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ABSTRACT

Repeated parameter sharing in federated learning causes significant information
leakage about private data, thus defeating its main purpose: data privacy. Mitigat-
ing the risk of this information leakage, using state of the art differentially private
algorithms, also does not come for free. Randomized mechanisms can prevent
convergence of models on learning even the useful representation functions, es-
pecially if there is more disagreement between local models on the classification
functions (due to data heterogeneity). In this paper, we consider a representation
federated learning objective that encourages various parties to collaboratively re-
fine the consensus part of the model, with differential privacy guarantees, while
separately allowing sufficient freedom for local personalization (without releas-
ing it). We prove that in the linear representation setting, while the objective is
non-convex, our proposed new algorithm CENTAUR converges to a ball centered
around the global optimal solution at a linear rate, and the radius of the ball is
proportional to the reciprocal of the privacy budget. With this novel utility anal-
ysis, we improve the SOTA utility-privacy trade-off for this problem by a factor
of
√
d, where d is the input dimension. We empirically evaluate our method with

the image classification task on CIFAR10, CIFAR100, and EMNIST, and observe
a significant performance improvement over the prior work under the same small
privacy budget. The code can be found in this link.

1 INTRODUCTION

In federated learning (FL), multiple parties cooperate to learn a model under the orchestration of a
central server while keeping the data local. However, this paradigm alone is insufficient to provide
rigorous privacy guarantees, even when local parties only share partial information (e.g. gradients)
about their data. An adversary (e.g. one of the parties) can infer whether a particular record is in
the training data set of other parties (Nasr et al., 2019), or even precisely reconstruct their training
data (Zhu et al., 2019). To formally mitigate these privacy risks, we need to guarantee that any
information shared between the parties during the training phase has bounded information leakage
about the local data. This can be achieved using FL under differential privacy (DP) guarantees.

FL and DP are relatively well-studied separately. However, their challenges multiply when conduct-
ing FL under a DP constraint, in real-world settings where the data distributions can vary substan-
tially across the clients (Li et al., 2020b; Acar et al., 2020; Shen et al., 2022). A direct consequence
of such data heterogeneity is that the optimal local models might vary significantly across clients
and differ drastically from the global solution. This results in large local gradients (Jiang et al.,
2019). However, these large signals leak information about the local training data, and cannot be
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communicated as such when we need to guarantee DP. We require clipping gradient values (usually
by a small threshold (De et al., 2022)) before sending them to the server, to bound the sensitivity of
the gradient function with respect to changes in training data Abadi et al. (2016). As the local per-
sample gradients (due to data heterogeneity) tend to be large even at the global optimum, clipping
per-example gradient by a small threshold and then randomizing it, will result in a high error in the
overall gradient computation, and thus degrading the accuracy of the model learned via FL.

Contributions. In this work, we identify an important bottleneck for achieving high utility in FL
under a tight privacy budget: There exists a magnified conflict between learning the representation
function and classification head, when we clip gradients to bound their sensitivity (which is required
for achieving DP). This conflict causes slow convergence of the representation function and dispro-
portional scaling of the local gradients, and consequently leads to the inevitable utility drop in DP
FL. To address this issue, we observe that in many FL classification scenarios, participants have
minimal disagreement on data representations (Bengio et al., 2013; Chen et al., 2020; Collins et al.,
2021), but possibly have very different classifier heads (e.g., the last layer of the neural network).
Therefore, instead of solving the standard classification problem, we borrow ideas from the literature
of model personalization and view the neural network model as a composition of a representation
extractor and a small classifier head, and optimize these two components in different manners. In the
proposed scheme, CENTAUR, we train a single differentially private global representation extractor
while allowing each participant to have a different personalized classifier head. Such a decompo-
sition has been considered in previous arts like (Collins et al., 2021) and (Singhal et al., 2021), but
only in a non-DP setting, and also in (Jain et al., 2021), but only for a linear embedding case.
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Figure 1: Privacy utility trade-off for
models trained under CENTAUR and
other algorithms on CIFAR10 (500
clients, 5 shards per user). Error bar de-
notes the std. across 3 runs.

Due to low heterogeneity in data representation (compared
to the whole model), the DP learned representation in our
new scheme outperforms prior schemes that perform DP op-
timization over the entire model. In the setting where both
the representation function and the classifier heads are lin-
ear w.r.t. their parameters, we prove a novel utility-privacy
trade-off for an instance of CENTAUR, yielding a significant
O(
√
d) improvement over previous art, where d is the in-

put dimension (Corollary 5.1). A major algorithmic novelty
of our proposed approach is a cross-validation scheme for
boosting the success probability of the classic noisy power
method for privacy-preserving spectral analysis.
We present strong empirical evidence for the superior per-
formance of CENTAUR over the prior work, under the small
DP budget of (1, 10−5) in a variety of data-heterogeneity
settings on benchmark datasets CIFAR10, CIFAR100, and
EMNIST. Our method outperforms the prior work in all set-
tings. Moreover, we showcase that CENTAUR uniformly enjoys a better utility-privacy trade-off over
its competitors on the CIFAR10 dataset across different privacy budget ϵ (Figure 1). Importantly,
CENTAUR outperforms the local stand-alone training even with, ϵ = 0.5, thus justifying the benefit
of collaborative learning compared to stand-alone training for a larger range of privacy budget.

1.1 RELATED WORK

Federated learning with differential privacy has been extensively studied since its emergence (Shokri
& Shmatikov, 2015; McMahan et al., 2017a). Without any trusted central party, the local DP model
requires each client to randomize its messages before sending them to other (malicious) parties.
Consequently, the trade-off between local DP and accuracy is significantly worse than that for cen-
tralized setting and requires huge amount of data for learning even simple statistics (Duchi et al.,
2014; Erlingsson et al., 2014; Ding et al., 2017). By using secure aggregation protocol, recent
works (McMahan et al., 2017b; Agarwal et al., 2018; Levy et al., 2021; Kairouz et al., 2021) study
user-level DP under Billboard model to enable utility. We also focus on such user-level DP setting.
Model personalization approaches (Smith et al., 2017; Fallah et al., 2020; Li et al., 2020b; Arivazha-
gan et al., 2019; Collins et al., 2021; Pillutla et al., 2022) enable each client to learn a different
(while related) model, thus alleviating the model drifting issue due to data heterogeneity. Recent
works further investigate whether model personalization approaches enable improved privacy accu-
racy trade-off for federated learning. Hu et al. (2021) propose a private federated multi-task learning
algorithm by adding task-specific regularization to each client’s optimization objective. However,
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the regularization has limited ability to deal with data heterogeneity. Bietti et al. (2022) propose the
PPSGD algorithm that enables training additive personalized models with user-level DP. However,
their generalization guarantees crucially rely on the convexity of loss functions. On the contrary, we
study the convergence of CENTAUR algorithm under more general non-convex objectives.
The closest work to our approach in the literature is Jain et al. (2021), who also propose differen-
tially privately learning shared low-dimensional linear representation with individualized classifica-
tion head. However, their algorithm relies on solving the least square problem exactly at server side,
by performing SVD on perturbed noisy representation matrix. Hence, the generalization guarantee
of their algorithm intrinsically has an expensive d1.5 dependency on the data dimension d. By con-
trast, we perform noisy gradient descent at server side and improve upon this error dependency by
a factor of

√
d. Their algorithm is also limited to the linear representation learning problem, unlike

our CENTAUR algorithm which enables training multiple layers of shared representations.
Our work builds on the FedRep algorithm (Collins et al., 2021), which also relies on learning shared
representations between clients but does not consider privacy. In contrast, our work provides a novel
private and federated representation learning framework. Moreover, a major different ingredient of
our algorithm is the initialization procedure, which requires performing differentially private SVD
to the data matrix. We use the noisy power method (Hardt & Price, 2014) as a crucial tool to enable a
constant probability for utility guarantee. We then perform cross-validation to further boost success
probability to arbitrarily large (inspired by Liang et al. (2014)).

2 NOTATIONS AND BACKGROUND ON PRIVACY

Notations. We denote the clipping operation by clip(x; ζ)
.
= x · min{1, ζ/∥x∥}, and denote the

Gaussian mechanism as GMζ,σ({xi}si=1)
.
= 1

s (
∑s
i=1 clip(xi; ζ) + σζW ) where W ∼ N (0, I).

Define Rényi Differential Privacy (RDP) on a dataset spaceD equipped with a distance d as follows.

Definition 2.1 (RDP). For measures ν, ν′ over the same space with ν ≪ ν′, their Rényi divergence
Rα(ν, ν

′) = 1
α−1 logEα(ν, ν

′), where Eα(ν, ν
′) =

∫ (
dν
dν′

)α
dν′. A randomized algorithmM :

D → Θ satisfies (α, ϵ)-RDP, if ∀D,D′ ∈ D with d(D,D′) ≤ 1, we have Rα(M(D),M(D′)) ≤ ϵ.

User-level-RDP. Let D be the space of all of n tuples of local datasets {Si}ni=1, where each local
dataset consists of m data points, i.e. D = {{Si}ni=1 | Si = {zij}mj=1}. The distance d is the
Hamming distance in the dataset level, i.e. d({Si}ni=1, {S′i}ni=1) =

∑n
i=1 1Si ̸=S′i . We refer to the

privacy guarantee recovered by this choice of dataset space as user-level-RDP.
In Appendix A.3, we further describe the Gaussian Mechanism and the composition of RDP, the
standard notion of Differential Privacy (DP), and the conversion Lemma from RDP to DP.

Threat Models. We aim to protect the privacy of each user against potential adversarial other clients,
i.e., any eavesdropper will not be able to tell whether one users has participated in the collaborative
learning procedure, given the information released during training phase. We establish user-level
RDP guarantees under the billboard model, which is a communication protocol that is particularly
compatible with algorithms in the federated setting and has been adopted in many previous works
(Jain et al., 2021; Hu et al., 2021; Bietti et al., 2022). In this model, a trusted server (either a trusted
party or one that uses cryptographic techniques like multiparty computation) aggregates information
subject to a DP constraint, which is then shared as public messages with all the n users. Then, each
user computes its own personalized model based on the public messages and its own private data
(Hsu et al., 2014). Our RDP guarantees only hold for releasing the shared representations bTg

in Al-
gorithm 1, and the guarantees are equivalent to joint-(R)DP guarantees Kearns et al. (2014) if all the
personalized models wTl

i of individual users were additionally released as outputs of Algorithm 2.

3 PROBLEM FORMULATION

Consider a Federated Learning (FL) setting where there are n agents interacting with a central server
and the ith agent holds mi local data points Si = {(xij , yij)}mi

j=1. Here (xij , yij) ∈ Rd×R denotes
a pair of an input vector and the corresponding label. Suppose that each local dataset Si is sampled
from an underlying joint distribution pi(x, y) of the input and response pair. We consider the data-
heterogenous setting where potentially pi ̸= pj for i ̸= j. We further consider a hypothesis model
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f(·;θ) : Rd → R which maps an input x to the predicted label y. Here θ ∈ Rq is the trainable
parameter of the model f . Let ℓ : R × R → R be a loss function that penalizes the error of the
prediction f(x;θ) given the true label y. The local objective on client i is defined as

l(θ;Si)
.
=

1

mi

mi∑
j=1

ℓ(f(xij ;θ), yij). (1)

The standard FL formulation seeks a global consensus solution, whose objective is defined as

argmin
θ
L(θ) .=1

n

n∑
i=1

l(θ;Si). (2)

While this formulation is reasonable when the local data distributions are similar, the obtained global
solution may be far from the local optima argmin l(θ;Si) under diverse local data distributions, a
phenomenon known as statistical heterogeneity in the FL literature (Li et al., 2020a; Wang et al.,
2019; Malinovskiy et al., 2020; Mitra et al., 2021; Charles & Konečnỳ, 2021; Acar et al., 2020;
Karimireddy et al., 2020). Such a (potentially significant) mismatch between local and global opti-
mal solutions limits the incentive for collaboration, and cause extra difficulties when DP constraints
are imposed (Remark 3.1). These considerations motivate us to search for personalized solutions
that can be learned in a federated fashion, with less utility loss due to the DP constraint.
Federated representation learning with differential privacy. It is now well-documented that in
some common and real-world FL tasks, such as image classification and word prediction, clients
have minimal disagreement on data representations (Chen et al., 2020; Collins et al., 2021). Based
on this observation, a more reasonable alternative to the FL objective in equation 2 should focus on
learning the data representation, which is the information that is agreed on among most parties, while
also allowing each client to personalize its learning on information that the other clients disagree on.
To formalize this, suppose that the variable θ ∈ Rq can be partitioned into a pair [w, b] ∈ Rq1×Rq2
with q = q1+q2 and the parameterized model admits the composition f = h◦ϕ where ϕ : Rd → Rk
is the representation extractor that maps d-dimensional data points to a lower dimensional space of
size k and h : Rk → R is a classifier head that maps from the lower dimensional subspace to the
space of labels. An important example is bottom and top layers of the neural network model. We
use w and b to denote the parameters that determine h and ϕ, respectively. With the above notation,
we consider the following federated representation learning (FRL) problem

min
b∈B

1

n

n∑
i=1

min
wi

l([wi, b];Si) :=
1

mi

mi∑
j=1

ℓ(h(ϕ(xij ; b);wi), yij)

 , (3)

where we maintain a single global representation extraction function ϕ(·; b) subject to the constraint
b ∈ B ⊆ Rq2 while allowing each client to use its personalized classification head h(·;wi) locally.
The constraint B is included so that equation 3 also covers the linear case studied in section 5.

The choice of the FRL formulation in equation 3 entails considerations from both DP and optimiza-
tion perspectives: From the DP standpoint, the phenomenon of statistical heterogeneity introduces
additional difficulties for federated learning under DP constraint (see Remark 3.1 below). If the
clients collaborate to train only a shared representation function, then the aforementioned disad-
vantages can be alleviated; From the optimization standpoint, we typically have k ≪ d, i.e. the
dimension of the extracted features is much smaller than that of the original input. Hence, for a
fixed representation function ϕ(·; b), the client specific heads h(·;wi) are in general easy to opti-
mize locally as the number of parameters, k, is typically small.
Remark 3.1 (Statistical heterogeneity makes DP guarantee harder to establish.). To establish DP
guarantees for gradient based methods, e.g. DP-SGD, a common choice is the Gaussian mechanism,
which is comprised of the gradient clipping step and the noise injection step. It is empirically
observed that to achieve a better privacy-utility trade-off, a small clipping threshold is preferred,
since it limits the large variance due to the injected noise (De et al., 2022). Moreover, the effect of the
bias (due to clipping) subsides as the per-sample gradient norm diminishes during the centralized
training, a phenomenon known as benign overfitting in deep learning (Bartlett et al., 2020; Li et al.,
2021; Bartlett et al., 2021). However, due to the phenomenon of distribution shift, the local (per-
sample) gradients in the standard FL setting (described in equation 2) remain large even at the
global optimal solution, and hence setting a small (per-sample) gradient clipping threshold will
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Algorithm 1 SERVER procedure of CENTAUR

1: procedure SERVER(b0, pg , Tg , ηg , σg , ζg)
2: // b0 is obtained from the INITIALIZATION procedure.
3: for t← 0 to Tg − 1 do
4: Sample set Ct of active clients using Poisson sampling with parameter pg .
5: Broadcast the current global representation parameter bt to active clients.
6: Receive the local update directions {gti}i∈Ct from the CLIENT procedures.
7: Compute the update direction gt = GMζg,σg ({gti}i∈Ct)

8: Update the global representation function bt+1 := AGGREGATION(bt, gt, ηg).
9: // The AGGREGATION procedure depends on the feasible set B in equation 3.

