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ABSTRACT

Spiking neural networks (SNNs) promise high energy efficiency, particularly with
time-to-first-spike (TTFS) encoding, which maximizes sparsity by emitting at
most one spike per neuron. However, such energy advantage is often unrealized
because inference requires evaluating a temporal decay function and subsequent
multiplication with the synaptic weights. This paper challenges this costly ap-
proach by repurposing a physical hardware ‘bug’, namely, the natural signal de-
cay in optoelectronic devices, as the core computation of TTFS. We fabricated
a custom indium oxide optoelectronic synapse, showing how its natural physi-
cal decay directly implements the required temporal function. By treating the
device’s analog output as the fused product of the synaptic weight and temporal
decay, optoelectronic synaptic TTFS (named Otters) eliminates these expensive
digital operations. To use the Otters paradigm in complex architectures like the
transformer, which are challenging to train directly due to the sparsity issue, we
introduce a novel quantized neural network-to-SNN conversion algorithm. This
complete hardware-software co-design enables our model to achieve state-of-the-
art accuracy across seven GLUE benchmark datasets and demonstrates a 1.77×
improvement in energy efficiency over previous leading SNNs, based on a com-
prehensive analysis of compute, data movement, and memory access costs using
energy measurements from a commercial 22nm process. Our work thus estab-
lishes a new paradigm for energy-efficient SNNs, translating fundamental device
physics directly into powerful computational primitives. All codes and data are
open source1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities, yet their immense com-
putational and energy costs hinder their deployment in resource-constrained environments such as
edge devices (Lin et al., 2023; Jegham et al., 2025). This critical challenge has spurred research
on more efficient, brain-inspired architectures, with spiking neural networks (SNNs) emerging as a
promising candidate (Xing et al., 2024a; Tang et al., 2025; Xing et al., 2024b). SNNs are known for
their potential energy efficiency, which stems from sparse, event-driven computations that use addi-
tion instead of expensive multiplications. However, realizing this efficiency in practice is complex
and depends heavily on the encoding scheme used (Yan et al., 2024). In conventional rate-coded
SNNs, information is encoded in the number of spikes in a fixed time window. This approach
necessitates multiple memory accesses for weights and frequent data movement on each spikes,
which may negate the benefits of the sparse computation. Temporal coding schemes, specifically,
time-to-first-spike (TTFS), offer a potentially more efficient alternative. By encoding information
in the precise timing of a single spike, a TTFS-SNN neuron fires at most once per activation cycle.
This maximizes sparsity, dramatically reducing spike count and the associated data movement costs,
making TTFS a theoretically optimal encoding for energy efficiency (Yu et al., 2023; Zhao et al.,
2025).

1https://anonymous.4open.science/r/ICLR26Otters-26F1/README.md
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Figure 1: Rate encoding vs TTFS encoding

However, there are hidden costs behind this theoretical efficiency. In TTFS, information is encoded
by mapping a spike’s timing to its importance; typically, the earlier a spike arrives, the larger the
numerical value it represents. To implement this principle, the network usually need to perform an
extra computational step to convert the raw arrival time of each spike into a corresponding value.
This is done using a decay function (e.g., ϵ(t) = e−t or T − t) whose output is then multiplied by
the synaptic weight (w · ϵ(t)) (Wei et al., 2023; Che et al., 2024b). This conversion process requires
energy to calculate the decay function itself, and it re-introduces the multiplication operations that
SNNs are designed to avoid. This practical drawback negates the energy savings from sparsity and
thus raising a critical question: how can we benefit from the sparsity of TTFS but avoid the costly
computation? Recognizing that the costly term w·ϵ(t) is a value that predictably decreases over time,
our answer lies not in optimizing the digital computation but finding a physical analog to simulate
this process. This approach leads us to optoelectronic synapses, which are attractive for their fJ-level
energy consumption and high resistance to electromagnetic interference (Li et al., 2024b). Notably,
while this field has traditionally focused on suppressing their natural signal decay (volatility) to
create stable memories (Alqahtani et al., 2025), we embrace this decay. We recognize it not as a
bug, but as the exactly physical implementation of the temporal decay function that TTFS requires.
To implement this principle, we fabricated a custom In2O3 optoelectronic synapse. Our method,
Otters, uses the natural decay of this device’s optical signal to perform the required computation.
This approach fundamentally integrates storage and computation into a single physical step, solving
the overhead problem of traditional TTFS.

While our Otters hardware solves the computational overhead of TTFS, a second major barrier re-
mains: the inherent difficulty of training such networks, especially for complex architectures like
the Transformer. Directly training SNNs is challenging. In event-driven learning, error backprop-
agation depends on spike timing; if a neuron fires too sparsely or not at all, it fails to learn. This
“over-sparsity” problem can severely limit the model’s performance and even lead to training fail-
ure (Wei et al., 2023). To sidestep this issue, we employ a quantized neural network(QNN)-to-SNN
conversion methodology. We first train a QNN and then convert its weights to our Otters SNN,
avoiding the pitfalls of direct training in the spiking domain. To further maximize efficiency, we use
knowledge distillation to train a highly compressed model with 1-bit weights and 1-bit key/value
(KV) projections. Our complete hardware-software co-design, combining the Otters synapse with
our QNN-to-SNN conversion pipeline, establishes a new state of the art for spiking language models.
Evaluated on the GLUE benchmark, Otters achieves average accuracy of 3% higher than previous
leading SNNs while demonstrating a 1.77-3.04× improvement in energy efficiency compared to
baselines like Sorbet and SpikingLM (Tang et al., 2025; Xing et al., 2024b). Notably, this energy
efficiency gain is validated by a rigorous and comprehensive analysis that moves beyond the sim-
plistic metrics common in prior SNN research. While previous work often only counted compute
operations (e.g., additions vs. multiplications), our analysis provides a more realistic estimate. It
is grounded in measurements from a commercial 22nm process and provides a full accounting of
compute, data movement, and memory access costs, making our efficiency claims robust.

