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Abstract

This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning
capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first
search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation
protocol — for example, in DFS, the availability of each node’s connected edge is contin-
gent upon the model’s traversal to that node, thereby necessitating the LLM’s ability to
effectively remember visited nodes and strategize subsequent moves considering the possi-
ble environmental feedback in the future steps. We comprehensively build AQA-Bench with
three different algorithms, namely binary search, depth-first search, and breadth-first search,
and to evaluate the sequential reasoning ability of 14 different LLMs. Our investigations re-
veal several interesting findings: (1) Closed-source models like GPT-4 and Gemini generally
show much stronger sequential reasoning ability, significantly outperforming open-source
LLMs. (2) Naively providing in-context examples may inadvertently hurt few-shot perfor-
mance in an interactive environment due to over-fitting to examples. (3) Instead of using
optimal steps from another test case as the in-context example, a very limited number of
predecessor steps in the current test case following the optimal policy can substantially
boost small models’ performance. (4) Weak models’ under-performance is mainly due to
the incapability to start well rather than maintain performance. (5) The scaling correlation
between performance and model size is not always significant, sometimes even showcasing an
inverse trend. We hope our study can catalyze future work on advancing the understanding
and enhancement of LLMs’ capabilities in sequential reasoning.

1 Introduction

Recent advancements in Large Language Models (LLMs) have led to impressive strides in reasoning across
a diverse array of linguistic tasks, as evidenced by a growing body of research (Wei et al., 2022; Wang
et al., 2022; Brown et al., 2020; OpenAI, 2023). The reasoning capabilities of these models have typically
been assessed through benchmarks focusing on arithmetic reasoning (Cobbe et al., 2021; Ling et al., 2017),
symbolic inference (Suzgun et al., 2022), knowledge (Hendrycks et al., 2020), and science understanding
(Hendrycks et al., 2021). These benchmarks require LLMs to engage in multi-step reasoning, leveraging
both the context provided by the question and their internally learned world knowledge (Wei et al., 2022).

Nevertheless, a critical limitation of these existing benchmarks is their reliance on one-off interactions,
predominantly in the form of multiple-choice questions or single-response queries. While these metrics offer
valuable insights into the LLMs’ reasoning abilities, they fall short in evaluating other crucial aspects of
intelligence. Specifically, they do not assess the models’ capacity for procedural adherence, active memory
maintenance, and ability to think ahead, which are elements vital for more complex, sequential reasoning
tasks.

In this work, we aim to bridge this evaluation gap in benchmarks, thereby offering a better understanding
and measuring the cognitive capabilities of LLMs in mimicking human-like reasoning processes. To this
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end, we hereby develop an interactive Q&A benchmark, referred to as Algorithmic-QA benchmark (AQA-
Bench), specifically designed to quantitatively assess LLMs’ proficiency in executing predefined algorithmic
procedures. These procedures necessitate basic reasoning over observed data, coupled with the updating of
an internal or external state that represents a specific data structure. One such example is solving a maze
problem using the depth-first search algorithm — In each interactive instance, the model is provided with
only the node ID it occupies and the edges connected to that node, representing the observed data; based
on this current information and its visiting history, the model must then determine which edge to follow to
progress to the subsequent node. Additionally, sequential reasoning, which is what AQA-Bench is targeting,
also requires models to think ahead of the current time, considering possible environmental feedback that
may receive in future steps. Take binary search as an Example. Although the probability of the targeting
being any number in the given range is the same, the most optimal policy is still choosing the middle one as
the current guess, as this policy can best reduce search space in the future. Through this interactive design,
our AQA-Bench can effectively gauge the LLMs’ capabilities in algorithmic reasoning.

You are required to guess the 
random number which I have just 

picked between 0 and 20

Model

10

5

8

7

Picked random number: 7

Start

The true number is smaller than 10

The true number is bigger than 5

The true number is smaller than 8

Right answer!
 The true number is equal to 7

Instruction

Evaluator

Figure 1: Illustration of AQA-Bench’s evaluation pro-
cess. After receiving instruction regarding the task
goal, the tested model will interact with the evaluator
in the form of a Q&A conversation. Metrics measuring
the model’s capability of achieving the task goal and
following the intended algorithm are calculated based
on the process. Note this is not the actual prompt we
fed the model.

We empirically build AQA-Bench utilizing three al-
gorithms: (1) Binary search, wherein the model’s
task is to deduce a number within a specified range,
ideally employing the binary search algorithm. (2)
Depth-first search (DFS), where the model navigates
a graph to map all nodes and edges. (3) Breadth-
first search (BFS), similar to DFS, but with an ex-
plicit requirement for the model to apply the BFS
algorithm instead. The corresponding evaluations
reveal 5 interesting findings: 1) The closed-source
models like GPT-4 and Gemini strongly dominate
all open-source LLMs on sequential reasoning. 2)
Naively providing interactive examples may inad-
vertently hurt few-shot performance, probably due
to overfitting with in-context learning. This trend
is observed even with the advanced GPT-4 and
Gemini-Pro in certain AQA-Bench environments.
3) Given a few predecessor steps under the opti-
mal policy, the performance of small models can
be significantly improved, sometimes even compa-
rable to large models. 4) The reason that small
models underperform is that they struggle to start
well but are not incapable of maintaining the right
behaviors. 5) The scaling correlation between per-
formance and model size is not always significant,
sometimes even showcasing an inverse trend. This
contradicts common assertions in LLM development
and points to an oversight of sequential reasoning ca-
pabilities and overfitting during in-context learning
in current LLM research. We hope our AQA-Bench can serve as a useful benchmark for future research
focused on evaluating and enhancing the sequential reasoning abilities of LLMs.

2 Evaluation Environments

2.1 Motivation behind Environment Design

AQA-Bench focuses on assessing LLMs’ sequential reasoning ability with algorithmic environments mainly
due to the following reasons.

Scalable dataset. Massive data for training and testing can be dynamically generated without human effort.
It should be noted that only environment settings such as nodes and edges are pre-generated. Environments’
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responses to the models’ interactions are not pre-defined but generated dynamically according to the models’
behavior.

Controllable complexity. The complexity of environments can be controlled by just a few hyper-
parameters. Since LLMs are still evolving at a very rapid pace, traditional benchmarks may have a short
life before re-development is required, while our AQA-Bench can still evaluate increasingly more powerful
LLMs due to the flexible complexity of environments.

Known optimal policy Since the optimal policy is already known, it is much easier for us to determine
whether the test model is performing the desired algorithm. This also enables teacher-guiding evaluation
mode, which will be introduced in Sec. 3.3.

Additionaly, this is crucial to keep the environments initially opaque to the tested model so that it can be
forced to actively interact with the environments to gain the information necessary for performing the task
via multi-time interactions. Otherwise, the task can be solved in a mega single-time generation with perhaps
explicit or implicit chain-of-thought (Wei et al., 2022), and there will be no need for sequential reasoning
ability.

2.2 Base Environment

We hereby introduce the design of three basic interactive environments. In each environment, instructions
about the objective are initially fed to the model via the system prompt, while the information about the
current environment is only revealed to the model following its response. Our design makes sure that the
key information for making decisions can only be gained by interacting with the environment so that the
model can be evaluated based on how it can plan and execute the optimal strategy. Thus, the tested model
is forced to perform sequential planning by actively exploring the environment and adjusting its response
according to feedback alternately.

