web Browsing, a similar phenomenon is also discovered
in Table 4.

I COMPUTATIONAL COSTS DISCUSSION

The average number of execution steps and tokens consumed are shown below Table 14. The
execution steps are calculated based on our experimental log files, while the token costs are sampled
from representative tasks in each category by taking Actor module as an example.

Take a Windows Setting task as an example, we provide detailed time costs across different mod-
ules tested on a desktop PC with AMD Ryzen 7 5800H CPU. Task length: 6 (generated by
Planner+Planner-Critic). To facilitate a fair comparison, we additionally selected two of the latest
SOTA agents, Agent-S (2024-10-08) and Agent-S2 (2025-04-01), and measured their run times on
the same successful task under identical hardware and the same base MLLM (Claude-Sonnet-4). The
results are shown in Tables 15, 16, 17. To summarize, our WorldGUI-Agent shows a competitive
running time of 129.55s, as compared with Agent-S (131.98s) and Agent-S2 (108.64s). The main

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ad
ob

e A
cro

ba
t

Ex
cel

Pow
erP

oin
t

Word

VSC
od

e

File
 Ex

plo
rer

Se
ttin

gs

Web
 Brow

ser

You
tub

e

VLC
 Pla

ye
r

Software

0

2

4

6

8

10

Av
er

ag
e

M
et

a-
Ta

sk
 L

en
gt

h

Average Meta-Task Length per Software

Figure 10: Distribution of Software taxonomy and the distribution of task length.

Ad
ob

e A
cro

ba
t

Ex
cel

Pow
erP

oin
t

Word

VSC
od

e

File
 Ex

plo
rer

Se
ttin

gs

Web
 Brow

ser

You
Tub

e

VLC
 Pla

ye
r

Software

0

5

10

15

20

25

30

Ta
sk

 C
ou

nt

Augmentation types by Software
Aug: Add-step
Aug: Trim-step
Aug: Adjust-step

Figure 11: The distribution of different augmentation types.

computational costs of our designed modules are largely affected by the underlying large multimodal
model, leaving room for acceleration optimization.

Since desktop GUI automation is still in its early stages, such computational costs are currently
unavoidable. For reference, even OpenAI’s Deep Research reportedly takes over 10 minutes in daily

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Ad
ob

e A
cro

ba
t

Ex
cel

Pow
erP

oin
t

Word

VSC
od

e

File
 Ex

plo
rer

Se
ttin

gs

Web
 Brow

ser

You
Tub

e

VLC
 Pla

ye
r

Software

0

5

10

15

20

25

30

35

40
Ta

sk
 C

ou
nt

Task difficulty of Software
Simple
Medium
Hard

Figure 12: The distribution of different task difficulty.

Table 12: Task statistics of WorldGUI.
Category Software Meta Count Aug Count Meta-Task Length (Avg.)

Office Adobe Acrobat 11 55 7.1
Office Excel 12 58 4.1
Office PowerPoint 11 53 5.1
Office Word 11 52 5.1
Coding VSCode 11 45 4.4
Windows Usage File Explorer 10 34 7.1
Windows Usage Settings 14 55 5.1
Web Usage Web Browser 10 49 7.8
Web Usage YouTube 11 50 4.8
Media VLC Player 10 49 10.8
Total (Average) – 111 500 6.0

usage. According to OpenAI Operator’s report, achieving 38.1% on OS-World requires over 100
steps, which is similarly costly. In summary, there remains a clear tradeoff between performance and
time costs in GUI automation, and this challenge is shared across the community.

J EXAMPLES OF AUGMENTATIONS

In this section, we present several augmentation examples in Figures 13, 14, 15, 16, 17, 18, 19. It is
noted that our augmentations are not only making the first step changing but also require the agent
add new step in its second step. For instance, in Figure 13, our augmentation is about click on Data
tab in the ribbon, in the default software state, the Merge & Center button exhibit in the Home tab,
there is no need to click on Home tab, after our augmentations, the agent should add a new task
“Click on Home Tab” before it click on the Merge & Center button. Similarly, in Figure 18, the text
editing buttons are under the Home Tab, if we augment the initial state with other Tab like Animation
Tab, after the first step “Select the text ’US SUBMARINE DAY’ ”, the agent should add a new step
like “Click on Home Tab” back to the default state for task execution. Except for adding new steps,
we also present an example about adjust the step in Figure 14, as the target is about merging cells

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Detailed experimental results of WorldGUI-Agent across individual applications in Win-
dowsAgentArena (Bonatti et al., 2024).

