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Abstract001

Chain-of-thought (CoT) prompting enhances002
reasoning in large language models (LLMs) but003
often leads to verbose and redundant outputs,004
thus increasing inference cost. We hypothesize005
that many reasoning steps are unnecessary for006
producing correct answers. To investigate this,007
we start with a systematic study to investigate008
what is the minimum reasoning required for a009
model to reach a stable decision. Based on the010
insights, we propose three inference-time strate-011
gies to improve efficiency: (1) early stopping012
via answer consistency, (2) boosting the prob-013
ability of generating end-of-reasoning signals,014
and (3) a supervised method that learns when015
to stop based on internal activations. Experi-016
ments across five benchmarks and five open-017
weights LLMs show that our methods largely018
reduce token usage with little or no accuracy019
drop. In particular, on NaturalQuestions, An-020
swer Consistency reduces tokens by over 40%021
while further improving accuracy. Our work022
underscores the importance of cost-effective023
reasoning methods that operate at inference024
time, offering practical benefits for real-world025
applications.1026

1 Introduction027

Large language models (LLMs) exhibit strong rea-028

soning capabilities through step-by-step generation,029

known as chain-of-thought (CoT) reasoning (Wei030

et al., 2022; Cobbe et al., 2021; Fang et al., 2024).031

However, this approach often leads to unnecessar-032

ily long and verbose reasoning traces, resulting in033

high inference cost and latency. This overthink-034

ing phenomenon has become a practical bottleneck,035

especially in real-time or resource-constrained sce-036

narios (Sui et al., 2025).037

To improve reasoning efficiency, recent studies038

have introduced methods that allow models to gen-039

erate accurate answers with fewer steps. These040

1Code will be released upon publication.

Marilyn's first record sold 10 times as many copies as Harald's. If they sold 88,000 
copies combined, how many copies did Harald sell?

Question:

<think> Okay, so I need to figure out how many copies Harald sold. 
…
So 11H = 88,000 I need to solve for it by dividing both sides by 11
88,000 divided by 11 should be 8,000
Wait, let me double-check that.
If I multiply 11 by 8,000, I should get 88,000. That checks out.
I don't think I made any mistakes here.
So, Harald sold 8,000 copies.

Model Generation:

Converged!

</think> 1000

</think> 8800
</think> 8000
</think> 8000
</think> 8000
</think> 8000
</think> 8000

Figure 1: R1-Qwen-32B converges early on a GSM8K
example, suggesting that later steps could be skipped.

include reinforcement learning with length-aware 041

rewards (Luo et al., 2025; Hou et al., 2025), fine- 042

tuning on variable-length CoT traces (Han et al., 043

2024; Xia et al., 2025), and prompt-based ap- 044

proaches that request concise reasoning (Xu et al., 045

2025; Nayab et al., 2024; Han et al., 2024). These 046

methods typically require retraining on curated data 047

or task-specific prompt design. In contrast, we ex- 048

plore inference-time techniques that improve effi- 049

ciency without sacrificing accuracy. Particularly, 050

we hypothesize that LLMs often internally con- 051

verge on an answer before completing the full rea- 052

soning trace, an insight we formalize as answer 053

convergence. Recognizing such convergence can 054

enable more efficient inference by allowing early 055

stopping without sacrificing accuracy. 056

To investigate this, we conduct a reasoning 057

model early-stopping study that systematically trun- 058

cates explicit CoTs to assess when the model’s an- 059

swer generated answer converges, i.e., when the 060

answer remains unchanged despite additional rea- 061

soning steps. Our experiments reveal that models 062

often converge well before completing the full rea- 063

soning chain, suggesting substantial redundancy 064

and highlighting the potential for improving effi- 065

ciency through early stopping. Figure 1 shows an 066

example where the model answer converges early 067

despite receiving only partial reasoning, indicating 068

that the remaining steps contribute little to the final 069

prediction. As shown in Figure 2, this pattern holds 070
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across five datasets, even on GPQA, a challenging071