Base Env 1: GuessNum. The objective of the GuessNum environment is for the model to accurately
predict a number predetermined by the evaluator. During each interaction, the model interacts with the
environment by guess a number and receives feedback indicating whether its guessed number is higher or
lower than the predetermined number. The optimal strategy in this scenario involves the model implementing
a binary search. Consequently, the performance in this environment serves as an indicator of the model’s
understanding of the binary search algorithm.

Base Env 2: DFS. In this environment, the model is tasked with navigating a graph using the DFS
algorithm. Initially, the model is presented with information about its current node and the edges connected
to that node. The model interacts with the environments by decide which edge it will follow, and then the
environment will update the model with the information of the newly reached node and its associated edges.
The model’s performance is evaluated based on its adherence to the DFS policy. Critical to the evaluation
is the ability to comprehend and implement the concept of a first-in-last-out stack, along with maintaining
a memory of previously visited nodes. The process of the DFS algorithm is described in the instructions to
reduce difficulty.

Base Env 3: BFS. This environment closely mirrors the DFS environment in structure but diverges in
its core algorithmic requirement, instructing the model to employ the BFS algorithm for graph navigation.
This key distinction enables the BFS environment to specifically assess the model’s comprehension of the
first-in-first-out queue principle, a fundamental aspect of BFS.

2.3 Embodied Environment

We additionally design embodied environments where the information about each base environment is re-
placed with more real-life background descriptions. These embodied environments can then be used to assess
if the model can perform sequential reasoning with irrelevant information, and if the model can abstract
algorithmic problems from real-life situations and find the optimal algorithms.
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Embodied Env 1: Coin (GuessNum). The tested model is required to play a hero encountering a witch
guarding a chest of gold coins in a hidden temple. To claim the prize, the model needs to guess the number
of gold coins with limited chances.

Embodied Env 2: CaveDFS (DFS). Rather than navigating a graph, the model is required to play as
an explorer to visit all the caves in an underground cave system in as fewest steps possible. Unlike the DFS
environment, the model is not explicitly required to use any algorithm but the objective naturally demands
the DFS algorithm.

Embodied Env 3: CaveBFS (BFS). Similar to CaveDFS environment, this environment requests the
tested model to traverse an underground cave system as well but as a group. The group can split into smaller
groups to visit adjacent caves without backtracing. This environment doesn’t explicitly call for a specific
algorithm as well.

3 Evaluation

3.1 Metrics

To holistically assess performance in each environment, we design two specific metrics. The first is the goal
metric, which evaluates how close is the model’s final output to the ground truth; the second is the policy
metric, which measures the efficiency of the model’s policy. For the goal metric, we adopt an error-based
approach where lower scores are preferable. This design choice enables the goal metric at each intermediate
step can be accumulated as the policy metric to measure how fast the model’s output converges to the
final objective. Note that we typically prioritize the goal metric over the policy metric when comparing the
performance of two models. This hierarchy in metric evaluation is crucial due to the observed tendency of
lower-performing models to prematurely exit the evaluation process. Such early termination is typically a
result of generating invalid responses, therefore leading to a lower goal metric score but sometimes a higher
policy metric score.

GuessNum (Coin) requires the model to accurately guess the number specified by the evaluator. For the
goal metric in this environment, we use the minimal error of the responses from the model to the target
number, which is defined as

Errmin = max
i

|gi − ĝ|
H − L + 1 , (1)

where gi is the guess model produced in the i-th step of interaction, ĝ is the target number, and H and L
denote the upper and lower bound of the guessing range. As for the policy metric, we accumulate the error
between each guess and the target number, and define the metric as:

Errsum =
∑

i

|gi − ĝ|
H − L + 1 . (2)

Given the similar objectives of the DFS (CaveDFS) and BFS (CaveBFS) environments, we employ a
consistent metric to evaluate performance in both. The primary goal in these environments is to achieve
full graph traversal. Accordingly, we define the goal metric, denoted as Gmin, to measure the extent of node
coverage in relation to the total number of nodes in the graph. Let M represent the total number of nodes
in the graph, and ⟨a⟩i denote the set of nodes visited by the model up to the i-th interaction step. The goal
metric is then formulated as follows:

Gmin = 1 − max
i

|⟨a⟩i|
M

= 1 − |⟨a⟩−1|
M

, (3)

where |⟨a⟩−1| is the number of unique nodes visited by the model by the end of the interaction.

Similarly, we define policy metric, Gsum, as the cumulative gap in graph coverage throughout the interaction:

Gsum =
∑

i

1 − |⟨a⟩i|
M

.
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System: You are required to guess a number between 0 and 8.

Q: Start

A: 4

Q: The true number is smaller than 4.

A: 2

Q: The true number is bigger than 2.

A: 3

Q: Right answer. The true number is equal to 3.

A: 

Q: Start

A: 4

Q: The true number is bigger than 4.

A: 6

Q: Right answer. The true number is equal to 6.

A: 

Q: Start
A: 4
Q: The true number is bigger than 4.
A: ...

ICE = 2

Actual
Interaction

(a) Interactions with in-context examples (ICE=2)

You are required to guess a number between 0 and 1024
Q: Start
A: 5
Q: The true number is bigger than 5
A: 20
Q: The true number is bigger than 20
A: ...

(b) Interactions w/o teacher-guiding

Q: Start
A: 5
Q: The true number is smaller than 4.
A: 1
Q: The true number is bigger than 2.
A: …

T: 4

T: 2

T: ...

Q: Start
A: 5

System: You are required to guess a number between 0 and 8.


(c) Interactions w/ teacher-guiding

Figure 2: (a) Evaluation with In-context example. The interactions of the optimal policy and the environ-
ment on the other test cases are used as examples, which can provide additional contextual information about
the algorithm for in-context learning. (b,c) When teacher-guiding is enabled, the responses are replaced
with the optimal ones to ensure no error will accumulate.

Furthermore, we introduce the ratio between the step number Kfollow that the model follows the algorithm
and the total number of steps the model takes Ktotal to access the efficiency of models’ policy:

ACC = Kfollow

Ktotal

3.2 In-context Examples

Wei et al. (2022) argue LLM’s strong reasoning abilities are, in part, attributable to their in-context learning
abilities. Built upon this insight, we also incorporate it into the design of our benchmark. In Fig. 2(a),
we outline our protocol for testing in-context examples within our benchmark. Specifically, it involves
integrating a series of interaction examples between the optimal teacher model and the environment into the
model’s context. These in-context examples are expected to serve as a foundational reference, aiding the
model in comprehending the expected interaction dynamics and decision-making processes in each specific
environment.

3.3 Teacher Guiding

Directly evaluating the model on the interaction will lead to error accumulation. Such errors can result
in catastrophic failure, even with strong models, due to the dependency of each step on its predecessors.
However, it is also interesting to check whether correct interaction steps may also improve models’ generation.
To investigate this issue, we implement a strategy termed Teacher-Guiding. This approach involves using
the intented algorithm as the optimal policy, tailored for each environment, which acts as a teacher model.
The teacher model amends the outputs of the subject model, ensuring that any incorrect decision made at an
intermediate step does not adversely impact subsequent interactions. The implementation of this procedure
is illustrated in Fig. 2(c)1.