We also investigate the Otters paradigm’s sensitivity to the hardware noise inherent in analog de-
vices. Our initial analysis shows that, on the SST-2 benchmark, the baseline model’s performance
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begins to degrade with around 5% variation in key physical parameters. To improve the robustness,
we propose Hardware-Aware Training, a method where we introduce different levels of simulated
Gaussian noise during the training process. This approach enhances the model’s resilience, enabling
it to maintain robust performance in noisy conditions, demonstrating a practical path toward robust
real-world deployment.

2 PRELIMINARY

2.1 OPTOELECTRONIC SYNAPSE

An optoelectronic synapse is a neuromorphic device that emulates biological synaptic functions by
using optical signals to modulate its electrical conductance. These devices are renowned for their
potential for extreme energy efficiency, broader bandwidth and faster signal transmission in neu-
romorphic computing, which are key advantages over purely electronic counterparts (Xie et al.,
2024; Wang et al., 2023). Recent studies have reported energy consumption reaching the femtojoule
(fJ)/spike level, comparable to biological synapses and substantially lower than conventional CMOS
neuron devices (Shi et al., 2022; Wang et al., 2024). Among various implementations, oxide thin-
film transistors (TFT) are regarded as viable candidates for optoelectronic synapses due to their low
leakage current and capability for large-area, flexible fabrication. Solution-based fabrication further
offers the advantages of low cost, simplified processing, and facile compositional control. Previous
reports have shown that solution-processed devices exhibit uniform performance, operational stabil-
ity, and low energy consumption (Li et al., 2025). Building upon these advances, this work employs
the mature and reliable oxide-TFT platform to develop the Otters spiking neuron.

2.2 TIME TO FIRST SPIKE SNN

In contrast to rate-based encoding, which uses the frequency of spikes to represent information,
TTFS encoding leverages the precise timing of a single spike. The core principle is that a stronger
input stimulus causes a neuron’s membrane potential to rise faster, reaching its firing threshold
sooner. Thus, the information is encoded in the arrival time of the first—and only—spike within a
given time window, T . This approach maximizes temporal sparsity and is highly efficient, as each
neuron fires at most once (Che et al., 2024a).

The operation of a standard TTFS neuron involves two phases. First, the neuron integrates incom-
ing spikes, updating its membrane potential V l

j (t). Second, it compares this potential to a firing
threshold θl(t). A spike is generated at the first time step t where the potential meets or exceeds the
threshold:

slj(t) =

{
1, if V l

j (t) ≥ θl(t)

0, otherwise
(1)

However, the asynchronous nature of SNNs, combined with the “fire-as-early-as-possible” objective
of TTFS, can lead to another problem. If a presynaptic neuron fires after a postsynaptic neuron
has already fired, its spike becomes invalid for membrane potential accummalation. To solve this,
we employ a Dynamic Firing Threshold (DFT) model that enforces a synchronous, layer-by-layer
processing schedule (Wei et al., 2023). The threshold for any neuron in layer l is set to infinity
outside of a designated time window, effectively ensuring that layer l is only active from time T · l
to T · (l + 1):

θl(t) =

{
θldynamic(t), if T · l ≤ t ≤ T · (l + 1)

+∞, otherwise
(2)

This scheduling guarantees that all spikes from a preceding layer are processed before the current
layer can fire, thus preserving the valid causal relationship.

3 METHODS

This section details the methodology behind Otters. We first describe the core of our model: the
optoelectronic synapse and the neuron model that performs the TTFS computation (Section 3.1). We
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then explain how these components are assembled into the complete optimized spiking Transformer
architecture (Section 3.2), and then, we outline the QNN-to-SNN conversion pipeline used to build
the Otters model (Section 3.3). Finally, we present the framework for the comprehensive energy
analysis used to validate our model’s efficiency (Section 3.4).

'Otters neuron

Otters neuron

0
0

1
0

0
1

0
0

Otters neuron

0
0

0
0

Input spike train Membrane potential Step-wise threshold

'

' 0
1

0
0

Spike neuron'

'

Threshold

Output spike train

In2O3

Au

Cr

Si/SiO2

Al2O3

Light
a)

b)

c)

d)

Figure 2: Device and workflow: (a) the custom-fabricated In2O3 thin-film transistor (TFT); (b)
measured decay curve of the device response; (c) Otters neuron workflow.