10: return bTg .

Algorithm 2 CLIENT procedure of CENTAUR in the general case (for client i)

1: procedure CLIENT(bt, m̄, Tl, ηl)
2: [Phase 1: Local classifier update.] wt+1

i = argminw l([bt,w];Si).
3: [Phase 2: Local representation function update.] Set bt,0i = bt;
4: for s← 0 to Tl − 1 do
5: Sample a subset Ssi of size m̄ from the local dataset Si without replacement
6: Update the local representation function bt,s+1

i := bt,si − ηl · ∂bl([bt,si ,wt+1
i ]; Ssi ).

7: [Phase 3: Summarize the local update direction.] return gti := bt,Tl

i − bt.

result in a large and non-diminishing bias in the overall gradient computation.
In contrast, for tasks where the representation extracting functions are approximately homogeneous,
the local and global optimal of the FRL formulation 3 are close and hence the gradients w.r.t. the
representation function vanishes at the optimal, which is amiable to small clipping threshold.

4 DIFFERENTIAL PRIVATE FEDERATED REPRESENTATION LEARNING

In this section we present the proposed CENTAUR method to solve the FRL problem in equation 3.

Figure 2: The t-th global round of the
CENTAUR algorithm, where clients keep
their classification head wt

i secret while
updating shared representation bt →
bt+1 based on perturbed gradients gt

i

from sampled clients i ∈ Ct.

SERVER procedure (Algorithm 1) takes the following
quantities as inputs: b0 denotes the initializer for the pa-
rameter of the global representation function, obtained from
a procedure INITIALIZATION; pg denotes the portion of
the clients that will participate in training per global com-
munication round; Tg denotes the total number of global
communication rounds; ηg denotes the global update step
size; (σg, ζg) stand for the noise multiplier and the clipping
threshold of the Gaussian mechanism (that ensures user-
level RDP). Note that in this section, we consider random
INITIALIZATION over unconstrained space B = Rq2 , and the
procedure AGGREGATION(bt, gt, ηg) = bt + ηg · gt. Under
these configurations, SERVER follows the standard FL pro-
tocol: After broadcasting the current global representation
function to the activate clients, it aggregates the information
returned from the CLIENT procedure to update the global representation function.

CLIENT procedure (Algorithm 2) takes the following quantities as inputs: bt denotes the pa-
rameter of the global representation function received from the server; m̄ denotes the number of
local data points used as mini-batch to update the local representation function; Tl denotes the
number of local update iterations; ηl denotes the local update step size. CLIENT can be divided
into three phases: 1. After receiving the current global parameter bt of the representation function
from the server, the client update the local classifier head to the minimizer of the local objective
wt+1
i = argminw l([bt,w];Si). This is possible since the local objective l usually admits very

simple structure, e.g. it is convex w.r.t. w, once the representation function is fixed. In prac-
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tice, we would run multiple SGD epochs on w to approximately minimize l with bt fixed. This is
computationally cheap since the dimension of w is much smaller compared to the whole variable
θ = [w, b]. 2. Once the local classifier head is updated to wt+1

i , the client optimizes its local
representation function with multiple SGD steps, starting from the current global consensus bt. 3.
Finally, each client calculate its local update direction for representation via the difference between
its latest local representation function and the previous global consensus, bt,Tl

i − bt.
Remark 4.1 (Privacy guarantee). By the composition theorem for subsampled Gaussian Mecha-
nism Mironov et al. (2019), we prove that Algorithm 1 and Algorithm 2 satisfies user-level (α, ϵ)-
Rényi differential privacy for ϵ = Tg ·Sα(pg, σg), where Sα(pg, σg) = Rα(N (0, σ2

g)∥N (0, σ2
g)+pg ·

N (1, σ2
g)). In the special case of full gradient descent with pg = 1, we have that ϵ = α · Tg/(2σ2

g).

5 GUARANTEED IMPROVEMENT OF THE UTILITY-PRIVACY TRADE-OFF

In the previous section, we present CENTAUR for the general FRL problems (3). Due to the lack of
structure information, for a general non-convex optimization problem we cannot expect any utility
guarantee beyond the convergence to a stationary point. In this section, we consider a specific
instance of the FRL problems where both the representation function ϕ and the local classifiers h
are linear w.r.t. their parameters b and wi. This model has been commonly used in the analysis
of representation learning (Collins et al., 2021; 2022), meta learning (Tripuraneni et al., 2021; Du
et al., 2020; Thekumparampil et al., 2021; Sun et al., 2021), model personalization (Jain et al.,
2021), multi-task learning (Maurer et al., 2016). For this (still nonconvex) instance, we prove that
CENTAUR converges to a ball centered around the global minimizer in a linear rate where the size of
the ball depends on the required RDP parameters (α, ϵ). Let ϵa be the utility and let ϵdp be the DP-
parameter (CENTAUR is an (ϵdp, δ)-DP mechanism). We obtain the improved privacy-utility tradeoff
ϵa · ϵdp ≥ O(d/n), which is O(

√
d) better than the current SOTA result, ϵa · ϵdp ≥ O(d1.5/n), by

(Jain et al., 2021). In the following, we will first review objective (3) in the linear representation
setting, and analyse CENTAUR to show the improved utility-privacy tradeoff.

Federated Linear Representation Learning (LRL) Recall the problem formulation in Section 3.
For simplicity, we assume mi = m for all i ∈ {1, . . . , n} for some constant m. Consider the
LRL setting, where given the input xij the response yij ∈ R satisfies yij = w∗

i
⊤B∗⊤xij . 1 Here

B∗ ∈ Rd×k is a column orthonormal global representation matrix and w∗
i ∈ Rk is an agent-specific

optimal local linear classifiers. In terms of the notations, B corresponds to the parameter b in the
general formulation (3), but is capitalized since it is now regarded as a matrix. The feasible domain
B is the set of column orthonormal matrices Od,k = {B ∈ Rd×k|B⊤B = Ik}.
Given a local dataset S (could be Si or its subset), define

l([w,B];S) =
1

|S|
∑

(x,y)∈S

1

2
(w⊤B⊤x− y)2. (4)

Our goal is to recover the ground truth representation matrix B∗ using the collection of the local
datasets {Si}ni=1 via solving the following linear instance of the FRL problem equation 3

min
B⊤B=Ik

1

n

n∑
i=1

min
wi

l([wi,B];Si) (L-FRL)

in a federated and DP manner. Here, equation L-FRL is an instance of the general FRL problem
(3) with h and ϕ set to linear functions and ℓ set to the least square loss. Note that, despite the
(relatively) simple structure of equation L-FRL, it is still non-convex w.r.t. the variable B.

Methodology for the LRL case. To establish our novel privacy and utility guarantees, we need
to specify INITIALIZATION and AGGREGATION in the procedures SERVER and we also need to
slightly modify the CLIENT procedure, which are elaborated as follows.
1. To obtain the novel guarantee of converging to the global minimizer for the LRL case, the ini-
tializer B0 needs to be within a constant distance to the global optimal B∗ which requires a more

1A similar problem is considered in (Jain et al., 2021), but the measurement yij suffers from an extra white
noise with variance σF . In our paper, we consider the noiseless case and hence when comparing with (Jain
et al., 2021), we treat the σF = 0 in their results for a fair comparison.
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Algorithm 3 INITIALIZATION procedure for CENTAUR in the LRL case.
1: procedure INITILIZATION(T0, ϵi, L0, σ0, ζ0)
2: Run T0 independent copies of PPM(L, σ0, ζ0) to obtain T0 candidates {Bc}T0

c=1;
3: // PPM stands for private power method and is presented in Algorithm 5 in the appendix.
4: // Boost this probability to 1− n−k via cross validation.
5: Find ĉ in [T0] such that for at least half of c ∈ [T0], si(B⊤

c Bĉ) ≥ 1− 2ϵ2i ,∀i ∈ [k].
6: // si(·) denotes the ith singular value of a matrix.
7: return Bĉ.

Algorithm 4 CLIENT procedure for CENTAUR in the LRL case
1: procedure CLIENT(Bt, m̄)
2: Sample without replacement two subsets St,1i and St,2i from Si both with cardinality m̄.
3: [Phase 1:] Update the local head wt+1

i = argminw∈Rk l(w,Bt;St,1i ).

4: [Phase 2:] Compute the local gradient of the representation Gt
i = ∂Bl([wt+1

i ,Bt];St,2i );
5: [Phase 3:] return Gt

i

sophisticated procedure than the simple random initialization. We show that this requirement can be
ensured by running a modified instance of the private power method (PPM) by (Hardt & Price, 2014),
but the utility guarantee only holds with a constant probability (Lemma F.1). A key contribution of
our work is to propose a novel cross-validation scheme to boost the success probability of the PPM
with a small extra cost. Our scheme only takes as input the outputs of independent PPM trials, and
hence can be treated as post-processing, which is free of privacy risk (Lemma F.3). The proposed
INITIALIZATION procedure is presented in Algorithm 3. The analyses are deferred to Appendix F.
2. As discussed earlier, the feasible domain B is the set of column orthonormal matrices. In order
to ensure the feasibility of Bt+1, we set AGGREGATION(Bt,Gt, ηg) = QR(Bt − ηg ·Gt), where
QR(·) denotes the QR decomposition and only returns the Q matrix.
3. We make a small modification in line 2 where two subsets St,1i and St,2i of the local dataset are
sampled without replacement from Si and are used to replace Si in Phases 1 and 2. This change is
required to establish our novel utility result, which ensures that clipping threshold of the Gaussian
mechanism (line 7) in the SERVER procedure is never reached with a high probability (Lemma C.1).

5.1 ANALYSIS OF CENTAUR IN THE LRL SETTING

Use si(A) to denote the ith largest singular value of a matrix A. Let W ∗ ∈ Rn×k be the collection
of the local optimal classifier heads with W ∗

i,: = w∗
i . We use si as a shorthand for si(W ∗/

√
n) and

use κ = s1/sk to denote the condition number of the problem. We choose the scaling 1/
√
n such

that si remains meaningful as n→∞. We make the following assumptions.
Assumption 5.1. xij is zero mean, Id-covariance, 1-subgaussian (defined in Appendix A.1).

Assumption 5.2. There exists a constant µ > 0 such that maxi∈[n] ∥w∗
i ∥2 ≤ µ

√
ksk.

Assumption 5.3. The number of local data points is sufficiently large: m ≥ c̃ldmax(k2, k4d/n).
Here c̃ld hides the dependence on κ, µ, and the log factors.

These assumptions are standard in literature (Collins et al., 2021; Jain et al., 2021). An elaborated
discussion is provided in Appendix K. While Problem (L-FRL) is non-convex, we show that the
consensus representation Bt converges to a ball centered around the ground truth solution B∗ in
a linear rate. The size of the ball is controlled by the noise multiplier σg , which will be the free
parameter that controls the utility-privacy tradeoff.

High level idea. For Problem (L-FRL), we find an initial point close to the ground truth solution
via the method of moments. Given this strong initialization, CENTAUR converges linearly to the
vicinity of the ground truth since it can be interpreted as an inexact gradient descent method with
a fast decreasing bias term. One caveat that requires particular attention is the clipping step in the
Gaussian mechanism (line 5 in Algorithm 4) will destroy the above interpretation if the threshold
parameter ζg is set too small. To resolve this, we set ζg to be a high probability upper bound of
∥Gt

i∥F so that the clipping step only takes effect with a negligible probability.
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In the utility analysis of the LRL case, we use the principal angle distance to measure the conver-
gence of the column-orthonormal variable B towards the ground truth B∗. We also refer to this
quantity as the utility of the algorithm. Let B⊥ be the orthogonal complement of B. We define

dist(B,B∗) := ∥(Id −BB⊤)B∗∥2 = ∥B⊤
⊥B∗∥2≤ 1.

To simplify the presentation of the result, we make the following assumptions: The dimension of
the input is sufficiently large d ≥ κ8k3 log n and the number of clients is sufficiently large n ≥ m.
The proof of the following theorem can be find in Appendix C.
Theorem 5.1 (Utility Analysis). Consider the instance of CENTAUR for the LRL setting with its
CLIENT and INITIALIZATION procedures defined in Algorithms 4 and 3 respectively. Suppose
that the matrix B0 returned by INITIALIZATION satisfies dist(B0,B∗) ≤ ϵ0 = 0.2, and suppose
that the mini-batch size parameter m̄ satisfies m̄ ≥ cmmax{κ2k2 log n, k2d/n}. Set the clipping
threshold of the Gaussian mechanism ζg = cζµ

2ks2k
√
dk log n, the global step size ηg = 1/4s21,

the number of global rounds Tg = cTκ
2 log(κηgζgσgd/n). Assuming that the noise multiplier

in the Gaussian mechanism is sufficiently small2: σg ≤ cσnκ
4/(µ2d

√
k log n). Let cm, cζ ,

cT , cσ , cp and cd be universal constants. We have with probability at least 1 − cpm̄Tg · n−k,
dist(BTg ,B∗) ≤ cdκ

2ηgσgζg
√
d/n = c̃dσgµ

2k1.5d/n. 3

Since the SERVER procedure remains exactly the same as Algorithm 1 in the LRL case, the main
body (anything after INITIALIZATION) of the resulting CENTAUR instance has the same privacy
guarantee as described in remark 4.1. However, we still need to account for the privacy leakage
of the INITIALIZATION procedure in Algorithm 3 as it is data-dependent. This will be deferred to
Appendix F, where we show that Algorithm 3 is an (α, ϵinit)-RDP mechanism, with ϵinit defined in
Corollary F.1. Combining this fact with the RDP analysis for the main body leads to the following
privacy guarantee for CENTAUR in the LRL case (see Appendix A.4).
Theorem 5.2 (Privacy Bound). Consider the instance of CENTAUR with its CLIENT procedure
defined in Algorithm 4 and its INITIALIZATION procedure defined in Algorithm 3. Suppose that
the INITIALIZATION procedure is an (α, ϵinit)-RDP mechanism (proved in Corollary F.1). Let σg ,
the noise multiple in the CLIENT procedure, be a free parameter that controls the privacy-utility
trade-off. By setting the inputs to SERVER as pg = 1, Tg = cTκ

2 log(κηgζgσgd/n), the instance of
CENTAUR under consideration is an (α, ϵinit + ϵrdp/2)-RDP mechanism, where ϵrdp = 4αTg/σ

2
g .

Moreover, when σg = Õ(n/(k4µ2d)), we have ϵinit ≤ ϵrdp/2, in which case CENTAUR is an
(α, ϵrdp)-RDP mechanism and is also an (ϵdp, δ)-DP mechanism with ϵdp = 2

√
Tg log(1/δ)/σg .

Overall Utility-Privacy Trade-off We now combine the utility and privacy analyses of CENTAUR
in the LRL setting to obtain the overall utility-privacy trade-off in the following sense: According
to Theorem 5.1, to achieve a high utility, i.e. a small ϵa, we need to choose a small noise multiplier
σg while Theorem 5.2 states that the smaller σg is, the larger the privacy cost.