1Note that Figs. 2(a) and 2(c) are only for demonstration, the actual prompt fed to the model is in the Appendix B.
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We specifically designed a metric named Per-step ACC for this mode, defined as

PSACCk = Nk

N̂k

(4)

where Nk is the number of test cases in which the model follows the algorithm at the k-th step, and N̂k is
the number of test cases of which the optimal policy takes at least k steps. Thus, PSACCk can be roughly
viewed as the probability of the model following the algorithm at the k-th step given that the algorithm is
followed in all the predecessor steps.

The averaged PSACC across all Kmax steps in the optimal policy is used to evaluate models’ overall self-
guiding ability:

PSACCavg =
∑

k PSACCk

Kmax
. (5)

It should be noted that one major difference between teacher-guiding and in-context examples described in
Sec. 3.2 is that the reference is from the current test case when evaluating with teacher-guiding while with
in-context examples the reference is from other test cases.

4 Experiments

We evaluate models on all the environments. For the GuessNum and Coin, we set the target number between
32 and 32800, For the DFS and CaveDFS, we set the number of graph nodes to 8. For the BFS and CaveBFS,
we set the number of graph nodes to 15. The worst-case runtime of the optimal policy for all environments
is about 15 steps so we run evaluation with the maximum number of interactions being 20. In addition to
this EASY mode, we also develop a HARD mode with a target range of 32 − 3.3 ∗ 107 for GuessNum and
Coin, 13 nodes for DFS and CaveDFS, 25 nodes for BFS and CaveBFS. The optimal worst-case runtime
is about 25 steps and the maximum number of interaction steps is 30. Results under the EASY mode are
reported by default.

For easier comparison, we divided models into 4 categories according to the number of parameters:

• Small models with < 10B parameters: Llama2-7B-chat (Touvron et al., 2023), Llama3-8B-
Instruct (Team, 2024), Vicuna-7B-v1.5-16K (Chiang et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), DeepSeek-LLM-7B (Bi et al., 2024) and DeepSeek-MoE-16B (Dai et al., 2024).

• Medium models with ≥ 10B and < 50B parameters: Llama2-13B-chat, Vicuna-13B-v1.5-16K and
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024).

• Large models with ≥ 50B parameters: Llama2-70B-chat and DeepSeek-LLM-67B.

• Closed-source models: GPT-3.5-Turbo, GPT-4-Turbo (OpenAI, 2023), and Gemini-Pro (Team et al.,
2023).

For mixture-of-experts models (e.g., DeepSeek-MoE-16B, Mixtral-8x7B-Instruct-v0.1), we only consider the
number of activated parameters during inference. All evaluations are run with zero-shot and without teacher-
guiding by default.

4.1 Re-productivity and Variance

Although test cases in our AQA-Bench can be generated dynamically, we pre-generated a test set with 400
test cases for each base environment under the EASY mode for simpler re-production. The final scores are
averaged among test cases.
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Table 1: Inter-dataset variance of Llama2-7B-chat and Vicuna-7B-v1.5-16K under EASY mode.
Results are summarized from evaluations on 4 independently generated test sets. All tests are run with
ICE=0 and no teacher-guiding.

Base Environments
GuessNum DFS BFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Llama2-7B-chat

Avg 0.265 7.895 0.000 0.598 3.588 0.235 0.605 9.531 0.002
Marginmin 0.009 0.185 0.000 0.017 0.115 0.016 0.008 0.274 0.001
Marginmax 0.006 0.168 0.000 0.020 0.138 0.010 0.007 0.269 0.001

Vicuna-7B-v1.5-16K

Avg 0.476 9.606 0.000 0.644 5.769 0.151 0.849 10.067 0.029
Marginmin 0.017 0.366 0.000 0.009 0.196 0.007 0.010 0.640 0.001
Marginmax 0.016 0.341 0.000 0.006 0.181 0.012 0.006 0.324 0.001

Embodied Environments
Coin CaveDFS CaveBFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Llama2-7B-chat

Avg 0.079 5.256 0.000 0.488 4.633 0.340 0.757 5.405 0.046
Marginmin 0.005 0.238 0.000 0.008 0.060 0.011 0.001 0.206 0.002
Marginmax 0.008 0.269 0.000 0.011 0.021 0.010 0.001 0.255 0.001

Vicuna-7B-v1.5-16K

Avg 1.000 1.000 0.000 0.538 7.684 0.208 0.717 13.914 0.069
Marginmin 0.000 0.000 0.000 0.015 0.389 0.007 0.007 0.403 0.004
Marginmax 0.000 0.000 0.000 0.013 0.361 0.006 0.009 0.473 0.003

4.1.1 Variance of Test Sets

Given that GuessNum, DFS and BFS each can have at most 32768, 1.18 ∗ 106, 9.17 ∗ 1016 test cases under
the EASY mode, the quantity of our pre-generated test cases is somewhat modest. To verify that evaluation
results with this number of test cases are valid and representative of the models’ performance in each
environment, we generated another 3 equally sized test sets and evaluated Llama2-7B-Chat and Vicuna-7B-
v1.5-16K on all 4 test sets. To quantify the variance of results, we define that

Avg =
∑

{mi}
|{mi}|

(6)

Marginmin = Avg − min({mi}) (7)
Marginmax = max({mi}) − Avg, (8)

where min({mi}) is a set of the same metric from different evaluation runs. Marginmin and Marginmax can
be viewed as a measurement for variance of evaluation results.

As shown in Tab. 1, Marginmin and Marginmax are relatively low compared to metric difference across
models, which shows that evaluation results drawn from our pre-generated test set (with only 400 cases)
can sufficiently represent the tested models’ performance in environments with this level of complexity.
Therefore, we only report results from the first test set rather than from all four test sets in the following
context to save computation. For the HARD mode, we pre-generated 1500 test cases for each environment
of which the variance study can be found in the supplementary Tabs. 7 and 8.

4.1.2 Variance of GPT models

Another factor that may affect our experimental conclusion is the randomness of the model itself. For
open-source models and Gemini-Pro, we disable the random sampling in all the experiments. But for GPT
models, as they can only be accessed via OpenAI API, we cannot turn off such model randomness. Here
we evaluated GPT models on the same dataset for 4 times to investigate the variance of the GPT models’
performance measurement.

It is shown in Tab. 2 that Marginmin and Marginmax are a lot smaller than metric difference between GPT-
3.5-Turbo and GPT-4-Turbo. This demonstrates that 400 test cases are sufficient to alleviate the impact
of GPTs’ randomness on the evaluation results. Thus, the experimental results of GPTs we report in the
following context are only from a single-time evaluation instead of summary of four different evaluations.

4.2 Main Results

Base environments. We start by investigating models’ algorithmic sequential reasoning abilities by running
evaluations in three base environments: GuessNum, DFS, and BFS. These evaluations were conducted
naively, without the incorporation of in-context examples or teacher guidance. As shown in Tab. 3, closed-
source models like GPTs and Gemini generally exhibit much superior performance compared to all tested
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Table 2: Intra-dataset variance of GPT-3.5-Turbo and GPT-4-Turbo under EASY mode. These
results are summarized from results from 4 different test runs on the same test set. All tests are run with
ICE=0 and no teacher-guiding.