dataset, many examples converge early.072

Motivated by this finding, we propose inference-073

time strategies to dynamically truncate explicit rea-074

soning based on the observation that models often075

reach converged answers early: (1) Early stopping076

via Answer Consistency, which halts generation077

when consecutive reasoning chunks yield identical078

answers; (2) Think Token Adjustment, which en-079

courages models to signal early termination explic-080

itly; and (3) a supervised approach, Learn-to-Stop,081

which utilizes internal activations to predict optimal082

stopping points. Our methods are model-agnostic,083

require no additional training or LM modification,084

and significantly reduce inference cost without sac-085

rificing accuracy. Importantly, this method does086

not require ground-truth answer labels, relying only087

on self-consistency signals during inference.088

We evaluate our methods on five reasoning089

benchmarks and five open-weights LLMs. Results090

show that early stopping strategies consistently re-091

duces token usage without hurting accuracy or even092

improving accuracy, especially on simpler tasks.093

Specifically, (1) Performance vs. token length:094

Learn-to-Stop cuts up to 48% of tokens on NQ with095

QwQ-32B, sometimes even improving accuracy,096

suggesting that excessive reasoning may introduce097

unnecessary noise. (2) Supervised vs. unsuper-098

vised: Unsupervised methods work well on NQ099

and GSM8K, while the supervised approach gen-100

eralizes better to harder tasks like MATH-500 and101

GPQA.102

2 Related Work103

Prior work on CoT efficiency falls into three104

main categories: (1) reinforcement learning with105

length-aware rewards or difficulty-adaptive reason-106

ing (Luo et al., 2025; Hou et al., 2025; Shen et al.,107

2025); (2) supervised fine-tuning that skips unim-108

portant tokens, enforces token budgets, or uses self-109

training to learn shorter rationales (Xia et al., 2025;110

Han et al., 2024; Munkhbat et al., 2025); and (3)111

prompt-based methods that request concise reason-112

ing or dynamically select reasoning paths (Xu et al.,113

2025; Aytes et al., 2025; Cheng et al., 2025).114

Unlike these methods which rely on training-115

time optimization on carefully designed datasets116

or application-specific prompt design, our method117

operates entirely at inference time. By identifying118

internal answer convergence, we enable dynamic119

early stopping without retraining, model changes,120

labeled data, or prompt engineering.121
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Figure 2: Distribution of Answer Convergence Ratios
(ACRs) across tasks. Models often converge early, sug-
gesting that many generated steps might be redundant
from the model’s perspective.

3 Preliminary 122

We investigate whether all parts of a CoT reasoning 123

chain are necessary for the model to converge on 124

its predicted answer, and whether later steps can be 125

omitted without affecting the decision. To this end, 126

we first split the CoT into sentence-level chunks us- 127

ing the NLTK tokenizer (Bird et al., 2009). These 128

chunks are then incrementally concatenated (e.g., 129

chunk1, chunk1+chunk2, etc.), each followed by 130

an end-of-reasoning token </think>. The model 131

is prompted to generate an answer from each par- 132

tial chain via greedy decoding. By tracking when 133

the model’s prediction remains unchanged across 134

successive reasoning steps, we identify the earliest 135

point of answer convergence, approximating the 136

minimum reasoning required for the model to reach 137

a stable decision. 138

We apply this protocol to five tasks with 139

varying levels of reasoning: NaturalQuestions 140

(NQ) (Kwiatkowski et al., 2019), GSM8K (Cobbe 141

et al., 2021), MATH-500 (Lightman et al., 142

2024), GPQA-Diamond (Rein et al., 2023), and 143

AIME’242. NQ involves minimal reasoning as an 144

information-seeking task, while the others are math 145

and logic benchmarks of increasing difficulty, with 146

AIME’24 containing the most advanced problems. 147

Experiments are conducted using the R1-distilled 148

Qwen-32B model (DeepSeek-AI, 2025)3. To quan- 149

tify when the model converges, we define the An- 150

swer Convergence Ratio (ACR) as the proportion 151

of reasoning required before the predicted answer 152

remains unchanged. For each instance, we detect 153

the earliest point where the answer persists through 154

the end of the chain. For example, convergence 155

2https://huggingface.co/datasets/
HuggingFaceH4/aime_2024

3Results for various models are provided in Appendix A.1.
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after 7 out of 10 chunks yields an ACR of 0.7.156