Corollary 5.1. Use ϵa to denote a target utility, i.e. dist(BT ,B∗) ≤ ϵa where BT is the output
of CENTAUR and use ϵdp to denote a privacy budget, i.e. CENTAUR is an (ϵdp, δ)-DP mechanism.
Suppose that ϵdp ≥ c̃′tµ

2d
√
k/(κ3n), which is a restriction due to the requirement on σg in Theorem

5.1. Under Assumptions 5.1 to 5.3, CENTUAR outputs a solution that provably achieves the ϵa utility
within the ϵdp budget, under the condition that the tuple (ϵa, ϵdp) satisfies c̃tκk1.5µ2d/n ≤ ϵa · ϵdp,
where c̃t and c̃′t hide the constants and log terms.
When focusing on the input dimension d and the number of clients n and treating other factors as
constants, the restriction on ϵdp and the trade-off of the tuple (ϵa, ϵdp) can be simplified to ϵdp ≥
Θ(d/n) and Θ(d/n) ≤ ϵa · ϵdp. Recall that in the previous SOTA result of the LRL setting (Jain
et al., 2021), the restriction on the DP budget is ϵdp ≥ Θ(d1.5/n) (point iii in Assumption 4.1
therein) and the utility-privacy tradeoff can be interpreted as Θ(d1.5/n) ≤ ϵa · ϵdp (Lemma 4.4

2The intuition behind this requirement is that our convergence analysis requires the iterates to stay within a
ball centered around the ground truth, with a constant radius (measured in terms of the principal angle distance).
Adding a large noise will break this argument. Similar requirements are made in Tripuraneni et al. (2021).

3Note that Jain et al. (2021) use the Frobenius norm (instead of the spectral norm) of B⊤
⊥B∗ ∈ Rd×k as the

optimality metric. However, since rank(B⊤
⊥B∗) ≤ k, we can always bound ∥B⊤

⊥B∗∥F ≤
√
kdist(B,B∗).

With this extra factor, Theorem 5.1 quadratically depends on k, same as Lemma 4.4 in (Jain et al., 2021), while
the dependency on d is substantially reduced, from d1.5 to d.
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Table 1: Testing accuracy (%) on CIFAR10/CIFAR100/EMNIST with various data allocation settings. No data
augmentation is used for training the representations. n stands for the number clients and S stands for the
number classes per client. The δ parameter of DP is fixed to 10−5 as a common choice in the literature. The
budget parameter of DP is fixed to a small value of 1 for results in this table, i.e. ϵdp = 1.

Methods Stand-
alone-no-FL

DP-FedAvg-fb PMTL-ft PPSGD CENTAUR

CIFAR10, n=500, S=5 50.03 (1.59) 46.17 (0.12) 49.35 (0.44) 48.69 (1.44) 53.23 (0.92)
CIFAR10, n=1000,S=2 74.06 (0.45) 57.02 (1.36) 67.79 (1.77) 71.52 (2.30) 76.23 (0.48)
CIFAR10, n=1000,S=5 44.60 (1.30) 37.15 (1.22) 35.99 (1.79) 44.61 (2.68) 49.92 (0.71)

CIFAR100, n=1000,S=5 39.20 (1.12) 22.17 (2.12) 24.17 (1.43) 32.97 (1.48) 44.54 (1.05)
EMNIST, n=1000,S=5 93.47 (0.14) 91.32 (0.22) 92.32 (0.22) 93.44 (0.20) 94.17 (0.19)
EMNIST, n=2000,S=5 90.67 (0.46) 86.85 (1.11) 88.81 (2.08) 88.96 (1.93) 92.79 (0.25)

therein). Hence, we obtain a Θ(
√
d) improvement in both regards, which means that CENTAUR

delivers the utility-privacy guarantees for a much wider range of combinations of (ϵa, ϵdp). Please
see an elaborated discussion of this result in Appendix J.

6 EXPERIMENTS

In this section, we present the empirical results that show the significant advantage of the proposed
CENTAUR over previous arts. Four baselines are included: Stand-alone-no-FL which stands
for local stand-alone training; DP-FedAvg-fb which stands for DP-FedAvg with local fine tuning
(Yu et al., 2020); PPSGD proposed by Bietti et al. (2022); and PMTL-ft which stands for PMTL
proposed by Hu et al. (2021) with local fine tuning. Note that Stand-alone-no-FL does not in-
volve any global communications, therefore no privacy mechanism is added to its implementation.
This makes Stand-alone-no-FL a strong baseline as the utility of all included differentially
private competing methods are affected by gradient clipping and noise injection, especially when
the DP budget is small, e.g. ϵdp = 1. Another advantage of Stand-alone-no-FL setting is
that, the local stand-alone models are highly flexible, i.e. the model on one client and be completely
different from the one on others. On the contrary, while the models of all other non-local methods
share a common representation part, which takes up the major portion of the whole model.
We focus on the task of image classification and conduct experiments on three representative
datasets, namely CIFAR10, CIFAR100, and EMNIST. In terms of architecture of the neural net-
work, we use LeNet for CIFAR10/CIFAR100 and use MLP for EMNIST, as commonly used in the
federated learning literature, the details of which are discussed in Appendix. In terms of data aug-
mentation, we do not perform any data augmentation for training the representation, as we observe
that classic data augmentation for DP training leads to worse accuracy, as also reported in De et al.
(2022). We also tried a new type of data augmentation suggested by De et al. (2022), which does
not consistently improve the classification (validation) accuracy in our experiments neither.
CENTAUR Has the Best Privacy Utility Trade-off. We first present the utility (testing accuracy)
of models trained with CENTAUR and other baselines algorithms under a fixed small privacy budget
ϵdp = 1, for a variety of heterogeneous FL settings. To simulate the data-heterogeneity phenomenon
ubiquitous in the research of federated learning, we follow the data allocation scheme of (Collins
et al., 2021): Specifically, we first split the original dataset into a training part (90%) and a valida-
tion part (10%) and we then allocate the training part equally to n clients while ensuring that each
client has at most data from S classes. In Table 1, we observe that, under this small privacy budget,
our proposed CENTAUR enjoy better performance than all the included baseline algorithms. Impor-
tantly, CENTAUR is the only method that consistently outperforms the strong local-only baseline,
and therefore justifies the choice of collaborative learning as opposed of local stand-alone training.
Finally, we further demonstrate that CENTAUR enables superior privacy utility trade-off uniformly
across different privacy budget ϵ, for the setting of EMNIST dataset (n = 2000, S = 5) in Figure 1.

Conclusion. In this work, we point out that the phenomenon of statistical heterogeneity, one of
the major challenges of federated learning, introduces extra difficulty when DP constraints are im-
posed. To alleviate this difficulty, we consider the federated representation learning where only the
representation function is to be globally shared and trained. We provide a rigorous guarantee for
the utility-privacy trade-off of the proposed CENTAUR method in the linear representation setting,
which is O(

√
d) better than the SOTA result. We also empirically show that CENTAUR provides

better utility uniformly on several vision datasets under various data heterogeneous settings.
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A MORE ON PRELIMINARIES

A.1 SUBGAUSSIAN RANDOM VARIABLE

Let x ∈ R be a subgaussian random variable. We use ∥x∥ψ2
= inf{s > 0|E[exp(x2/s2)] ≤ 2}

to denote subgaussian norm and say x is ∥x∥ψ2
-subgaussian. For a random vector x ∈ Rd, we

say x is subgaussian if ⟨x,x⟩ is subgaussian for any weight vector x ∈ Rd and the subgaussian
norm of the random vector x is defined as ∥x∥ψ2

= supx∈Rd,∥x∥2=1 ∥⟨x, x⟩∥ψ2
. We refer to x as

∥x∥ψ2
-subgaussian.

A.2 A USEFUL IDENTITY

Note that Ik = B⊤[B∗ B∗
⊥][B

∗ B∗
⊥]

⊤B = B⊤B∗B∗⊤B +B⊤B∗
⊥B

∗
⊥
⊤B and hence

s2min(B
⊤B∗) = smin(B

⊤B∗B∗⊤B) = min
∥a∥=1

a⊤B⊤B∗B∗⊤Ba

= min
∥a∥=1

a⊤
(
Ik −B⊤B∗

⊥B
∗
⊥
⊤B

)
a

= 1− smax(B
⊤B∗

⊥B
∗
⊥
⊤B) = 1− (dist(B∗,B))2. (5)

A.3 MORE ON PRIVACY PRELIMINARIES

Lemma A.1 (Gaussian Mechanism of RDP). Let Rα be the Rényi divergence defined in Definition
2.1, we have Rα(N (0, σ2),N (µ, σ2)) = αµ2/(2σ2). Here N stands for the standard Gaussian
distribution.
Lemma A.2 (Composition of RDP). Recall the definition of D in Definition 2.1 and let R1 and R2

be some abstract space. LetM1 : D → R1 andM1 : D × R1 → R2 be (α, ϵ1)-RDP and (α, ϵ2)-
RDP respectively, then the mechanism defined as (X,Y ), where X ∼M1(S) and Y ∼M2(S, X),
satisfies (α, ϵ1 + ϵ2)-RDP.
Definition A.1 (DP). Let Θ be an abstract output space. A randomized algorithmM : D → Θ is
(ϵ, δ)-differential private if for all D,D′ ∈ D with d(D,D′) ≤ 1, we have that for all subset of the
range, S ⊆ Θ, the algorithmM satisfies: Pr{M(D) ∈ S} ≤ exp(ϵ) Pr{M(D′) ∈ S}+ δ.
Theorem A.1 (Conversion from RDP to DP). IfM is an (α, ϵ)-RDP mechanism, it also satisfies
(ϵ+ log 1/δ

α−1 , δ)-differential privacy for any 0 < δ < 1.

A.4 PROOF OF THEOREM 5.2

Proof. Recall the definition of the Gaussian mechanism

GMζ,σ({xi}si=1)
.
=

1

s
(

s∑
i=1

clip(xi; ζ) + σζW )
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ϵdp
Stand-

alone-no-FL CENTAUR DP-FedAvg-fb PPSGD PMTL-ft

0.25 no clip 0.01 0.01 0.01 0.01
0.5 no clip 0.01 0.01 0.01 0.04
1 no clip 0.01 0.04 0.01 0.04
2 no clip 0.04 0.06 0.04 0.04
4 no clip 0.04 0.06 0.04 0.06

Table 2: Clipping threshold ζg to reproduce the results in Figure 1.

where W ∼ N (0, I). Lemma A.1 states that GMζg,σg
is a (α, 2α/σ2

g)-RDP mechanism for α ≥ 1

(the sensitivity is 2ζg/n while the variance of the noise is (σgζg/n)
2). Using the composition of

RDP again over all the iterates t ∈ [T ], we obtain that Algorithm 1 is an (α, ϵinit +
2αTg

σ2
g

)-RDP
mechanism.

B DETAILS ON EXPERIMENTS SETUP AND MORE RESULTS

Models. We use LeNet-5 for the datasets CIFAR10 and CIFAR100. LeNet-5 consists of two
convolution layers with (64, 64) channels and two hidden fully-connected layers. For CIFAR10, the
number of hidden neurons are (384, 32) while for CIFAR100, the number of hidden neurons are
(128, 32). We use ReLU for activation. No batch normalization or dropout layer is used.
We use MLP for experiments on EMNIST. It consists of three hidden layers with size (256, 128,
16). We use ReLU for activation. No batch normalization or dropout layer is used.

Hyperparameters. All of our experiments are conducted in the fully participating setting, i.e.
pc = 1. According to our experiments, the following hyperparameters are most important to the
performance of CENTAUR: the clipping threshold of the Gaussian mechanism ζg , the global step
size ηg , the local step size ηl, the number of global rounds Tg .
For CIFAR10, to reproduce the utility-privacy tradeoff presented in Figure 1, we grid search the
clipping threshold ζg in the set {0.01, 0.02, 0.04, 0.06} for every combination of privacy budget and
baseline. The resulting optimal clipping threshold is listed in the Table 2. For other parameters, we
set ηl = 0.01, Tg = 200 uniformly.

To reproduce the utility results in Table 1, for CIFAR10, we uniformly set ζg = 0.01, ηl = 0.01,
ηg = 1, Tg = 200; for CIFAR100, we uniformly set ζg = 0.02, ηl = 0.01, Tg = 100, ηg = 1. Note
that once the privacy budget ϵdp is given, we use the privacy engine from the package of Opacus to
determine the noise multiplier σg , given Tg .
For EMNIST, we uniformly set ζg = 0.25, ηl = 0.01, Tg = 40, ηg = 1.

There are also some algorithm-specific parameters: For PPSGD, we set the step size for the local
correction to η = 0.1 and set ratio between the global and the local step size to α = 0.1. For
PMTL-ft, we set λ, the regularization parameter to 1.

For baselines that require local fine tuning, we perform 15 local epochs to fine tune the local head
with a fixed step size of 0.01.

About data augmentation. In the Non-DP setting, the technique of data augmentation usually
significantly improves the testing accuracy in CV tasks. However, in the DP setting, as reported
in the previous work De et al. (2022), directly utilizing data augmentation leads to inferior perfor-
mance. In the same work, the authors proposed an alternative version of the data augmentation tech-
nique which would improve the testing accuracy on various CV tasks in the centralized DP training
setting. We tried their strategy in the federated representation learning setting under consideration,
which however does not improve the utility in our case.

On the other hand, since the fine tuning of the local classification head does not require DP protection
(recall that in CENTAUR, the head is kept private), we employed the standard data augmentation in
this phase (optimizing over the local classification head), which improves the testing accuracy for
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Table 3: Testing accuracy (%) on CIFAR10 with various data allocation settings given larger communication
budget Tg = 400. No data augmentation is used for training the representations. n stands for the number
clients and S stands for the number classes per client. The δ parameter of DP is fixed to 10−5 as a common
choice in the literature. The budget parameter of DP is fixed to a small value of ϵdp = 1 for results in this table.

Methods Stand-
alone-no-FL

DP-FedAvg-fb PMTL-ft PPSGD CENTAUR

CIFAR10, n=1000,S=2 74.06 (0.45) 63.97 (0.98) 67.71 (0.78) 74.63 (0.76) 77.80 (0.52)
CIFAR10, n=1000,S=5 44.60 (1.30) 41.12 (0.40) 45.75 (0.81) 48.29 (1.79) 51.05 (0.35)
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Figure 3: Testing accuracy vs ϵdp during training.

CENTAUR. We also tried the same technique for the fine tuning part of other baselines, but it actually
leads to worse performance. Hence in the reported results, data augmentation is only used for the
fine tuning of the local classification head in CENTAUR and is not used in any other cases.

B.1 MORE EMPIRICAL RESULTS

To study the performance of different baselines given a larger communication budget, i.e. a larger
Tg , we conduct additional experiments on CIFAR10 and report the results in Table 3. We can
observe that CENTAUR has the best performance among all the included methods, uniformly in all
configurations. In Figure 3, we further show the testing accuracy (utility) vs the privacy cost ϵdp
during the training. We observe that CENTAUR quickly converges to a high utility can consistently
outperforms the included baselines.