3.1 OTTERS SPIKING NEURON

The core of our method is the Otters optoelectronic synapse, a hardware element that physically
implements the time-modulated synaptic dynamics required for TTFS computation. Each synapse is
composed of two main parts: a custom-fabricated Indium Oxide Thin-Film Transistor that provides
a physical signal decay, and an analog-to-digital converter (ADC) that map and scale the analog
signal to digital. Fabrication details for the device in Fig. 2(a) are provided in Appendix A.1. To
ensure a deterministic response, the TFT is operated with a fixed light intensity, yielding a consistent
non-linear decay curve, modeled by the function O(t) = I0 · e−(t/τ)β + Ioffset (Li et al., 2024a;
Liang et al., 2022) . We fit the model parameters by minimizing the sum of squared residuals
using the differential evolution algorithm, yielding: I0 = 110.989, τ = 1.3425, β = 0.495, and
Ioffset = −109.989, showing in Figure 2(b). Thus, the TFT’s current decay over time naturally forms
the temporal component of the post-synaptic potential (PSP).

However, the physical non-linearity of the device presents a critical design challenge. For our QNN-
to-SNN conversion to be lossless, the information encoded by a spike’s timing must map to a set of
uniformly spaced logical values. Specifically, a spike occurring at a physical time tk must represent
the quantized value (T − k)/T . The device’s non-linear decay, O(t), means that the physical times
tk at which the device output naturally equals these target values are themselves non-uniformly
spaced. A naive approach using a constant threshold and uniform time sampling would therefore
fail to establish the required functional equivalence.

Therefore, our solution is to reconcile the non-linear device physics with the linear encoding require-
ment. Instead of implementing a complex, non-uniform clock, we engineer a dynamic, step-wise
decreasing firing threshold, θl(t), while operating the system on a standard, uniform physical clock.
This threshold is designed to change its value only at the pre-calculated time points {tk} which are
derived from the inverse of the physical decay function. This design ensures that the firing condition
where the membrane potential exceeding the threshold can only be met at one of these discrete mo-
ments tk. The neuron fires at the first such time point where its accumulated potential is sufficient.
Consequently, the output spike time tk can encode the intended quantized value (T − k)/T . Be-
cause this encoding scheme is applied consistently throughout the network, the output spike of one
layer provides a correctly timed and valued input to the next, ensuring the integrity of information
propagation across the entire architecture. The full mathematical formulation of this threshold will
be defined in our conversion methodology in Section 3.3.
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The ADC implements a γl
ij times scaling mapping from the physical decay to a digital post-synaptic

potential (PSP). Thus, the full PSP ϵ′ generated by a presynaptic spike is therefore the direct analog
output of the synapse at the time of arrival:

ϵ′(t) = γl
ij ·O(t) (3)

The membrane potential V l
j (t) of neuron j accumulates these PSPs. At each discrete physical time

step t, the potential is updated based on incoming spikes:

V l
j (t) = V l

j (t− 1) +
∑

i s.t. sl−1
i (t)=1

ϵ′(t) (4)

A neuron fires when its membrane potential first meets or exceeds the dynamic threshold. This spike
time, tlspike,j , corresponds to the first logical timestep k where the condition is met:

tlspike,j = min{tk|V l
j ≥ θl(tk)} (5)

In adherence with the TTFS paradigm, the neuron is deactivated after firing to ensure at most one
spike per inference cycle. Algorithm 1 in appendix formally describes this forward pass.

3.2 NETWORK STRUCTURE

A primary challenge in creating a spiking Transformer is the matrix multiplication required for self-
attention score calculation (Q · KT ). While some rate-coded SNNs can simplify this by treating
one matrix as a binary spike train (turning multiplication into selective addition), this approach
is incompatible with TTFS encoding, which requires decoding spikes into non-binary values. To
overcome the problem, we quantize the key (K) and value (V ) projections to a single bit, {+1,−1}.
Consequently, the dot product with a TTFS-encoded query (Q) is computed using only selective,
additions and subtractions. This allows us to eliminate the multiplication bottleneck while still
benefiting from the high sparsity of TTFS. To implement this 1-bit attention mechanism efficiently,
we designed a supporting dataflow architecture inspired by the Canon architecture (Bai et al., 2025),
as illustrated in Figure 3. During inference, the binary K (or V) vectors are pre-loaded into the
local memory of a Processing Element (PE) array. The TTFS-encoded input stream (representing
Q) is broadcast to the PEs. As shown, each PE computes a partial sum by accumulating its local K
values only at the time steps corresponding to incoming spikes. These partial sums are then passed
between PEs for final accumulation. This architecture minimizes data movement and leverages the
spatio-temporal sparsity of the TTFS input for energy efficiency.
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This self-attention module, along with feed-forward layers built from our Opto-FC and spiking
neuron primitives, forms the complete Otters Transformer architecture shown in Figure 4.

3.3 QNN-TO-SNN CONVERSION

To overcome the challenges of direct SNN training, we employ a QNN-to-SNN conversion method-
ology. We first train a QNN and then map its learned parameters to an equivalent Otters SNN,
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ensuring the two networks are functionally identical. To formalize this relationship, we first de-
fine the specific QNN layer architecture that enables this equivalence. A compatible QNN layer
computes its output xl

q,j for neuron j as follows:

alj =
∑
i

wl
ijx

l−1
q,i + blj (6)

xl
q,j = Q(alj) = αl · Clip(⌊

alj
αl
⌋, 0, 2n − 1) (7)

where alj is the pre-activation, wl
ij are the weights, blj is the bias, and αl is the quantization scaling

factor for layer l. With this structure established, we can now state the proposition that governs the
exact conversion from the trained QNN to the Otters SNN:

Proposition 1. An Otters SNN layer (as defined in Section 3.1) is functionally equivalent to a trained
n-bit QNN layer (as defined above) if its parameters are constructed as follows:

1. The number of discrete time steps in the SNN simulation window, T, is set to match the
number of positive quantization levels of the n-bit QNN: T = 2n − 1.