Figure 2 displays the distribution of ACRs across157

the five tasks. We observe that the model often158

converges early, suggesting that many steps are un-159

necessary. The ACR distribution peaks near 0.0 for160

NQ, which means nearly no reasoning is needed for161

the model to come up with its final answer, around162

0.8 for GSM8K and MATH-500, and near 0.9 for163

GPQA and AIME’24, mirroring the increasing rea-164

soning loads. These results suggest that early stop-165

ping is often feasible and can reduce inference-time166

costs without affecting answer quality.167

4 Early Stopping at Inference Time168

We propose three methods to improve reasoning169

efficiency: two unsupervised approaches based on170

answer consistency (§4.1) and decoding signals171

(§4.2), and one supervised method (§4.3) that pre-172

dicts when to stop reasoning without retraining the173

LM or modifying its parameters.174

4.1 Detecting Answer Consistency175

Since LLMs often reach converged answers before176

completing the full reasoning chain, we introduce177

an unsupervised stopping criterion based on out-178

put consistency. During decoding, we monitor the179

model’s outputs and append the </think> token at180

predicted natural sentence boundaries, prompting181

it to produce an answer via greedy decoding. If182

the same answer is produced for a fixed number k183

of consecutive chunks, we consider the reasoning184

converged and terminate further generation.185

4.2 Think Token Adjustment186

During decoding, the model uses the </think>187

token to indicate the end of reasoning. Ideally, if188

the model has reached the final answer, it should189

generate this token early. However, we observe190

that while </think> often ranks among the top 10191

candidates after sentence boundaries, the model192

tends to prefer tokens like wait, or, or but, which193

unnecessarily prolong reasoning.194

To address this, we boost the probability of195

</think> during decoding by applying a linear196

logit transformation4: yt∗ ← yt∗ + α · (max(y)−197
1
|y|

∑
i yi), where yt∗ is the logit of the </think>198

token, α controls the boost strength, and y denotes199

all vocabulary logits. This encourages the model to200

terminate reasoning earlier when appropriate.201

4.3 Learning When to Stop Reasoning202

Recent work shows that LLM activations encode203

useful signals such as knowledge and confidence204

4Implementation details are provided in Appendix A.3.