Base Environments
GuessNum DFS BFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

GPT-3.5-Turbo

Avg 0.000 0.513 0.003 0.348 5.142 0.618 0.116 6.773 0.517
Marginmin 0.000 0.003 0.002 0.006 0.078 0.006 0.002 0.096 0.004
Marginmax 0.000 0.004 0.003 0.003 0.064 0.006 0.002 0.141 0.008

GPT-4-Turbo

Avg 0.000 0.496 0.493 0.025 3.935 0.935 0.002 6.087 0.383
Marginmin 0.000 0.000 0.033 0.004 0.025 0.003 0.000 0.004 0.016
Marginmax 0.000 0.000 0.012 0.003 0.016 0.004 0.000 0.005 0.018

Embodied Environments
Coin CaveDFS CaveBFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

GPT-3.5-Turbo

Avg 0.001 1.013 0.000 0.199 4.769 0.669 0.272 9.595 0.100
Marginmin 0.001 0.017 -0.000 0.001 0.085 0.010 0.007 0.106 0.002
Marginmax 0.001 0.008 0.000 0.002 0.103 0.010 0.005 0.059 0.003

GPT-4-Turbo

Avg 0.000 0.496 0.506 0.237 3.503 0.755 0.118 8.071 0.161
Marginmin 0.000 0.000 0.007 0.007 0.069 0.011 0.003 0.052 0.002
Marginmax 0.000 0.000 0.007 0.008 0.117 0.008 0.007 0.059 0.002

Table 3: The main evaluation results with all environments. For models with strong goal metrics
(e.g., Errmin, Gmin) indicting weak performance, goal metrics are more informative than policy metrics (e.g.,
Errsum, Gsum, ACC).

Base Envs under EASY Mode
Model GuessNum DFS BFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B

Llama2-7B-chat 0.26 7.71 0.00 0.58 3.73 0.24 0.60 9.80 0.00
Llama3-8B-Instruct 0.01 1.14 0.00 0.21 4.66 0.51 0.02 6.68 0.23
Vicuna-7B-v1.5-16K 0.46 9.24 0.00 0.65 5.79 0.15 0.84 10.29 0.03
Mistral-7B-Instruct-v02 0.06 2.02 0.00 0.49 2.72 0.61 0.24 8.72 0.13
DeepSeek-LLM-7B 0.43 9.24 0.00 0.34 6.59 0.36 0.52 11.20 0.06
DeepSeek-MoE-16B 1.00 1.00 0.00 0.63 4.78 0.07 0.88 8.18 0.02

10B ≤ Medium < 50B

Llama2-13B-chat 0.01 3.24 0.00 0.34 5.98 0.41 0.65 10.59 0.05
Vicuna-13B-v1.5-16K 0.39 8.31 0.00 0.66 13.23 0.12 0.81 15.61 0.05
Mixtral-8x7B-Instruct-v01 0.00 0.69 0.00 0.47 3.32 0.57 0.14 7.36 0.21

Large ≥ 50B

Llama2-70B-chat 0.11 2.64 0.00 0.33 4.39 0.44 0.28 10.14 0.06
DeepSeek-LLM-67B 0.12 5.62 0.00 0.40 4.34 0.42 0.45 11.59 0.09

Closed-source

GPT-3.5-Turbo 0.00 0.51 0.01 0.35 5.21 0.61 0.11 6.68 0.52
GPT-4-Turbo 0.00 0.50 0.46 0.03 3.93 0.94 0.00 6.08 0.38
Gemini-Pro 0.00 0.63 0.00 0.25 3.71 0.76 0.06 7.39 0.17

Embodied Envs under EASY Mode
Model Coin CaveDFS CaveBFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B

Llama2-7B-chat 0.07 5.02 0.00 0.50 4.65 0.33 0.76 5.66 0.05
Llama3-8B-Instruct 0.07 5.70 0.00 0.17 5.52 0.40 0.10 8.22 0.16
Vicuna-7B-v1.5-16K 1.00 1.00 0.00 0.54 8.04 0.21 0.72 14.39 0.07
Mistral-7B-Instruct-v02 0.07 3.59 0.00 0.49 4.87 0.48 0.27 9.86 0.11
DeepSeek-LLM-7B 0.39 8.82 0.00 0.58 9.08 0.16 0.77 10.67 0.04
DeepSeek-MoE-16B 1.00 1.00 0.00 0.71 2.99 0.11 0.89 2.81 0.01

10B ≤ Medium < 50B

Llama2-13B-chat 0.19 7.93 0.00 0.38 7.48 0.36 0.55 12.72 0.09
Vicuna-13B-v1.5-16K 1.00 1.00 0.00 0.56 8.18 0.21 0.64 11.28 0.06
Mixtral-8x7B-Instruct-v01 0.00 0.78 0.00 0.32 4.61 0.45 0.15 8.48 0.17

Large ≥ 50B

Llama2-70B-chat 0.00 0.51 0.00 0.35 4.53 0.44 0.30 10.51 0.03
DeepSeek-LLM-67B 0.36 7.83 0.00 0.28 5.24 0.57 0.38 10.89 0.08

Closed-source

GPT-3.5-Turbo 0.00 1.00 0.00 0.20 4.87 0.66 0.27 9.49 0.10
GPT-4-Turbo 0.00 0.50 0.50 0.23 3.62 0.74 0.12 8.07 0.16
Gemini-Pro 0.00 0.60 0.00 0.22 5.11 0.70 0.10 7.97 0.16

Base Envs under HARD Mode
Model GuessNum DFS BFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B

Llama2-7B-chat 0.49 14.77 0.00 0.74 7.24 0.19 0.76 16.34 0.01
Llama3-8B-Instruct 0.07 6.64 0.00 0.41 7.90 0.43 0.07 12.59 0.13
Vicuna-7B-v1.5-16K 0.24 14.98 0.00 0.78 10.97 0.10 0.89 17.16 0.02
Mistral-7B-Instruct-v02 0.06 3.43 0.00 0.65 4.11 0.61 0.46 16.29 0.08
DeepSeek-LLM-7B 0.49 6.42 0.00 0.61 16.07 0.18 0.71 19.62 0.04
DeepSeek-MoE-16B 1.00 1.00 0.00 0.78 8.96 0.03 0.92 11.38 0.01

10B ≤ Medium < 50B

Llama2-13B-chat 0.49 14.77 0.00 0.59 11.21 0.25 0.76 17.27 0.03
Vicuna-13B-v1.5-16K 0.49 14.77 0.00 0.80 20.45 0.07 0.83 24.92 0.03
Mixtral-8x7B-Instruct-v01 0.00 1.46 0.00 0.64 4.69 0.58 0.32 13.49 0.13

Large ≥ 50B

Llama2-70B-chat 0.49 14.77 0.00 0.48 9.01 0.35 0.43 18.65 0.04
DeepSeek-LLM-67B 0.00 0.70 0.00 0.51 9.48 0.28 0.67 21.98 0.05