C UTILITY ANALYSIS OF THE CENTAUR INSTANCE FOR THE LRL CASE

To present the utility analysis of the CENTAUR instance for the LRL case, Problem (L-FRL) is
equivalently formulated as a standard matrix sensing problem. By setting the clipping threshold
ζg to a high probability upper bound of the norm of the local gradient Gt

i (see Lemma C.1), we
show that CENTAUR can be regarded as an inexact gradient descent method. Given that m̄, the
mini-batch size parameter, is sufficiently large and that the initializer B0 is sufficiently close the
ground truth B∗, we establish a high probability one-step contraction lemma that controls the utility
dist(Bt,B∗), which directly leads to the main utility theorem 5.1.

Matrix Sensing Formulation Consider a reparameterization4 of the local classifier wi =
√
nvi.

Problem (L-FRL) can be written as

min
B⊤B=Ik

1

n

n∑
i=1

min
vi∈Rk

 1

m

m∑
j=1

1

2
(
√
n⟨vi,B⊤xij⟩ − yij)

2

 . (6)

4We consider this rescaling of wi so that the corresponding linear operator in equation 8 is an isometric
operator in expectation (see more discussion below).
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Further, denote V ∈ Rn×k the collection of local classifiers, Vi,: = vi. The collection of optimal
local classifier heads W ∗ can also be rescaled as W ∗ =

√
nV ∗ and the responses yij ∈ R satisfy

yij =
√
n⟨B∗⊤xij ,V

∗
i,:⟩. (7)

Define the rank-1 matrices Aij = xije
(i)⊤ ∈ Rd×n (e(i) ∈ Rn) and define the operators Ai :

Rd×n → Rm and A : Rd×n → RN

Ai(X) = {
√
n⟨Aij ,X⟩}j∈[m] ∈ Rm,A(X) = {Ai(X)}i∈[n] ∈ RN , (8)

where we use N = nm to denote the total number of data points globally. Note that 1√
N
A is an

isometric operator in expectation w.r.t. the randomness of {xij}, i.e. for any X ∈ Rd×n

E{xij}[⟨
1√
N
A(X),

1√
N
A(X)⟩] = 1

N

n∑
i=1

m∑
j=1

ne(i)
⊤
X⊤Exij [xijx

⊤
ij ]Xe(i)

=
1

N

n∑
i=1

m∑
j=1

nX⊤
:,iX:,i =

1

N

n∑
i=1

m∑
j=1

n∥X:,i∥2 = ∥X∥2F ,

where we use Assumption 5.1 in the second equality. With the notations defined above, we can
rewrite Problem (L-FRL) as a standard matrix sensing problem with the operator A

min
B⊤B=Ik

min
V ∈Rn×k

F(B,V ;A) = 1

2N
∥A(BV ⊤)−A(B∗V ∗⊤)∥2. (MSP)

Since CENTAUR only uses a portion of the data points from Si to compute the local gradient Gt
i (see

line 2 in Algorithm 4), it is useful to define the operators At,1i and At,2i that corresponds to St,1i and
St,2i respectively, and their globally aggregated versions At,1 and At,2:

At,li (X) = {
√
n⟨xije(i)

⊤
,X⟩}j∈St,li

∈ Rm̄,At,l(X) = {At,li (X)}i∈[n] ∈ RN̄ , l = 1, 2, (9)

where we denote N̄
.
= m̄n.

Clippings are inactive with a high probability The following lemma shows that by properly
setting the clipping thresholds ζg , the clipping step of the Gaussian mechanism in Algorithm 4 takes
no effect with a high probability.
Lemma C.1. Consider the LRL setting. Under the assumptions 5.2 and 5.1, we have with a proba-
bility at least 1− m̄n−k,

∥Gt
i∥F ≤ ζg

.
=cζµ

2ks2k
√

dk log n,

where Gt
i is computed in line 4 of Algorithm 4 and ζg is some universal constant.

Proof. The detailed expression of Gt
i in line 4 of Algorithm 4 can be calculated as follows:

Gt
i = ∂Bl([wt+1

i ,Bt];St,2i ) =
1

m̄

∑
(xij ,yij)∈St,2i

(
⟨Bt⊤xij ,w

t+1
i ⟩ − yij

)
xijw

t+1
i

⊤
. (10)

Using the triangle inequality of the matrix norm, ζ is a high probability upper bound of ∥Gt
i∥F if

the inequality
∥
(
⟨Bt⊤xij ,w⟩ − yij

)
xijw

t+1
i

⊤∥F ≤ ζ (11)

holds with a high probability. In the following, we show that the inequalities |⟨Bt⊤xij ,w⟩| ≤ ζ1,
|yij | ≤ ζy , ∥xij∥2 ≤ ζx and ∥wt+1

i ∥ ≤ ζw hold jointly with probability at least 1 − 5n−k, which
together with (ζy + ζ1)ζxζw ≤ ζg and the union bound leads to the result of the lemma.

Choice of ζy Recall that in Assumption 5.1, we assume that xij is a sub-Gaussian random vector
with ∥xij∥ψ2

= 1. Using the definition of a sub-Gaussian random vector, we have

P{|yij | ≥ ζy} ≤ 2 exp(−csζ2y/∥w∗
i ∥2) ≤ exp(−k log n), (12)

with the choice ζy = µ
√
ksk ·

√
(k log n+ log 2)/cs = O(µskk

√
log n) since ∥w∗

i ∥2 ≤ µ
√
ksk.

Here cs is some constant and we recall that sk is a shorthand for sk(W ∗/
√
n).
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Choice of ζx Recall that xij is a sub-Gaussian random vector with ∥xij∥ψ2
= 1 and therefore

with probability at least 1− δ,

∥xij∥2 ≤ 4
√
d+ 2

√
log

1

δ
. (13)

Therefore by taking δ = exp(−k log n), we have that ζx = 4
√
d+ 2

√
log 1

δ = O(
√
d).

Choice of ζw We can show that ζw = 2µ
√
ksk is a high probability upper bound of ∥wt+1

i .
Proving this bound requires detailed analysis of FedRep and is discussed later in equation 63.

Choice of ζ1 The following event is conditioned on the event ∥wt+1
i ∥2 ≤ 2µ

√
ksk. We will then

bound the probability of both events happen simultaneously using the union bound. Since xij is
a sub-Gaussian random vector with ∥xij∥ψ2

= 1, using the definition of a sub-Gaussian random
vector, we have

P{|⟨Btwt+1
i ,xij⟩| ≥ ζ1} ≤ 2 exp(−csζ21/∥wt+1

i ∥2) ≤ exp(−k log n), (14)

with the choice ζ1 = 2µ
√
ksk ·

√
(k log n+ log 2)/cs = O(µskk

√
log n) since ∥wt+1

i ∥2 ≤
2µ
√
ksk. Here cs is some constant and we recall that sk is a shorthand for sk(W ∗/

√
n). Using the

union bound, we have that w.p. at least 1− 2 exp(−k log n), the upper bound ζ1 is valid.

The idea behind the proof To present the intuition of the utility analysis of CENTAUR, define

V (B;A) = argmin
V ∈Rn×k

F(B,V ;A), (15)

where A is some matrix sensing operator and F is defined in Problem (MSP). Under the event that
the clipping steps in the Gaussian mechanism in Algorithm 4 takes no effect, the average gradient
Gt .

= 1
n

∑n
i=1 G

t
i admits the following compact form

Gt = ∂BF(Bt, V (Bt;At,1);At,2). (16)

Suppose that At,1 ≃ At,2 ≃ A (recall that all these linear operators are comprised of i.i.d. data
points xij and are hence similar when m is large). Further define the objective

G(B;A) = min
V ∈Rn×k

F(B,V ;A). (17)

We have Gt ≃ ∇G(Bt;A) since

∇G(Bt;A) = ∂BF(Bt, V (Bt);A)+JV (Bt)⊤∂V F(Bt, V (Bt);A) = ∂BF(Bt, V (Bt;A);A),

where JV (B) denotes the Jacobian matrix of V (B;A) with respect to B and the second equality
holds due to the optimality of V (Bt;A). Consequently, conditioned on the event that all the clipping
operation are inactive, CENTAUR behaves similar to the noisy gradient descent on the objective
G(B;A) (up to the difference between At,1, At,1, and A). In the following, we show that while the
objective G(B;A) is non-convex globally, but we can show that CENTAUR converges locally within
a region around the underlying ground truth.

One-step contraction To present our theory, we first establish the following properties that the
operators At,1 and At,2 (defined in equation 9) satisfy. Recall that N̄ = m̄n =

∑n
i=1 |S

t,1
i |. The

proofs are deferred to Appendix E.

Lemma C.2. Under Assumption 5.1, the linear operator At,1 satisfies the following property with
probability at least 1− exp(−c1k log n):

sup
V ∈Rn×k,∥V ∥F=1

| 1
N̄
⟨At,1(BtV ⊤),At,1(BtV ⊤)⟩ − 1| ≤ δ(1).

Here, the factor δ(1) =
√
k log n/

√
m̄.
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Lemma C.3. Under Assumption 5.1, the linear operator At,1 satisfies the following property with
probability at least 1− exp(−c2k log n): For V1,V2 ∈ Rn×k,

sup
∥V1∥F=∥V2∥F=1

| 1
N̄
⟨At,1((BtBt⊤ − Id)B

∗V ⊤
1 ),At,1(BtV ⊤

2 )⟩| ≤ δ(2)dist(Bt,B∗).

Here, the factor δ(2) =
√
k log n/

√
m̄.

Lemma C.4. Under Assumptions 5.1 and 5.2, the linear operator At,2 satisfies the following prop-
erty with probability at least 1− exp(−c3k log n): For a ∈ Rd, b ∈ Rk

sup
∥a∥=∥b∥=1

| 1
N̄
⟨At,2(BtV t+1⊤ −B∗V ∗⊤),At,2(ab⊤V t+1⊤)⟩| ≤ δ(3)s21kdist(B

t,B∗).

Here, the factor δ(3) = 4(
√
d+
√
k log n)/

(√
m̄nκ2

)
.

We now present the one-step contraction lemma of CENTAUR in the LRL setting. The proof can be
found in Appendix D.1.
Lemma C.5 (One-step contraction). Consider the instance of CENTAUR for the LRL setting with its
CLIENT and INITIALIZATION procedures defined in Algorithms 4 and 3 respectively. Suppose that
the matrix B0 returned by INITIALIZATION satisfies dist(B0,B∗) ≤ ϵ0 = 0.2 and suppose that
the mini-batch size parameter satisfies

m̄ ≥ cmmax{κ2k2 log n,
k2d+ k3 log n

n
},

for some universal constant cm. Set the clipping threshold of the Gaussian mechanism ζg according
to Lemma C.1 and set the global step size ηg = 1/4s21. Suppose that the level of manually injected
noise is sufficiently small: For some universal constant cσ , it satisfies

σg ≤
cσn

µ2(
√
d+
√
k log n)

min

(
1

k2 log n
,

κ4

√
dk log n

)
. (18)

We have the following one-step contraction from a single iteration of CENTAUR

dist(B∗,Bt+1) ≤ dist(B∗,Bt)
√

1− E0/8κ2 + 3CN
ηgσgζg

n

√
d, (19)

holds with probability at least 1 − cpm̄n−k, where cp is some universal constant. Moreover, with
the same probability, we also have

dist(B∗,Bt) ≤ dist(B∗,B0). (20)
Remark C.1. The lower bound of the mini-batch size parameter m̄ is derived to satisfy the following
inequalities:

max{ δ
(2)
√
k

1− δ(1)
,

(δ(2))2k

(1− δ(1))2
, δ(3)k} ≤ s2k(1− ϵ20)

36s21
,

which is required to establish the above one-step contraction lemma. The upper bound of the noise
multiplier σg is derived to satisfy the following inequalities:

ηgσgζg
n

≤ min

( √
1− ϵ20

4CNκ2
√
k log n

,
8κ2ϵ0

3CN
√
dE0

)
. (21)

Proof of Theorem 5.1. Denote E0 =
√
1− ϵ20. Using the recursion (19), we have

dist(B∗,Bt) ≤ (1− E0/8κ
2)t/2dist(B∗,B0) + 3CN

ηgσgζg
n

√
d/(1−

√
1− E0/8κ2)

≤ (1− E0/8κ
2)t/2dist(B∗,B0) + 48CNκ2 ηgσgζg

n

√
d/E0. (22)

With the choice of T specified in the theorem, we have that

dist(B∗,Bt) ≤ cdκ
2 ηgσgζg

n

√
d, (23)

for some universal constant cd. By plugging the choices of ηg , ζg , we obtain the simplified bound

dist(B∗,Bt) ≤ c̃dσgµ
2k1.5d/n,

where c̃d hides the constant and log terms.
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D PROOF OF THE ONE-STEP CONTRACTION LEMMA

D.1 PROOF OF LEMMA C.5

Proof. The following discussion will be conditioned on the event that all the clipping operations are
inactive, whose probability is proved to be at least 1− 5n−k in Lemma C.1. Using union bound to
combine the following result and Lemma C.1 leads to the result.

Recall that the average gradient Gt = 1
n

∑n
i=1 G

t
i and denote Qt = BtV t+1⊤−B∗V ∗⊤. Denote

B̄t+1 = Bt + ηg ·Gt. (24)

Recall that Ct = {1, . . . , n} given pg = 1. Since the clipping operations are inactive, we have

B̄t+1 = Bt − ηgQ
tV t+1 + ηg

(
QtV t+1 −Gt

)
+

ηgσgζg
n

W t, (25)

where W t denotes the noise added by the Gaussian mechanism in the tth global round. Note that
B∗

⊥
⊤Qt = B∗

⊥
⊤BtV t+1⊤, and denote the QR decomposition B̄t+1 = Bt+1Rt+1. We have

B∗
⊥
⊤Bt+1

=B∗
⊥
⊤
(
Bt − ηgQ

tV t+1 + ηg
(
QtV t+1 −Gt

)
+

ηgσgζg
n

W t

)
(Rt+1)

−1

= B∗
⊥
⊤Bt

(
Ik − ηgV

t+1⊤V t+1
)
(Rt+1)

−1

+ ηgB
∗
⊥
⊤ (QtV t+1 −Gt

)
(Rt+1)

−1
+

ηgσgζg
n

B∗
⊥
⊤W t(Rt+1)

−1
.

Recall the definition dist(B∗,Bt) = ∥B∗
⊥
⊤Bt∥. We bound

dist(B∗,Bt+1) ≤ dist(B∗,Bt)∥Ik − ηgV
t+1⊤V t+1∥∥(Rt+1)

−1∥

+ η∥QtV t+1 −Gt∥∥(Rt+1)
−1∥+ ηgσgζg

n
∥B∗

⊥
⊤W t∥∥(Rt+1)

−1∥. (26)

In the following, we show that the factor ∥Ik − ηgV
t+1⊤V t+1∥∥(Rt+1)

−1∥ < 1 which leads
to a contraction in the principal angle distance and treat the rest two terms as controllable noise
for sufficiently small constants (δ(1), δ(2), δ(3)) (see Lemma C.1) and a sufficiently smaller noise
multiplier σg (see equation 18).