(Kapoor et al., 2024; Liu et al., 2024). We hy- 205

pothesize that they also capture reasoning progress, 206

including when to stop. Specifically, the final-layer 207

activation ht may reflect both the model’s certainty 208

and the need for further computation. 209

To leverage this, we train a supervised model to 210

predict optimal stopping points using the model’s 211

internal activations. Given the sequential nature of 212

reasoning, we use an LSTM to encode the activa- 213

tion sequence {h1, . . . ,hT }. At each chunk t, the 214

LSTM output zt is passed to a sigmoid classifier: 215

p̂t = σ(Wzt + b), where p̂t ∈ [0, 1] represents the 216

probability of stopping at step t. 217

Training labels are constructed by identify- 218

ing the earliest chunk where the predicted an- 219

swer matches the final answer and remains un- 220

changed. Chunks from that point onward are 221

labeled 1, and all earlier chunks are labeled 222

0. We optimize a binary cross-entropy loss: 223

L = − 1
T

∑T
t=1 [pt log p̂t + (1− pt) log(1− p̂t)], 224

where pt ∈ {0, 1} is the ground truth label, and T 225

is the number of chunks. At inference time, rea- 226

soning stops when p̂t ≥ τ , with threshold τ tuned 227

on validation data. This approach enables us to 228

utilize the model’s internal dynamics to improve 229

reasoning efficiency without training or modifying 230

the base LLM. 231

5 Experimental Setup 232

We evaluate our methods on the five tasks intro- 233

duced in § 3, with dataset splits and statistics de- 234

tailed in Appendix A.2. Experiments are conducted 235

on five LLMs across three families: R1-distilled 236

Qwen and Llama(DeepSeek-AI, 2025), and QwQ 237

(Team, 2025). We report Accuracy (Acc.), average 238

generated tokens (Tokens #), and token reduction 239

(%) relative to the original model. As baselines, 240

we include the original model and Concise CoT 241

(CCoT) (Nayab et al., 2024), which limits reason- 242

ing length via prompt token budgets. 5 243

6 Results and Analysis 244

From the results in Table 1, we observe the follow- 245

ing key findings: 246

Early stopping improves performance on tasks 247

with low reasoning demand. On NQ, which in- 248

volves minimal reasoning, all early stopping meth- 249

ods match or surpass the original model’s accuracy 250

while greatly reducing token usage. This suggests 251

that the original model may overthink and gener- 252

ate unnecessary reasoning steps, which even harms 253

5The implementation details and prompts are provided in
Appendix A.4.
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Model Method NQ GSM8K MATH-500 GPQA AIME’24
Acc.(%) ↑ Tokens # ↓ Acc.(%) ↑ Tokens # ↓ Acc.(%) ↑ Tokens # ↓ Acc.(%) ↑ Tokens # ↓ Acc.(%) ↑ Tokens # ↓

R1-Qwen-7B

Original 11.6 522.3 81.0 180.7 91.0 1873.9 22.2 3131.2 56.7 10768.4

CCoT 12.4 349.5 (-33.1%) 80.0 179.4 (-0.7%) 88.7 1345.0 (-28.2%) 21.2 2230.7 (-28.8%) 53.3 8109.4 (-24.7%)
Answer Consistency 12.4 371.1 (-28.9%) 81.0 169.4 (-6.3%) 67.0 620 (-66.9%) 11.1 1076.0 (-65.6%) 13.3 1355.2 (-87.4%)
Think Token Adjustment 11.8 406.7 (-22.1%) 75.8 158.2 (-12.5%) 65.0 1317.7 (-29.7%) 19.2 1894.0 (-39.5%) 36.7 6225.0 (-42.2%)
Learn to Stop 12.6 280.9 (-46.2%) 80.4 158.0 (-12.6%) 89.0 1356.1 (-27.6%) 22.2 2786.6 (-11.0%) – –

R1-Qwen-32B

Original 35.0 522.7 89.4 236.3 91.0 1958.8 33.3 3278.5 73.3 8471.5

CCoT 37.2 305.4 (-41.6%) 93.4 239.2 (+1.2%) 88.0 1298.7 (-33.7%) 27.3 1928.6 (-41.2%) 60.0 4869.4 (-42.5%)
Answer Consistency 38.4 331.1 (-36.7%) 87.6 193.1 (-18.3%) 55.0 496.4 (-74.7%) 14.1 771.8 (-76.5%) 13.3 1522.2 (-82.0%)
Think Token Adjustment 38.2 426.8 (-18.3%) 87.6 221.2 (-6.4%) 68.0 954.0 (-51.3%) 24.2 1544.5 (-52.9%) 43.3 2431.3 (-71.3%)
Learn to Stop 38.0 273.2 (-47.7%) 86.8 157.7 (-33.3%) 90.0 1621.1 (-17.2%) 30.3 2684.9 (-18.1%) – –

R1-Llama-8B

Original 20.6 426.8 78.6 401.3 79.0 2011.8 14.1 2546.0 40.0 7914.4

CCoT 24.8 308.7 (-27.7%) 72.0 266.1 (-33.7%) 71.0 1683.3 (-16.3%) 12.2 1705.0 (-33.0%) 30.0 4060.8 (-48.7%)
Answer Consistency 22.4 336.3 (-21.2%) 69.2 319.8 (-20.3%) 56.0 841.6 (-58.2%) 12.1 1138.6 (-55.3%) 16.7 1522.2 (-80.8%)
Think Token Adjustment 25.2 407.5 (-4.5%) 66.8 329.4 (-17.9%) 71.0 981.5 (-51.2%) 9.1 1558.1 (-38.8%) 23.3 3571.2 (-54.9%)
Learn to Stop 21.8 281.2 (-34.1%) 77.4 350.1 (-12.8%) 74.0 1801.8 (-10.4%) 13.1 2468.4 (-3.0%) – –