Closed-source

GPT-3.5-Turbo 0.00 0.59 0.00 0.55 8.76 0.51 0.27 13.30 0.29
GPT-4-Turbo 0.00 0.52 0.04 0.08 7.71 0.87 0.01 11.14 0.26
Gemini-Pro 0.00 0.81 0.00 0.33 7.36 0.69 0.12 13.59 0.09

Embodied Envs under HARD Mode
Model Coin CaveDFS CaveBFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B

Llama2-7B-chat 0.49 14.77 0.00 0.68 9.78 0.19 0.83 12.04 0.04
Llama3-8B-Instruct 0.07 10.01 0.00 0.29 10.92 0.29 0.22 15.22 0.09
Vicuna-7B-v1.5-16K 0.49 14.77 0.00 0.70 15.89 0.13 0.83 24.45 0.05
Mistral-7B-Instruct-v02 0.08 5.30 0.00 0.61 6.96 0.50 0.49 18.45 0.07
DeepSeek-LLM-7B 0.49 1.98 0.00 0.74 16.02 0.11 0.86 17.20 0.03
DeepSeek-MOE-16B 1.00 1.00 0.00 0.86 2.74 0.05 0.94 2.65 0.01

10B ≤ Medium < 50B

Llama2-13B-chat 0.08 10.73 0.00 0.56 13.56 0.28 0.68 22.20 0.06
Vicuna-13B-v1.5-16K 1.00 1.00 0.00 0.65 14.78 0.17 0.71 20.33 0.05
Mixtral-8x7B-Instruct-v01 0.07 2.22 0.00 0.50 8.21 0.38 0.30 15.46 0.09

Large ≥ 50B

Llama2-70B-chat 0.08 13.72 0.00 0.49 9.35 0.33 0.46 18.94 0.02
DeepSeek-LLM-67B 0.02 2.15 0.00 0.39 10.75 0.40 0.56 20.05 0.06

Closed-source

GPT-3.5-Turbo 0.37 4.81 0.00 0.33 9.98 0.56 0.45 17.51 0.07
GPT-4-Turbo 0.00 0.52 0.04 0.33 7.04 0.67 0.19 14.67 0.09
Gemini-Pro 0.00 1.08 0.00 0.35 10.00 0.56 0.23 15.28 0.09

open-source models; The only exception is the DFS environment, where open-source models outperform
GPT-3.5-Turbo, but still not as good as GPT-4-Turbo and Gemini-Pro. It is particularly worth mentioning
that GPT-4-Turbo almost achieves the task goal in all test cases with a substantially low goal metric. These
findings reveal a significant gap in sequential reasoning abilities between the open-source models and the
closed-sourced models.

Next, among open-source models, one interesting observation is that more recently released models (e.g.,
Mistral, Deepseek-LLM) are arguably better than relatively older ones (e.g., Llama, Vicuna). For example,
Mixtral-8x7B-Instruct-v0.1, which is claimed to be better than Llama2-70B-chat, does excel Llama2-70B-chat
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Figure 3: Goal metrics from all 6 environments. Bars that are fully filled represent results from base envi-
ronments (e.g., GuessNum, DFS, BFS) while bars filled with diagonal lines are from embodied environments
(e.g., Coin, CaveDFS, CaveBFS). Models in the same family are represented with the same hue, and larger
models correspond to darker colors. Results from GPTs and Gemini-Pro are not shown in this figure. It
should be noted that these metrics are the lower the better.

Table 4: The evaluation results (ICE=7) in 3 base environments. For models with strong goal metrics
(e.g., Errmin, Gmin) indicting weak performance, goal metrics are more informative than policy metrics (e.g.,
Errsum, Gsum, ACC).

Model GuessNum DFS BFS
Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B
Llama2-7B-chat 0.08 (-0.18) 2.32 (-5.39) 0.10 (+0.10) 0.39 (-0.19) 9.04 (+5.31) 0.23 (-0.01) 0.65 (+0.05) 8.28 (-1.52) 0.14 (+0.14)
Llama3-8B-Instruct 0.02 (+0.01) 1.31 (+0.17) 0.19 (+0.19) 0.04 (-0.17) 5.38 (+0.72) 0.48 (-0.03) 0.37 (+0.35) 9.89 (+3.21) 0.12 (-0.11)
Vicuna-7B-v1.5-16K 0.02 (-0.44) 1.27 (-7.97) 0.22 (+0.22) 0.37 (-0.28) 8.61 (+2.82) 0.27 (+0.12) 0.68 (-0.16) 13.10 (+2.81) 0.15 (+0.12)
Mistral-7B-Instruct-v02 0.01 (-0.05) 1.07 (-0.95) 0.22 (+0.22) 0.14 (-0.35) 5.74 (+3.02) 0.51 (-0.10) 0.39 (+0.15) 9.87 (+1.15) 0.17 (+0.04)
DeepSeek-LLM-7B 0.04 (-0.39) 1.50 (-7.74) 0.18 (+0.18) 0.16 (-0.18) 6.93 (+0.34) 0.17 (-0.19) 0.61 (+0.09) 11.43 (+0.23) 0.18 (+0.12)
DeepSeek-MoE-16B 0.02 (-0.98) 1.51 (+0.51) 0.21 (+0.21) 0.14 (-0.49) 6.75 (+1.97) 0.30 (+0.23) 0.86 (-0.02) 2.60 (-5.58) 0.10 (+0.08)

10B ≤ Medium < 50B
Llama2-13B-chat 0.06 (+0.05) 1.89 (-1.35) 0.13 (+0.13) 0.50 (+0.16) 10.75 (+4.77) 0.18 (-0.23) 0.57 (-0.08) 11.48 (+0.89) 0.09 (+0.04)
Vicuna-13B-v1.5-16K 0.12 (-0.27) 5.42 (-2.89) 0.12 (+0.12) 0.16 (-0.50) 5.24 (-7.99) 0.63 (+0.51) 0.23 (-0.58) 8.14 (-7.47) 0.27 (+0.22)
Mixtral-8x7B-Instruct-v01 0.00 (+0.00) 0.56 (-0.13) 0.25 (+0.25) 0.20 (-0.27) 6.46 (+3.14) 0.44 (-0.13) 0.48 (+0.34) 11.34 (+3.98) 0.21 (+0.00)

Large ≥ 50B
Llama2-70B-chat 0.07 (-0.04) 1.96 (-0.68) 0.13 (+0.13) 0.14 (-0.19) 5.88 (+1.49) 0.46 (+0.02) 0.46 (+0.18) 9.46 (-0.68) 0.11 (+0.05)
DeepSeek-LLM-67B 0.00 (-0.12) 0.58 (-5.04) 0.25 (+0.25) 0.18 (-0.22) 6.79 (+2.45) 0.33 (-0.09) 0.36 (-0.09) 10.40 (-1.19) 0.18 (+0.09)

Closed-source
GPT-3.5-Turbo 0.00 (-0.00) 0.52 (+0.01) 0.01 (+0.00) 0.36 (+0.01) 5.30 (+0.09) 0.62 (+0.01) 0.12 (+0.01) 6.63 (-0.05) 0.51 (-0.01)
GPT-4-Turbo 0.00 (-0.00) 0.50 (+0.00) 0.47 (+0.01) 0.02 (-0.01) 3.93 (+0.00) 0.94 (+0.00) 0.00 (+0.00) 6.08 (-0.00) 0.40 (+0.02)
Gemini-Pro 0.00 (+0.00) 0.51 (-0.12) 0.43 (+0.43) 0.02 (-0.23) 4.57 (+0.86) 0.68 (-0.08) 0.03 (-0.03) 6.59 (-0.80) 0.36 (+0.19)

in GuessNum and BFS but falls short in DFS. As for the DeepSeek-MoE-16B model, which outperforms
Llama2-7B-chat on conventional language benchmarks (Bi et al., 2024), underperforms Llama2-7B-chat
across all three tested environments.