Bound ∥Ik − ηgV
t+1⊤V t+1∥. Recall that ηg = 1/4s21. Using Lemma D.5, we have

∥Ik − ηgV
t+1⊤V t+1∥ ≤ 1− ηg(E0s

2
k −

2δ(2)s21
√
k

1− δ(1)
dist(B∗,Bt)) ≤ 1− ηgE0s

2
k · 0.75, (27)

where we use the following inequality in Remark C.1

2δ(2)s21
√
k

1− δ(1)
dist(B∗,Bt) ≤ 2δ(2)s21

√
k

1− δ(1)
≤ E0s

2
k/4. (28)

Bound ∥(Rt+1)
−1∥. With the choice of m̄ stated in the lemma, the tuple (δ(1), δ(2), δ(3)) satisfies

the requirements in Remark C.1. Using Lemma D.7, we have with probability at least 1− 4n−k

∥(Rt+1)−1∥ ≤ 1/
√
1− ηgs2kE0/2. (29)

Combining equation 27 and equation 29, we have the contraction

∥Ik − ηgV
t+1⊤V t+1∥∥(Rt+1)−1∥ ≤ 1− ηgs

2
kE0 · 0.75√

1− ηgs2kE0 · 0.5
< 1.

We now bound the last two terms of equation 26.
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Bound ∥QtV t+1 −Gt∥. Using Lemma D.6, we have

∥QtV t+1 −Gt∥ ≤ δ(3)s21kdist(B
∗,Bt) ≤ E0s

2
kdist(B

∗,Bt) · 0.25, (30)

where we use condition in Remark C.1 δ(3)s21k ≤ E0s
2
k/4.

Bound U∗
⊥
⊤W t. Due to the rotational invariance of independent Gaussian random variables, ev-

ery entry in B∗
⊥
⊤W t ∈ R(n−k)×k is distributed as N (0, 1). Using Lemma I.1, we have with

probability at least 1− n−k

∥B∗
⊥
⊤W t∥ ≤ CN (

√
d− k +

√
k +

√
ln(k log n)) ≤ 3CN

√
d, (31)

where we assume d = Ω(log log n) to simplify the above bound.

Final Result. Combining the above bounds, we conclude that the following one-step contraction
holds under the assumptions stated in the theorem.

dist(B∗,Bt+1) ≤ dist(B∗,Bt)
1− ηgE0s

2
k · (0.75− 0.25)√

1− ηgE0s2k · 0.5
+ 3CN

ηgσgζg
n

√
d

≤ dist(B∗,Bt)
√
1− ηgE0s2k · 0.5 + 3CN

ηgσgζg
n

√
d

D.2 LEMMAS FOR THE UTILITY ANALYSIS

Lemma D.1. Use vec(·) and⊗ to denote the standard vectorization operation and Kronecker prod-
uct respectively. Recall that V t+1 := argminV ∈Rn×k F(Bt,V ;At,1). We have

vec(V t+1) = vec((B∗V ∗⊤)⊤Bt)− f t (32)

where

f t =
(
Bt⊤B∗ ⊗ Id −Htt−1

Ht∗
)
vec(V ∗) = Htt−1

(
Htt(Bt⊤B∗ ⊗ Id)−Ht∗

)
vec(V ∗).

(33)
Here we denote

Ht∗ =
1

n

n∑
i=1

1

m̄

∑
j∈St,1i

vec(A⊤
ijB

t) vec(A⊤
ijB

∗)⊤ ∈ Rnk×nk, (34)

Htt =
1

n

n∑
i=1

1

m̄

∑
j∈St,1i

vec(A⊤
ijB

t) vec(A⊤
ijB

t)⊤ ∈ Rnk×nk. (35)

We use F t ∈ Rn×k to denote the matrix satisfying f t = vec(F t).

Proof. Recall that N̄ = m̄n. For the simplicity of notations, we use the collection {Al}, l =

1, . . . , N̄ to denote {Aij}, i ∈ [n], j ∈ St,1i (there exists a one-to-one mapping between the indices
l and (i, j)). Compute that for any B ∈ Rd×k and V ∈ Rn×k

vec(∂V F(B,V ))

=
1

N̄

N̄∑
l=1

(vec(A⊤
l B)⊤ vec(V )− vec(A⊤

l B
∗)⊤ vec(V ∗)) vec(A⊤

l B)

=

 1

N̄

N̄∑
l=1

vec(A⊤
l B) vec(A⊤

l B)⊤

 vec(V )−

 1

N̄

N̄∑
l=1

vec(A⊤
l B) vec(A⊤

l B
∗)⊤

 vec(V ∗).
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Since V t+1 = argminV ∈Rn×k F(Bt,V ;At,1), we have ∂V F(Bt,V t+1;At,1) = 0 and hence

vec(V t+1) =

 1

N̄

N̄∑
l=1

vec(A⊤
l B

t) vec(A⊤
l B

t)⊤

−1 1

N̄

N̄∑
l=1

vec(A⊤
l B

t) vec(A⊤
l B

∗)⊤

 vec(V ∗)

= Htt−1
Ht∗ vec(V ∗),

where we denote

Ht∗ =
1

N̄

N̄∑
l=1

vec(A⊤
l B

t) vec(A⊤
l B

∗)⊤ ∈ Rnk×nk,

Htt =
1

N̄

N̄∑
l=1

vec(A⊤
l B

t) vec(A⊤
l B

t)⊤ ∈ Rnk×nk.

Use ⊗ to denote the Kronecker product of matrices. Recall that

(B⊤ ⊗A) vec(X) = vec(AXB). (36)

We have

vec
(
(B∗V ∗⊤)⊤Bt

)
= vec

(
V ∗B∗⊤Bt

)
= (Bt⊤B∗ ⊗ Id) vec(V

∗). (37)

Lemma D.2. Recall the definition of Htt in equation 35 and that smin denotes the minimum sin-
gular value of a matrix. Suppose that the matrix sensing operator At,1 satisfies Condition C.2 with
constant δ(1). We can bound

smin(H
tt) ≥ 1− δ(1).

Proof. From the definition of smin, we have

smin(H
tt) = min

P ∈Rn×k

∥P ∥F=1

vec(P )⊤Htt vec(P ) =
1

N̄
⟨At,1(BtP⊤),At,1(BtP⊤)⟩ ≥ 1− δ(1).

Lemma D.3. Recall the definitions of Htt and Ht∗ in equation 35 and equation 34 and recall that
dist(Bt,B∗) is the principal angle distance between the current variable Bt and the ground truth
B∗. Suppose that the matrix sensing operator At,1 satisfies Condition C.3 with constant δ(2). We
can bound

∥Htt(Bt⊤B∗ ⊗ Id)−Ht∗∥2 ≤ δ(2)dist(Bt,B∗). (38)

Proof. Recall that N̄ = m̄n. For the simplicity of notations, we use the collection {Al}, l =

1, . . . , N̄ to denote {Aij}, i ∈ [n], j ∈ St,1i (there can be a one-to-one mapping between the indices
l and (i, j)). For arbitrary W ∈ Rn×k,P ∈ Rn×k with ∥W ∥F = ∥P ∥F = 1, we have

vec(W )⊤Htt(Bt⊤B∗ ⊗ Id) vec(P ) =
1

N̄

N̄∑
i=1

vec(W )⊤ vec(A⊤
i B

t) vec(A⊤
i B

t)⊤ vec(PB∗⊤Bt)

=
1

N̄

N̄∑
i=1

⟨Ai,B
tW⊤⟩⟨Ai,B

tBt⊤B∗P⊤⟩

=
1

N̄
⟨At,1(BtW⊤),At,1(BtBt⊤B∗P⊤)⟩,

where we use (B⊤ ⊗A) vec(X) = vec(AXB) in the first equality. Similarly, we can compute
that

vec(W )⊤Ht∗ vec(P ) =
1

N̄
⟨At,1(BtW⊤),At,1(B∗P⊤)⟩, (39)
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and hence

vec(W )⊤
(
Htt(Bt⊤B∗ ⊗ Id)−Ht∗

)
vec(P ) =

1

N̄
⟨At,1(BtW⊤),At,1((BtBt⊤−Ik)B∗P⊤)⟩.

(40)
Using Condition C.3 and the definition of smax, we have the result.

Lemma D.4. Recall the definitions of F t and f t in equation 33 and recall that dist(Bt,B∗) is
the principal angle distance between the current variable Bt and the ground truth B∗. Suppose
that the matrix sensing operator A satisfies Conditions C.2 and C.3 with constants δ(1) and δ(2)

respectively. We can bound

∥F t∥F = ∥f t∥2 ≤
δ(2)s1

√
k

1− δ(1)
dist(B∗,Bt), (41)

and

∥V t+1∥F ≤
√
ks1 +

δ(2)s1
√
k

1− δ(1)
dist(B∗,Bt) ≤ s1

√
k(1− δ(1) + δ(2))

1− δ(1)
. (42)

Proof. The bound on ∥F t∥F a direct consequence of Lemmas D.1 to D.3 and the fact that the matrix
norms are sub-multiplicative. The bound on ∥V t+1∥F is due to the fact that the matrix norms are
sub-additive.

Lemma D.5. Suppose that the matrix sensing operator At,1 satisfies Conditions C.2 and C.3 with
constants δ(1) and δ(2) respectively. Further, suppose that max{ δ

(2)
√
k

1−δ(1) ,
(δ(2))2k
(1−δ(1))2 } ≤

s2kE0

36s21
. For a

sufficiently small step size ηg ≤ 1/(4s21), we have Ik − ηgV
t+1⊤V t+1 ≽ 0. Moreover, we can

bound

∥Ik − ηgV
t+1⊤V t+1∥2 ≤ 1− ηg(E0s

2
k −

2δ(2)s21
√
k

1− δ(1)
dist(B∗,Bt)). (43)

Proof. We first show that the matrix Ik − ηgV
t+1⊤V t+1 is positive semi-definite for a sufficiently

small step-size ηg . Note that following the idea of the seminal work Jain et al. (2013), the update of
V t+1 = V (Bt;At,1) can be regarded as a noisy power iteration, as detailed in Lemma D.1. This
allows us to compute

∥V t+1⊤V t+1∥2 = ∥V ∗B∗⊤Bt − F t∥22 ≤ 2∥V ∗B∗⊤Bt∥22 + 2∥F t∥22

≤ 2s21 + 2

(
δ(2)s1

√
k

1− δ(1)
dist(B∗,Bt)

)2

≤ 4s21,

where we use Lemma D.4 in the first inequality and use δ(2)
√
k

1−δ(1) ≤ 1 in the last. Consequently, for

ηg ≤ 1
4s21

, Ik − ηgV
t+1⊤V t+1 ≽ 0.

Given the positive semi-definiteness of the matrix Ik − ηgV
t+1⊤V t+1, we can bound

∥Ik − ηgV
t+1⊤V t+1∥2 ≤ 1− ηgsmin(V

t+1⊤V t+1).

By using Lemma D.1 again. We have

V t+1⊤V t+1 =
(
V ∗B∗⊤Bt − F t

)⊤ (
V ∗B∗⊤Bt − F t

)
= Bt⊤B∗V ∗⊤V ∗B∗⊤Bt − F t⊤V ∗B∗⊤Bt −Bt⊤B∗V ∗⊤F t + F t⊤F t.

Note that F t⊤F t is PSD which makes nonnegative contribution to smin(V
t+1⊤V t+1) and hence

smin(V
t+1⊤V t+1) ≥ smin(B

t⊤B∗V ∗⊤V ∗B∗⊤Bt − F t⊤V ∗B∗⊤Bt −Bt⊤B∗V ∗⊤F t)

≥ smin(B
t⊤B∗V ∗⊤V ∗B∗⊤Bt)− 2smax(F

t⊤V ∗B∗⊤Bt)

≥ s2min(B
t⊤B∗)s2min(V

∗)− 2∥F t∥smax(V
∗) (44)
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To bound the first term of Eq. equation 44, recall that s2min(B
t⊤B∗) = 1 − (dist(B∗,Bt))2 from

Eq. equation 5 and dist(B∗,Bt) ≤ dist(B∗,B0) from the induction, we have s2min(B
t⊤B∗) ≥

E0. To bound the last term of Eq. equation 44, we use Lemma D.4 to obtain ∥F t∥2 ≤ ∥F t∥F ≤
δ(2)s1

√
k

1−δ(1) dist(B∗,Bt). Combining the above results, we have

∥Ik − ηgV
t+1⊤V t+1∥2 ≤ 1− ηg(E0s

2
k −

2δ(2)s21
√
k

1− δ(1)
dist(B∗,Bt)). (45)

Lemma D.6. Recall that V t+1 = V (Bt;At,1) (see the definition of V (·;A) in Eq. equation 15),
Qt = BtV t+1⊤ −B∗V ∗⊤, Gt = 1

n

∑n
i=1 G

t
i is the global average of local gradient, and recall

that dist(Bt,B∗) is the principal angle distance between the current variable Bt and the ground
truth B∗. Suppose that the matrix sensing operator At,2 satisfies Condition C.4 with a constant
δ(3). We have

∥Gt −QtV t+1∥2 ≤ δ(3)s21kdist(B
∗,Bt). (46)

Proof. Recall that N̄ = m̄n. For the simplicity of notations, we use the collection {Al}, l =

1, . . . , N̄ to denote {Aij}, i ∈ [n], j ∈ St,2i (there can be a one-to-one mapping between the indices
l and (i, j)). With this notation, we can compactly write Gt as

Gt =
1

N̄

N̄∑
l=1

⟨Al,Q
t⟩AlV

t+1. (47)

From the definition of smax, for any a ∈ Rd with ∥a∥2 = 1 and any b ∈ Rk with ∥b∥2 = 1, we
have

∥ 1
N̄

N̄∑
l=1

⟨Al,Q
t⟩AlV

t+1 −QtV t+1∥2 = max
∥a∥2=∥b∥2=1

a⊤

 1

N

N̄∑
l=1

⟨Ai,Q
t⟩AlV

t+1 −QtV t+1

 b.

We obtain the result from Condition C.4

| 1
N̄
⟨At,2(BtV t+1⊤ −B∗V ∗⊤),At,2(ab⊤V t+1⊤)⟩| ≤ δ(3)s21kdist(B

t,B∗). (48)

Lemma D.7. Recall that B̄t+1 = Bt+1Rt+1 is the QR decomposition of B̄t+1. Denote E0 = 1−ϵ20
and σ = ζgσgηg/n. Suppose that Conditions C.2 to C.4 are satisfied with constants δ(1), δ(2), and

δ(3). Further, suppose that max{ δ
(2)

√
k

1−δ(1) ,
(δ(2))2k
(1−δ(1))2 , δ

(3)k} ≤ s2kE0

36s21
and the level of manually injected

noise is sufficiently small σ ≤ E0

4CNκ2
√
k logn

. We have with probability at least 1− 4 exp(−k log n)

∥(Rt+1)−1∥2 ≤
1√

1− ηgs2kE0/2
. (49)

Proof. We now focus on bounding smin(R
t+1). Recall that Gt = ∂BF(Bt,V t+1;At,2) with

V t+1 = V (Bt;At,1) (see the definition of V (·;A) in equation 15) and recall that B̄t+1 := Bt −
ηgG

t + σW t. Compute

Rt+1⊤Rt+1 = B̄t+1⊤B̄t+1

= Ik + η2gG
t⊤Gt + σ2W t⊤W t − ηgB

t⊤Gt − ηgG
t⊤Bt + σBt⊤W t + σW t⊤Bt − ηgσG

t⊤W t − ηgσW
t⊤Gt.

