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ABSTRACT

Predictive maintenance (PdM) is critical for industrial reliability and cost-efficiency,
yet fragmented datasets, inconsistent evaluation protocols, and incompatible pre-
processing pipelines hinder progress. We introduce PDMBench, a standardized and
extensible platform for exploring and evaluating machine learning models on mul-
timodal time-series data across diverse industrial settings. PDMBench integrates
14 curated datasets spanning bearings, motors, gearboxes, and multi-component
systems, capturing real-world complexities such as irregular sampling, heteroge-
neous sensor modalities, and varying fault modes. To enable fair and reproducible
comparison, we design a unified preprocessing pipeline that normalizes signal qual-
ity, extracts consistent features, and standardizes input representations, bridging
the gap between models requiring handcrafted features and those operating on raw
sequences. The benchmark covers two core tasks, fault classification and remaining
useful life prediction, and includes 22 models ranging from traditional classifiers to
cutting-edge transformers. Models are evaluated across three dimensions: predic-
tion, uncertainty, and efficiency. The PDMBench web interface supports interactive
dataset exploration, model comparison, and diagnostic analysis. Experimental
results reveal no universal best model, with performance varying by dataset, task,
and component type, underscoring the importance of standardized benchmarking.
PDMBench enables rigorous, scalable, and interpretable research for real-world
predictive maintenance by aligning data, models, and metrics in a reproducible
platfor

1 INTRODUCTION

Predictive Maintenance (PdM) has become essential for reducing downtime and enhancing safety
across sectors such as manufacturing (Cinar et al.| (2020), energy Hamdan et al.| (2024), health-
care Manchadi et al.|(2023)), and transportation |Zhu et al.|(2019); |Kaparthi & Bumblauskas| (2020).
By leveraging sensor data and analytics, PAM enables early detection of equipment failures Ran et al.
(2019); |Coban et al.|(2018)); |(Gackowiec| (2019), supporting proactive interventions. Advances in the
Industrial Internet of Things (IloT) have accelerated this shift by enabling continuous, multi-sensor
monitoring via edge computing platforms Kanawaday & Sane|(2017)), leading to the widespread use
of machine learning (ML) and deep learning (DL) models for fault prediction. Two main modeling
paradigms now dominate the landscape: traditional ML methods that depend on handcrafted time-
and frequency-domain features Wang et al.| (2020); [Efeoglu & Tunal (2022); |/Abburi et al.| (2023));
Kaparthi & Bumblauskas (2020); Raza et al.|(2010), and DL models such as LSTMs and transformers
that learn hierarchical representations from raw signals |Li et al.| (2024)); [Wang et al.| (2024); |Chen
et al.| (2023); [Zhang et al.[ (2024b); [Wu et al.| (2023)); Liu et al.| (2022); Zhou et al.| (2022a); |[Liu
et al.| (2021a); |Wu et al.[(2021); Zhou et al.| (2021); |Kitaev et al.|(2020); Wang et al.|(2023)); |Zhang
et al.[(2023); Zhou et al.| (2022b)); |[Liu et al.| (2021b). Despite the success, PAM research remains
hindered by fragmented datasets, inconsistent pipelines, and incompatible evaluation metrics, which
compromise reproducibility and generalization Zhu et al.| (2019).

'The platform’s codebase is publicly available on GitHub at https://anonymous.4open,
science/r/PDMBenchmark—-C811/} and the dataset can be accessed athttps://huggingface.co/
submission096.


https://anonymous.4open.science/r/PDMBenchmark-C811/
https://anonymous.4open.science/r/PDMBenchmark-C811/
https://huggingface.co/submission096
https://huggingface.co/submission096
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Figure 1: Challenges and components in PAM research. Multimodal, irregular sensor data collected
under varying conditions feeds into core PdM tasks—fault diagnosis and RUL prediction, evaluated
by accuracy, uncertainty, and efficiency, with direct implications for maintenance planning, energy
use, and system health.

Many existing studies rely on isolated benchmarks such as CWRU [Smith & Randall (2015),
FEMTO [Nectoux et al] (20124), and Paderborn [Lessmeier et al.| (2016)), each with distinct pre-
processing and modeling assumptions. As a result, it is difficult to assess model robustness or
compare approaches fairly. Addressing this gap requires tackling three interrelated challenges: (C1)
Data complexity, as PAM data is multimodal, irregularly sampled, and sensitive to equipment type
and load conditions Zhang et al.[(2025); Jung et al.[(2023)); (C2) Model compatibility, since state-of-
the-art models must generalize across domains and sensor configurations [Hao et al.| (2020); Ding
(2022); and (C3) Human-machine collaboration, as domain experts often lack interpretability
tools to understand and trust model outputs Juodelyte et al.| (2022).

We introduce PDMBench, a standardized and extensible platform tailored to predictive maintenance.
It directly addresses these three challenges through a three-tier architecture (Figure[2). The Data Level
unifies 14 publicly available datasets covering bearings, motors, gearboxes, and multi-component
systems via consistent preprocessing and representation. The ML Level implements 19 diverse
models, from classical baselines to advanced transformers, within a unified training and evaluation
protocol. The User Level offers an interactive interface for exploring data, configuring models, and
interpreting results, supporting both researchers and practitioners.

Unlike existing benchmarks (e.g., M4 |De Santis et al.|(2023), UCR Balddn & Garcia-Gil| (2025)),
which target specific settings (e.g., univariate forecasting or anomaly detection), PDMBench reflects
the complexities of real-world PdM scenarios, irregular sampling, asynchronous modalities, fault het-
erogeneity, and deployment constraints Jimenez et al.|(2020). It bridges the gap between algorithmic
innovation and industrial reality.

Our contributions can be summarized as follows:

* A curated dataset suite spanning 14 datasets across fault types, sensor modalities, and operational
regimes.

* A unified toolbox for preprocessing, training, and evaluation across both handcrafted-feature and
end-to-end models.

* A comprehensive evaluation framework encompassing accuracy, uncertainty (e.g., ECE, NLL,
Brier Score), and efficiency (e.g., inference time, memory).

* An interactive web interface that supports explainability, model diagnosis, and practitioner
involvement.
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2 RELATED WORK

We organize related work across three main areas: predictive maintenance modeling, benchmark
datasets, evaluation frameworks, and interactive tools for interpretable diagnostics.

Predictive Maintenance and Modeling Paradigms. PdM aims to anticipate equipment failures
using sensor-derived signals, enabling proactive interventions in industrial settings|Zhu et al.[{(2019);
Ran et al|(2019). Traditional approaches rely on statistical techniques or decision trees Kaparthi &
Bumblauskas|(2020); [Wang et al.| (2020), but have limited scalability across heterogeneous machinery
and conditions. The rise of IloT has facilitated large-scale data collection [Kanawaday & Sane
(2017), allowing machine learning (ML) and deep learning (DL) models to flourish Efeoglu & Tuna
(2022); |Rivas et al.| (2020); [Li et al.| (2024). Recent DL advances include CNN-LSTM hybrids [Hao
et al.[(2020), contrastive pretraining Kong et al.| (2023), and transformer-based architectures such
as TimeXer |Wang et al.| (2024), TimeMixer |Zhang et al.| (2024b)), TimesNet|Wu et al.[(2023), and
FEDformer Zhou et al.|(2022a). Despite promising accuracy, many of these models struggle with
multimodal signals and domain shifts, necessitating benchmark-driven evaluation.

Benchmark Datasets and Evaluation Frameworks. PdM research heavily relies on a set of canoni-
cal datasets, particularly for bearing and motor fault diagnosis. These include CWRU |Smith & Randall
(2015), XJTU-SY [Lei et al.| (2019), FEMTO-PRONOSTIA Nectoux et al.|(2012b)), IMS [Sacerdoti
et al.| (2023), HUST Thuan & Hong|(2023)), and MFPT [for Machinery Failure Prevention Technology.
Datasets for gearboxes (e.g., UoC [Cao et al.| (2018), WT Planetary Gearbox [Liu et al.| (2023a)))
and multi-component systems (e.g., MAFAULDA |Laboratory of Rotating Machinery Diagnostics|
UFRJ|(2000), Microsoft Azure [Microsoftt) have also emerged. However, most prior studies use these
datasets in isolation with inconsistent preprocessing, segmentation, and evaluation metrics Jimenez
et al.| (2020); Kavasidis et al.|(2023), undermining fair comparison and generalization. Benchmarks
like M4 |De Santis et al|(2023)) and UCR [Baldan & Garcia-Gil (2025) address adjacent domains
(e.g., forecasting, anomaly detection), but lack the modality diversity and diagnostic realism needed
for PAM. Recent benchmarking efforts for time-series models (e.g., Autoformer Wu et al.| (2021)),
Informer|Zhou et al.|(2021)), Pyraformer |Liu et al.| (2021a), SCINet |Liu et al.|(2021b)), MICN |Wang
et al.[(2023))) have advanced model development, yet are not tailored for irregularly sampled, high-
dimensional sensor signals common in industrial applications. Moreover, newer architectures like
FiLM Zhou et al.| (2022b)), Crossformer Zhang et al.|(2023)), and iTransformer Liu et al.| (2023b)) em-
phasize long-range dependencies and frequency-aware modeling, but their deployment still requires
manual tuning and format alignment, which PDMBench addresses via a standardized pipeline.

Interpretable Interfaces and Human-AI Collaboration. While model performance remains a
focus, real-world deployment of PdM systems also hinges on interpretability and usability for domain
experts Manchadi et al.| (2023)). Few existing benchmarks offer tools to support human-in-the-
loop decision-making, despite growing recognition of its value in high-stakes applications such as
manufacturing and healthcare |Coban et al.| (2018)); Kavasidis et al.| (2023). PDMBench fills this
gap through an interactive visualization and diagnostic interface, enabling practitioners to explore
raw signals, analyze model attention, and perform comparative evaluations, advancing the goal of
trustworthy Al for maintenance.

In summary, while prior work has laid the foundation for PdAM modeling and dataset collection,
PDMBench provides the first unified platform that integrates diverse datasets, harmonized pipelines,
model baselines, and interpretability tools in a single reproducible and extensible platform, paving
the way for scalable and transparent PdM research.

3 PRELIMINARIES

We formalize the PAM problem setting by introducing key definitions central to PDMBench.

Definition 1 (Sensor Modality Time Series). Let X,,, = [z},,22,,...,27] € RT denote the

univariate time series collected from the m-th sensor modality, where each ', € R represents the
recorded value at time step t.

Definition 2 (Segment). A segment x € RM*Z is q fixed-length window of L consecutive time steps

extracted from a multimodal time series comprising M sensor modalities, where L < T.
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Definition 3 (PdM Dataset). A labeled dataset D = {(x;,y;)}¥., consists of N multimodal segments
x; € RMXL qnd their corresponding task-specific labels y; € Y.

Definition 4 (PdM Tasks). PDMBench supports two core predictive maintenance tasks:

* Fault Classification (CLF): A classification task Ty where each segment is mapped to a discrete
fault category. The label space is defined as Yy = {1,2, ..., K} for K unique fault classes.

* Remaining Useful Life Estimation (RUL): A regression task T, where each segment is mapped
to a continuous value y € R denoting the number of operational cycles remaining until failure.

Definition 5 (PAM Model). A PdM model is a function fy : RM*L — Y parameterized by 6, that
maps an input segment to a prediction corresponding to task T .