R1-Llama-70B

Original 50.4 417.2 90.6 291.2 91.0 1577.4 29.3 2419.8 56.7 4972.3

CCoT 52.0 294.4 (-29.4%) 90.0 227.6 (-21.8%) 87.0 1101.5 (-30.2%) 29.3 1935.1 (-20.0%) 56.7 4235.9 (-14.8%)
Answer Consistency 54.4 273.5 (-34.4%) 86.2 235.4 (-19.2%) 65.0 578.2 (-63.3%) 20.2 925.8 (-61.7%) 16.7 1295.6 (-73.9%)
Think Token Adjustment 52.0 378.5 (-9.3%) 88.6 279.5 (-4.0%) 85.0 1322.2 (-16.2%) 28.3 2164.6 (-10.5%) 53.3 4057.5 (-18.4%)
Learn-to-Stop 52.2 223.5 (-46.4%) 91.2 252.8 (-13.2%) 86.0 1204.1 (-23.7%) 30.3 2268.9 (-6.2%) – –

QwQ-32B

Original 41.6 646.0 96.8 755.1 98.0 2996.8 25.3 6557.9 76.7 12160.3

CCoT 42.4 392.2 (-39.3%) 95.2 419.3 (-44.5%) 95.0 2266.7 (-24.4%) 22.3 4663.5 (-28.9%) 73.0 8890.2 (-26.9%)
Answer Consistency 43.0 355.3 (-45.0%) 89.0 342.6 (-54.6%) 59.0 684.3 (-77.2%) 15.2 1255.3 (-80.9%) 20.0 2334.6 (-80.8%)
Think Token Adjustment 42.8 686.6 (+6.3%) 96.6 745.2 (-1.3%) 96.0 3055.7 (+2.0%) 31.3 6131.1 (-6.5%) 70.0 11489.6 (-5.5%)
Learn to Stop 43.0 335.9 (-48.0%) 96.6 418.9 (-44.5%) 93.0 2050.0 (-31.6%) 24.2 3988.3 (-39.2%) – –

Table 1: Evaluation results on five reasoning tasks and five model families. For each task, the best and second-
best accuracies are shown in bold and underline, respectively. In the Tokens # columns, darker green indicates
lower inference cost. Our early stopping methods notably reduce tokens, with Learn-to-Stop offering the best
efficiency–performance tradeoff.

Question: Carlos is planting a lemon tree. The tree will
cost $90 to plant. Each year it will grow 7 lemons, which
he can sell for $1.5 each. It costs $3 a year to water and
feed the tree. How many years will it take before he starts
earning money on the lemon tree?
Original: To determine how many years ...... Solving for
n: n = $90 / $7.5, n= 12
Wait, let me double-check my calculations to make sure I
didn’t make a mistake ... That seems correct.
</think>\boxed{12}
Token #: 439
Learn to Stop: Okay, so Carlos is planting ...... Calculat-
ing that, 90 divided by 7.5 equals 12 .
</think>\boxed{12}
Token #:338
Model: R1-Qwen-32B

Table 2: Example from GSM8K comparing the original
model and Learn-to-Stop. The original generates redun-
dant reasoning after reaching 12 , while Learn-to-Stop
terminates reasoning for a more concise response.

the performance. Manual inspection reveals that254

the original model often overthinks—adding un-255

necessary self-reflection or even revising correct256

answers—whereas early stopping prevents such257

degradation.6 The early stopping methods effec-258

tively mitigate this issue by terminating reasoning259

earlier, leading to improved performance.260

Unsupervised methods are effective for sim-261

pler tasks. On NQ and GSM8K, Answer Con-262

sistency and Think Token Adjustment reduce to-263

kens without harming accuracy, despite requiring264

no additional training. However, on harder tasks265

like MATH-500 and GPQA, their performance be-266

comes less stable, indicating that shallow signals267

6Examples in Appendix A.5.