Therefore, we have

smin(R
t+1⊤Rt+1) ≥ 1−2ηgsmax

(
Bt⊤Gt

)
−2σsmax(B

t⊤W t)−2ηgσsmax

(
Gt⊤W t

)
. (50)

We now bound the last three terms of the R.H.S. of the above inequality.
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1. smax

(
Bt⊤Gt

)
: To bound smax

(
Bt⊤Gt

)
, compute that

Bt⊤Gt = Bt⊤QtV t+1 +Bt⊤ (Gt −QtV t+1
)
, (51)

where we recall the definition of Qt as Qt = BtV t+1⊤ −B∗V ∗⊤. Note that the spectral norm of
second term in Eq. equation 51 is bounded by Lemma D.6 and we hence focus on the spectral norm
of the first term Bt⊤QtV t+1. Recall the noisy power interpretation of V t+1 in Lemma D.1. We
can write

Bt⊤QtV t+1 = Bt⊤
(
Bt(Bt⊤B∗V ∗⊤ − F t⊤)−B∗V ∗⊤

)
V t+1 = F t⊤V t+1 = F t⊤

(
V ∗B∗⊤Bt − F t

)
,

(52)
where we use Bt⊤

(
BtBt⊤ − Id

)
B∗V ∗⊤ = 0. Consequently, we can bound smax

(
Bt⊤Gt

)
as

follows

smax

(
Bt⊤Gt

)
≤ s1∥F t∥2 + ∥F t∥22 + ∥Gt −QtV t+1∥2

≤ δ(2)s21
√
k

1− δ(1)
+

(δ(2))2s21k

(1− δ(1))2
+ δ(3)s21k ≤

s2kE0

12
,

where we use the assumptions that max{ δ
(2)

√
k

1−δ(1) ,
(δ(2))2k
(1−δ(1))2 , δ

(3)k} ≤ s2kE0

36s21
and dist(B∗,Bt) ≤ 1

for the last inequality.

2. smax

(
Bt⊤W t

)
: Due to the rotational invariance of independent Gaussian random variables,

every entry in Bt⊤W t ∈ Rk×k is distributed asN (0, 1). According to Theorem 4.4.5 in Vershynin
(2018), with probability at least 1− 2 exp(−k log n), we have the bound ∥Bt⊤W t∥ ≤ CN

√
k logn

48
√
2

for some universal constant CN .

3. smax

(
Gt⊤W t

)
: Let Gt = UGSGV ⊤

G be the compact singular value decomposition of Gt

such that UG ∈ Rd×k and U⊤
GUG = Ik. We can bound

smax

(
Gt⊤W t

)
≤ ∥SG∥∥U⊤

GW t∥. (53)

Due to the rotational invariance of independent Gaussian random variables, every entry in
U t

G
⊤
W t ∈ Rk×k is distributed asN (0, 1) and hence with probability at least 1− 2 exp(−k log n),

we have the bound ∥UG
⊤W t∥ ≤ CN

√
k logn

48
√
2

for some universal constant CN . We now focus on
bounding ∥SG∥2 = ∥Gt∥2. Note that

Gt = QtV t+1 +
(
Gt −QtV t+1

)
, (54)

where the spectral norm of second term in Eq. equation 54 is bounded by Lemma D.6. Recall the
noisy power interpretation of V t+1 in Lemma D.1. We can write

QtV t+1 =
(
Bt(Bt⊤B∗V ∗⊤ − F t⊤)−B∗V ∗⊤

)
V t+1

=
(
(BtBt⊤ − Id)B

∗V ∗⊤ −BtF t⊤
)(

V ∗B∗⊤Bt − F t
)
,

and therefore we can bound

∥QtV t+1∥2 ≤ (s1 + ∥F t∥2)2 ≤

(
s1 +

δ(2)s1
√
k

1− δ(1)
dist(B∗,Bt)

)2

≤ 4s21, (55)

since we assume that δ
(2)

√
k

1−δ(1) ≤ 1.

Combining the above three points, we have with probability at least 1− 4 exp(−k log n)

smin(R
t+1⊤Rt+1) ≥ 1− ηgs

2
kE0/6− σ · CN

√
k log n/6− ηgσ · CN

√
k log n · s21/6. (56)

24



Published as a conference paper at ICLR 2023

Hence, if we choose σ such that (recall that ηg ≤ 1/4s21)

σ ·CN
√
k log n ≤ ηgs

2
kE0 and ηgσ ·CN

√
k log n · s21 ≤ ηgs

2
kE0 ⇒ σ ≤ E0

4CNκ2
√
k log n

, (57)

we have

smin(R
t+1⊤Rt+1) ≥ 1− ηgs

2
kE0/2⇒ smax((R

t+1)−1) ≤ 1√
1− ηgs2kE0/2

. (58)

E ESTABLISH LEMMAS C.2 TO C.4 FOR THE LRL CASE

E.1 PROOF OF LEMMA C.2

For the simplicity of the notations, we omit the superscript of At,1i and At,1. Moreover, recall that
vi = Vi,: ∈ Rk denotes the ith row of the matrix V .

While we can directly use an ϵ-net argument to establish the desired property on the set of matrices
V ∈ Rn×k, ∥V ∥F = 1, it leads to a suboptimal bound since the size of the ϵ-net isO(( 2ϵ +1)nk). In
the following, we show that by exploiting the special structure of the operator A, i.e. V is row-wise
separable in A(BtV ⊤), we can reduce the size of the ϵ-net to O(( 2ϵ + 1)k): Compute that

⟨ 1√
N̄
A(BtV ⊤),

1√
N̄
A(BtV ⊤)⟩ = 1

n

n∑
i=1

1

m̄
⟨Ai(Btvie

(i)⊤),Ai(Btvie
(i)⊤)⟩.

If for any v ∈ Rk, ∥v∥2 = 1, we have 1
m̄ ⟨Ai(B

tve(i)
⊤
),Ai(Btve(i)

⊤
)⟩ = n

(
1±O(δ(1))

)
, we

can show

⟨ 1√
N̄
A(BtV ⊤),

1√
N̄
A(BtV ⊤)⟩ = 1

n

n∑
i=1

∥vi∥22
1

m̄
⟨Ai(Btvie

(i)⊤

∥vi∥2
),Ai(Bt vie

(i)⊤

∥vi∥2
)⟩

=

n∑
i=1

∥vi∥22
(
1±O(δ(1))

)
= 1±O(δ(1)),∀V ∈ Rn×k, ∥V ∥F = 1,

which is the desired result (note that ⟨BtV ⊤,BtV ⊤⟩ = ∥BtV ⊤∥F = 1). We now establish

1

m̄
⟨Ai(Btve(i)

⊤
),Ai(Btve(i)

⊤
)⟩ = 1

m̄

m̄∑
j=1

n((x⊤
ijB

t)⊤v)2 = n
(
1±O(δ(1))

)
holds for any v ∈ Rk, ∥v∥2 = 1. Let Sk−1 be the sphere in the k-dimensional Euclidean space
and let Nk be the 1/4-net of cardinality 9k (see Corollary 4.2.13 in Vershynin (2018)). Note that
1
m̄

∑m̄
j=1 n((x

⊤
ijB

t)⊤v)2 − n = nv⊤
(
Bt⊤( 1

m̄

∑m̄
j=1 xijx

⊤
ij)B

t − Ik

)
v and we have

sup
v∈Sk−1

v⊤

Bt⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t − Ik

v ≤ 2 sup
v∈Nk

v⊤

Bt⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t − Ik

v,

(59)
where we use Lemma 4.4.1 in Vershynin (2018). In the following, we prove

sup
v∈Nk

v⊤

Bt⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t − Ik

v ≤ δ(1)/2

so that we have 1
m̄

∑m̄
j=1 n((x

⊤
ijB

t)⊤v)2 = n
(
1 +O(δ(1))

)
.

For any fixed index i, denote Zij = (x⊤
ijB

tv)2 = n(x⊤
ijB

tv)2 and note that Exij
[Zij ] = n. Since

xij’s are independent subgaussian variables, Zij’s are independent subexponential variables. Recall
that ∥ · ∥ψ2 and ∥ · ∥ψ1 denote the subgaussian norm and subexponential norm respectively and

25



Published as a conference paper at ICLR 2023

we have ∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2
for subgaussian random variables X and Y (see Lemma 2.2.7

in Vershynin (2018)). Therefore, we can bound ∥Zij∥ψ1 ≤ n∥Btv∥22 = n. Using the centering
property (see Exercise 2.7.10 of Vershynin (2018)) and Bernstein’s inequality (see Theorem 2.8.1 of
Vershynin (2018)) of the zero mean subexponential variables, we can bound, for every τ ≥ 0

Pr{| 1
m̄

m̄∑
j=1

Zij − n| ≥ nτ} ≤ 2 exp

(
−cmin{ m̄2n2τ2∑m̄

j=1 ∥Zij∥2ψ1

,
m̄nτ

maxj∈[m̄] ∥Zij∥ψ1

}

)
= 2 exp

(
−cmin{m̄τ2, m̄τ}

) τ<1
= 2 exp

(
−cm̄τ2

)
where c > 0 is an absolute constant. Using the union bound over Nk and set τ =

√
k log n/

√
m̄.

We obtain δ(1) ≤
√
k log n/

√
m̄ with probability at least 1− exp(−c′k log n) for some constant c′.

Similarly, we can show that 1
m̄

∑m̄
j=1 n((x

⊤
ijB

t)⊤v)2 = n
(
1−O(δ(1))

)
. We therefore have the

result.

E.2 PROOF OF LEMMA C.3

Recall that vi ∈ Rk denotes the ith row of the matrix V and denote W = (BtBt⊤ − Id)B
∗.

Following a similar argument as Lemma C.2, we simply need to focus on showing for any v1,v2 ∈
Rk, ∥v1∥ = ∥v2∥ = 1, we have 1

m̄ ⟨Ai(Wv1e
(i)⊤),Ai(Btv2e

(i)⊤)⟩ = ±O(nδ(2)) (Note that

⟨Wv1e
(i)⊤,Btv2e

(i)⊤⟩ = 0). Let Sk−1 be the sphere in the k-dimensional Euclidean space and
let Nk be the 1/4-net of cardinality 9k (see Corollary 4.2.13 in Vershynin (2018)). Note that

1

m̄
⟨Ai(WB∗v1e

(i)⊤),Ai(Btv2e
(i)⊤)⟩ = nv⊤

1

W⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t

v2. (60)

Moreover, according to Exercise 4.4.3 in Vershynin (2018), we have

sup
v1,v2∈Sk−1

v⊤
1

W⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t

v2 ≤ 2 sup
v1,v2∈Nk

v⊤
1

W⊤(
1

m̄

m̄∑
j=1

xijx
⊤
ij)B

t

v2.

In the following, we prove that the quantity on the RHS is bounded by δ(2)/2 so that we have the
desired result.

For any fixed index i, denote Zij = n(x⊤
ijWv1)(x

⊤
ijB

tv2) and note that Exij [Zij ] = 0. Since
xij’s are independent subgaussian variables, Zij’s are independent subexponential variables. We
can bound ∥Zij∥ψ1 ≤ n∥Wv1∥2∥Btv2∥2 = ndist(Bt,B∗). Using the centering property (see
Exercise 2.7.10 of Vershynin (2018)) and Bernstein’s inequality (see Theorem 2.8.1 of Vershynin
(2018)) of the zero mean subexponential variables, we can bound, for every t ≥ 0

Pr{| 1
m̄

m̄∑
j=1

Zij | ≥ nτ} ≤ 2 exp

(
−cmin{ m̄2n2τ2∑m̄

j=1 ∥Zij∥2ψ1

,
m̄nτ

maxj∈[m̄] ∥Zij∥ψ1

}

)

= 2 exp

(
−cmin{ m̄τ2

(dist(Bt,B∗))2
,

m̄τ

dist(Bt,B∗)
}
)

where c > 0 is an absolute constant. Use the union bound over N 2
k , set δ(2) ≤

√
k log n/

√
m̄

and set τ = dist(Bt,B∗)δ(2). We show that Condition C.3 is satisfied with parameter δ(2) with
probability at least 1− exp(−c′k log n) for some constant c′.

E.3 PROOF OF LEMMA C.4

Denote Qt = BtV t+1⊤ −B∗V ∗⊤ and recall that Vi,: ∈ Rk denotes the ith row of the matrix V .
For simplicity, denote W = 1

N̄

∑n,m̄
i=1,j=1⟨Aij ,Q

t⟩AijV
t+1 and note that Exij [W ] = QtV t+1.

We use an ϵ-net argument to establish the desired property on the set of vectors a ∈ Rd, b ∈
Rk, ∥a∥ = ∥b∥ = 1. Let Sk−1 and Sd−1 be the spheres in the k-dimensional and d-dimensional
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Euclidean spaces and letNk andNd be the 1/4-net of cardinality 9k and 9d respectively (see Corol-
lary 4.2.13 in Vershynin (2018)). Note that

⟨A(Qt),A(ab⊤V t+1⊤)⟩ = a⊤Wb. (61)

Moreover, according to Exercise 4.4.3 in Vershynin (2018), we have

sup
a∈Sd−1,b∈Sk−1

a⊤(W −QtV t+1)b ≤ 2 sup
a∈Nd,b∈Nk

a⊤(W −QtV t+1)b.

In the following, we prove that the quantity on the RHS is bounded by δ(3)s21kdist(B
t,B∗)/2 so

that we have the desired result. We first bound ∥Qte(i)∥2 and ∥V t+1
i,: ∥2 as they will be used in our

concentration argument.

Bound ∥V t+1
i,: ∥2. Using Lemma D.1, we can write V t+1 = V ∗B∗⊤Bt − F t and therefore

V t+1
i,: = Bt⊤B∗V ∗

i,: − F t
i,:. Using Assumption 5.2, we have ∥V ∗

i,:∥2 ≤ µ
√
ksk/

√
n. Further, we

can compute that

F t
i,: =

(
1

m̄
Bt⊤xijx

⊤
ijB

t

)−1(
1

m̄
Bt⊤xijx

⊤
ij(B

tBt⊤ − Id)B
∗
)
V ∗
i,:. (62)

Using the variational formulation of the spectral norm and Conditions C.2 and C.3 (note that δ(1) =
δ(2) =

√
k log n/

√
m̄), we have ∥F t

i,:∥2 ≤
δ(2)dist(Bt,B∗)

1−δ(1) · µ
√
ksk√
n

. Therefore we obtain

∥V t+1
i,: ∥2 ≤ 2µ

√
ksk/

√
n. (63)

The high probability upper bound of wt
i in Lemma C.1 can be derived from the above inequality by

noting that wt
i =
√
nV t

i,:.

Bound ∥Qte(i)∥2. Recall the definition of Qt = BtV t+1⊤ −B∗V ∗⊤. Using Lemma D.1, we
obtain

Qt = Bt(V ∗B∗⊤Bt − F t)⊤ −B∗V ∗⊤ = (BtBt⊤ − Id)B
∗V ∗ −BtF t⊤. (64)

We can bound ∥Qte(i)∥2 ≤ ∥(BtBt⊤ − Id)B
∗∥2∥v∗

i ∥2 + ∥F t
i,:∥2 ≤ 2dist(Bt,B∗)µ

√
ksk/

√
n.