PDMBench aims to evaluate learning systems under a standardized and reproducible setting for
multimodal PdM data. Each benchmark instance is defined as a tuple (D, T, £), where D represents
a preprocessed dataset containing standardized segments and task-specific labels, 7 denotes the
downstream task to be performed, either fault classification (CLF) or remaining useful life estimation
(RUL), and & specifies the evaluation protocol, including the metrics used to assess model perfor-
mance. Models fy : x — § are trained to minimize task-specific loss functions £7(7,y), such
as cross-entropy for classification or mean squared error for RUL prediction. PDMBench further
evaluates each model’s robustness, calibration, and efficiency to facilitate fair and interpretable
comparisons across diverse tasks and datasets.

Problem 1. Multimodal Predictive Maintenance Benchmarking.
Given: A diverse collection of multivariate time series datasets {D; }'jjzl, where each D; comprises

multimodal signal segments x € RM*L and associated labels y € Y for task T € {CLF, RUL}.
Find: A unified evaluation suite for training and comparing models fy across all datasets and tasks,
under consistent preprocessing pipelines, segmentation strategies, and evaluation metrics.

3.1 GAPS IN EXISTING BENCHMARKS AND THE NEED FOR PDMBENCH

Fragmentation Across Datasets. PAM research has traditionally relied on domain-specific datasets,
particularly for rotating machinery components like bearings. Common benchmarks include
CWRU |Smith & Randall (2015)), Paderborn [Lessmeier et al.| (2016), XJTU-SY [Le1 et al.[(2019)),
FEMTO Nectoux et al.|(2012b), and HUST |Thuan & Hong|(2023)), with additional datasets from IMS

(IMS)), MFPT [for Machinery Failure Prevention Technology, and Ottawa |[Sehri & Dumond| (2023)).
Despite their utility, these datasets are used in isolation with inconsistent preprocessing, divergent
feature extraction, and incompatible metrics, limiting fair comparisons and generalizability Zhu et al.
(2019). They also differ in design: CWRU and Paderborn contain seeded faults under controlled con-
ditions, while PRONOSTIA and XJTU-SY capture natural degradation in run-to-failure experiments.
Beyond bearings, datasets focused on gearboxes|Zhang et al.|(2024a)) and induction motors [Treml
et al.| (2020) introduce further variation in failure types, sampling rates, and sensor modalities. This
heterogeneity, though valuable, poses a major challenge for building scalable, unified PdM solutions.

Barriers to Model Transferability. The rise of deep learning has introduced powerful architectures
for time series classification and forecasting, including CNNs, transformers, and hybrids. Models
such as TimeXer|Wang et al.|(2024), TimeMixer Zhang et al.|(2024b), TimesNet|Wu et al.| (2023)),
FEDformer Zhou et al.|(2022a), and others have achieved promising results in fault classification and
RUL prediction. However, many of these models are optimized for clean, regularly sampled, single-
modal data and do not naturally extend to the irregular, multimodal inputs common in industrial
PdM settings. Their deployment often depends on dataset-specific preprocessing, such as input
alignment or resampling, which compromises reproducibility. Furthermore, their high sensitivity to
hyperparameters and dependence on clean input distributions make them difficult to generalize across
datasets without extensive tuning. As a result, despite their architectural sophistication, the lack of a
standardized preprocessing and evaluation platform continues to hinder reliable benchmarking and
model deployment in PAM applications.

PDMBench: A Structured Solution for Real-World PdM. To address these limitations, we propose
PDMBench, a standardized and extensible benchmarking platform for predictive maintenance research
in real-world industrial contexts. Built upon the foundations introduced in Section 3] PDMBench
is designed to systematically address the three core challenges identified in the Introduction: data
complexity, model compatibility, and the need for effective human-AlI collaboration. PDMBench
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PDMBench: A Standardized Platform for Predictive
Maintenance Research
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Figure 2: PDMBench System Design. The platform integrates heterogeneous sensor data at the
Data Level through standardized preprocessing and representation. The ML Level enables fair model
comparison through unified training and multi-perspective evaluation. The User Level provides a
highly interactive interface for visualization, configuration, and interpretability, fostering human-Al
synergy in PAM decision-making.

is structured around a three-dimensional platform: (1) Data Level: Unifies heterogeneous sensor
signals through standardized preprocessing and representation strategies; (2) ML Level: Supports a
wide range of traditional and deep learning models, with consistent training, tuning, and evaluation
protocols; (3) User Level: Provides interactive, interpretable tooling that enables practitioners
and researchers to visualize signals, interpret model behaviors, and explore comparative results.
Formally, each benchmark instance is represented as PDM(D, P, £), where D denotes the dataset
collection, P the unified preprocessing pipeline, and £ the evaluation suite. As illustrated in Figure[2]
PDMBench is designed to reflect the practical complexities of industrial PdM, including irregular
sampling, asynchronous modalities, and diverse fault modes, while supporting rigorous, reproducible
experimentation across a wide range of models and tasks.

4 PDMBENCH DEVELOPMENT

To systematically address the three foundational challenges in predictive maintenance, data complexity
(C1), model compatibility (C2), and human-machine collaboration (C3), we present PDMBench,
a principled multi-level benchmarking platform that unifies data, models, and user interaction. Its
architecture is composed of three tightly coupled layers: a data harmonization layer for standardized
preprocessing, a model benchmarking layer with reproducible training protocols, and an interactive
user interface that promotes interpretability and collaborative exploration.

4.1 DATA LEVEL: HARMONIZING HETEROGENEOUS SENSOR STREAMS

The real-world landscape of predictive maintenance is characterized by extraordinary heterogeneity.
Sensor modalities vary significantly across applications, ranging from vibration and current to
temperature, acoustic signals, and telemetry logs, and are recorded at sampling frequencies that
span several orders of magnitude. Additionally, fault patterns differ by component type, and data
collection conditions vary between controlled laboratory setups and real-world deployments. To
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manage this complexity, PDMBench integrates 14 publicly available datasets categorized across four
major mechanical subsystems: bearings, motors, gearboxes, and multi-component systems.

Bearing fault datasets include: CWRU Smith & Randall| (2015), FEMTO [Nectoux et al.| (2012b)),
HUST |Thuan & Hong| (2023), IMS | (IMS)), MFPT |for Machinery Failure Prevention Technology,
Mendeley Bearing |[Kechik et al.| (2020), Paderborn [Lessmeier et al.|(2016), and XJTU-SY |Lei et al.
(2019). These datasets span both fault classification and run-to-failure RUL prediction settings,
covering vibration signals at sampling rates ranging from 9.6 kHz to 97.6 kHz.

Motor fault datasets include two sources: the Electric Motor dataset|Sehri & Dumond| (2023)), which
features multi-sensor recordings at 42 kHz, and the Rotor Broken Bar dataset [Treml et al.| (2020)),
focused on current signal faults in three-phase induction motors, sampled at 50 kHz. These datasets
reflect the high-frequency and low signal-to-noise characteristics common to PdM diagnostics.

Gearbox fault datasets include the UConn Gearbox |Cao et al.[(2018)), and WT Planetary Gearbox Liu
et al.|(2023a). Each captures degradation patterns under different load conditions and sensing setups,
contributing critical diversity to the evaluation of mechanical fault generalization.

Multi-component system datasets include MAFAULDA |Laboratory of Rotating Machinery Diag-
nostics, UFRJ|(2000), a synthetic testbed simulating fault types across components using vibration
signals, and the Microsoft Azure dataset [Microsoft, which contains telemetry, sensor logs, and
event-based RUL annotations sampled at hourly intervals. These datasets extend the benchmark to
cover industrial-scale monitoring systems involving asynchronous modalities.

To ensure comparability across this diverse collection, PDMBench implements a task and model-
specific preprocessing pipeline. For each baseline, the preprocessing method is selected either
from the original paper or based on the accuracy performance. These preprocessing steps include
normalization, segmentation, and other baseline-specific preprocessing steps. Particularly, all raw
signals are normalized to zero mean and unit variance to mitigate differences arising from sensor
calibration and mounting conditions. Signals are then segmented into fixed-length non-overlapping
windows, enabling consistent input dimensions across models. However, the fixed-length non-
overlapping window is determined based on the performance of each baseline on each benchmark. For
traditional machine learning methods, we extract handcrafted features spanning the time, frequency,
and envelope domains. All datasets are reformatted into structured triplets (X;, y;, m;), where X;
denotes the raw or feature-extracted segment, y; is the task-specific label, and m; encodes contextual
metadata. This abstraction ensures consistent interfacing with diverse model architectures while
preserving diagnostic fidelity. Due to the high computation cost for all the baselines on all benchmarks,
we report the results only on one fixed set of seeds. This ensures that all the baseline methods share
the same training, validation, and test samples. And we chronologically split the whole dataset into
training(60%), validation(10%), and test(30%) samples to ensure there is no data leakage. For the
details about the preprocessing parameters, please refer to our GitHub.

4.2 ML LEVEL: BENCHMARK MODELS AND STANDARDIZED EVALUATION

To facilitate comprehensive and reproducible evaluation, PDMBench includes 22 time-series models
drawn from a broad spectrum of modeling paradigms. These range from traditional baselines to
state-of-the-art transformer variants, each selected for its relevance to time-series classification and
forecasting in industrial contexts.

Traditional baselines such as MLP Bengio et al| (2003), XGBoost (Chen & Guestrin| (2016),
SVM |Hearst et al.| (1998), LSTM |Graves & Graves| (2012), and DLinear [Zeng et al.| (2023)) offer
global feedforward and decomposable linear processing capabilities, respectively. Transformer-based
architectures include Autoformer Wu et al.| (2021)), which employs auto-correlation mechanisms for
long-term forecasting, and Crossformer Zhang et al.|(2023)), designed to capture cross-dimensional
dependencies. FEDformer|Zhou et al.|(2022a)) and FiILM Zhou et al.| (2022b)) use frequency-domain
representations, while Informer Zhou et al.| (2021)) introduces sparse attention for efficiency. Other
models include the iTransformer Liu et al.|(2023b)), tailored for multivariate sequences via inverted
attention, and the Reformer |Kitaev et al.| (2020), which enables efficient learning on extremely long
sequences using locality-sensitive hashing. Hybrid and hierarchical models include TimesNet Wu
et al.[(2023)), combining CNNs and transformers for 2D-periodicity, and SCINet Liu et al.| (2021b)),
which applies sample interaction in a hierarchical setting. Recent architectures with strong multiscale
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Figure 3: PDMBench Interactive Interface . The platform includes (M1) dataset visualization with
time and frequency plots, (M2) model configuration and training diagnostics, and (M3) evaluation
dashboards with sortable leaderboards and interpretability tools. Together, these modules support
end-to-end experimentation and decision support.
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properties include TimeXer Wang et al.| (2024), TimeMixer[Zhang et al.| (2024b)), and MICN [Wang
et al|(2023), while lightweight yet expressive learners such as PatchTST Nie et al.| (2023)), PAttn Tan

et al.| (2024), and FreTS (2023)) utilize patch-based and spectral-domain designs.

All models are trained under a standardized pipeline with consistent dataset splits, preprocessing,
hyperparameter search, and early stopping strategies. To assess real-world applicability, models
are evaluated along three axes: predictive performance (accuracy, F1, RMSE, MAE), uncertainty
calibration (ECE, NLL, Brier Score), and computational efficiency (inference time, memory usage).
This triadic evaluation protocol ensures a nuanced comparison that captures not only task-specific
accuracy but also reliability and deployability in practical settings.