2. The mapping from a logical time step k ∈ {0, 1, . . . , T − 1} to a physical spike time tk is
defined such that the device’s output at that instant, O(tk), is linearly proportional to the
remaining time in the window: O(tk) =

T−k
T .

3. The SNN’s physical scaling factor for the synapse connecting neuron i in layer l − 1 to
neuron j in layer l, γl

ij , is set based on the corresponding QNN weight and the quantization
scale of the previous layer: γl

ij = wl
ij · αl−1 · T .

4. The SNN’s firing threshold for neuron j in layer l is a step-wise decreasing function of time,
defined as: θl(t) = αl · (T − k), for tk ≤ t < tk+1.

The proof proceeds in two steps. First, during integration, we show that the accumulated membrane
potential V l

j in an SNN neuron is numerically identical to the corresponding QNN neuron’s pre-
activation value alj . We binarize weights wl

ij to reduce energy and increase the reuse of factor γl
ij .

Second, during firing, we show that the engineered, time-dependent threshold θlj(t) compensates for
the device’s intrinsic non-linearity by permitting firing only at pre-calculated time points, tk, derived
from the inverse of the physical decay function. This mechanism ensures the SNN neuron fires at a
time tlspike,j that precisely encodes the QNN’s quantized output xl

q,j . A detailed proof is provided in
the Appendix A.2.

3.4 ENERGY ANALYSIS

To evaluate the efficiency of our approach, we formulate an analytical energy model. The total
inference energy (E) is decomposed into three primary components: computation energy (ECompute),
data movement energy (EData), and analog energy (EAnalog) (Yan et al., 2024; Dampfhoffer et al.,
2022). The computation energy, ECompute, accounts for arithmetic operations of additions. The data
movement energy, EData, encompasses the energy for transferring data, including both dynamic and
static power consumption. The final component, EAnalog, includes the energy to power the TFT, the
sampling energy, and ADC energy required to converted the analog signal to scaled digital value,
collectively represented as ERead

Analog. Thus, we have E = ECompute + EData + Eanalog. For our energy
calculation, we consider a spatial dataflow architecture where information (e.g., spike packets) is
communicated over a Network-on-Chip (NoC) (Yan et al., 2024). This architecture is representative
of modern specialized hardware such as neuromorphic chips like Loihi (Lines et al., 2018) and
dataflow AI accelerators like Tenstorrent (Vasiljevic et al., 2021) and Sambanova (Prabhakar et al.,
2022). We consider the control logic energy to be negligible as our analysis focuses on specialized
accelerator designs where such overhead is minimal (Yan et al., 2024).

Thus, we model the energy consumption of our Otters-based linear projections and attention op-
erations. We disregard the computational cost of certain operations, such as Softmax and Layer
Normalization, as their contribution to the total compute is negligible compared to large-scale ma-
trix multiplications. The energy to perform a linear projection, EOpto-FC, is modeled by Equation 8.
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The calculation is performed over a batch of size B, a sequence of length S, and for Co output
channels. The total energy is the sum of the following components per output element:

EOpto-FC = B · S · Co︸ ︷︷ ︸
Total Outputs

·
(
Ci · T ·

(
sr · (EACC + ERead

Analog + Esparse
move )︸ ︷︷ ︸

Spike Processing

+ Eleakage
)
+ T · (ECMP + ERead

threshold)︸ ︷︷ ︸
Thresholding

+EWrite
binarykv︸ ︷︷ ︸

K/V Write

) (8)

• Computation Energy: This includes the energy for sparse accumulations. The total number
of active accumulate operations is the workload (Ci) scaled by the average number of spikes
(T · sr), with each operation costing EACC. Additionally, each of the Co output neurons
performs T comparisons against its threshold, costing ECMP per comparison.

• Data Movement Energy: This is composed of dynamic and static costs. Dynamic energy
(Esparse

move ) is consumed to move spike data and is proportional to the spike rate (sr). Otters
paradigm requires a dynamic, step-wise decreasing threshold, which introduces additional
dynamic energy of reading operations ERead

threshold which is need for spiking neurons. Static
energy (Eleakage) accounts for constant leakage power over the time window T . After the
computation completes, an additional energy cost, EWrite

binarykv, is incurred to write the gener-
ated binary Key and Value vectors to SRAM, as described in Section 3.2.

• Analog Energy: Each incoming spike initiates two analog operations: first, the optoelec-
tronic synapse emits light, and second, the decay function is sampled at a specific time tk.
The energy for both the light emission and the sampling event is calculated by integrating
the instantaneous power (P = V ·I) over the duration of each respective operation. For the
readout circuitry, including the amplifier and the look-up-table, we adopt the energy values
of a successive approximation register-assisted pipelined ADC (Su et al., 2023). The total
energy consumed in this process is denoted ERead

Analog per spike.

The energy model for attention score calculation, EOpto-score, is analogous to the linear projection,
with two key differences which lies in the outer dimensions and an additional data movement cost for
reading the binary Key (or Value) vector from SRAM to determine whether the sampled membrane
potential should be added to or subtracted from the accumulator, showing in Appendix A.3.