like output consistency may be insufficient under 268

high reasoning complexity. 269

Learn-to-Stop offers robust efficiency gains. 270

This supervised method consistently balances ac- 271

curacy and token savings across models and tasks. 272

For example, on GSM8K with QwQ-32B, it re- 273

duces tokens by 44% (755.1 to 418.9) with only a 274

0.2% drop in accuracy; on the harder task GPQA, 275

it cuts 39.2% tokens with comparable performance 276

(24.2% vs. 25.3%). Compared to CCoT, Learn- 277

to-Stop achieves greater reductions while main- 278

taining or improving accuracy. Since it operates 279

purely at inference time and keeps the prompt un- 280

changed, it is compatible with prompt-level strate- 281

gies like CCoT, offering opportunities for further 282

gains through combination. Table 5 exemplify how 283

Learn-to-Stop avoids redundant reasoning while 284

preserving output quality. 7 285

7 Conclusion 286

We study how to reduce redundancy in chain- 287

of-thought (CoT) reasoning to improve LLM in- 288

ference efficiency. Across five benchmarks and 289

five open-weight LLMs, we find that answer con- 290

vergence often occurs early, revealing substantial 291

redundancy. Based on this, we propose three 292

inference-time methods that stop generation once 293

reasoning is sufficient. These methods cut token 294

usage by up to 40% without accuracy loss, offer- 295

ing a practical alternative to full-chain reasoning 296

without retraining or model changes. 297

7Examples of other datasets in Appendix A.5.1.
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Limitations298

While our proposed early stopping strategies sig-299

nificantly reduce inference cost with minimal or300

no loss in accuracy, several limitations remain.301

First, our methods rely on the assumption that the302

model’s answer convergence correlates with the303

correctness of the final output. However, conver-304

gence does not guarantee correctness, especially305

in tasks with higher reasoning complexity (e.g.,306

GPQA and AIME). Second, by enabling models to307

make predictions without observing the full reason-308

ing trace, our approach may compromise the faith-309

fulness of reasoning. Future work should aim to310

jointly optimize for both faithfulness and concise-311

ness, ensuring that reasoning remains both efficient312

and trustworthy.313
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A Appendix442

A.1 ACR Distribution on Various Models443

We present the ACR distributions for several mod-444

els: R1-distilled Llama-8B, R1-distilled Llama-445

70B, R1-distilled Qwen-7B, and QwQ-32B. The re-446

sults are shown in Figure 3. All models exhibit sim-447

ilar trends to the R1-distilled Qwen-32B baseline,448

confirming their ability to produce stable answers449

before completing the full reasoning chain. More-450

over, tasks with higher reasoning demands tend451

to correspond to higher ACRs. When comparing452

distributions across models, we observe that larger453

models generally achieve lower ACRs, suggesting454

that they require fewer reasoning steps to converge455

on an answer. This implies that larger models may456

possess a more efficient internal reasoning process,457

enabling them to reach final answers more quickly.458

Task Train Validation Test

NQ 800 200 3610
GSM8K 800 200 1319
MATH-500 320 80 100
GPQA-Diamond 78 20 100
AIME’24 – – 30

Table 3: Dataset statistics for each task.

A.2 Dataset Splits and Statistics 459

For tasks with available training data (NQ and 460

GSM8K), we sample 1,000 examples for training 461

the supervised method and 100 for validation. For 462

tasks without predefined training data (MATH-500 463

and GPQA-Diamond), we reserve 100 examples as 464

the test set and split the remaining data into 80% 465

for training and 20% for validation. Due to the 466

limited size of AIME’24, which includes only 30 467

test examples, we evaluate only the unsupervised 468

methods on this task. The statistics for each task 469

are shown in Table 3. 470

A.3 Implementation of Early Stopping via 471

Boosting End of Think Token 472

To implement boosting of the </think> token, we 473

design a logit processor that adjusts the model’s 474

output logits before sampling. Specifically, it in- 475

creases the logit of the </think> token accord- 476

ing to §4.2. Once the </think> is generated, the 477

processor is disabled to prevent further modifica- 478

tions. This mechanism allows the model to emit 479

the </think> token earlier if it has already reached 480

a confident answer. We integrate the logit proces- 481

sor into the VLLM framework (Kwon et al., 2023), 482

enabling efficient logit manipulation during decod- 483

ing without compromising throughput. We run 484

all experiments three times and report the average 485

results. 486

A.4 Implementation Details 487

When applying early stopping via answer consis- 488

tency, we empirically set the number of consecutive 489

chunks k to 10. For early stopping via boosting, 490

we set the hyperparameter α to 0.6. Regarding the 491

supervised method, we use a single-layer LSTM 492

with 128 hidden units and a dropout rate of 0.1. 493

The model is trained for 200 epochs with a batch 494

size of 32, using the Adam optimizer with a learn- 495

ing rate of 5e−4. The confidence threshold τ is 496

tuned on the validation set, and we set it to 0.50, 497
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Figure 3: ACR distributions for various models.
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0.99, 0.99, and 0.50 for NQ, GSM8K, MATH-500,498