4.3 USER LEVEL: INTERACTIVE AND INTERPRETABLE Al INTERFACE

Most prior PAM benchmarks focus solely on model accuracy, offering little support for usability
or interpretability, two critical factors in real-world decision-making environments. In contrast,
PDMBench introduces a full-featured, web-based interface that transforms benchmarking into an
accessible, explainable, and collaborative process. As shown in Figure[3] the platform is composed
of three interactive modules designed to support exploration, configuration, and evaluation.

The Exploration Module (M1) enables users to visually examine datasets before modeling. It
provides summaries of key dataset attributes, class distributions, and sensor properties, alongside
time-domain and frequency-domain signal plots. Users can interactively filter by class, visualize
dominant frequency components, and assess data quality through signal traces, facilitating intuition-
building for domain experts.

The Configuration Module (M2) serves as an interface for model selection and training. It allows
users to choose from a range of models, tune hyperparameters such as batch size and learning rate,
and monitor real-time training diagnostics, including loss curves and attention maps. This modular
design enables both novice and expert users to customize experiments while ensuring reproducibility.

The Evaluation Module (M3) functions as a comprehensive leaderboard and diagnostic hub. It
presents a comparative view of models ranked by task-specific performance, calibration quality, and
efficiency. Users can sort, filter, and analyze results across datasets, drill into model-specific metrics,
and explore visual explanations such as attention heatmaps and feature importance distributions. This
transparency builds trust and enables grounded interpretation in high-stakes settings.

Through its combination of standardized evaluation metrics, comprehensive analysis, and interactive
visualization tools, PDMBench enables systematic model comparison and provides the transparency
needed for confident deployment of ML models in industrial PAM applications.
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5 RESULTS AND ANALYSIS

Dataset Coverage and Variability. Our evaluation spans 14 datasets covering four major cate-
gories: bearing systems (Paderborn, HUST, CWRU, XJTU-SY, FEMTO, IMS, MFPT, Mendeley),
motor faults (Electric Motor, Rotor Broken Bar), gearbox assemblies (UConn, WT Planetary), and
multi-component environments (MAFAULDA, Microsoft Azure). This broad coverage surfaces
critical variation in data fidelity, operating conditions, and signal complexity. For instance, models
consistently achieve high F1 scores on bearing datasets, with HUST and FEMTO nearing perfect
classification, while performance on motor datasets remains far more inconsistent. Electric Motor, in
particular, exposes weaknesses in many architectures, likely due to low signal-to-noise ratios and
less structured failure patterns. These disparities underscore the need for fine-grained, domain-aware
evaluation strategies. A model that excels in controlled bearing environments may not generalize
to telemetry-rich, asynchronous systems like Azure. PDMBench surfaces these cross-domain gen-
eralization gaps and offers a foundation for future research in adaptive model transfer, fault-type
conditioning, and sensor-specific tuning.
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Figure 4: Model Performance across Component Categories. F1 scores for fault classification
tasks are reported separately for bearing, motor, gearbox, and multi-component datasets. Models
such as TimesNet and PatchTST demonstrate strong generalization in structured environments (e.g.,
bearings), while others, such as DLinear, show consistent robustness despite minimal complexity.

Model-Level Insights: Accuracy is Not Uniform. As shown in Figure[d] no single model dominates
across all component types. Transformer-based models such as TimesNet and Crossformer lead on
several bearing and gearbox datasets, showcasing their strength in long-range dependency modeling.
Yet, simpler architectures like DLinear consistently maintain respectable F1 scores across diverse
settings, despite having only a fraction of the parameters, highlighting the advantage of inductive bias
in capturing core fault signals. Interestingly, patch-based models like PatchTST and PAttn exhibit
strong performance under constrained or low-resource settings. Their structured input representations
appear particularly effective in datasets with limited training instances, such as Rotor Broken Bar.
This suggests that localized pattern aggregation may be more reliable than global attention in sparse
environments, opening pathways for further exploration in hybrid localized-global transformer
designs for industrial time series.
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Efficiency and Calibration: Tradeoffs and Deployment Readiness. Figure [5] highlights two
critical dimensions for deployment: uncertainty calibration and computational efficiency. Models
vary dramatically in how well their predicted probabilities reflect actual confidence. For example,
while Pyraformer and SCINet yield high classification accuracy on several datasets, they suffer from
poor calibration (ECE values exceeding 0.4), making their output risky in safety-critical contexts.
On the other hand, models like PAttn and FILM achieve more stable confidence alignment, albeit
with moderate predictive performance. Efficiency metrics show equally stark contrasts. TimesNet
and Reformer incur large computational overheads, requiring over 200 seconds per epoch in some
datasets, while DLinear completes inference in under 1 second. Importantly, these cost differences do
not translate directly into accuracy gains. In fact, several models strike a favorable balance: PatchTST
and MICN exhibit relatively low inference costs and strong calibration, suggesting their suitability
for resource-constrained real-time systems. These observations point to a need for multi-objective
optimization platforms in PdM research, where predictive performance is balanced against reliability
and deployability. Future work might focus on model pruning, calibration-aware training, and
early-exit strategies tailored for maintenance environments with edge or cloud-based compute.
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Figure 5: Model Calibration and Efficiency. Left: Expected Calibration Error (ECE) across models
reveals large variability in predictive uncertainty alignment. Right: Inference time per epoch (log
scale) illustrates computational cost disparities. Some models, like PatchTST and DLinear, strike a
compelling balance between speed and reliability.

Taken together, our results highlight that PdAM model selection must be context-specific. Models
like TimesNet or Crossformer may be optimal in data-rich environments focused on bearings and
gearboxes. Conversely, scenarios involving asynchronous, telemetry-driven monitoring, such as
Azure or MAFAULDA, may benefit more from robust, interpretable, and efficient learners like
DLinear or PatchTST. Most importantly, the wide performance variability across datasets, tasks, and
metrics reinforces the value of PDMBench as a reproducible, extensible testbed. Aligning model
performance with calibration, efficiency, and data regime enables practitioners to select models that
meet not only accuracy goals but also operational constraints and risk tolerances. This benchmarking
platform opens new directions in adaptive model deployment, curriculum learning across component
types, and dynamic architecture selection in industrial Al.

6 CONCLUSION

We present PDMBench, a standardized platform that addresses key challenges in PdM research:
fragmented datasets, inconsistent evaluation, and limited human-in-the-loop support. It unifies 14
real-world datasets, 22 time-series models, and a triadic evaluation framework covering accuracy,
uncertainty, and efficiency. An interactive web interface further supports reproducible and transparent
experimentation. Empirical results show that transformer-based models perform well in structured
settings but often lack calibration and efficiency. Lightweight models offer reliable performance
under noisy or low-resource conditions, while patch-based architectures provide a promising balance
of robustness and deployability. No single model performs best across tasks or domains, underscoring
the need for context-aware model selection, precisely the goal of PDMBench.
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REPRODUCIBILITY STATEMENT

We provide material to ensure that our work is fully reproducible. In particular, we provide detailed
justification for our unified multi-modal input approach and evaluation framework in Appendix
we include comprehensive descriptions of all 14 datasets and 22 baseline models in Appendix [C]
along with complete experimental results covering accuracy, calibration, and efficiency metrics in
Appendix [D] The preprocessing pipeline for converting heterogeneous sensor streams into stan-
dardized representations is detailed in Section[d.1] with algorithmic specifications provided in the
supplementary materials. User interface documentation and platform usage guidelines are outlined
in Appendix [El An anonymized version of the code used to reproduce our results can be found at
https://anonymous.4open.science/r/PDMBenchmark-C811/. All datasets used in
our experiments are publicly accessible at https://huggingface.co/submission096.
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A APPENDIX CONTENT

* Appendix B: Justification and implications for unified multimodal input representation in
PDM datasets.

» Appendix C: Detailed dataset descriptions (14 datasets across bearings, motors, gearboxes,
and multi-component systems) and comprehensive baseline model specifications (22 time-
series models ranging from traditional ML to state-of-the-art transformers).

* Appendix D: Complete experimental results tables showing performance of all baselines
across all datasets, covering accuracy analysis (ACC, Fl-macro, F1-weighted), calibra-
tion analysis (ECE, NLL, Brier), efficiency analysis (training time, parameter count), and
explanation analysis (SHAP).

» Appendix E: User interface documentation and platform usage guidelines, including screen-
shots of the data visualization, model training, and result analysis components of the
PDMBench platform.

B UNIFYING MULTI-MODAL INPUTS: JUSTIFICATION AND IMPLICATIONS

A common concern in multimodal predictive maintenance is the apparent mismatch between the
diversity of sensor modalities in the raw data and the predominance of single-modal or unimodal
model architectures in evaluation. PDMBENCH directly addresses this challenge through a principled
unification strategy at the data preprocessing stage, converting heterogeneous sensor streams into
a standardized segment representation, which enables consistent benchmarking across models,
regardless of their input assumptions.

Multi-Modal to Single Representation Transformation. Each raw dataset D; comprises time
series from multiple sensor modalities { X, }M_, , where modalities can be vibration, current, tem-
perature, speed, and torque signals, often sampled asynchronously and with varying fidelity. Through
our harmonized preprocessing pipeline P, these disparate modalities are co-processed into aligned,
fixed-length, normalized segments = € RM>*%_ This transformation ensures that all downstream
models operate on a consistent segment format, regardless of whether they were originally designed
for unimodal or multimodal inputs. This design choice does not discard modality-specific infor-
mation but rather encapsulates it within a unified segment that preserves cross-modal correlations
through temporal synchronization, statistical normalization, and metadata encoding. Critically, the
standardized input representation supports models ranging from handcrafted-feature baselines (e.g.,
SVM, XGBoost) to complex sequence learners (e.g., TimesNet, Crossformer) without requiring
architecture-level multimodal fusion layers, which are often brittle, opaque, and hard to calibrate
across diverse datasets.

Why Not Use Multi-Modal Architectures Directly? PDMBENCH prioritizes reproducibility,
generalizability, and fair comparison. Many multimodal deep learning models make strong assump-
tions about modality structure (e.g., aligned sampling, explicit modality priors), which do not hold
across the 14 datasets we benchmark. Moreover, such models often require custom fusion schemes
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and per-dataset tuning, which undermines the goal of standardized evaluation. By converting all
datasets into a shared representational form, we decouple benchmarking from modality-specific
model engineering, allowing us to fairly assess model robustness across varying sensor configurations
without conflating performance with fusion strategy.

Why the Unified Representation Remains Modality-Agnostic. The unified representation z €
RMX*L treats all sensor streams as equal contributors to the input segment. Because the pipeline
applies the same preprocessing logic (e.g., z-normalization, fixed-window segmentation) across all
modalities, no sensor type is privileged in model input. Models trained on this representation learn to
extract features based on the predictive value of each modality for the target task (CLF or RUL),
not based on arbitrary encoding order or signal type. This approach enables flexible scalability:
new modalities can be added to the representation by extending the modality dimension M, without
changing the model or retraining fusion components. It also avoids hand-tuned feature hierarchies
that might bias models toward modalities with high signal-to-noise ratios or clearer patterns (e.g.,
vibration over temperature). The modality-agnostic nature of the segment ensures that performance
gains are attributed to true cross-modal learning and not to structural biases in the model or pipeline.

C DATASETS AND BASELINES

C.1 DATASETS
C.1.1 BEARINGS DATASETS

Bearings are among the most failure-prone components in rotating machinery, and thus have been the
focus of numerous predictive maintenance studies.

Paderborn [Lessmeier et al.|(2016): This dataset features both artificially induced and naturally
degraded bearing faults. It includes multimodal sensor signals such as vibration, motor current, speed,
and torque, offering a rich testbed for sensor fusion and fault transferability analysis.