Domain Application #Tasks #Successes SR (%)
Web Browsing chrome 17 11 64.71
Windows Utilities clock 4 2 50.00
Windows System file_explorer 19 7 36.84
Office libreoffice_calc 24 1 4.17
Office libreoffice_writer 19 2 10.53
Windows Utilities microsoft_paint 3 1 33.33
Web Browsing msedge 13 5 38.46
Windows Utilities notepad 2 1 50.00
Windows System settings 5 4 80.00
Media & Video vlc 21 6 28.57
Coding vs_code 24 8 33.33
Windows Utilities windows_calc 3 0 0.00

Overall 154 48 31.17

Table 14: Average execution steps and token costs on different software.
Application category Average execution steps Input tokens per step (Actor) per task Output tokens per step (Actor) per task

Office ∼23 2350 212
Win. Usage ∼20 1929 108
Web ∼17 1637 84

A1 to K1, we augment the initial state by selecting A2 to K2. Such a slight difference may mislead
the agent to perceive such a minor difference, and the agent may jump the first step about selecting
the correct cells lead to finally unsucess. In Figure 15 and Figure 19, we show two examples of
introducing pop-up window in the initial state which require the agents accurately identify the pop-up
windows and correctly close it by replanning the task based on the visual screenshot not only strictly
planning based on inherited knowledge or the instructinal videos. In Figure 16, we show an example
of changing the interface by clicking the Data tab to hide the Merge & Center button under the Home
tab. In Figure 17, we complete the first step about selecting A1 to K1, which requires the agent to
jump this step to reduce the time costs.

K WORLDGUI-AGENT REASONING LOOP ALGORITHM

In this section, we provide the details of our reasoning loop algorithm in Algorithm 1.

L QUALITATIVE RESULTS

(1) In Figure 20, we present a successful prediction example, demonstrating that the WorldGUI can
effectively plan each step for a task, accurately perceive specific elements in the GUI, and convert
them into the correct action code. Additionally, we display the parsed GUI elements, which can
accurately identify most content, including small icons and dense text elements.

(2) We provide the visualization results of using Planner-Critic, Step-Check, and Actor-Critic in
Figure 22, Figure 23, and Figure 24. These qualitative results demonstrate the effectiveness of these
critical modules in GUI automation.

(3) We also highlight some common errors encountered. 1) The model has the difficulty of obtaining
the desired information when we augment the task by invoking the dropdown menu of the Settings
application. As shown in the left of Figure 25, when we click on the ’System’ button on the left, it
is challenging for our model to extract the button’s position as it is hidden. Such cases require the
model to have a higher level of ability to delete the content in the input box or click on the blank
area. 2) As shown in the right of Figure 25, the model has difficulty dragging a bar to achieve the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 15: Running time with WorldGUI-Agent (ours).
Subtask Index Executed Modules Time (seconds)

0 Planner 4.48
0 Planner-Critic 11.47
1 Parser 2.03
1 Step-Check 4.95
1 Actor 7.47
1 Parser 2.07
1 Actor-Critic 7.38
2 Parser 2.03
2 Step-Check 6.71
2 Actor 6.05
2 Parser 2.07
2 Actor-Critic 7.97
3 Parser 2.12
3 Step-Check 6.35
3 Actor 6.71
3 Parser 2.22
3 Actor-Critic 10.06
4 Parser 2.01
4 Step-Check 6.19
4 Actor 8.54
4 Parser 2.40
4 Actor-Critic 9.55
5 Parser 2.22
5 Step-Check 6.50

Total - 129.55
Average (per action) - 22.72

Table 16: Running time with Agent-S.
Step Executed Modules Time (seconds)

0 Manager 2.02
1 Manager 10.11
2 Worker 16.05
3 Worker 12.38
4 Worker 17.30
5 Worker 12.26
6 Worker 15.17
7 Worker 15.46
8 Worker 11.83
9 Worker 19.40

Total - 131.98
Average (per worker) - 14.98

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 17: Running time with Agent-S2.
Step Executed Modules Time (seconds)

0 Manager 11.87
1 Worker 7.27
2 Worker 13.21
3 Worker 13.59
4 Worker 14.04
5 Manager 10.61
6 Worker 9.87
7 Manager 7.53
8 Worker 20.65

Total - 108.64
Average (per worker) - 13.22

GT Plan:

Task 1: Select A1:K1

Subtask 1: Select the cells A1 through K1.