Lastly, in the more challenging HARD mode, GPT-4-Turbo continues to demonstrate its superior perfor-
mance as shown in Tab. 3, significantly outperforming all other models in terms of capabilities. It is also
interesting to note that Mixtral-8x7B-Instruct-v0.1, while still lagging behind Llama2-70B-chat in the DFS
environment, surpassed it by an even much larger margin in both the GuessNum and Coin environments.

Embodied environments. The findings from the embodied environments, as detailed in Tab. 3, largely
mirror the conclusions drawn from the base environments. Moreover, as shown in Fig. 3, we interestingly
note that models tend to perform worse in embodied environments. This performance drop is expected,
considering these embodied environments require models to implicitly abstract from the environments and
decide the optimal algorithm to execute.
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Table 5: The evaluation results (ICE=7) in 3 embodied environments. For models with strong goal metrics
(e.g., Errmin, Gmin) indicting weak performance, goal metrics are more informative than policy metrics (e.g.,
Errsum, Gsum, ACC).

Model Coin CaveDFS CaveBFS

Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Small < 10B

Llama2-7B-chat 0.11 (+0.04) 2.70 (-2.32) 0.08 (+0.08) 0.38 (-0.12) 8.79 (+4.14) 0.26 (-0.07) 0.58 (-0.18) 11.27 (+5.61) 0.11 (+0.06)
Llama3-8B-Instruct 0.02 (-0.05) 1.22 (-4.48) 0.19 (+0.19) 0.04 (-0.13) 5.37 (-0.15) 0.49 (+0.09) 0.42 (+0.32) 10.12 (+1.90) 0.10 (-0.06)
Vicuna-7B-v1.5-16K 0.02 (-0.98) 1.13 (+0.13) 0.22 (+0.22) 0.39 (-0.15) 8.88 (+0.84) 0.25 (+0.04) 0.68 (-0.04) 13.48 (-0.91) 0.14 (+0.07)
Mistral-7B-Instruct-v02 0.01 (-0.06) 1.15 (-2.44) 0.22 (+0.22) 0.18 (-0.31) 6.28 (+1.41) 0.45 (-0.03) 0.48 (+0.21) 10.24 (+0.38) 0.15 (+0.04)
DeepSeek-llm-7B 0.04 (-0.35) 1.53 (-7.29) 0.17 (+0.17) 0.19 (-0.39) 6.80 (-2.28) 0.33 (+0.17) 0.62 (-0.15) 12.06 (+1.39) 0.17 (+0.13)
DeepSeek-moe-16B 0.02 (-0.98) 1.61 (+0.61) 0.21 (+0.21) 0.13 (-0.58) 6.71 (+3.72) 0.34 (+0.23) 0.87 (-0.02) 2.71 (-0.10) 0.08 (+0.07)

10B ≤ Medium < 50B

Llama2-13B-chat 0.05 (-0.14) 1.98 (-5.95) 0.13 (+0.13) 0.48 (+0.10) 10.50 (+3.02) 0.19 (-0.17) 0.56 (+0.01) 11.65 (-1.07) 0.11 (+0.02)
Vicuna-13B-v1.5-16K 0.13 (-0.87) 5.48 (+4.48) 0.12 (+0.12) 0.15 (-0.41) 5.50 (-2.68) 0.59 (+0.38) 0.27 (-0.37) 8.54 (-2.74) 0.27 (+0.21)
Mixtral-8x7B-Instruct-v01 0.00 (-0.00) 0.64 (-0.14) 0.23 (+0.23) 0.17 (-0.15) 6.27 (+1.66) 0.43 (-0.02) 0.39 (+0.24) 10.40 (+1.92) 0.21 (+0.04)

Large ≥ 50B

Llama2-70B-chat 0.09 (+0.09) 2.37 (+1.86) 0.12 (+0.12) 0.20 (-0.15) 6.66 (+2.13) 0.42 (-0.02) 0.60 (+0.30) 8.39 (-2.12) 0.08 (+0.05)
DeepSeek-llm-67B 0.00 (-0.36) 0.57 (-7.26) 0.24 (+0.24) 0.18 (-0.10) 6.67 (+1.43) 0.37 (-0.20) 0.39 (+0.01) 10.54 (-0.35) 0.21 (+0.13)

Closed-source

GPT-3.5-Turbo 0.02 (+0.02) 1.02 (+0.02) 0.00 (+0.00) 0.19 (-0.01) 4.83 (-0.04) 0.66 (+0.00) 0.27 (-0.00) 9.56 (+0.07) 0.10 (+0.00)
GPT-4-Turbo 0.00 (-0.00) 0.50 (-0.00) 0.50 (+0.00) 0.23 (-0.00) 3.49 (-0.13) 0.76 (+0.02) 0.11 (-0.01) 8.07 (-0.00) 0.16 (+0.00)
Gemini-Pro 0.00 (+0.00) 0.51 (-0.09) 0.41 (+0.41) 0.04 (-0.18) 5.17 (+0.06) 0.54 (-0.16) 0.05 (-0.05) 6.79 (-1.18) 0.33 (+0.17)
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Figure 4: Goal metrics from all 6 environments. It should be noted that these metrics are the lower the
better. Large models are more prune to performance drop when ICE is provided

.

4.3 Effect of In-Context Examples

This section explores the impact of introducing in-context examples on different models. The results, as
detailed inTabs. 4 and 5, showcase that most models get significant improvement when provided with in-
context examples. For example, initially, in the absence of in-context examples (ICE=0), DeepSeek-MoE-7B
is outperformed by Llama2-7B-chat across all six environments; but when presented with more in-context
examples, DeepSeek-MoE-7B not only bridges the performance gap but actually surpasses Llama2-7B-chat
in effectiveness.

However, the benefit of in-context examples is not universally observed across all models. For instance, the
Llama2-13B-chat model exhibits a decline in performance in the DFS environment when presented with seven
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in-context examples (ICE=7). To delve deeper into this phenomenon, we analyze the performance variation
in relation to the number of in-context examples, as depicted in Fig. 4. Two interesting observations are
noted: 1) For GPT models, in-context learning barely had any impact on their performance, even though
there is still room for improvement in embodied environments; and 2) An intriguing pattern emerged among
the Llama2 models in the Coin environment, where their performance significantly dropped with just one
in-context example (ICE=1), but showed gradual improvement as the number of examples increased. Similar
trends were observed in recent open-source models, such as Mistral-7B in BFS, DeepSeek-67B in Coin and
closed-source Gemini-Pro in BFS. This contradicts the typical assumption that in-context learning universally
enhances LLMs’ performance. We hypothesize that this contradiction may stem from the interactive and
multi-round nature of examples in AQA-Bench, as opposed to the single-round format typical in standard
Q&A benchmarks.