4 RESULTS

In this section, we evaluate Otters on seven datasets from the GLUE benchmark. We compare its
performance against both standard QNN and SNN baselines, using BERTbase as the teacher model
for knowledge distillation. We further provide a detailed analysis of the model’s energy efficiency
and robustness. All experiments were conducted on three NVIDIA A100 GPUs with a fixed 4-bit
simulation window size recommended by Sorbet (Tang et al., 2025) (In our setting, it is equal to
timestep T = 15). The training process of Otters is shown in Appendix A.5 and the description of
dataset we adapted is shown in Appendix A.6.

4.1 GLUE BENCHMARK PERFORMANCE

As shown in Table 1, Otters achieves SOTA results among SNNs across all seven evaluated GLUE
tasks, consistently outperforms larger and more complex SNN models like SpikingBERT and
SpikeLM. For example, Otters surpasses existing SNNs and achieve an accuracy of 68.95% on
RTE and 91.28% on SST-2. The average accuracy for Otters is 83.22%, which is 3.42% and 2.98%
higher than Sorbet and SpikeLM, respectively.

4.2 ENERGY EFFICIENCY

We analyzed the energy consumption of Otters on the SST-2 dataset, comparing it against full-
precision and quantized BERT models we converted from, as well as SOTA 1-bit SNNs. The 1-bit
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Table 1: Performance comparison on the GLUE benchmark. All scores are accuracy, except for
STS-B (Pearson correlation). “*” indicates that the model size was not reported in the original
paper. Bold indicates the best performance among SNN models. Only Otters quantizes KV to 1 bit.

Model Size QQP MNLI-m SST-2 QNLI RTE MRPC STS-B Average

BERTbase (Devlin et al., 2019) 418M 91.3 84.7 93.3 91.7 72.6 88.2 89.4 87.31
DistilBERT (Sanh, 2019) 207M 88.5 82.2 91.3 89.2 59.9 87.5 86.9 83.64
TinyBERT6 (Jiao et al., 2020) 207M - 84.6 93.1 90.4 70.0 87.3 83.7 84.85
Q2BERT (Zhang et al., 2020) 43.0M 67.0 47.2 80.6 61.3 52.7 68.4 4.4 54.51
BiT (Liu et al., 2022) 13.4M 82.9 77.1 87.7 85.7 58.8 79.7 71.1 77.57
SpikingFormer (Zhou et al., 2023) * 83.8 67.8 82.7 74.6 58.8 74.0 72.3 73.43
SpikingBERT (Bal & Sengupta, 2024) 50M 86.8 78.1 88.2 85.2 66.1 79.2 82.2 80.83
SpikeLM (Xing et al., 2024b) * 87.9 76.0 86.5 84.9 65.3 78.7 84.3 80.51

1-bit SpikeLM (Xing et al., 2024b) * 87.2 74.9 86.6 84.5 65.7 78.9 83.9 80.24
1-bit Sorbet (Tang et al., 2025) 13.4M 86.5 77.3 90.4 86.1 60.3 79.9 78.1 79.80
Otters (Ours) 13.4M 87.67 78.50 91.28 86.42 68.95 84.56 85.19 83.22

quantized BERT is the QNN Otters converted from which sharing the same structure and parame-
ters. As detailed in Table 2, Otters consumes only 4.06 mJ per inference for one attention block.
This represents a 41.36× energy saving compared to the full BERTbase model and a 2.72× efficient
compared to the 1-bit quantized BERT. Otters is also more efficient than previous SNNs, taking
3.04× energy saving of Sorbet and 1.77× of SpikingLM.

Appendix A.3 provides the full energy equation, detailed measurements for all compared models,
and an ablation study comparing traditional TTFS with Otters. All energy figures include com-
pute, data movement, and static components. In the same appendix section, we provide a detailed
breakdown of the energy consumption in Otters to clarify the contribution of each component.

Table 2: Energy consumption analysis on the SST-2 dataset. Energy is reported for each FC layer
(QKV linear projections), each QKV self-attention score calculation, and the total sum per inference.
The Energy Ratio is Energy(Full BERT) / Energy(Model) (↑ higher is better).

Model FC (mJ) QKV (mJ) Total (mJ) Energy Ratio(↑)
Full BERT (Devlin et al., 2019) 50.35 8.41 167.92 1.00x
1-bit Quantized BERT 3.31 0.55 11.03 15.2x
Sorbet (Tang et al., 2025) 3.39 1.08 12.34 13.61x
SpikingBERT (Bal & Sengupta, 2024) 6.37 2.05 23.22 7.23x
SpikingLM (Xing et al., 2024b) 2.09 0.46 7.2 23.32x
Otters (4bit kv) 1.14 0.53 4.49 37.40x
Otters (1bit kv) 1.14 0.33 4.06 41.36x

4.3 EFFECT OF KV CACHE QUANTIZATION

To further optimize energy, we explored the impact of quantizing the Key and Value projections
in the self-attention mechanism. Table 3 shows that reducing the KV precision from 4-bit to 1-
bit (Otters-1bitkv) yields a 10% reduction in total energy consumption (from 4.49 mJ to 4.06 mJ).
This energy saving comes at the cost of 0.23% drop in accuracy on SST-2, demonstrating a highly
favorable trade-off between efficiency and performance.

Table 3: Impact of KV quantization on energy and accuracy on SST-2.