Task 2: Merge cells

Subtask 1: Click the Merge & Center command.

Subtask 2: Click 'OK' to confirm the change.

Default State Augmented State

User Query: Merge A1:K1 1

Figure 13: Augmented example of an Excel Task.

desired value. 3) The model struggles with the visual choice when there is no text information in
the screenshot, as shown on the left of Figure 26. The subtask aims to select the center button, but
the current model makes it hard to detect the center choice only from the screenshot. 4) The model
cannot successfully locate the position of the input box, as the GUI parser will easily locate the text
location ’Replace with’, it always outputs the action like clicking on the ’Replace with’, which will
destroy the whole task success.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

User Query: Merge A1:K1

Default State
Augmented State

2

Figure 14: Augmented example of an Excel Task.

User Query: Merge A1:K1

Default State

Augmented State

3

Figure 15: Augmented example of an Excel Task.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

User Query: Merge A1:K1

Default State Augmented State

4

Figure 16: Augmented example of an Excel Task.

User Query: Merge A1:K1

Default State Augmented State

5

Figure 17: Augmented example of an Excel Task.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

User Query: Set US SUBMARINE DAY in the first ppt to fontsize 40

Default State Augmented State

Figure 18: Augmented example of a PowerPoint Task.

Default State Augmented State

User Query: Select all text and apply numbered list for them. Use '1, 2, 3' symbol of numbered list.

Figure 19: Augmented example of a PowerPoint Task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 1 WorldGUI-Agent Reasoning Loop Algorithm
Input: State s, Action Code C, Screenshot V , Metadata m, Current subtask S, Critic_count z
Generate task plan p with Planner and Planner-Critic
Initial current subtask St=0 = S1

1 , where S0
1 is the 1-th subtask in the 1-th milestone of p.

Initial s0 =< Continue >
while St is not end and t < max trials do

Observe metadata mt and Screenshot Vt from Env.
Obtain state st by running Step-Check.
if st =< Next > then

Go to the next task St+1 = next(St)
end if
Check potential modification of subtask St

Obtain action code Ct by running Actor; Execute the action code Ct in the Env.; Observe
metadata mt and Screenshot Vt from Env.
Set Ct = None; t = t+1; Set state st =< Critic > (For each subtask, the first step is finished,
then execute the actor-critic process)
Observe metadata mt and Screenshot Vt from Env.
Running Actor-Critic and obtain the state st
if st =< Next > then

Go to the next task St+1 = next(St).
end if
while st =< Critic > and z < max critique trials do

Running Actor-Critic and obtain the state st and corrected action code Ct

if st =< Next > then
Go to the next task St+1 = next(St).

end if
Execute the action code Ct in the Env.; Observe metadata mt and Screenshot Vt from Env.
Set Ct = None; z = z + 1

end while
Go to the next task St+1 = next(St)
t = t+ 1

end while

Subtask 1: Open the 'Settings' application on your PC. Subtask 2: Click on 'System' in the left sidebar. Subtask 3: Click on 'Notifications' from the available options.

Subtask 4: Scroll down to the 'Notifications from apps
and other senders' section.

Subtask 5: Locate the 'Battery saver' item in the list.
Subtask 6: Toggle the switch next to 'Battery saver' to the
'Off' position to disable notifications.

Shortcut: Win+I

Scroll Down

Figure 20: We show one successful prediction of our WorldGUI-Agent.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 21: We show two examples of using GUI Parser to obtain the element position information.

Task 1: Format the whole document into two columns
Subtask 1: Click on the Layout tab.
Subtask 2: Click the Columns command.
Subtask 3: Click on Two to format the document into two
columns.