HUST [Thuan & Hong| (2023)): Collected under varying speeds and loads, this dataset captures
vibration signals from five bearing types and six fault categories, including inner/outer race and ball
defects. It is ideal for evaluating generalization under diverse operating conditions.

IMS: Created by the Center for Intelligent Maintenance Systems, it documents full bearing life cycles
under constant speed/load settings. The dataset supports RUL prediction and anomaly detection with
high temporal resolution.

CWRU Smith & Randall| (2015): A widely used standard, this dataset includes vibration signals
from bearings with precisely machined faults of varying sizes on different components (ball, inner,
outer race), collected at multiple loads and speeds.

XJTU-SY [Lei et al.|(2019): Capturing run-to-failure data under three load-speed settings, this dataset
includes five fault types. The consistent degradation trajectories and large size make it suitable for
both fault classification and RUL estimation.

MFPT [for Machinery Failure Prevention Technology: Provided by the Society for Machinery Failure
Prevention Technology, this dataset features vibration measurements of bearings with outer/inner
race defects under varying load conditions and extremely high sampling rates (97.656 kHz), enabling
fine-grained frequency-domain analysis.

FEMTO |Nectoux et al.| (2012b)): Designed for prognostics, this dataset comprises horizontal and
vertical vibration measurements of bearings run to failure under three operational scenarios, with
partial trajectory truncation to simulate real-world prediction settings.

Mendeley Bearing Kechik et al.|(2020): This dataset addresses the challenge of fault detection under
non-stationary conditions, featuring vibration signals from bearings tested across a wide speed range
(600-1800 RPM).

Electric Motor Vibrations |Sehri & Dumond| (2023): Includes both vibration and acoustic signals
collected under constant and variable speeds. It enables multimodal analysis of motor anomalies,
including eccentricity and imbalance.
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Rotor Broken Bar Treml et al.|(2020): Focuses on broken rotor bar faults in induction motors. It
provides motor current data under varying fault severities (1-4 broken bars), facilitating research in
motor current signature analysis (MCSA).

C.1.2 GEARBOX FAULT DATASETS

Gearboxes involve complex kinematics and multiple interacting components, requiring specialized
datasets.

Planetary Gearbox|Liu et al.|(2023a): Vibration data collected from a planetary gearbox with diverse
fault types (e.g., sun gear crack, planet spalling). The non-trivial structure of planetary gear systems
makes this dataset valuable for studying fault localization.

Gearbox UoC|Cao et al.|(2018): Developed at the University of Connecticut, this dataset includes
vibration and temperature signals from gearboxes exhibiting various gear and bearing faults, processed
with FFT to yield frequency-domain features.

C.1.3 MULTI-COMPONENT SYSTEM DATASETS

These datasets integrate multiple fault types and sensor modalities, reflecting the systemic complexity
of real industrial environments.

MAFAULDA [Laboratory of Rotating Machinery Diagnostics, UFRJ|(2000): A large-scale dataset
from a machinery fault simulator featuring 13 fault conditions including imbalance, misalignment, and
shaft cracks. It includes vibration, acoustic, and speed signals, enabling multi-sensor and multi-class
analysis.

Microsoft Azure Microsoft: A synthetic yet industrial-grade dataset with telemetry data (e.g., voltage,
pressure, vibration) and system logs, capturing component-level and system-level failures. It supports
holistic end-to-end PdM model development.

Table 1: Comparison of predictive maintenance datasets. The datasets are categorized by components
(bearings, motors, gearboxes, and multicomponent fault systems) and designed for three main tasks:
fault diagnosis (identifying specific fault types), and RUL prediction (estimating time to failure).

Dataset Design Target Property Sampling Rate
CWRU Fault diagnosis Vibration 12 kHz / 48 kHz
XJTU-SY RUL prediction & Fault diagnosis Vibration 25.6 kHz

IMS RUL prediction Vibration 20.48 kHz
Paderborn Fault diagnosis Multiple sensors 8 kHz / 16 kHz
FEMTO RUL prediction Multiple sensors 25.6 kHz
MFPT Fault diagnosis Vibration 97.6 kHz
HUST Fault diagnosis Vibration 51.2 kHz
Electric Motor Fault diagnosis Multiple sensors 42 kHz

Rotor Broken Bar Fault diagnosis Current 50 kHz

WT Planetary Gearbox Fault diagnosis Vibration 48 kHz

CQU Gearbox Fault diagnosis Multiple sensors 20 kHz

UConn Gearbox Fault diagnosis Vibration 20 kHz
MAFAULDA Fault diagnosis Multiple sensors 51.2 kHz
Mendeley Bearing Fault diagnosis Vibration 9.6 kHz
Microsoft Azure RUL prediction Telemetry, Logs Hourly

C.2 BASELINES

To facilitate comprehensive and reproducible evaluation, PDMBench includes 22 time-series models
drawn from a broad spectrum of modeling paradigms. These range from traditional baselines to
state-of-the-art transformer variants, each selected for its relevance to time-series classification and
forecasting in industrial contexts.

Traditional baselines such as MLP Bengio et al,| (2003), XGBoost (Chen & Guestrin| (2016)),
SVM |Hearst et al.|(1998), LSTM |Graves & Graves| (2012), and DLinear |[Zeng et al.| (2023) offer
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global feedforward and decomposable linear processing capabilities, respectively. Transformer-based
architectures include Autoformer|Wu et al.| (2021}, which employs auto-correlation mechanisms for
long-term forecasting, and Crossformer Zhang et al.|(2023)), designed to capture cross-dimensional
dependencies. FEDformer Zhou et al.|(2022a) and FiLM |Zhou et al.|(2022b) use frequency-domain
representations, while Informer Zhou et al.|(2021)) introduces sparse attention for efficiency. Other
models include the iTransformer |Liu et al.|(2023b)), tailored for multivariate sequences via inverted
attention, and the Reformer Kitaev et al.| (2020), which enables efficient learning on extremely long
sequences using locality-sensitive hashing. Hybrid and hierarchical models include TimesNet Wu
et al.| (2023)), combining CNNs and transformers for 2D-periodicity, and SCINet |Liu et al.|(2021b),
which applies sample interaction in a hierarchical setting. Recent architectures with strong multiscale
properties include TimeXer Wang et al.|(2024), TimeMixer|Zhang et al.|(2024b)), and MICN Wang
et al.[(2023), while lightweight yet expressive learners such as PatchTST Nie et al.| (2023)), PAttn Tan
et al.|(2024), and FreTS Y1 et al.|(2023) utilize patch-based and spectral-domain designs.

Table 2: An overview of comparison methods for PAM applications. TS for time series.

Model Primary Target Temporal HandlingData Properties Backbone
Autoformer Long-term series Auto-correlation ~ Decomposition Transformer
Crossformer Multivariate TS Cross-dimension  Inter-variable Transformer
DLinear Decomposable TS Separate processing Linear MLP
FEDformer Long-term TS Frequency enhanced Decomposable Transformer
FiLM Long-term TS Frequency improved Memory model Legendre
FreTS Cyclic TS Frequency-domain Spectral MLP
Informer Long sequence ProbSparse Efficient attention Transformer
iTransformer Multivariate TS Inverted attention ~ Variable-focused Transformer
MICN Long-term TS Multi-scale Local+global context GNN

MLP General N/A Global Feedforward
N-TransformerNon-stationary TS Adaptive Series decomposition Transformer
PAttn TS Patch-based Attention balance Transformer
PatchTST Long-term sequences Patched Channel independenceTransformer
Pyraformer  Long-range TS Pyramidal Multi-resolution Attention
Reformer Extremely long sequencesLSH attention Memory-efficient Transformer
SCINet General TS Hierarchical Sample interaction =~ CNN
TimeMixer  Multivariate TS Decomposable Multiscale MLP
TimesNet General TS 2D-variation Multi-periodicity CNN-+Transformer
TimeXer TS with exog. variables Multi-resolution Global attention Transformer

Table 3: The statistics of comparison methods for PAM applications. NT for Nonstationary Trans-
former. TS for time series. P for Prediction

Model Task Primary Target Temporal Handling Data Properties Backbone
MLP P General N/A Global Feedforward
TimeXer P TS with exog. variables ~Multi-resolution Global attention Transformer
TimeMixer P Multivariate TS Decomposable Multiscale MLP
TimesNet P General TS 2D-variation Multi-periodicity CNN+Transformer
DLinear P Decomposable TS Separate processing Linear MLP

NT P  Non-stationary TS Adaptive Series decomposition Transformer
FEDformer P Long-term TS Frequency enhanced Decomposable Transformer
Pyraformer P Long-range TS Pyramidal Multi-resolution Attention
Autoformer P Long-term TS Auto-correlation Decomposition Transformer
Informer P Long sequence ProbSparse Efficient attention Transformer
Reformer P Extremely long sequences LSH attention Memory-efficient Transformer
MICN P  Long-term TS Multi-scale Local+global context GNN
Crossformer P Multivariate TS Cross-dimension Inter-variable Transformer
FiLM P  Long-term TS Frequency improved Memory model Legendre
SCINet P General TS Hierarchical Sample interaction CNN
PatchTST P  Long-term sequences Patched Channel independence Transformer
iTransformer P Multivariate TS Inverted attention ~ Variable-focused Transformer
PAttn P TS Patch-based Attention balance Transformer
FreTS P  Cyclic TS Frequency-domain Spectral MLP
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D ADDITIONAL EXPERIMENT RESULTS

D.1 EXPERIMENTAL SETUP

To ensure a fair and consistent comparison across all models, we developed a unified evaluation
framework encompassing standardized data preprocessing procedures and consistent evaluation
metrics. All models are trained and evaluated on the same training(60%), validation(10%), and test
datasets(30%). Each time series is segmented into smaller time windows to facilitate analysis and
accommodate device memory constraints. In addition to performing a conventional random split,
we first group time segments by bearing number and assign all segments from the same bearing to a
single dataset (training, validation, or test). This strategy is crucial for preventing data leakage, as
randomly splitting individual time segments could result in similar patterns, originating from the
same bearing across different datasets.

D.2 EVALUATION

In predictive maintenance (PdM), various tasks are commonly addressed, including classification
(CLF) and remaining useful life estimation (RUL), the latter being a regression problem. For the
CLF task, we adopt widely used evaluation metrics such as accuracy and F1 score to assess model
performance. In contrast, the RUL task requires running bearings to failure to observe their complete
lifespans. These time spans must then be normalized into percentages, which often introduces
significant noise and variability into the data.

To address this challenge and ensure consistency in our benchmarks, we reformulate the RUL task as a
classification problem. Specifically, we divide the full RUL timeline into 10 discrete intervals and train
models to predict the interval (i.e., stage of degradation) a bearing belongs to. This transformation
enables the use of standard classification metrics—such as accuracy and F1 score—for evaluating
RUL predictions.

In addition to these standard performance metrics, we also incorporate calibration metrics, including
Expected Calibration Error (ECE), Negative Log-Likelihood (NLL), and Brier score. These metrics
are critical for real-world applications, where end users require not only accurate predictions but also
reliable estimates of the model’s confidence.

D.3 QUANTITATIVE ANALYSIS

In this section, we present the experimental results across all 14 datasets using 20 different models.
The results are summarized in Table [] through Table Each table reports three categories of
evaluation metrics to comprehensively assess model performance on each dataset: (1) Accuracy
metrics — including Accuracy and F1 score; (2) Calibration metrics — including Expected Calibration
Error (ECE), Negative Log-Likelihood (NLL), and Brier score; (3) Efficiency metrics — including
training time and parameter size.