Energy (mJ)
Model FC QKV Total Accuracy (%)
Otters-4bitkv 1.14 0.53 4.49 91.51
Otters-1bitkv 1.14 0.33 4.06 91.28

4.4 ROBUSTNESS DISCUSSION TO HARDWARE PARAMETER VARIATIONS

The practical deployment of the Otters paradigm hinges on the assumption that the physical decay
characteristics of all optoelectronic synapses are uniform. However, analog hardware is inevitably
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subject to device-to-device variability from the fabrication process, which is a significant challenge
for large-scale integration (Garg et al., 2022). Such inherent hardware noise can corrupt the precise
time-to-value mapping that underpins our conversion method. To evaluate robustness against hard-
ware variability (Fagbohungbe & Qian, 2021; Xuan & Narayanan, 2022; Su et al., 2024), we injected
zero-mean standard deviation Gaussian noise, which is commonly used to simulate and represent
hardware noise, into the physical decay function, O(t), and its parameters, τ and β. The injected
noise is proportional to parameter magnitude: at level k, each parameter p is scaled as p← p (1±k).
As shown in Table 4, the baseline Otters model can tolerate about 5% total output O(t) difference
with minimal accuracy impact and remains robust.

To keep improving the robustness, we propose Hardware-Aware Training (HAT), a method that
builds robustness by simulating hardware non-idealities during training. We introduce two vari-
ants, HAT1 and HAT2, by injecting 10% and 20% Gaussian noise, respectively, into the QNN’s
activations (see Eq. 7). As shown in Table 4, both HAT settings improve noise resilience. The HAT2

model maintains a stable accuracy of 80.8% even under a 20% noise level. HAT2, trained with more
noise, excels in high-noise regimes, whereas HAT1 achieves higher accuracy in low-noise conditions
while still substantially outperforming the baseline (e.g., a 11.5% accuracy gain with 12% noise in
O(t)). Thus, HAT-trained models trade a minor drop in peak accuracy for a significant increase in
resilience against hardware noise. This demonstrates that the model can be regularized to generalize
across a range of hardware imperfections. Consequently, the HAT noise level can be tuned to the
manufacturing tolerances of a specific hardware platform, ensuring reliable real-world performance
and validating the Otters paradigm as a robust and practical approach.

Table 4: Noise Robustness in Physical Decay Function. Bold indicates best performance per noise
level within each component group. Results: mean ± std over 3 runs.

Method Gaussian Noise Level

Full Function O(t) Experiments

O(t) 0.04 0.08 0.12 0.16 0.20

Otters 89.9 ± 0.8 86.1 ± 0.8 73.8 ± 0.9 58.0 ± 0.8 53.3 ± 0.4
Otters+HAT1 89.3 ± 0.5 89.0 ± 0.6 85.3 ± 0.6 76.5 ± 0.4 61.0 ± 0.8
Otters+HAT2 87.4 ± 0.5 87.2 ± 0.7 85.9 ± 0.7 85.2 ± 0.7 80.8 ± 0.3

Parameter β Experiments

β 0.01 0.02 0.03 0.04 0.05

Otters 90.2 ± 0.1 89.5 ± 0.1 87.5 ± 1.8 79.2 ± 3.4 72.5 ± 1.4
Otters+HAT1 89.6 ± 0.1 89.2 ± 0.3 89.1 ± 0.4 87.7 ± 1.2 80.6 ± 2.8
Otters+HAT2 87.8 ± 0.7 88.1 ± 0.4 87.4 ± 1.0 85.5 ± 1.1 83.8 ± 0.5

Parameters τ Experiments

τ 0.10 0.20 0.30 0.40 0.50

Otters 90.3 ± 0.1 90.1 ± 0.5 87.0 ± 1.7 75.0 ± 4.1 67.5 ± 4.8
Otters+HAT1 89.6 ± 0.5 89.3 ± 1.2 88.2 ± 0.7 88.2 ± 1.0 76.1 ± 2.8
Otters+HAT2 87.8 ± 0.6 87.7 ± 0.8 87.1 ± 0.6 87.2 ± 0.3 83.0 ± 1.4

5 DISCUSSION AND FUTURE WORKS

To make SNNs more energy-efficient, Otters focuses on hardware-software co-design to optimize a
core computing operation. We replace the temporal decay function and its following multiplication
by sampling the natural decay of an oxide optoelectronic synapse. This shifts the computation from
digital to analog for a more energy-efficient computing method. However, at the same time, many
related works are also working toward better energy efficiency for SNNs, but from another direction,
such as algorithmic and architectural improvements. These methods, including QKFormer, SSSA,
and A2OS2A, optimize the spiking attention mechanism from O(N2) to linear complexity (linear-
attention SNNs) (Zhou et al., 2024; Wang et al., 2025b; Guo et al., 2025).These two directions are
not in conflict. They are complementary and solve different parts of the problem. Future work
includes designing a linear attention mechanism based on the Otters spiking neuron to make energy
use even more efficient.
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We further discuss the hardware scale. The In2O3 optoelectronic synapse in our prototype has an
effective area of about 0.012 mm2 with a channel length of 30 µm. This size is mainly due to
the precision limits of our fabrication equipment and does not represent the scaling limits of In2O3