and GPQA-Diamond, respectively. For the CCoT499

baseline, we set the token budget to 100 for all500

tasks.501

We use the VLLM framework (Kwon et al.,502

2023) to sample the model outputs for all experi-503

ments to ensure efficient inference. All the prompts504

we used are provided in Appendix A.6.505

A.5 Test cases on NQ506

We list two examples from NQ in Table 4. In the507

first example, the original model initially generates508

the correct answer (Moira Kelly), but then adds un-509

necessary reasoning steps, including self-reflection,510

and revises the answer to an incorrect one (Julie511

Kavner). Similarly, in the second example, the512

model starts with the correct answer (Ashoka), but513

again adds unnecessary reasoning, ultimately revis-514

ing it to an incorrect answer (Kalinga Nanda).515

A.5.1 Case Study516

We provide a case study of the original model and517

the Learn-to-Stop method in Table 5.518

A.6 Prompts519

A.6.1 NQ520

521
Answer the following question.522
Directly output your final answer within \\boxed {}. DO523

NOT say anything else.524
525
526

Question: {question}527528

A.6.2 Math Reasoning Tasks529

530
Solve the following math problem.531
Directly output your final answer within \\boxed {}. DO532

NOT say anything else.533
534
535

Question: {question}536537

A.6.3 CCoT Prompt538

539
Answer the following question.540
You should think step by step , and limit the thinking541

process length to {LENGHT_BUGGED} words.542
Directly output your final answer within \\boxed {}. DO543

NOT say anything else.544
545
546

Question: {question}547548

549
Solve the following math problem.550
You should think step by step , and limit the thinking551

process length to {LENGHT_BUGGED} words.552
Directly output your final answer within \\boxed {}. DO553

NOT say anything else.554
555
556

Question: {question}557558
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Question: who does the voice of nala in the lion king
Original: Okay, so I need to figure out who voices Nala in The Lion King. I remember watching the movie when I was a kid,
but I can’t recall the voice actress. Let me think. I know that in the original 1994 version, some of the main voices were
well-known actors. Simba was voiced by Jonathan Taylor Thomas, Mufasa by James Earl Jones, and Scar by Jeremy Irons.
But Nala... I’m not sure. Maybe it was someone like Jennifer Hudson? Wait, no, she was in the 2019 remake, I think. In the
original, I think it was a different actress. Maybe someone like, I don’t know, Moira Kelly? No, that doesn’t sound right.
Maybe it’s someone else. Let me think of other voice actors from that era. Maybe it’s someone like Eliza Dushku? Or maybe
it’s someone less famous. I think it’s a British actress. Oh, maybe it’s someone like, I don’t know, Julie Kavner? Wait, no, she
did Mufasa’s sister in the original...
Correct Answer #: Moira Kelly
Question: the king of kalinga in the mauryan period was
Original: Okay, so I need to figure out who the king of Kalinga was during the Mauryan period. Hmm, I remember that the
Mauryan Empire was a significant empire in ancient India, and it was around the 3rd century BCE. The most famous king
from that period is Ashoka the Great, known for his role in the Kalinga war., but the question is about the king of Kalinga,
not the Mauryan king. So Ashoka was the Mauryan emperor, and he conquered Kalinga. I think the king of Kalinga at that
time might have been a local ruler who resisted Ashoka’s expansion. There’s a specific name that comes to mind, something
like Kalinga Nanda. I’m not entirely sure, but I recall that Nanda was a common name for kings in that region, and Kalinga
Nanda was the ruler who opposed Ashoka.should check if there are any other possible names. Some sources mention that the
king of Kalinga was indeed Kalinga Nanda, and that Ashoka’s conquest of Kalinga was a major event in his reign, leading to
his conversion to Buddhism. So yeah, Kalinga Nanda is the name I’m looking for...
Correct Answer #: Ashoka
Model: R1-Qwen-32B

Table 4: Examples from NQ with responses from the original model.