This suggests that more studies about how multi-round examples for interactive tasks should be given to
LLMs are required. It is also worth noting that with ICE=7, Gemini-Pro showed comparable or even better
performance than GPT-4-Turbo in all environments except CaveDFS. Lastly, we investigate the influence
of instructional differences between the base environments and their embodied variants, particularly with
the increasing number of in-context examples. In Fig. 4, we observe a notable trend: as the number of
in-context examples increases, the disparity in goal metrics between most models across these two types of
environments tends to diminish. This suggests that the method of instruction and example provision can
substantially reshape model behaviors.
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Figure 5: Per-step ACC in all 6 environments. Weak
models are greatly improved even when a few optimal
predecessor steps are provided.

Table 6: PSACCavg in all 6 environments. All tests
are run w/ teacher-guiding.

Model GuessNum ↑ DFS ↑ BFS ↑ Coin ↑ CaveDFS ↑ CaveBFS ↑
Small < 10B

Llama2-7B-chat 0.06 0.71 0.50 0.04 0.83 0.54
Vicuna-7B 0.04 0.80 0.57 0.03 0.82 0.61
Mistral-7B-Instruct-v02 0.09 0.77 0.74 0.09 0.75 0.74
DeepSeek-LLM-7B 0.02 0.81 0.60 0.01 0.77 0.60
DeepSeek-MOE-16B 0.04 0.68 0.60 0.05 0.71 0.28

10B ≤ Medium < 50B
Llama2-13B-chat 0.21 0.74 0.69 0.21 0.79 0.63
Vicuna-13B 0.19 0.77 0.72 0.18 0.82 0.75
Mixtral-8x7B-Instruct-v01 0.44 0.79 0.86 0.45 0.85 0.81

Large ≥ 50B
Llama2-70B-chat 0.23 0.75 0.73 0.23 0.76 0.68
DeepSeek-LLM-67B 0.35 0.87 0.69 0.41 0.91 0.68

Closed-source
GPT-3.5-Turbo 0.68 0.86 0.92 0.67 0.89 0.77
GPT-4-Turbo 0.93 0.93 0.88 0.93 0.89 0.75
Gemini-Pro 0.56 0.94 0.88 0.56 0.93 0.84

4.4 Failure of Scaling Law

Zero-shot setting. Fig. 3 provides comparisons among models from the same family. An interesting
observation is, contrary to the expected improvement with increased model size — a trend typically observed
in LLM benchmarks — the performance in tasks like GuessNum, DFS, and their embodied variants does
not consistently correlate with larger model sizes. Notably, certain models exhibit an inverse scaling effect.
For instance, DeepSeek-LLM-7B surpasses its larger 65B counterpart in the DFS environment. Similarly,
Llama-7B-chat outperforms the 13B one in the Coin environment.

Few-shot setting. The deviation from the scaling law becomes even more pronounced in the few-shot
settings, as evidenced in Fig. 4. In these scenarios, medium and large models more frequently experience
performance drops compared to smaller models. This phenomenon is probably caused during the overfitting
process from in-context learning of medium and large models, which is also an overlooked area. This
pattern also suggests that while larger models are often touted by developers for their superior performance
across a range of benchmarks, their effectiveness may not uniformly extend to specialized domains such
as algorithmic execution and interactive sequential reasoning. In these areas, the challenges are distinct
from those encountered in conventional one-round Q&A formats, indicating a need to reconsider the scaling
assumptions in LLM for these applications.
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4.5 Teacher Guiding

As evidenced in Fig. 5, even Llama2-7B-chat, which is a small model, yielded higher PSACC as the number
of steps grows, indicating the probability of executing the optimal policy improves over time, especially as
correct decisions accumulate. In environments like DFS (CaveDFS) and BFS (CaveBFS), we noted that the
differences in PSACC among various Llama2 models diminish when more guidance steps are provided by
the teacher model. While larger models still tend to exhibit a higher average PSACC, as shown in Tab. 6,
the gap narrows with increased teacher model intervention. However, it is important to note, as in Fig. 5,
PSACC may begin to decline in later stages of interaction. This decline can be attributed to the complexity
of adhering to the optimal policy as the model is required to track and remember previous steps, such as
(implicitly) maintaining a queue of nodes in BFS and CaveBFS. These observations suggest that weak models
perform badly mainly due to the incapability of starting well rather than maintaining good performance in
the latter stage. Therefore, even a limited series of correct steps at the beginning can significantly assist
models in sequential reasoning tasks. Furthermore, for models possessing a sufficient level of sequential
reasoning ability, this process may lead to a form of self-guidance, where the model reinforces its decisions
based on prior correct actions.

5 Related Works

Large Language Models with the number of parameters and pretrained data scaling up, demonstrate
emerging behaviors, i.e., the model can perform tasks it cannot when the complexity is below a certain
threshold (OpenAI, 2023). It has also been discovered that using carefully designed prompts (Fu et al.,
2022; Zhou et al., 2022) can substantially enhance the performance of LLMs for reasoning ability. Open-
source models (Touvron et al., 2023; Taori et al., 2023) have also emerged from community efforts and shown
their effectiveness, with Vicuna (Chiang et al., 2023) and Mixtral (Jiang et al., 2024) demonstrating close-
to-GPT-3.5 performance on human benchmarks. In our evaluation, we found that despite the impressive
chat abilities, there exists a gap in the algorithmic reasoning abilities between open-source models and
close-sourced models.

Benchmarking reasoning abilities. The performance of generative models is notoriously difficult to
evaluate. To resolve this issue, Vicuna leverages a chatbot arena to let human users evaluate the output
of LLMs (Chiang et al., 2023) in a pairwise model comparison fashion. Other than evaluating human
preference, benchmarks (Cobbe et al., 2021; Hendrycks et al., 2020; 2021) for evaluating the reasoning
abilities of LLMs also exist. Other than these one-round Q&A evaluations, multi-step interaction-based
evaluation benchmarks also exist. For example, Pan et al. (2023) leverages adventure games to measure the
ability of LLMs in social decision-making in an interactive manner. Different from these existing works, our
proposed AQA-Bench forms several interactive environments that focus on evaluating the LLMs’ sequential
reasoning ability and understanding of specific algorithm procedures.

LLM-as-Agent. The study of LLM agents has been a highly active research area since the depute of
advanced LLMs like ChatGPT (OpenAI, 2023). Prompting techniques (Wei et al., 2022; Yao et al., 2023)
elicit the reasoning and acting abilities of LLMs to allow them to act as agents. Benchmarks designed based
on games (Fan et al., 2022; Gong et al., 2023) have been proposed to evaluate LLMs as agents to plan and
act in a complex environment. Our benchmark explores LLM-as-Agent from the perspective of whether they
are capable of following simple algorithm procedures, aiming to measure their sequential reasoning ability.