D.3.1 ACCURACY ANALYSIS

In this section, we focus on the analysis of accuracy metrics. Our analysis is conducted from two
perspectives: (1) Dataset-wise analysis, where we examine the performance trends across different
datasets and discuss the specific challenges each dataset poses for predictive maintenance (PdM); (2)
Model-wise analysis, where we evaluate the performance of each model across all datasets to identify
overall strengths, weaknesses, and consistency.

Analysis from Datasets Perspective. From the experimental results, we observe that the difficulty
level varies significantly across datasets. Approximately half of the datasets—such as Paderborn,
FEMTO, Azure, Rotor Broken Motor, Planetary, and MAFAULDA—demonstrate relatively higher
difficulty, as the best-performing models achieve accuracies below 0.80. This indicates considerable
room for improvement and highlights these datasets as valuable benchmarks for advancing model
performance. In contrast, datasets like Mendeley, UoC, MFPT, Electric Motor, and IMS exhibit high
classification performance, with accuracies exceeding 0.95. While these results reflect the maturity
of model performance on these datasets, they also suggest diminishing returns for further research, as
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performance gains may be marginal. The remaining datasets—XJTU, CWRU, and HUST—achieve
around 0.90 accuracy, indicating moderate difficulty and continued relevance for further exploration.

These observations lead to two key insights: (i) There is a strong need to develop and release more
challenging and diverse PdM datasets to stimulate progress in the field. Harder datasets can better
differentiate model capabilities and promote deeper understanding of PAM problems. (ii) Despite the
time and effort required to develop new datasets, our findings show that at least 9 out of 14 existing
datasets still present meaningful challenges, making them valuable resources for ongoing research
and performance enhancement.

Analysis from Models Perspective. Our results show that, overall, transformer-based state-of-the-art
time series models outperform traditional machine learning approaches such as SVM and XGBoost.
Similarly, vanilla deep learning models—such as MLP and LSTM—tend to underperform compared
to transformer-based architectures across most datasets.

In relatively easy datasets (e.g., Mendeley, UoC, MFPT, Electric Motor, and IMS), traditional machine
learning models achieve accuracy levels comparable to those of transformer-based models. However,
despite their smaller number of trainable parameters, these models generally require longer training
times to reach convergence, resulting in comparable computational costs to some transformer-based
models.

Importantly, we observe that a larger model size does not necessarily translate to better performance.
For instance, on the Paderborn dataset (Table E]), TimesNet, with nearly 30 times more parameters
than Crossformer, fails to achieve superior performance. This highlights the importance of model
architecture and data suitability over mere parameter count.

Additionally, we also observe that different segmentations will end in various performances. Here,
we provide a case study using the XJTU dataset as shown in Table [T8] In general, we find that
longer segmentation ensures better accuracy performance. This is reasonable as longer segmentation
brings more information for the model to capture. However, longer segmentation ends with more
computation cost, which encourages a balance between accuracy and computation cost.

D.3.2 CALIBRATION ANALYSIS

In this section, we analyze the calibration performance of each model across the datasets. Our
analysis is conducted from two complementary perspectives: (1) analysis through datasets, where
we compare the calibration results for each dataset to understand how data characteristics influence
model confidence. (2) analysis through models, where we assess the overall calibration quality of
each model and examine how different datasets affect their calibration behavior.

Analysis from Datasets Perspective. While model calibration is typically analyzed from the
perspective of model architectures, our study highlights the importance of evaluating calibration
performance from the dataset perspective, particularly in the predictive maintenance (PdM) domain.
For example, although models achieve high accuracy (often exceeding 0.95) on datasets such as
IMS, they exhibit poor calibration, indicating a mismatch between predicted probabilities and actual
outcomes.

This observation has significant implications for real-world deployment, where not only accuracy but
also confidence in predictions is critical. Poor calibration can lead to overconfident or misleading
predictions, which poses risks in high-stakes industrial applications. Our findings suggest that, even
for datasets where accuracy appears saturated, improving model calibration remains a valuable
and necessary direction for future research. This shift in focus can enhance the reliability and
trustworthiness of PAM systems in practical scenarios.

Analysis from Models Perspective. Our results reveal that model performance on calibration
metrics often differs from their performance on accuracy metrics. Some models that excel in
accuracy underperform in calibration. For instance, on the UoC dataset, the TimeMixer model
significantly outperforms iTransformer in terms of accuracy but yields worse results in terms of
Expected Calibration Error (ECE). This highlights that high accuracy does not necessarily imply
well-calibrated predictions.

Additionally, we observe that traditional machine learning models, which generally lag behind in accu-
racy, also perform poorly on calibration metrics such as ECE, NLL, and Brier score. These consistent
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shortcomings reinforce the argument that future research efforts should prioritize transformer-based
architectures, as they offer greater potential for both improved accuracy and better-calibrated predic-
tions.

D.3.3 EFFICIENCY ANALYSIS

In this section, we analyze the efficiency performance of each model across all datasets, focusing on
both time cost and parameter size.

Dataset-wise analysis. Our experimental results show that the same model can exhibit different time
costs depending on the dataset. Interestingly, even datasets that are relatively easy for the selected
models in terms of accuracy may still require longer training times to reach convergence. This
suggests that dataset complexity is not the sole factor influencing time efficiency—data structure and
feature characteristics also play a role.

Model-wise analysis. State-of-the-art transformer-based models typically have more parameters than
traditional machine learning models. However, in terms of training time, traditional models may
sometimes take longer to converge. This is likely due to their limited capacity for capturing complex
patterns, requiring more iterations to achieve optimal performance. Additionally, we observe that the
parameter size for each model remains relatively consistent across different datasets. This is expected,
as parameter size is primarily determined by the model architecture, with only minor variation due to
dataset-specific input feature dimensions.

Table 4: Paderborn dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1666  0.0991  0.0981 | 0.1310 1.4361 0.1937 | 34.3 1.0
XGB 0.2177 0.1904  0.2426 | 0.0774 1.4006 0.1894 | 40.0 236.6
MLP 0.4243 0.1748 0.2989 | 0.1566 1.3647 0.1848 | 0.6 477.1
LSTM 0.4289 0.2011  0.2585 | 0.1553 1.3233 0.1797 | 6.5 1924.3
TimeXer 0.3695 0.2639  0.3987 | 0.0438 1.3410 0.1817 | 4.0 695.2
TimeMixer 0.3710 0.2101  0.2844 | 0.0574 1.3437 0.1824 | 1.5 506.6
iTransformer | 0.4155 0.2957  0.4329 | 0.0787 13058 0.1772 | 0.9 475.1
PatchTST 0.4304 02165 03268 | 0.1256 1.3202 0.1791 | 14 419.2
TimesNet 0.4162 02645 0.3850 | 0.0249 1.2924 0.1746 | 122.7 56545.2
DLinear 04115 0.2386  0.3916 | 0.1447 1.3584 0.1840 | 0.9 723.6
NT 0.3435 0.2242  0.3201 | 0.0535 1.3569 0.1844 | 37.1 820.1
FEDformer 0.4212 02950 04193 | 0.0171 1.2887 0.1747 | 18.8 1301.0
Pyraformer 0.3800 0.1938  0.2950 | 0.0651 1.3294 0.1808 | 53.7 1341.3
Autoformer 0.3860 0.2648  0.3850 | 0.0651 1.3268 0.1804 | 30.8 703.1
Informer 0.4023 03468 0.3643 | 0.0956 1.3058 0.1775 | 7.4 908.9
Reformer 0.3568 0.1884  0.2812 | 0.0736 1.3580 0.1843 | 39.2 655.5
MICN 0.3820 0.2198  0.3211 | 0.0631 1.3391 0.1816 | 4.3 2560.4
Crossformer | 0.4251 0.2804  0.4243 | 0.0583 1.2862 0.1743 | 1.0 2814.5
FiLM 0.4484 02750  0.3536 | 0.1945 1.3793 0.1866 | 4.3 12585.3
SCINet 0.3689 0.2462  0.3809 | 0.0548 1.3375 0.1814 | 7.2 363.2
PAttn 0.4208 0.2325 0.3908 | 0.1159 1.3148 0.1785 | 3.5 165.4
FreTS 0.4203 0.2463 03910 | 0.1282 1.3229 0.1795 | 1.5 20034.4

D.3.4 EXPLANATION ANALYSIS

In this section, we present an explanatory analysis of model performance across different benchmarks.
To provide interpretability, we employ SHAP values [Lundberg & Lee|(2017), which attribute model
outputs to individual features. As a representative case study, we use the Paderborn dataset to
illustrate how our framework generates quantitative insights into both the how and why of model
predictions. This analysis not only clarifies the behavior of baseline models on benchmark datasets
but also supports deeper understanding and more informed development in the predictive maintenance
domain.
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Table 5: HUST dataset. NT for Nonstationary_Transformer. Fl-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1402 0.1272  0.1278 | 0.0202 1.9437 0.1224 | 87.0 2.5
XGB 0.5469 0.5252  0.5390 | 0.3468 1.7222 0.1116 | 78.6 486.9
MLP 0.2632 0.2085  0.2205 | 0.0967 1.8978 0.1203 | 1.1 728.1
LSTM 0.3785 0.2558 0.2710 | 0.1980 1.8165 0.1160 | 10.7 19244
TimeXer 0.9231 09170 09223 | 0.6249 1.2566 0.0845 | 1.2 1070.9
TimeMixer 0.4585 0.4286  0.4441 | 0.2373 1.7271 0.1116 | 4.6 2493.2
iTransformer | 0.5266 0.5084  0.5218 | 0.2996 1.6667 0.1082 | 1.4 475.5
PatchTST 0.9694 09667 09693 | 0.6598 1.1967 0.0808 | 4.5 543.1
TimesNet 0.5071 0.4383  0.4619 | 0.2524 1.6431 0.1064 | 331.9 58531.7
DLinear 0.1806 0.1515 0.1614 | 0.0317 1.9439 0.1224 | 0.8 725.4
NT 0.8844 0.8783  0.8833 | 0.5771 1.2799 0.0855 | 101.5 3069.3
FEDformer 0.8185 0.8058 0.8170 | 0.5180 1.3460 0.0894 | 87.3 1531.4
Pyraformer 0.9819 09807 09819 | 0.6712 1.1834 0.0800 | 297.7 7301.0
Autoformer 0.6671 0.6587  0.6715 | 0.3930 1.5121 0.0994 | 12.9 933.5
Informer 0.8407 0.8360  0.8401 | 0.5407 1.3267 0.0884 | 11.6 1139.3
Reformer 0.8828 0.8769  0.8817 | 0.5772 1.2818 0.0857 | 165.2 2642.1
MICN 0.4465 0.4081 0.4253 | 0.2395 1.7551 0.1133 | 14.2 7354.9
Crossformer | 0.9422 0.9389  0.9422 | 0.6433 1.2409 0.0837 | 3.0 2819.5
FiLM 0.4929 04825 0.4931 | 0.2893 1.7184 0.1110 | 9.8 12587.1
SCINet 0.4643 04280 0.4461 | 0.2607 1.7358 0.1119 | 13.1 6572.2
PAttn 0.8766 0.8685  0.8768 | 0.5745 1.2903 0.0863 | 10.0 364.4
FreTS 0.6517 0.6280  0.6438 | 0.4388 1.6391 0.1072 | 1.4 20264.8