technology. Since the goal of this paper is to validate the optoelectronic TTFS mechanism, we did
not focus on device size optimization. However, recent work has demonstrated In2O3 transistors
with channel lengths down to 40 nm (Si et al., 2021), showing that the device area can be reduced
by nearly three orders of magnitude. Additionally, several studies show that oxide devices can
be integrated in 3D stacked layers, providing another path to further reduce the effective area per
synapse (Tang et al., 2022; Yuvaraja et al., 2024; Kwak et al., 2024). With the TTFS mechanism
verified, we plan to focus on device scaling in future work. We also note that the device count can be
reduced by device sharing. For example, consider a Q-projection layer with input channels Ci and
output channels Co. If every weight required one device, the layer would need O(Ci×Co) devices.
In the Otters setting, this number would reach 106–107, which is clearly not practical. However,
in our setting (introduced in Section 3.3), all weights are quantized to 1-bit. This means the decay
function is identical for the entire layer, making it possible to share the In2O3 device. In the best
case, one FC layer can reuse just one physical device. Thus, a single BERT block would require
about 8 devices, resulting in a total area of 0.096 mm2: 6 for the self-attention module (projections
of Q, K, V, their multiplication and output) and 2 for the feed-forward module. (In real systems,
the number of devices might be higher, and sharing may be limited by architecture and compiler
constraints.) The next step of this work is to design an architecture that increases this device reuse
to further reduce the chip area.

6 CONCLUSION

This paper introduces Otters, a new paradigm for energy-efficient neuromorphic computing that
challenges this digital-centric approach. Through a hardware-software co-design, we repurpose
the natural signal decay of a custom-fabricated optoelectronic synapse, transforming this physical
phenomenon into a computational method. This allows us to eliminate the costly decay function
evaluation steps inherent in traditional TTFS, fusing computation and memory into the physical
process. To deploy this paradigm in complex architectures like the Transformer, we developed a
QNN-to-SNN conversion algorithm that circumvents the challenges of direct SNN training. The Ot-
ters model achieves state-of-the-art accuracy across seven GLUE benchmark datasets among SNNs,
while simultaneously delivering a 1.77× improvement in energy efficiency over previous leading
spiking models. By directly harnessing fundamental device physics for computation, this work
demonstrates a new path to a more energy-efficient neuromorphic computing design.
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A APPENDIX

A.1 FABRICATED IN2O3 TFTS

To prepare the indium oxide thin-film transistors (In2O3 TFTs), indium nitrate was first dissolved
in a mixed solvent of 2-methoxyethanol (2-ME), acetylacetone (AcAc), and ammonium hydroxide
(NH3·H2O) to form a precursor solution, which was stirred overnight to ensure complete dissolu-
tion and coordination. Subsequently, gate electrodes were fabricated on a silicon substrate coated
with a SiO2 insulating layer, followed by sequential deposition of 8 nm chromium and 50 nm gold
via electron-beam evaporation. A 30 nm-thick Al2O3 dielectric layer was then uniformly deposited
over the substrate using atomic layer deposition (ALD). The In2O3 precursor solution was spin-
coated onto the dielectric surface, after which the channel regions were defined through standard
photolithography, and the unprotected areas were removed by hydrochloric acid wet etching. The
films were annealed in air at 300 ◦C for 1 hour to enhance crystallinity and improve film quality.
Portions of the Al2O3 layer were subsequently etched to expose selected regions of the gate elec-
trodes. Finally, source and drain electrodes, along with interconnects, were patterned and metallized
with an additional 8 nm chromium and 50 nm gold layer via electron-beam evaporation. The indium
oxide thin-film transistor was characterized under a gate bias of 0 V and a drain bias of 5 mV. Upon
405 nm laser illumination, oxygen vacancies in the channel layer were photoionized, generating free
electrons and thereby enhancing the channel conductivity.

(a) Optical microscope

In2O3

Au

Cr

Si/SiO2
Al2O3

Light

Gate

Drain Source

(b) Otters under optical microscope

Figure 5: Details design of Otters

Regarding integration with state-of-the-art digital hardware, recent studies show that In2O3 TFTs
are compatible with 3D stacking on CMOS chips. This is because they have a low thermal budget
(≤ 300 °C) and good uniformity (Tang et al., 2022). This provides a practical path for vertical
integration. However, several challenges remain, such as managing wire density in stacked layers,
aligning the photodetectors/TFT layers with metal layers, and handling device variability in large
arrays.

A.2 PROOF FOR PROPOSITION 1

A.2.1 INTEGRATION PHASE EQUIVALENCE

The foundation of the proof lies in the relationship between the QNN’s discrete value and the SNN’s
spike time. From Section 3.3, we know that the QNN output activation from the previous layer is
xl−1
q,i = αl−1 · ql−1

i , where ql−1
i is the integer value:

ql−1
i = Clip

(⌊
al−1
i

αl−1

⌋
, 0, T

)
(9)

We define the TTFS encoding scheme such that this integer value ql−1
i is represented by a single

spike from neuron i at the discrete time step k:
k = T − ql−1

i (10)
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This encoding adheres to the TTFS principle: a larger integer value ql−1
i results in a smaller time

step k, signifying an earlier spike. A value of 0 corresponds to no spike within the active window,
and the maximum value T corresponds to a spike at k = 0.

When a presynaptic neuron i fires at time step k, its contribution to the postsynaptic potential of
neuron j is given by the Otters PSP function, ϵ′(·). Using the conditions specified in Proposition 1,
the normalized value produced by the decay function O(t) at time step tk is:

O(tk) =
T − k

T
(11)

Substituting the encoding relationship from Step 1 (k = T − ql−1
i ):

O(tk) =
T − (T − ql−1

i )

T
=

ql−1
i

T
(12)

Thus we find that the normalized output of the physical decay process at the spike time tk is directly
proportional to the integer value ql−1

i it is meant to encode.