6 Conclusion

In this study, we embark on an initial exploration into the realm of evaluating LLMs within interactive
environments. These environments necessitate a deep understanding of specific algorithmic procedures by
the LLMs, ranging from efficiently guessing a number within minimal steps to strategically searching for
unvisited nodes in a graph. Our comprehensive evaluation reveals a notable performance gap between
current open-source and closed-sourced models, with the latter showing superior capabilities in these tasks.
We expect future efforts to focus on introducing a broader range of interactive environments and developing
more effective prompting strategies to better equip LLMs for these benchmarks.
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A Variance on HARD mode

This section presents the variance of the models under that HARD testing protocol. Results are in Tabs. 7
and 8. We can see that overall, under the HARD mode, the performance of the models do not show a strong
variance.

Table 7: Inter-dataset variance of Llama2-7B-chat and Vicuna-7B-v1.5-16K in base environ-
ments under the HARD mode. These results are summarized from evaluations on 4 independently
generated test sets.

GuessNum DFS BFS
Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Llama2-7B-chat
Avg 0.498 14.956 0.000 0.735 7.360 0.193 0.761 15.949 0.005
Marginmin 0.006 0.187 -0.000 0.004 0.319 0.003 0.003 0.670 0.002
Marginmax 0.011 0.332 0.000 0.007 0.397 0.007 0.006 0.390 0.002

Vicuna-7B-v1.5-16K
Avg 0.476 9.606 0.000 0.644 5.769 0.151 0.849 10.067 0.029
Marginmin 0.008 0.012 -0.000 0.002 0.205 0.002 0.002 0.302 0.000
Marginmax 0.006 0.022 0.000 0.006 0.119 0.001 0.003 0.479 0.001

Table 8: Inter-dataset variance of Llama2-7B-chat and Vicuna-7B-v1.5-16K in embodied en-
vironments under the HARD mode. Results are summarized from evaluations on 4 independently
generated test sets.

Coin CaveDFS CaveBFS
Errmin ↓ Errsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑ Gmin ↓ Gsum ↓ ACC ↑

Llama2-7B-chat
Avg 0.079 5.256 0.000 0.488 4.633 0.340 0.757 5.405 0.046
Marginmin 0.005 0.238 0.000 0.008 0.060 0.011 0.001 0.206 0.002
Marginmax 0.008 0.269 0.000 0.011 0.021 0.010 0.001 0.255 0.001

Vicuna-7B-v1.5-16K
Avg 1.000 1.000 0.000 0.538 7.684 0.208 0.717 13.914 0.069
Marginmin 0.000 0.000 0.000 0.015 0.389 0.007 0.007 0.403 0.004
Marginmax 0.000 0.000 0.000 0.013 0.361 0.006 0.009 0.473 0.003
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B Prompt Instructions for the Models

In this section, we present the prompts we fed to the models.

B.1 Base Environments

GuessNum

You are required to guess the random number which I have just picked between {min} and {max}.
I will only tell you whether the true number is bigger or lower than your guess. Adjust your guess
according to my response. Try as few times as you can. You can only reply with an integer number
between {min} and {max}.

DFS

You are required to visit all the nodes in an undirected non-cyclic graph. An undirected non-cyclic
graph contains a set of nodes and a set of edges that each connect a pair of nodes. All edges are
undirected so that you can move from one node to the other connected by the edge in either direction.
Every time you visit a node, you will be given the adjacent nodes connected to this node. You can only
reply with an integer number indicating which node to be visited next. Do not explain your answer.
Try to traverse the entire graph in as few rounds as possible. You are currently on the node 0. You
should use depth-first-search algorithm, each time you should select a node you have not moved to. If
all nodes adjacent to the current node have been visited, you should backtrack to the node through
which you entered this node for the first time.

BFS

You are required to visit all the nodes in an undirected non-cyclic graph. An undirected non-cyclic
graph contains a set of nodes, and a set of edges that each connects a pair of nodes. Every time you
visit a node, you will be given the adjacent nodes connected to this node. You can only visit nodes
that are adjacent to the already visited nodes. You can only reply with an integer number indicating
which node to be visited next. Do not explain your answer. Try to traverse the entire graph in as few
rounds as possible. You are currently on the node 0. You should use breadth-first-search algorithm.
The algorithm works as follows: 1. Initialize a queue data structure and add the starting node to the
queue. 2. While the queue is not empty, visit the first node and remove it from the queue. 3. For
nodes adjacent to the removed vertex, add the unvisited ones to the queue. 4. Repeat steps 2-3 until
the queue is empty.

B.2 Embodied Environments

Coin

You are in a hidden temple where an old witch sits with a chest of gold. The witch promises to reward
you with gold coins, the amount hidden within the chest ranging from {min} and {max}. To claim
your prize, you must correctly guess the exact number of gold coins in the chest. After each guess, the
witch will hint if the actual amount is higher or lower than your guess. Use these clues to adjust your
guess accordingly. Try as few times as you can. You can only reply with an integer number between
{min} and {max}.
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CaveDFS

There is an expansive underground cave system in which each cave is uniquely numbered and intercon-
nected by tunnels. Every time you visit a cave, you will know the adjacent caves directly connected to
this one. You can only reply with an integer number indicating which cave to be visited next. Do not
explain your answer. Your objective is to explore every cave, starting from cave 0. Try to visit all the
caves in as few rounds as possible. You are currently in the cave 0.

CaveBFS

There is an expansive underground cave system in which each cave is uniquely numbered and inter-
connected by tunnels. Every time you and your team visit a cave, you will know the adjacent caves
directly connected tno this one. Your team will then split into smaller groups to explore different caves,
but groups can only move to caves adjacent to the visited cave. You can only reply with an integer
number indicating which cave to be visited next. Do not explain your answer. Your objective is to
explore every cave, starting from cave 0. Try to visit all the caves in as few rounds as possible. You
and your team are currently in the cave 0.

17



Under review as submission to TMLR

C Model Versions

We used the checkpoint ‘1106’ for GPT-3.5 and GPT-4.0. The open-source model and the corresponding
commit ID on HuggingFace are listed as below

• Llama2-7B-chat c1b0db933684edbfe29a06fa47eb19cc48025e93

• Llama2-13B-chat c2f3ec81aac798ae26dcc57799a994dfbf521496

• Llama2-70B-chat e1ce257bd76895e0864f3b4d6c7ed3c4cdec93e2

• Llama3-8B-Instruct e1945c40cd546c78e41f1151f4db032b271faeaa

• Vicuna-7B-v1.5-16K c8df3ca4436a3bce5c4b5877e0117032081852b4

• Vicuna-13B-v1.5-16K 17c61f9ca19f5a7a04e96b2cc0d9bcf2920cb8c2

• Mistral-7B-Instruct-v0.2 b70aa86578567ba3301b21c8a27bea4e8f6d6d61

• Mixtral-8x7B-Instruct-v0.1 125c431e2ff41a156b9f9076f744d2f35dd6e67a

• DeepSeek-LLM-7B afbda8b347ec881666061fa67447046fc5164ec8

• DeepSeek-LLM-67B 79648bef7658bb824e4630740f6e1484c1b0620b

• DeepSeek-MoE-16B cc01c87767bd905af4cb364693fd107014694ab9
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