Table 6: CWRU dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.4690 0.4203 03790 | 0.2105 1.1724 0.1588 | 1.8 0.6
XGB 0.9832 09801 09832 | 0.5113 0.7623 0.0947 | 1.7 65.8
MLP 0.4961 0.4002 0.4481 | 0.0911 1.0289 0.2073 | 6.1 402.5
LSTM 0.4901 0.4021 0.4288 | 0.1986 1.2688 0.1728 | 1.4 403.8
TimeXer 0.9071 0.8957 0.9074 | 0.3489 0.6457 0.1133 | 15.5 602.1
TimeMixer 0.4937 0.4634 0.4908 | 0.0320 1.0081 0.2018 | 8.7 208.1
iTransformer | 0.7418 0.7272  0.7421 | 0.1976  0.8047 0.1518 | 13.6 400.5
PatchTST 0.9514 0.9431 0.9516 | 0.3857 0.6028 0.1026 | 12.6 400.3
TimesNet 0.9835 0.9839 0.9835 | 04116 0.5697 0.0944 | 27.2 56246.7
DLinear 0.4236 0.3049 0.3846 | 0.0271 1.0705 0.2159 | 8.3 0.7
NT 09154 0.9255 09154 | 0.3652 0.6423 0.1126 | 6.9 443.5
FEDformer 0.9385 09410 09384 | 0.3773 0.6162 0.1060 | 6.3 674.8
Pyraformer 0.9781 0.9800 0.9781 | 0.4026 0.5737 0.0953 | 9.7 445.8
Autoformer 0.8656 0.8394  0.8609 | 0.3187 0.6881 0.1236 | 7.5 404.6
Informer 0.7480 0.7728  0.7468 | 0.2247 0.7908 0.1497 | 2.1 610.4
Reformer 0.9212 0.9231 0.9212 | 0.3613 0.6334 0.1102 | 24.8 357.0
MICN 0.8676 0.8787 0.8672 | 0.3501 0.7167 0.1314 | 4.3 1151.5
Crossformer | 0.9863 0.9863  0.9863 | 0.4172 0.5723 0.0951 | 9.9 2791.5
FiLM 0.7629 0.7469  0.7615 | 0.2720 0.8233  0.1570 | 21.8 3145.8
SCINet 0.5404 04270 0.4985 | 0.1321 1.0209 0.2047 | 19.6 1.1
PAttn 0.9083 0.8927  0.9077 | 0.3564 0.6492 0.1143 | 13.3 135.2
FreTS 0.5878 0.6298  0.5925 | 0.1117 0.9342 0.1853 | 7.1 632.2
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Table 7: XJTU dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.0855 0.0590  0.0821 | 0.1647 1.6186 0.1610 | 20.1 1.2
XGB 0.0060 0.1914  0.0061 | 0.3955 1.8958 0.1899 | 4.1 177.7
MLP 0.5659 0.3365 0.5356 | 0.3304 1.4882 0.1501 | 4.8 403.3
LSTM 0.7343 0.4519 0.7068 | 0.4134 1.2557 0.1264 | 3.8 405.7
TimeXer 0.7799 0.7088  0.7749 | 0.4361 1.1707 0.1175 | 25.1 603.1
TimeMixer 0.7684 0.7044  0.7660 | 0.4481 1.2280 0.1236 | 4.1 214.2
iTransformer | 0.8987 0.8244  0.8946 | 0.5224 1.0295 0.1022 | 16.3 401.4
PatchTST 0.8802 0.7783  0.8730 | 0.5118 1.0617 0.1057 | 25.3 400.4
TimesNet 0.8775 0.8064  0.8740 | 0.5138 1.0698 0.1066 | 79.0 56252.7
DLinear 0.6904 0.4250 0.6668 | 0.3931 1.3221 0.1335 | 4.9 1.2
NT 0.9103 0.8549 09073 | 0.5283 1.0110 0.1002 | 6.1 450.3
FEDformer 0.8769 0.7989  0.8737 | 0.5061 1.0540 0.1048 | 36.2 701.3
Pyraformer 0.9079 0.8497  0.9053 | 0.5306 1.0206 0.1013 | 29.9 463.8
Autoformer 0.7951 0.7207  0.7946 | 0.4492 1.1729 0.1177 | 22.5 410.6
Informer 0.8934 0.8137 0.8894 | 0.5191 1.0376 0.1031 | 29.5 616.5
Reformer 0.8889 0.8121  0.8860 | 0.5173 1.0462 0.1040 | 52.1 363.0
MICN 0.8874 0.8172  0.8845 | 0.5183 1.0518 0.1047 | 15.7 1151.8
Crossformer | 0.9098 0.8475  0.9063 | 0.5305 1.0183 0.1010 | 7.8 2791.6
FiLM 0.7868 0.5482  0.7765 | 0.4466 1.1750 0.1180 | 45.9 4325.5
SCINet 0.6852 0.5022  0.6676 | 0.3713 1.2814 0.1292 | 45.5 1.4
PAttn 0.7682 0.6795 0.7614 | 0.4289 1.1852 0.1191 | 18.0 136.1
FreTS 0.7415 0.6068  0.7207 | 0.4313 1.2679 0.1278 | 17.1 834.8

Table 8: FEMTO dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1214 0.0700  0.0735 | 0.0249 2.3030 0.0900 | 5.0 3.1
XGB 0.5907 0.5885 0.5914 | 0.4114 19101 0.0796 | 18.8 282.8
MLP 0.1584 0.1085  0.1090 | 0.0554 2.2956 0.0899 | 6.0 406.4
LSTM 0.1641 0.0778 0.0788 | 0.0585 2.2929 0.0898 | 1.9 4154
TimeXer 0.3788 0.3720 0.3746 | 0.2493 2.1417 0.0863 | 6.5 608.7
TimeMixer 0.2419 0.1913  0.1944 | 0.1289 2.2527 0.0889 | 7.0 258.3
iTransformer | 0.4114 0.4045  0.4072 | 0.2804 2.1300 0.0860 | 6.4 405.0
PatchTST 0.4109 0.4027 0.4055 | 0.2796 2.1285 0.0860 | 6.5 403.6
TimesNet 0.4044 0.3948  0.3983 | 0.2685 2.1129 0.0855 | 14.1 56296.8
DLinear 0.1774  0.1281 0.1302 | 0.0730 2.2920 0.0898 | 5.6 4.8
NT 0.3624 0.3398  0.3423 | 0.2308 2.1508 0.0865 | 5.1 497.6
FEDformer 0.3363 03194 0.3222 | 0.2114 2.1746 0.0871 | 9.0 843.8
Pyraformer 0.3554 0.3392  0.3412 | 0.2239 2.1483 0.0864 | 5.6 596.3
Autoformer 0.2816 0.2623  0.2656 | 0.1645 2.2278 0.0884 | 5.6 454.8
Informer 0.2903  0.2660  0.2696 | 0.1693 2.1993 0.0877 | 1.9 660.6
Reformer 0.2596 0.2436  0.2460 | 0.1416 2.2172 0.0881 | 7.5 407.2
MICN 0.3725 03621 0.3646 | 0.2437 2.1485 0.0864 | 4.1 1203.4
Crossformer | 0.3986 0.3928  0.3952 | 0.2684 2.1379 0.0862 | 6.1 2792.9
FiLM 0.2517 0.2278  0.2300 | 0.1375 2.2381 0.0885 | 8.2 9044 .4
SCINet 0.2038 0.1599  0.1634 | 0.0951 2.2716 0.0893 | 8.6 33
PAttn 0.3363 0.3238 0.3252 | 0.2118 2.1770 0.0872 | 5.7 140.6
FreTS 0.2144 0.1749  0.1763 | 0.1042 2.2632 0.0891 | 7.5 1632.7
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Table 9: IMS dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score, and
F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.3580 0.1544  0.5068 | 0.4961 0.8142 0.1028 | 249.2 0.9
XGB 0.9571 02771  0.9373 | 0.4935 0.8035 0.1011 | 43.8 1124
MLP 0.9573 0.2445 0.9363 | 0.4957 0.8132 0.1026 | 4.3 477.1
LSTM 0.9849 0.8794 09848 | 0.5138 0.7617 0.0946 | 33.8 1924.3
TimeXer 0.9653  0.6907  0.9639 | 0.5001 0.7858 0.0984 | 24.1 695.2
TimeMixer 0.9573 0.2445 09363 | 0.4960 0.8132 0.1026 | 13.7 506.6
iTransformer | 0.9588 0.4533  0.9462 | 0.4959 0.7982 0.1004 | 6.7 475.1
PatchTST 0.9707 0.7168  0.9672 | 0.4985 0.7730 0.0963 | 25.6 419.2
TimesNet 0.9735 0.6196  0.9690 | 0.4988 0.7699 0.0957 | 1216.5 56545.2
DLinear 0.9573 0.2445 09363 | 0.4957 0.8135 0.1027 | 4.7 723.6
NT 0.9714 0.7284  0.9700 | 0.4974 0.7717 0.0960 | 643.2 820.1
FEDformer 0.9580 0.4057 09435 | 0.4932 0.7972 0.1001 | 154.2 1301.0
Pyraformer 0.9761 0.7838  0.9741 | 0.5061 0.7702 0.0959 | 1179.4 1341.3
Autoformer 0.9547 03410 09411 | 0.4822 0.7894 0.0987 | 226.5 703.1
Informer 0.9638 0.6456  0.9628 | 0.4932 0.7805 0.0975 | 113.8 908.9
Reformer 0.9681 0.6970  0.9666 | 0.4951 0.7752 0.0966 | 382.2 655.5
MICN 0.9577 03732 09428 | 0.4951 0.8008 0.1007 | 65.0 2560.4
Crossformer | 0.9747 0.7744  0.9732 | 0.5008 0.7686 0.0956 | 40.4 2814.5
FiLM 0.9594 0.5188  0.9498 | 0.4947 0.7950 0.0998 | 106.1 12585.3
SCINet 0.9623 0.5764  0.9550 | 0.4991 0.7936 0.0997 | 82.9 363.2
PAttn 0.9630 0.5667  0.9555 | 0.4931 0.7827 0.0978 | 20.7 165.4
FreTS 0.9702 0.7117  0.9670 | 0.4990 0.7747 0.0966 | 35.0 20034.4