9



Question: Each week, between 30 and 50 students show up for an archery class run by Betty and Wilma. Usually the students
break up into groups of equal size for target practice. However, this week, Betty noticed that she could not break the students
up into multiple groups of equal size. Wilma noticed that if she and Betty both joined the students in practicing, they still
could not break the archers up into groups of equal size. How many students showed up to the archery class this week?
Original: Okay, so I have this math problem here about Betty and Wilma’s archery class. Let me try to understand what it’s
asking......47:47 + 2 = 49. 49 is not prime because 7*7=49. So 47 is out.the only number that fits both conditions is 41 .
When you add 2, it becomes 43, which is also prime. Therefore, there must have been 41 students at the archery class this
week.
</think>\boxed{41}
Token #: 741
Learn to Stop: Okay, so I need to figure out how many students showed up to the archery class this week. The problem says
that each week, between 30 and ...... 41 fits both conditions.
</think>\boxed{41}
Token #:673
Dataset: MATH-500
Question: In a specific region of the sky, astronomers have observed that the number of stars varies with parallax as 1/plxˆ5.
How does the number of stars in that region of the sky change with distance (per unit range of distance, r)?
Original: Okay, so I’ve got this problem here where astronomers observed that the number of stars varies with parallax as 1
over plx to the fifth power. Hmm, I need to figure out how the number of stars changes with distance, specifically per unit
range of distance r...... Therefore, 5k / (1/rˆ6 * r) = 5k rˆ6 / r = 5k rˆ4. Yes, that’s correct. So, the number of stars per unit
distance is proportional to rˆ4 . Wait, but that would mean that as you go further out, the number of stars per unit distance
increases rapidly. That seems odd because usually, the number of stars in a volume element increases with the square of the
radius (since volume is 4dr), but here it’s increasing faster than that. Maybe because the number density itself is increasing
with distance? Wait, no. The problem states that the number of stars varies with parallax as 1/plxˆ5. So, if parallax decreases
(distance increases), the number increases as 1/plxˆ5, which is equivalent to dˆ5. So, the total number up to distance d is
proportional to dˆ5. But the number per unit distance would require considering the derivative. Wait, maybe I’m confusing
cumulative counts with differential counts. Let me clarify. If N(pl) is the total number of stars with parallax less than pl,
then N(pl) = k / plˆ5. But parallax less than pl corresponds to distances greater than d = 1/pl. So, N(d) = k dˆ5. But then
the number of stars beyond distance d would be N_total - N(d) = k dˆ5. Hmm, that doesn’t make much sense because as
d increases, N(d) increases, meaning more stars are at larger distances, which is expected. But to find the number per unit
distance, we take the derivative of N(d) with respect to d. So, dN/dd = 5k dˆ4. So, the number of stars per unit distance at
distance d is proportional to dˆ4. Wait, but that would imply that the number density is increasing with distance, which might
not align with standard stellar distributions unless there’s an actual increase in star density with distance, which isn’t typically
the case. Normally, the number density of stars in the galaxy decreases with distance from the galactic center, but in this
problem, we’re probably considering a region where the distribution follows this specific law. So, putting it all together, the
number of stars per unit distance (r) is proportional to rˆ4.
</think>\boxed{rˆ4}
Token #: 1952
Learn to Stop: Okay, so I have this problem where the number of stars varies with parallax as 1 over plx to the fifth power.
Hmm, I remember that parallax is related to distance. Let me think about how they’re connected., parallax (pl) is inversely
proportional to distance (d) ...... Therefore, the number of stars per unit distance (N(r)) is proportional to rˆ4 .
</think>\boxed{rˆ4}
Token #:1431
Dataset: GPQA-Diamond

Table 5: Examples from MATH-500 and GPQA-Diamond with responses from the original model and the Learn-to-
Stop method. The original model generates redundant reasoning steps after producing the correct answer (41 and
rˆ4), while the Learn-to-Stop method terminates reasoning earlier, resulting in a more concise response.
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