Initial Plan

<Feedback>Missing steps. The current plan does not include selecting all the text in the document before applying the column
format, which is necessary to ensure the entire document is formatted into two columns.</Feedback>
<Flag>false</Flag>
<Correction>
Task 1: Format the whole document into two columns
Subtask 1: Click on the Home tab.
Subtask 2: Click anywhere in the text area and press Ctrl + A to select all the text in the document.
Subtask 3: Click on the Layout tab.
Subtask 4: Click the Columns command.
Subtask 5: Click on Two to format the document into two columns.
</Correction>
<Reason>The user query is to change the whole document from one column to two columns. The current plan does not include
selecting all the text in the document, which is necessary to apply the column format to the entire document. The correction
includes selecting all text before applying the column format, ensuring the entire document is affected.</Reason>

Planner Critic

Screenshot

Output

Figure 22: An example of using Planner-Critic to correct the plan.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Previous Finished Tasks: Subtask 1: Click on the text "US
SUBMARINE DAY" within the main Slide Pane to select it.
Current Task: Subtask 2: Go to the "Font" group on the toolbar.
Next Task (for reference, you should consider whether current task is
necessary when we complete next task): Subtask 3: Type "40" in the
font size box to set the font size to No. 40.

<Finished>
<Reason>The "Font" group on the toolbar is already visible in the
screenshot, indicating that the current task of going to the "Font"
group has been completed.</Reason>

Screenshot

Previous Finished Tasks: …Subtask 2: Click the Insert tab in the
PowerPoint toolbar. Subtask 3: Click the Table command.
Current Task: Current Task: Subtask 4: Mouse over the grid to
select a 3x3 table.
Next Task (for reference, you should consider whether current task is
necessary when we complete next task): Subtask 5: Click to insert
the table with the selected number of rows and columns.

Output: <Continue>

Screenshot

Input

Output

Output

Input

Figure 23: Two examples of using Step-Check to check the subtask status.

<Success> True </Success>
<Reason> The action to click on cell A18 was successfully completed. The second screenshot shows that cell A18 is selected, as indicated by the
highlighted cell and the cell reference "A18" in the Name Box. </Reason>

Based on the screenshots before and after the action, subtask description, software name Excel, please check the action completion status.
Current Task: Subtask 1: Click on cell A18 to select it
current action: from pyautogui import click\nclick(17, 675)
Parsed GUI Screenshot Info: [Note that: element format is "name [its position]", separate with comma]
Excel:
 elements:
 Status Bar [960, 1006]; Status Bar [960, 1006]; Status Bar [960, 1006]; Cell Mode Ready [33, 1007]; Macro Recording Not Recording [85, 1007];
Accessibility Checker Accessibility: Good to go [198, 1007]; Average 152364686.9 [1126, 1007]; …

Screenshot Before Action Screenshot After Action (Crop for best view)

Input

Output

Figure 24: An example of using Actor-Critic to correct the actions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Subtask: Navigate to the 'System' section.

Query 1: Turn on Storage Sense

Error: The dropdown menu hides the “System” button. Thus
the GUI Parser and MLLM cannot find the “System” in this
screenshot.

Subtask: Drag to set brightness to 70%

Query 2: Set the brightness under Dynamic Lighting with 70%

Error: The Actor cannot provide exact bbox to achieve the goal of
dragging to 70%.

Figure 25: We display some common errors.

Subtask: Select 'Center'

Query 1: Format the slide background with gradient fill

Error: The Actor Model cannot identify the “center” button
in this dropdown menu

Subtask: Enter 'RA' in the field behind the 'Replace with' text.

Query 2: Replace all the 'Reading' in the text with 'RA'

Error: The Actor cannot click on the input field as the parsed
bbox is the position of text “Replace with”

Figure 26: We display some common errors

31

	Introduction
	WorldGUI Benchmark
	Task Formulation
	Data Source
	Pipeline of Data Construction
	Evaluation
	Data Statistics

	WorldGUI-Agent: Thinking before Doing
	State-Aware Planner
	Planner-Critic
	Step-Check
	Actor
	Actor-Critic

	Experimental Results
	Main Results on WorldGUI
	Ablation Study
	Results on WindowsAgentArena Benchmark

	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Related Work
	GUI Benchmarks
	GUI Agents
	Critical Thinking in Agents

	Additional Experiments
	Data
	Annotators
	Creating Augmented Tasks
	Introducing Diverse Initial Context States

	Data Statistics
	Task taxonomy and lengths
	Augmentation tasks type analysis
	Task difficulty analysis

	Detailed Experimental Results
	Computational Costs Discussion
	Examples of Augmentations
	WorldGUI-Agent Reasoning Loop Algorithm
	Qualitative Results