Table 10: Azure dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1667 0.1218  0.1563 | 0.1349 1.6682 0.1650 | 0.6 0.6
XGB 0.1429 0.0658  0.0626 | 0.2214 1.7155 0.1709 | 23.1 58.0
MLP 0.6024 0.1504  0.4529 | 0.3442 1.4942 0.1500 | 1.6 477.3
LSTM 0.6024 0.1504  0.4529 | 0.3231 1.4468 0.1454 | 1.5 1929.3
TimeXer 0.5976 0.1684  0.4631 | 0.3140 1.4329 0.1441 | 2.3 751.9
TimeMixer 0.6000 0.1628 0.4598 | 0.3015 1.4218 0.1430 | 24 584.1
iTransformer | 0.6024 0.2325  0.5037 | 0.3362 1.4541 0.1462 | 1.7 4754
PatchTST 0.5976  0.1499  0.4513 | 03138 1.4395 0.1446 | 1.2 475.8
TimesNet 0.6048 0.1574  0.4583 | 0.3277 1.4471 0.1455 | 144 56622.6
DLinear 0.4238 0.2599 04320 | 0.2133 1.5913 0.1585 | 2.2 726.6
NT 0.6024 0.1504  0.4529 | 0.3092 1.4173 0.1424 | 6.8 897.7
FEDformer 0.6024 0.1504  0.4529 | 0.3105 1.4325 0.1438 | 2.8 1378.4
Pyraformer 0.6024 0.1504  0.4529 | 0.3242 1.4413 0.1451 | 14.7 1573.6
Autoformer 0.5762 0.1640  0.4520 | 0.2949 1.4363 0.1444 | 2.3 780.5
Informer 0.6024 0.1504 0.4529 | 0.3116 14223 0.1430 | 1.8 986.4
Reformer 0.6024  0.1504  0.4529 | 03140 1.4292 0.1437 | 6.6 732.9
MICN 0.6000 0.1502  0.4525 | 0.3122 14391 0.1446 | 1.9 2564.7
Crossformer | 0.6048 0.1640  0.4630 | 0.3278 1.4386 0.1447 | 2.0 2816.6
FiLM 0.6095 0.1767  0.4723 | 0.3759 1.5320 0.1534 | 4.1 12585.9
SCINet 0.5310 0.1728 0.4474 | 0.2460 1.4554 0.1460 | 2.3 365.0
PAttn 0.5833 0.1604  0.4541 | 0.3002 1.4496 0.1455 | 1.5 173.2
FreTS 0.6024  0.1504  0.4529 | 03016 1.4142 0.1422 | 1.6 20144.6
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Table 11: Electric Motor dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro
score, and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands
for negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.2727 0.2595  0.2745 | 0.0771 13559 0.1837 | 2.3 0.8
XGB 0.8281 0.8353  0.8303 | 0.4199 0.9690 0.1272 | 23.6 130.2
MLP 0.3676  0.2320  0.3033 | 0.1041 13719 0.1857 | 0.3 464.3
LSTM 0.3424 0.1884  0.2530 | 0.0744 1.3632 0.1847 | 1.3 1470.3
TimeXer 0.3375 0.1962  0.2586 | 0.0544 1.3619 0.1845 | 0.4 679.3
TimeMixer 0.6551 0.5935 0.6423 | 0.2990 1.1554 0.1553 | 0.3 4554
iTransformer | 0.6952 0.6951  0.6946 | 0.3935 1.2337 0.1674 | 0.3 462.3
PatchTST 0.9165 0.8952 09154 | 0.4627 0.8352 0.1063 | 0.5 415.6
TimesNet 0.9931 09921 09931 | 0.5220 0.7563 0.0938 | 11.4 56494.0
DLinear 0.4407 03855 0.4225 | 0.1693 1.3563 0.1836 | 1.1 503.0
NT 0.8735 0.8417 0.8737 | 0.4280 0.8754 0.1125 | 1.8 755.5
FEDformer 0.5030 0.4808 0.4972 | 0.1769 1.2557 0.1699 | 1.5 1249.8
Pyraformer 0.8799 0.8619  0.8820 | 0.4472 0.8924 0.1153 | 5.3 1187.7
Autoformer 0.7144 0.6666  0.7047 | 0.3483 1.1118 0.1480 | 0.9 651.9
Informer 0.7218 0.6340  0.6988 | 0.3394 1.0771 0.1435 | 1.2 857.7
Reformer 0.7367 0.6517 0.7159 | 0.3498 1.0597 0.1409 | 2.0 604.3
MICN 0.3394 0.2032  0.2689 | 0.0722 1.3712 0.1856 | 0.5 2311.9
Crossformer | 0.3207 0.1888  0.2506 | 0.0444 1.3638 0.1847 | 0.4 2810.7
FiLM 0.4407 0.2624  0.3463 | 0.1673 1.3500 0.1828 | 1.0 12584.9
SCINet 0.4457 0.3856  0.4269 | 0.1386 13017 0.1763 | 1.1 252.8
PAttn 0.4170 0.3428 0.3915 | 0.1191 1.3281 0.1799 | 0.4 160.3
FreTS 0.4634 0.3647  0.4237 | 0.1555 13094 0.1773 | 0.5 16706.4

Table 12: Rotor Broken Motor dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-
macro score, and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL
stands for negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1677 0.1116  0.1103 | 0.0132 1.6096 0.1600 | 2.9 0.5
XGB 0.8785 0.8785 0.8785 | 0.5156 1.0728 0.1069 | 29.3 129.5
MLP 0.2068 0.1317  0.1313 | 0.0001 1.6088 0.1599 | 1.2 477.1
LSTM 0.3067 0.1823  0.1792 | 0.0943 1.5949 0.1588 | 1.7 1924.3
TimeXer 0.4362 0.4154 0.4109 | 0.1921 1.5169 0.1518 | 0.6 700.0
TimeMixer 0.2115 0.2025 0.2031 | 0.0064 1.6111 0.1601 | 0.4 583.4
iTransformer | 0.5408 0.5254  0.5215 | 0.3072 1.5035 0.1511 | 0.6 475.3
PatchTST 0.7213 0.7193  0.7184 | 0.3926 1.2239 0.1232 | 0.3 424.1
TimesNet 0.8556 0.8574  0.8577 | 0.4898 1.0739 0.1066 | 23.3 56622.0
DLinear 0.1974  0.1131 0.1111 | 0.0060 1.6096 0.1600 | 0.4 724.2
NT 0.7885 0.7902  0.7889 | 0.4455 1.1493 0.1149 | 2.8 896.9
FEDformer 0.2449 0.1844  0.1846 | 0.0026 1.6101 0.1600 | 2.1 1377.8
Pyraformer 0.8482 0.8493  0.8491 | 0.4626 1.0574 0.1046 | 1.6 1571.7
Autoformer 0.2308 0.1801 0.1819 | 0.0271 15996 0.1591 | 1.5 779.9
Informer 0.7662 0.7649  0.7635 | 0.4261 1.1824 0.1183 | 1.0 985.7
Reformer 0.5209 0.5158 0.5125 | 0.2472 1.4214 0.1427 | 3.5 732.3
MICN 0.2429 0.2362  0.2351 | 0.0315 1.6025 0.1594 | 2.6 2564.6
Crossformer | 0.4416 0.4158  0.4119 | 0.2035 1.5173 0.1519 | 0.5 2816.2
FiLM 0.1903  0.0959  0.0949 | 0.0124 1.6094 0.1600 | 1.6 12585.9
SCINet 0.2237 0.2239  0.2237 | 0.0016 1.6104 0.1601 | 1.2 363.8
PAttn 0.5921 0.5923  0.5903 | 0.2994 13670 0.1379 | 0.3 173.2
FreTS 0.2696  0.2347  0.2324 | 0.0575 1.5945 0.1588 | 1.1 20111.2
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Table 13: MFPT dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1755 0.0996  0.0524 | 0.4006 1.3759 0.2900 | 2.5 0.5
XGB 0.7089 0.6740  0.6531 | 0.2497 0.8657 0.1685 | 21.5 135.7
MLP 0.4961 0.4002  0.4481 | 0.0911 1.0289 0.2073 | 0.8 477.1
LSTM 0.5000 0.2222  0.3333 | 0.1605 1.0974 0.2219 | 2.2 1924.3
TimeXer 0.9071 0.8957 0.9074 | 0.3489 0.6457 0.1133 | 1.0 698.4
TimeMixer 0.4937 0.4634 0.4908 | 0.0320 1.0081 0.2018 | 1.0 429.8
iTransformer | 0.7418 0.7272  0.7421 | 0.1976 0.8047 0.1518 | 1.1 475.0
PatchTST 0.9514 09431 09516 | 0.3857 0.6028 0.1026 | 0.8 414.3
TimesNet 0.9835 09839 09835 | 04116 0.5697 0.0944 | 21.8 56468.4
DLinear 0.4236 0.3049 0.3846 | 0.0271 1.0705 0.2159 | 1.2 723.0
NT 0.9154 09255 09154 | 0.3652 0.6423 0.1126 | 5.1 743.3
FEDformer 0.9385 09410 09384 | 0.3773 0.6162 0.1060 | 4.4 1224.2
Pyraformer 0.9781 09800 09781 | 0.4026 0.5737 0.0953 | 144 1110.9
Autoformer 0.8656 0.8394  0.8609 | 0.3187 0.6881 0.1236 | 1.3 626.3
Informer 0.7480 0.7728  0.7468 | 0.2247 0.7908 0.1497 | 1.2 832.1
Reformer 0.9212  0.9231  0.9212 | 0.3613 0.6334 0.1102 | 5.2 578.7
MICN 0.8676 0.8787  0.8672 | 0.3501 0.7167 0.1314 | 1.7 2556.2
Crossformer | 0.9863 0.9863  0.9863 | 0.4172 0.5723 0.0951 | 2.1 2812.9
FiLM 0.7629 0.7469  0.7615 | 0.2720 0.8233 0.1570 | 1.2 12584.7
SCINet 0.5404 0.4270  0.4985 | 0.1321 1.0209 0.2047 | 1.1 362.5
PAttn 0.9083 0.8927  0.9077 | 0.3564 0.6492 0.1143 | 0.6 157.6
FreTS 0.5878 0.6298  0.5925 | 0.1117 0.9342 0.1853 | 0.9 19957.6

Table 14: UoC dataset. NT for Nonstationary_Transformer. Fl1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.8932 0.8919 0.8907 | 0.6873 1.5704 0.0776 | 4.7 1.8
XGB 0.9703 09702 0.9704 | 0.7290 1.4400 0.0724 | 44.0 134.1
MLP 0.1815 0.1213  0.1193 | 0.0672 2.1896 0.0986 | 0.5 477.3
LSTM 0.1785 0.1541 0.1530 | 0.0584 2.1728 0.0981 | 1.9 1924.5
TimeXer 0.8078 0.8083  0.8067 | 0.6524 1.8981 0.0900 | 0.3 719.5
TimeMixer 0.9674 09677 09675 | 0.7284 1.4484 0.0728 | 0.3 890.6
iTransformer | 0.7426  0.7380  0.7367 | 0.5979 1.9710 0.0924 | 0.4 475.8
PatchTST 0.9828  0.9831 0.9829 | 0.7384 14184 0.0716 | 1.2 443.5
TimesNet 0.9923  0.9923  0.9923 | 0.7435 1.3958 0.0707 | 11.9 56929.2
DLinear 0.4763 0.4653  0.4614 | 0.3640 2.1911 0.0986 | 1.1 726.6
NT 0.9893 0.9894  0.9893 | 0.7364 1.3834 0.0701 | 4.0 1204.1
FEDformer 0.9597 09598 09597 | 0.7222 1.4605 0.0733 | 1.6 1685.0
Pyraformer 0.9964 0.9965 0.9964 | 0.7442 1.3800 0.0700 | 11.0 2493.3
Autoformer 0.9543 09545 09546 | 0.7212 1.4809 0.0741 | 0.8 1087.1
Informer 0.9786 09786  0.9787 | 0.7372 1.4334 0.0722 | 1.3 1292.9
Reformer 0.9786 09787 09787 | 0.7365 1.4308 0.0721 | 2.3 1039.5
MICN 0.7633  0.7647  0.7642 | 0.5928 1.8346 0.0875 | 0.7 2581.4
Crossformer | 0.8488 0.8485  0.8481 | 0.6830 1.8360 0.0878 | 0.4 2822.8
FiLM 0.5801 0.5613  0.5591 | 0.4480 2.0578 0.0948 | 0.9 12588.3
SCINet 0.2734  0.2705  0.2705 | 0.1381 2.1397 0.0972 | 0.6 366.2
PAttn 0.8511 0.8512  0.8512 | 0.6712 1.7595 0.0850 | 0.4 204.4
FreTS 0.9567 0.9571 0.9568 | 0.7293 14972 0.0749 | 0.3 20418.4
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Table 15: Planetary dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.5843 04752  0.6187 | 0.4791 0.9867 0.3896 | 142.7 0.2
XGB 0.2135 0.1851  0.0940 | 0.4882 1.0265 0.4046 | 23.5 92.1
MLP 0.7549 04302 0.6883 | 0.0748 0.5727 0.1918 | 35.0 477.0
LSTM 0.7389 0.5001  0.7074 | 0.0447 0.5695 0.1908 | 114.1 1924.2
TimeXer 0.7689 0.4748 0.7106 | 0.0669 0.5455 0.1796 | 54.9 685.4
TimeMixer 0.6682 0.4106 0.6444 | 0.0163 0.6313 0.2197 | 35.6 353.0
iTransformer | 0.7493 0.4625  0.6981 | 0.0464 0.5603 0.1865 | 15.9 474.9
PatchTST 0.7641 0.4649  0.7050 | 0.0543 0.5477 0.1807 | 28.8 447.6
TimesNet 0.7247 04636  0.6881 | 0.0184 0.5810 0.1963 | 1526.6 56391.6
DLinear 0.7993 0.4442  0.7108 | 0.1224 0.5401 0.1762 | 35.0 722.4
NT 0.6949 0.4634  0.6749 | 0.0124 0.6061 0.2080 | 180.2 666.5
FEDformer 0.7395 0.4448 0.6875 | 0.0280 0.5683 0.1903 | 231.8 1147.4
Pyraformer 0.7258 0.4683  0.6903 | 0.0277 0.5820 0.1966 | 706.5 880.5
Autoformer 0.7466  0.4625  0.6970 | 0.1322 0.6014 0.2052 | 195.4 549.5
Informer 0.7024  0.4491 0.6732 | 0.0175 0.5968 0.2037 | 403.4 755.3
Reformer 0.6716 0.4471  0.6585 | 0.0172 0.6190 0.2142 | 826.8 501.9
MICN 0.7350 0.4252  0.6784 | 0.0616 0.5875 0.1989 | 181.2 2552.0
Crossformer | 0.7332 0.4893  0.7011 | 0.0285 0.5724 0.1923 | 37.6 2811.2
FiLM 0.7214  0.4381 0.6775 | 0.0228 0.5858 0.1984 | 1524 12584.1
SCINet 0.7849 0.4505 0.7077 | 0.0914 0.5366 0.1753 | 48.2 361.9
PAttn 0.7690 0.4537  0.7027 | 0.0807 0.5530 0.1828 | 16.6 149.8
FreTS 0.6790 0.4285  0.6555 | 0.0048 0.6189 0.2140 | 31.8 19880.8