Denote Zij = n(x⊤
ijQ

te(i))(x⊤
ijab

⊤V t+1
i,: ) and note that 1

n

∑n
i=1 Exij

[Zij ] = nb⊤V t+1⊤Qta.
Since xij’s are independent subgaussian variables, Zij’s are independent subexponential variables.
We can bound ∥Zij∥ψ1

≤ n∥Qte(i)∥2∥ab⊤V t+1
i,: ∥2 ≤ 4kµ2s2kdist(B

t,B∗). Using the centering
property (see Exercise 2.7.10 of Vershynin (2018)) and Bernstein’s inequality (see Theorem 2.8.1 of
Vershynin (2018)) of the zero mean subexponential variables, we can bound, for every t ≥ 0

Pr{| 1

nm̄

n,m̄∑
i=1,j=1

Zij − a⊤(QtV t+1)b| ≥ τ}

≤ 2 exp

(
−cmin{ m̄2n2τ2∑n,m̄

i=1,j=1 ∥Zij∥2ψ1

,
m̄nτ

maxi∈[n],j∈[m̄] ∥Zij∥ψ1

}

)

= 2 exp

(
−cmin{ m̄nτ2

(4kµ2s2kdist(B
t,B∗))2

,
m̄nτ

4kµ2s2kdist(B
t,B∗)

}
)

Set τ = δ(3)s21kdist(B
t,B∗). We have that when δ(3) = 4(

√
d+

√
k logn)√

m̄nκ2 ,

Pr{| 1

nm̄

n,m̄∑
i=1,j=1

Zij − a⊤(QtV t+1)b| ≥ τ} ≤ exp (−c(d+ k log n)) . (65)

Use the union bound over Nk × Nd, we have that with probability at least 1 − exp(−c′′k log n)
Condition C.4 holds with δ(3) = 4(

√
d+

√
k logn)√

m̄nκ2 .
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F ANALYSIS OF THE INITIALIZATION PROCEDURE

In this section, we present the privacy and utility guarantees of the INITIALIZATION procedure
(Algorithm 3), when the local data points xij are Gaussian variables. Recall that to establish the
utility guarantee for CENTAUR in the LRL setting, a column orthonormal initialization B0 ∈ Rd×k
such that the initial error dist(B0,B∗) ≤ ϵ0 = 0.2 is required. While such a requirement can be
ensured by the private power method (PPM, presented in Algorithm 5), the utility guarantee only
holds with a constant probability, e.g. 0.99.
A key contribution of our work is to propose a cross-validation type scheme to boost the success
probability of PPM to 1 − O(n−k) with a small extra cost of O(k log n). Note that boosting the
success probability has a small cost of utility and hence we need a higher target accuracy ϵi = 0.015

for PPM compared to ϵ0 = 0.2. The most important novelty of our selection scheme is that it
only takes as input the results of O(k log n) independent PPM runs, which hence can be treated as
post-processing and is free of privacy leakage.

F.1 UTILITY AND PRIVACY GUARANTEES OF THE PPM PROCEDURE

In this section, we present the guarantees for the PPM procedure, under the additional assumption
that xij are Gaussian variables. One can prove that the choice of ζ0 described in Lemma F.1 is a
high probability upper bound of ∥Y l

i ∥F (see Lemma G.1 in the appendix). Therefore, with the same
high probability, the clipping operation in the Gaussian mechanism will not take effect.
Conditioned on the above event (clipping takes no effect), to establish the utility guarantee of Algo-
rithm 5, we view PPM Hardt & Price (2014) as a specific instance of the perturbed power method
presented in Algorithm 6. Suppose that the level of perturbation is sufficiently small, we can exploit
the analysis from (Hardt & Price, 2014) to prove the following lemma.

Lemma F.1 (Utility Guarantee of a Single PPM Trial). Consider the LRL setting. Suppose that
Assumptions 5.2 and 5.1 hold and xij are Gaussian variables. Let ϵi = 0.01 be the target accuracy.
For PPM presented in Algorithm 5, set ζ0 = c′0µ

2k1.5s2kd
0.5 log n · (

√
log n +

√
k), L = c′L(s

2
k +∑k

j=1 s
2
j )/s

2
k · log(kd/ϵi). Suppose that n is sufficiently large so that there exists m̄0 such that

m̄n

log6 m̄n
≥ c′1

d · log6 d · k3 · µ2 ·
∑k
i=1 s

2
i

s2k
. (66)

Choose a noise multiplier σ0 = ns2k/c
′
2ζ0k
√
d logL. We have with probability at least 0.99, we

have dist(B0,B∗) ≤ ϵi.

Remark F.1. If we focus on the dependence on the problem dimension d and the number clients
n, treat other quantities, e.g. the rank k, as constant, and ignore the logarithmic terms, we have
m̄ ≥ Θ(d/n), which is the same as the requirement on m̄ in Lemma C.5.

The following RDP guarantee of PPM can be established using the Gaussian mechanism of RDP and
the RDP composition lemma.

Lemma F.2 (Privacy Guarantee). Consider PPM presented in Algorithm 5. Set inputs L, the number
of communication rounds, σ0, the noise multiplier according to Lemma F.1. We have that PPM is an
(α, ϵ′init)-RDP mechanism with

ϵ′init =
αL · (c′2ζ0k

√
d logL)2

n2s4k
= Õ(

ακ2k7µ4d2

n2
), (67)

where Õ hides the constants and the log terms and we treat (s2k +
∑k
j=1 s

2
j )/s

2
k = O(k).

F.2 BOOST THE SUCCESS PROBABILITY WITH CROSS-VALIDATION

The following lemma shows that if the output of PPM has utility at least ϵi, e.g. ϵi = 0.01, with
probability p, e.g. p = 0.99, then any candidate that passes the test (68) has utility no less than ϵ0,
e.g. ϵ0 = 0.2, with a high probability (1− δ). The proof is provided in Appendix H.

5The choice of ϵi should satisfy equation 69. ϵi = 0.01 is one valid example.
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Algorithm 5 PPM: Private Power Method (Adapted from Hardt & Price (2014))

1: procedure PPM(L, σ0, ζ0, m̄0)
2: Choose X0 ∈ Rd×k to be a random column orthonormal matrix;
3: for l = 1 to L do
4: for i = 1 to n do
5: Sample without replacement a subset Sl,0i from Si with cardinality m̄0.
6: Denote M l

i =
1
m̄

∑
j∈Sl,0i

y2ijxijx
⊤
ij .

7: Compute Y l
i := M l

iX
l−1.

8: Let X l = QR(Y l), where Y l = GMζ0,σ0({Y l
i }ni=1).

9: // QR(·) denotes the QR decomposition and only returns the Q matrix.

Algorithm 6 NPM: Noisy Power Method (Adapted from Hardt & Price (2014))

1: procedure NPM(A, L)
2: // A is the target matrix
3: Choose X0 ∈ Rd×k to be a random column orthonormal matrix;
4: for l = 1 to L do
5: Let X l = QR(Y l), where Y l = AX l−1 +Gl.
6: // Gl is some perturbation matrix.
7: // QR(·) denotes the QR decomposition and only returns the Q matrix.

Lemma F.3. Use ϵ0 to denote the accuracy required by CENTAUR in the LRL setting and use ϵi
to denote the accuracy of a single PPM trial. Recall that p = 0.99 is the probability of success of
PPM. Use B0,c to denote the output of PPM in the cth trial and set T0 = 8p log 1/δ in the procedure
INITIALIZATION (Algorithm 3). We have with probability at least 1−δ that there exists one element
ĉ in {1, . . . , T0} such that for at least half of c ∈ {1, . . . , T0},

si(B
⊤
0,cB0,ĉ) ≥ 1− 2ϵ2i ,∀i ∈ [k]. (68)

Moreover, B0,ĉ must satisfy dist(B0,ĉ,B
∗) ≤ ϵ0 with a sufficiently small ϵi ∈ [0, 1] such that√

1− ϵ20 + 1−
√
1− ϵ2i + ϵi < 1− 2ϵ2i . (69)

One valid example is ϵi = 0.01 and ϵ0 = 0.2, which is the one chosen in our previous discussions.
Corollary F.1. Consider the INITIALIZATION procedure presented in Algorithm 3. By setting T0 =
c′T k log n, ϵi = 0.01, and setting L0, σ0 and ζ0 according to Lemma F.1, we have with probability
at least 1− n−k, the output Bĉ satisfies dist(Bĉ,B

∗) ≤ ϵ0 = 0.2. Moreover, the INITIALIZATION
procedure is an (α, ϵinit)-RDP mechanism with

ϵinit = ϵ′init · T0 = Õ(
ακ2k8µ4d2

n2
). (70)

The idea of boosting the success probability is inspired by Algorithm 5 of (Liang et al., 2014). The
major improvement of our approach is that given the outputs of O(k log n) PPM trials, it no long
requires access to the dataset and hence can be treated as postprocessing, while (Liang et al., 2014)
requires an extra data-dependent SVD operation which violates the purpose of DP protection in the
first place.

G GUARANTEES FOR THE PPM PROCEDURE

In this section, we present the analysis to establish the guarantees for the PPM procedure. We first
show that the choice of ζ0 described in Lemma F.1 is a high probability upper bound of ∥Y l

i ∥F .
Therefore, with the same high probability, the clipping operation in the Gaussian mechanism will
not take effect.
Lemma G.1. Consider the LRL setting. Under the assumptions 5.2 and 5.1, we have with a proba-
bility at least 1− 3m̄n−100,

∥Y l
i ∥F ≤ ζ0

.
=c0µ

2k1.5s2k(log n)(
√
log n+

√
d)(
√

log n+
√
k)
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where Y l
i is computed in line 7 of Algorithm 5 and c0 is some universal constant.

Proof. The detailed expression of Y l
i in line 7 of Algorithm 5 can be calculated as follows:

Y l
i = M l

iX
l−1 =

1

m̄

∑
j∈Sl,0i

y2ijxijx
⊤
ijX

l−1. (71)

Using the triangle inequality of the matrix norm, ζ is a high probability upper bound of ∥Y l
i ∥F if

the following inequality holds with a high probability,

∥y2ijxijx⊤
ijX

l−1∥F = |yij |2∥xij∥∥x⊤
ijX

l−1∥ ≤ ζ0. (72)

To bound |yij |2, recall that in Assumption 5.1, we assume that xij is a sub-Gaussian random vector
with ∥xij∥ψ2

= 1. Using the definition of a sub-Gaussian random vector, we have

P{|yij | ≥ τ} ≤ 2 exp(−csτ2/∥w∗
i ∥2) ≤ exp(−100 log n), (73)

with the choice τ = µ
√
ksk ·

√
(100 log n+ log 2)/cs since ∥w∗

i ∥2 ≤ µ
√
ksk. Here cs is some

constant and we recall that sk is a shorthand for sk(W ∗/
√
n).

To bound ∥xij∥, recall that xij is a sub-Gaussian random vector with ∥xij∥ψ2
= 1 and therefore

with probability at least 1− δ,

∥xij∥ ≤ 4
√
d+ 2

√
log

1

δ
. (74)

Therefore by taking δ = exp(−100 log n), we have that 4
√
d+ 2

√
log 1

δ = 4
√
d+ 2

√
100 log n =

ζx.

To bound ∥x⊤
ijX

l−1∥, note that due to the rotational invariance of the Gaussian random vector xij
(recall that X l−1 is an column orthonormal matrix), the ℓ2 norm ∥x⊤

ijX
l−1∥ is distributed like the

ℓ2 norm of a Gaussian random vector drawn from N (0, Ik). Therefore, w.p. at least 1 − n−100,
∥x⊤

ijX
l−1∥ ≤ c(

√
k +
√
log n)

.
=ζ.

Using the union bound and the fact that ζxζ2yζ ≤ ζ0 leads to the conclusion.

Conditioned on the above event (clipping takes no effect), to establish the utility guarantee of
Algorithm 5, we view PPM as a specific instance of the noisy power method (NPM) presented
in Algorithm 6 Hardt & Price (2014), where the target matrix is A = (2Γ + trace(Γ)Id) with
Γ = B∗V ∗⊤V ∗B∗⊤ and the perturbation matrix Gl = P l

1 + P l
2 is the sum of the noise matrix

added by the Gaussian mechanism, P l
2 = σ0ζ0

n W l, and the error matrix P l
1 = (M l − A)X l−1.

One can easily check that with these choices, we recover line 8 of Algorithm 5

Y l = AX l−1 +Gl = M lX l−1 +
σ0ζ0
n

W l =
1

n

n∑
i=1

M l
iX

l−1 +
σ0ζ0
n

W l. (75)

Suppose that the level of perturbation is sufficiently small, we can exploit the following analysis of
NPM from (Hardt & Price, 2014).

Theorem G.1 (Adapted from Corollary 1.1 of Hardt & Price (2014)). Consider the noisy power
method (NPM) presented in Algorithm 6. Let U ∈ Rd×k represent the top-k eigenvectors of the
input matrix A ∈ Rd×d. Suppose that the perturbation matrix Gl satisfies for all l ∈ {1, . . . , L}

5∥Gl∥ ≤ ϵ(sk(A)− sk+1(A)), 5∥U⊤Gl∥ ≤ (sk(A)− sk+1(A))
C

τ
√
kd

(76)

for some fixed parameter τ and ϵ < 1/2. Then with all but 1/τ + e−Ω(d) probability, there exists
an L = O( sk(A)

sk(A)−sk+1(A) log(kdτ/ϵ)) so that after L steps we have that ∥(I −XLX
⊤
L )U∥ ≤ ϵ.

Here C > 0 is a constant defined in Lemma I.3.
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To prove that the perturbation matrix Gl satisfies the conditions required by the above theorem, we
bound M l −A and σ0ζ0

n W l individually, both with high probabilities.

Proof of Lemma F.1. Recall that A = 2Γ + trace(Γ)Id and note that rank(Γ) = k and that its
singular values are s21, . . . , s

2
k. Therefore si(A) = 2s2i +

∑k
j=1 s

2
j for i ≤ k and si(A) =

∑k
j=1 s

2
j

for i > k.

In this proof, we will show that for both matrices P l
1 = (M l − A)X l−1 and P l

2 = σ0ζ0
n W l the

following inequalities hold for all l ∈ {1, . . . , L}, which is a sufficient condition for Lemma G.1 to
hold

10∥P l∥ ≤ ϵ(sk(A)− sk+1(A)), 10∥U⊤P l∥ ≤ (sk(A)− sk+1(A))
C

τ
√
kd

. (77)

Control terms related to P l
1. 1. We first bound ∥P l

1∥. By the independence between M l and
X l−1, we have that

E
[
(M l −A)X l−1

]
= E

[
M l −A

]
· E
[
X l−1

]
= 0.