Table 16: MAFAULDA dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro
score, and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands
for negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.1851 0.1219  0.1266 | 0.0097 1.7970 0.1392 | 15.4 2.3
XGB 0.0035 0.0033  0.0035 | 0.3334 2.0245 0.1563 | 44 184.7
MLP 0.4146 0.4080 0.3935 | 0.2273 1.7205 0.1349 | 16.9 403.3
LSTM 0.3854 0.3236  0.3031 | 0.1793 1.6584 0.1306 | 4.8 405.7
TimeXer 0.6229 0.6277 0.6194 | 0.3632 1.4692 0.1173 | 13.5 603.4
TimeMixer 0.4996 0.5034  0.4915 | 0.2655 1.5777 0.1250 | 13.0 217.1
iTransformer | 0.6729 0.6837  0.6742 | 0.4070 1.4234 0.1138 | 13.3 401.5
PatchTST 0.5843 0.5898  0.5809 | 0.3331 1.5073 0.1200 | 6.9 400.5
TimesNet 0.6683 0.6768  0.6680 | 0.3981 1.4217 0.1136 | 29.6 56255.6
DLinear 0.4444 04414 04276 | 0.2377 1.6646 0.1311 | 17.0 1.2
NT 0.6650 0.6725  0.6631 | 0.3959 1.4203 0.1135 | 13.6 453.3
FEDformer 0.6599 0.6699  0.6604 | 0.3949 1.4331 0.1144 | 16.3 704.3
Pyraformer 0.6927 0.7011  0.6920 | 0.4218 1.4036 0.1123 | 20.6 472.7
Autoformer 0.5474  0.5501 0.5397 | 0.2958 1.5283 0.1214 | 26.5 413.6
Informer 0.6516 0.6610  0.6511 | 0.3856 1.4355 0.1146 | 18.8 619.4
Reformer 0.6677 0.6782  0.6691 | 0.4037 1.4326 0.1145 | 23.1 366.0
MICN 0.6509 0.6608  0.6506 | 0.3888 1.4425 0.1152 | 114 1152.0
Crossformer | 0.6654 0.6754  0.6664 | 0.3997 1.4324 0.1145 | 11.9 2791.7
FiLM 0.5609 0.5745  0.5622 | 0.3272 1.5530 0.1232 | 31.8 4325.5
SCINet 0.5092 0.5105 0.4996 | 0.2754 1.5770 0.1249 | 41.1 1.4
PAttn 0.5832 0.5877  0.5793 | 0.3344 1.5113 0.1203 | 11.7 136.5
FreTS 0.5190 0.5254  0.5123 | 0.2901 1.5802 0.1252 | 12.0 837.8
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Table 17: Mendeley dataset. NT for Nonstationary_Transformer. F1-mac stands for F1-macro score,
and F1-w stands for F1-weighted score. ECE stands for expected calibration error. NLL stands for
negative log likelihood. Parameters(k) indicate the number of parameters in thousands.

model ACC Fl-mac Fl-w ECE NLL Brier time cost  parameters(k)
SVM 0.5417 0.3514  0.3806 | 0.1090 0.7220 0.2642 | 93.7 0.2
XGB 0.7170 0.7158  0.7221 | 0.1470 0.5572 0.1857 | 214 48.2
MLP 0.5769 0.5768  0.5743 | 0.1034 0.6519 0.2303 | 9.3 477.0
LSTM 0.9699 09666  0.9701 | 0.2482 0.3419 0.0856 | 119.8 1924.2
TimeXer 0.9806 0.9782  0.9806 | 0.2522 0.3324 0.0812 | 30.3 685.4
TimeMixer 0.6171 0.6169  0.6140 | 0.1065 0.6249 0.2181 | 294 353.0
iTransformer | 0.9620 0.9577  0.9622 | 0.2389 0.3499 0.0893 | 17.6 474.9
PatchTST 0.9797 09772  0.9797 | 0.2535 0.3324 0.0812 | 70.8 409.5
TimesNet 0.8642 0.8395  0.8605 | 0.1477 0.4435 0.1327 | 1706.8 56391.6
DLinear 0.3964 03513  0.2942 | 0.1269 0.7080 0.2574 | 13.9 722.4
NT 0.9689 0.9656  0.9692 | 0.2497 0.3416 0.0855 | 588.8 666.5
FEDformer 0.9636 09596  0.9638 | 0.2408 0.3484 0.0886 | 1139.6 1147.4
Pyraformer 0.9541 09491  0.9544 | 0.2387 0.3599 0.0938 | 778.8 880.5
Autoformer 09146 09083  0.9163 | 0.2065 0.3978 0.1113 | 1214.2 549.5
Informer 09100 0.9022 09114 | 0.2032 0.3984 0.1117 | 125.0 755.3
Reformer 0.9444 09392 0.9451 | 0.2268 0.3698 0.0984 | 239.0 501.9
MICN 09760 0.9731 09761 | 0.2511 0.3353 0.0826 | 183.0 2552.0
Crossformer | 0.9683 09648  0.9685 | 0.2479 0.3433 0.0862 | 95.2 2811.2
FiLM 0.9591 09543 0.9592 | 0.2497 0.3598 0.0937 | 267.9 12584.1
SCINet 0.9471 09415 0.9475 | 0.2392 0.3750 0.1004 | 61.0 361.9
PAttn 0.8428 0.8328 0.8464 | 0.1731 04704 0.1448 | 57.6 281.9
FreTS 0.9626 09585 0.9629 | 0.2500 0.3553 0.0916 | 104.8 19880.8

Table 18: Test of accuracy on different segmentation lengths using the XJTU dataset. Here, length 5
indicates the time-series sequence contains only 5 data points. length 10 indicates the time-series
sequence contains only 10 data points. length 15 indicates the time-series sequence contains only 15
data points. length 20 indicates the time-series sequence contains only 20 data points.

model length 5 length 10 length 15 length 20
SVM 0.3880  0.1815 0.1279 0.0855
XGB 0.1541  0.0615 0.0086 0.0060
MLP 0.3903  0.3903 0.4009 0.5659
LSTM 04165  0.3903 0.5355 0.7343
iTransformer | 0.4733  0.4306 0.7646 0.8987
DLinear 0.4015  0.3903 0.4006 0.6904
NT 04759  0.4308 0.7642 0.9103

FEDformer | 0.4682  0.4307 0.7594 0.8769
Pyraformer 04751  0.4311 0.7566 0.9079
Autoformer | 0.4388  0.3964 0.7268 0.7951

Informer 0.4713 0.4306 0.7589 0.8934
Reformer 0.4735 0.4310 0.7594 0.8889
MICN 0.4454 0.4305 0.7512 0.8874
Crossformer | 0.4735 0.4306 0.7430 0.9098
FiLM 0.4178 0.4153 0.5905 0.7868
FreTS 0.4248 0.4010 0.5531 0.7415

As shown in Figure[f] the contribution of individual features varies substantially across classes. For
instance, in class O (healthy bearings), the most influential feature is f297 (the 297th point in the
sequence), whereas in class 1, the dominant feature shifts to £593. Moreover, the SHAP distributions
for class 0 appear narrower along the x-axis compared to those of faulty classes, suggesting that
feature contributions in the healthy class are more evenly distributed. This observation aligns with
domain knowledge: vibration signals from healthy bearings are typically stable, resulting in relatively
uniform feature importance, while faulty bearings exhibit localized spikes or anomalies that strongly
influence the model’s predictions.
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Figure 6: SHAP value for MLP model on Paderborn dataset

E USER INTERFACE GUIDELINE

Figure[7) presents an interactive environment for exploring sensor modalities in time and frequency

domains. Upon dataset selection, users can visualize the distribution of specific features (e.g.,
vibration, current) and identify class imbalances. This step helps assess data quality, temporal
patterns, and spectral characteristics crucial for model design and preprocessing decisions.

In Figure 8] users can configure model parameters (e.g., hidden size, number of layers), initiate
training, and monitor logs in real time. The interface outputs test metrics in terms of prediction
performance, uncertainty and efficiency, enabling in-depth performance diagnostics.

Figure J]illustrates the PDMBench result analysis interface, which consolidates performance metrics
across multiple datasets and models. The interface computes the average, standard deviation, and
dataset coverage for each evaluation metric, enabling a holistic assessment of model behavior.
It visualizes key aspects such as predictive accuracy, uncertainty calibration, and computational
efficiency across diverse datasets. This comprehensive overview assists practitioners in selecting
the most suitable model for a specific predictive maintenance (PdM) task and guides further model
refinement and optimization.
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Figure 7: Data Visualization Section of PDMBench: (a) Users select a dataset. (b) Visualize feature
distributions. (c) Inspect time-domain signals. (d) Analyze frequency domain characteristics via FFT.
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Figure 8: Model Training Section of PDMBench: (a) Users select a dataset and config a model. (b)
Training log with real-time feedback. (c) Evaluation metrics are reported during and after execution.
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] Results Analysis and Leaderboard

Figure 9: Result Analysis Section of PDMBench: (a,b) Cross-dataset performance comparison with
different evaluation metrics. (c) A leaderboard analysis across various models and metrics.
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