To bound the norm term E
[
∥(M l −A)X l−1∥

]
, we begin by controlling the norms of Zl

ij ·
X l−1, where Zl

ij = y2ijxijx
⊤
ij . By the proof for Lemma G.1, with a probability at

least 1 − δ, we have that ∥Zl
ij · X l−1∥ ≤ O

(
(
√
d+ log 1/δ) · (

√
k + log 1/δ) · ∥w∗

i ∥2
)
≤

O
(
(
√
d+ log 1/δ) · (

√
k + log 1/δ)µ2ks2k

)
since ∥w∗

i ∥ ≤ µ
√
ksk. We then compute an upper

bound on the matrix variance term

∥E
[
(Zl

ijX
l−1)⊤Zl

ijX
l−1
]
∥ ≤ ∥E

[
y4ij∥xij∥2(x⊤

ijX
l−1)⊤x⊤

ijX
l−1
]
∥ (78)

= ∥(X l−1)⊤E
[
y4ij∥xij∥2xijx⊤

ij

]
X l−1∥ (79)

Due to isotropy of the Gaussian, by (Tripuraneni et al., 2021, Lemma 5), we have that

E
[
y4ij∥xij∥2xijx⊤

ij

]
= ∥w∗

i ∥4 ·
(
(2d+ 75)e1e

⊤
1 + (3d+ 15)Id

)
(80)

By plugging equation 80 into equation 79, we prove the following inequality.

∥E
[
(Zl

ijX
l−1)⊤Zl

ijX
l−1
]
∥ ≤ ∥w∗

i ∥4 ·
(
(2d+ 75)(X l−1)⊤e1e

⊤
1 ·X l−1 + (3d+ 15)Ik

)
(81)

≤ O(d∥w∗
i ∥4) ≤ O(dµ2ks2k

k∑
i=1

s2i ) (82)

By combining both the norm bound and the matrix variance bound and using the modified Bernstein
matrix inequality (Tripuraneni et al., 2021, Lemma 31), we have

∥(M l −A)X l−1∥ ≤ log3 m̄n · log3 d · O

√dµ2ks2k
∑k
i=1 s

2
i

m̄n
+

√
kdµ2ks2k
m̄n

 . (83)

2. We then proceed to bound the term ∥U⊤P l
1∥ = ∥U⊤(M l − A)X l−1∥. By using proof

of Lemma G.1, we first bound the norms of ∥U⊤Zl
ijX

l−1∥ ≤ O((
√
k + log 1/δ)(

√
k +

log 1/δ)µ2ks2k), where Zl
ij = y2ijxijx

⊤
ij . We then compute an upper bound on the matrix vari-

ance term.

∥E[(U⊤Zl
ijX

l−1)⊤U⊤Zl
ijX

l−1]∥ ≤ ∥E
[
y4ij(U

⊤xijx
⊤
ijX

l−1)⊤U⊤xijx
⊤
ijX

l−1
]
∥ (84)

= ∥(X l−1)⊤E
[
y4ij∥U⊤xij∥2xijx⊤

ij

]
X l−1∥ (85)

= ∥(X l−1)⊤E
[
(w∗

i
⊤B∗⊤xij)

4∥U⊤xij∥2xijx⊤
ij

]
X l−1∥ (86)

= ∥(X l−1)⊤E
[
(w∗

i
⊤U⊤xij)

4∥U⊤xij∥2xijx⊤
ij

]
X l−1∥, (87)
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where the last equality is because by definition, we have B∗ = U . We now perform variable trans-
formation and denote vij = V ⊤xij where V = [U ,U ′] is an orthogonal matrix that is extended
based on U . Therefore, we equivalently write the above equation 87 to the following inequality.

∥E
[
(U⊤Zl

ijX
l−1)⊤U⊤Zl

ijX
l−1
]
∥ (88)

≤ ∥(V ⊤X l−1)⊤E

[
[w∗

i
⊤(vij [1], · · · ,vij [k])⊤]4(

k∑
a=1

vij [a]
2)vijv

⊤
ij

]
V ⊤X l−1∥, (89)

where vij [a] means the a-th coordinate of the k-dimensional vector vij , which is also distributed
as Gaussian. Due to the isotropy of the Gaussian it suffices to compute the expectation assuming
w∗
i ∝ ∥wi∥e1 where e1 = (1, 0, · · · , 0)⊤. Then following the proof for (Tripuraneni et al., 2021,

Lemma 5), by combinatorics, we have the following equation.

E[(w∗
i
⊤(vij [1], · · · ,vij [k])⊤)4(

k∑
a=1

vij [a])
2vijv

⊤
ij ] (90)

= ∥w∗
i ∥4E

[
(vij [1])

4(

k∑
a=1

vij [a]
2)vijv

⊤
ij

]
= O(∥w∗

i ∥4k) (91)

Therefore, by plugging the above equation into equation 89, we prove the following inequality.

∥E
[
(U⊤Zl

ijX
l−1)⊤U⊤Zl

ijX
l−1
]
∥ ≤ O(k∥w∗

i ∥4) ≤ O(kµ2ks2k

k∑
i=1

s2i ) (92)

By combining both the norm bound and the above matrix variance bound and using the matrix
Bernstein inequality (Tripuraneni et al., 2021, Lemma 31), we have

∥U⊤(M l −A)X l−1∥ ≤ log3 m̄n · log3 d · O

√k2µ2s2k
∑k
i=1 s

2
i

m̄n
+

µ2k2s2k
m̄n

 . (93)

Therefore, to ensure that equation 77 holds, it suffices to use m̄n sufficiently large such that

log3 m̄n · log3 d · O

√dµ2ks2k
∑k
i=1 s

2
i

m̄n
+

√
kdµ2ks2k
m̄n

 ≤ ϵ(sk(A)− sk+1(A)) (94)

log3 m̄n · log3 d · O

√k2µ2s2k
∑k
i=1 s

2
i

m̄n
+

µ2k2s2k
m̄n

 ≤ (sk(A)− sk+1(A))
C

τ
√
kd

(95)

For simplicity, assume that
√

dµ2ks2k
∑k

i=1 s
2
i

m̄n ≥
√
kdµ2ks2k
m̄n and ϵa ≥ 1/τ

√
kd. The above inequali-

ties can be simplified as follows, with c1 being some constant.

m̄n

log6 m̄n
≥ c1

d · log6 d · k3 · µ2 ·
∑k
i=1 s

2
i

s2k
. (96)

Control terms related to P l
2. Recall that P l

2 ∼ N (0, σ2)d×k, with σ = σ0ζ0/n. Using Lemma
I.2, we have with probability 1− 2e−x:

• maxl∈[L] ∥P l
2∥ ≤ CNσ(

√
d+
√
p+

√
ln(2L+ x));

• maxl∈[L] ∥U⊤P l
2∥ ≤ CNσ(2

√
p+

√
ln(2L+ x)).

Consequently, we can obtain bound the terms related to P l
2 by setting σ0 sufficiently small such that

the following inequalities hold with x = 100 log n

10CNσ(
√
d+
√
k +

√
ln(2L+ x)) ≤ ϵas

2
k, 10CNσ(2

√
k +

√
ln(2L+ x)) ≤ s2k/(τ

√
dk).
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To simplify the above inequalities, suppose that ϵa is a constant and neglect the log log terms. We
obtain

c2σ0ζ0
n

≤ s2k
τk
√
d
√
logL

. (97)

for some constant c2.

Having established equation 77 for both P l
1 and P l

2, we can then use Lemma G.1 to obtain the target
result.

H PROOF OF LEMMA F.3

Proof. In the following, we first show that 1. the index ĉ exists with a high probability and we
then show that 2. any candidate Bĉ that passes the test equation 68 has utility no less than b, i.e.
dist(Bĉ,B

∗) ≤ b.

Existence of ĉ Suppose that both Bc1 and Bc2 are successful, i.e. dist(Bci ,B
∗) ≤ a for i = 1, 2

or equivalently smin(B
⊤
ciB

∗) ≥
√
1− a2 for i = 1, 2. Recall that B∗B∗⊤ + B∗

⊥B
∗
⊥
⊤ = Id.

Compute that

smin(B
⊤
c1Bc2)

= smin

(
B⊤
c1(B

∗B∗⊤ +B∗
⊥B

∗
⊥
⊤)Bc2

)
≥ smin(B

⊤
c1B

∗B∗⊤Bc2)− smax(B
⊤
c1B

∗
⊥B

∗
⊥
⊤Bc2)

≥ smin(B
⊤
c1B

∗)smin(B
∗⊤Bc2)− smax(B

⊤
c1B

∗
⊥)smax(B

∗
⊥
⊤Bc2) ≥ 1− 2a2. (98)

Define the binomial random variable Xc = 1Bc is successful. We have that E[Xc] =
P{Bc is successful} ≥ p.

Using the concentration of the binomial random variable, we have

P{
T0∑
c=1

Xc ≤ T0 · E[Xc]− t} ≤ exp(−t2/(2T0p)). (99)

Therefore, with the choice t = T0/2 and T0 ≥ 8p log 1/δ, we have with probability at least 1 − δ,
at least half of the outputs of T0 independent NPM runs are successful. Consequently, there exists at
least T0/2 pairs of Bc1 and Bc2 such that Eq. equation 98 holds, which shows the existence of ĉ.

Utility of Bĉ We now show that the candidate Bĉ that passes the test Eq. equation 68 must satisfy
dist(Bĉ,B

∗) ≤ b. We prove via contradiction. Suppose that there exists a candidate B that passes
the test, but with dist(B,B∗) > b. This means that there exists x̂ ∈ Rk and ŷ ∈ Rk with ∥x̂∥2 =

∥ŷ∥2 = 1 achieving the minimum singular value of B⊤B∗, such that ⟨Bx̂,B∗ŷ⟩ ≤
√
1− b2.

Let Bi be a successful candidate, i.e. dist(Bi,B
∗) ≤ a (note that with a high probability they are

in the majority according to the discussion above). We have

smin(B
⊤Bi) = smin(B

⊤
(
B∗B∗⊤ +B∗

⊥B
∗
⊥
⊤
)
Bi) ≤ smin(B

⊤B∗B∗⊤Bi) + smax(B
⊤B∗

⊥B
∗
⊥
⊤Bi).

For the second term, we have smax(B
⊤B∗

⊥B
∗
⊥
⊤Bi) ≤ smax(B

⊤B∗
⊥)·smax(B

∗
⊥
⊤Bi) ≤ 1·a ≤ a.

To bound the first term, recall the variational formulation of the minimum singular value smin(A) =
min∥x∥=∥y∥=1 x

⊤Ay and hence

smin(B
⊤B∗B∗⊤Bi) ≤ x̂⊤B⊤B∗B∗⊤Biŷ = x̂⊤B⊤B∗ŷ + x̂⊤B⊤B∗(ŷ −B∗⊤Biŷ)

≤
√
1− b2 + x̂⊤B⊤B∗(ŷ −B∗⊤Biŷ) ≤

√
1− b2 + ∥Ik −B∗⊤Bi∥2 ≤

√
1− b2 + 1−

√
1− a2.

where we recall the definitions of x̂ and ŷ in the above paragraph. Combining the above bounds, we
obtain smin(B

⊤Bi) ≤
√
1− b2 + 1 −

√
1− a2 + a which is strictly smaller than 1 − 2a2 for a

sufficiently small a and a sufficiently large b, e.g. a = 0.01 and b = 0.2 . To put it in other words,
we obtain that B will fail test (68). This leads to a contradiction and hence we have proved that any
candidate that passes the test (68) must satisfy dist(Bĉ,B

∗) ≤ b.
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I PRELIMINARY ON MATRIX CONCENTRATION INEQUALITIES

Lemma I.1 (Theorem 4.4.5 in Vershynin (2018)). Let G1, . . . , GL ∼ N (0, σ2)d×n. There exists a
constant CN such that with probability at least 1− e−x,

max
l∈[L]
∥Gl∥ ≤ CNσ(

√
n+
√
d+

√
ln(2L+ x)). (100)

Lemma I.2 (Lemma A.2 of Hardt & Price (2014)). Let U ∈ Rd×p be a matrix with orthonormal
columns. Let G1, . . . , GL ∼ N (0, σ2)d×p with 0 ≤ p ≤ d. There exists a constant CN such that
with probability at least 1− e−x,

max
l∈[L]
∥U⊤Gl∥ ≤ CNσ(2

√
p+

√
ln(2L+ x)). (101)

Lemma I.3 (Minimum Singular Value of a Square Gaussian Matrix (Theorem 1.2 of Rudelson &
Vershynin (2008))). Let A ∈ Rk×k be a Gaussian random matrix, i.e. Aij ∼ N (0, 1). Then, for
every ϵ > 0, we have

Pr{smin(A) ≤ ϵk−1/2} ≤ Cϵ+ ck, (102)
where C > 0 and c ∈ (0, 1) are absolute constants.

J AN ELABORATED DISCUSSION ON THE UTILITY-PRIVACY TRADEOFF IN
COROLLARY 5.1

Consider the result stated in Corollary 5.1.

• Suppose that the left hand side c̃tκk
1.5µ2d/n is fixed, then for a target accuracy ϵa, we

cannot establish the theoretical guarantee that CENTAUR achieves the accuracy ϵa within
a DP budget of ϵdp ≤ c̃tκk

1.5µ2d
nϵa

(this is natural since a smaller DP budget ϵdp requires
a larger noise multiplier σg which jeopardizes the convergence analysis of CENTAUR).
However, we need to emphasize that, we are not ruling out the possibility that such a DP
budget ϵdp is achieved, since the privacy guarantee that we are establishing is just an upper
bound. Hence we are not establishing a lower bound.

• Now suppose that all factors other than the number of clients n is fixed. Corollary 5.1
implies that for an n that is sufficiently large, i.e. n ≥ c̃tκk

1.5µ2d
ϵa·ϵdp , we can establish the

guarantee that the output of CENTAUR achieves an ϵa utility within an ϵdp budget. This
interpretation also allows us to understand the benefit of having a better dependence on d:
A better dependence on d means that a smaller n is sufficient to achieve the same utility-
privacy guarantee.

K DISCUSSION ON THE REQUIRED ASSUMPTIONS

In this section, we show that the requirements we made in Assumption 5.1 to 5.3 are similar to the
assumptions made in (Collins et al., 2021) and (Jain et al., 2021).

Discussion on Assumption 5.1 We note that our Assumption 5.1 is the same as Assumption 1 in
(Collins et al., 2021), and is similar to point (i) of Assumption 4.1 in (Jain et al., 2021) where xij is
assumed to be exactly Gaussian.

Discussion on Assumption 5.2 We note that our Assumption 5.2 is the same as the definition of the
incoherence parameter µ in (Jain et al., 2021) (the parameter λk therein is equivalent to σ2

k in our
paper), and is similar to Assumption 3 in (Collins et al., 2021) where the incoherence parameter µ
as well as σk is assumed to be 1.

Discussion on Assumption 5.3 We focus on the dependence on the parameters d and n while treat-
ing log terms and the other parameters like the rank k and the incoherence parameter µ as constants.
In this case, Assumption 5.3 can be simplified as m = Ω(d/n). We note that, under this setting our
Assumption 5.3 is the same as the requirement (12) in (Collins et al., 2021) and Lemma 4.6 in (Jain
et al., 2021). The equivalence to the requirement (12) in (Collins et al., 2021) is straight forward.
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To see the equivalence to Lemma 4.6 in (Jain et al., 2021), note that in order for the convergence
analysis of the main procedure to hold, the initializer U init in (Jain et al., 2021) should satisfy
∥U⊤

⊥U init∥F = O(1). To achieve this, the R.H.S. of Lemma 4.6 in (Jain et al., 2021) should be
bounded by a constant, which means that m = Ω(d/n).
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