The full PSP contribution from the synapse connecting i to j is the product of this normalized value
and the scaling factor γl

ij . Using the definition of γ from Proposition 1:

γl
ij = wl

ij · αl−1 · T (13)

The PSP is therefore:

ϵ′(wl
ij , tk) = γl

ij ·O(tk)

=
(
wl

ij · αl−1 · T
)
·

(
ql−1
i

T

)
(14)

= wl
ij · (αl−1 · ql−1

i )

Recognizing that xl−1
q,i = αl−1 · ql−1

i , we find:

ϵ′(wl
ij , tk) = wl

ij · xl−1
q,i (15)

This shows that the contribution of a single spike in the SNN is exactly equal to the weighted input
term in the QNN.

The final membrane potential V l
j is the sum of all such PSPs from incoming spikes, plus the bias

term:
V l
j =

∑
i

ϵ′(wl
ij , t

l−1
spike,i) + blj =

∑
i

(wl
ij · xl−1

q,i ) + blj (16)

By comparing this with the definition of the QNN pre-activation from Section 1.2,

alj =
∑
i

wl
ijx

l−1
q,i + blj (17)

we arrive at the desired equality:
V l
j = alj (18)

A.2.2 FIRING PHASE EQUIVALENCE

In this section, we prove that the integer value encoded by the SNN’s output spike time, tlspike,j , is
equal to the integer value of the QNN’s output, qlj . That is, if tlspike,j corresponds to time step kfire,
we have:

T − kfire = qlj = Clip

(⌊
alj
αl

⌋
, 0, T

)
(19)
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According to the SNN model definition, the neuron fires at the earliest discrete time step k for which
its potential V l

j meets or exceeds the threshold θl(tk).

V l
j ≥ θl(tk) (20)

Substituting the result from Part I (V l
j = alj) and the definition of the time-varying threshold from

Proposition 1 (θl(tk) = αl · (T − k)), the firing condition becomes:

alj ≥ αl · (T − k) (21)

Assuming αl > 0, we can rearrange the inequality to solve for the term (T − k), which represents
the integer value that would be encoded by a spike at time step k:

alj
αl
≥ T − k (22)

The threshold θl(tk) = αl(T − k) is a monotonically decreasing function of the time step k. For a
fixed membrane potential alj , this means that if the firing condition is met for a certain time step k∗,
it will also be met for all subsequent time steps k > k∗. The TTFS firing rule dictates that the neuron
fires at the first time step that satisfies the condition. This corresponds to finding the smallest integer
k that satisfies the inequality (largest T − k ). By the definition of the floor function, the integer
value encoded by the output spike, which is defined by our encoding scheme as qlout,j = T −kfire, is:

qlj =

⌊
alj
αl

⌋
(23)

The derivation above assumes the result of the floor function falls within the valid range of encodable
integers. We now analyze the boundary conditions imposed by the finite simulation window.

• Upper Bound (Clipping at T) If the pre-activation alj is very large such that ⌊alj/αl⌋ > T ,
the condition alj/α

l ≥ T − k will be satisfied for all k ∈ T . The neuron will fire at the
earliest possible time step, which is k = 0. The value encoded by a spike at k = 0 is
T − 0 = T . This naturally implements the upper bound of the clipping function, mapping
any integer value greater than T to T .

• Lower Bound (Clipping at 0). If the pre-activation alj is such that ⌊alj/αl⌋ < 0 , then the
term alj/α

l is negative. Thus, the firing condition alj/α
l ≥ T − k can never be satisfied.

The neuron will not fire within the time window. The absence of a spike is interpreted as
encoding the integer value 0. This naturally implements the lower bound of the clipping
function.

Combining these cases, the integer value encoded by the SNN’s firing mechanism, q′out,j , is:

q′out,j = Clip

(⌊
alj
αl

⌋
, 0, T

)
(24)

This is identical to the definition of the QNN’s integer output, qlj .

A.3 ENERGY ANALYSIS

A.3.1 ENERGY COMPARISON WITH RELATED WORKS

For the energy calculation in Table 2, we did not use the numbers reported in the original papers.
Since energy depends heavily on batch size and sequence length, a direct comparison is often unfair.
Furthermore, most related works do not account for hardware overhead, which actually dominates
the total energy. Therefore, we re-calculated their energy to ensure a fair comparison. We assumed
the same model size, batch size, sequence length and weight quantization level for all works.

For Transformer baselines, the energy consumption of a Full BERT (FP32) is dominated by expen-
sive 32-bit multiply-accumulate (MAC) operations and data movement. We also compared it to a
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Quantized BERT (INT4), which uses the same architectural settings as Otter, including 1-bit weight,
4-bit activations and a 1-bit Key-Value (KV) cache.

For SNNs, we used the energy equations we built for them, which depend on the spike rate (sr) and
the number of timesteps (T ). To match Otters’ performance, we selected the most optimized settings
for the baselines (Sorbet, SpikingBERT, and SpikingLM). This resulted in spike rates of 13% for
Sorbet, 25% for SpikingBERT, and 33% for SpikingLM. We used the timestep values (T ) directly
from their original papers: 16, 16, and 4, respectively.

Full BERT (FP32)
EFC = B ·S ·Co · (γ ·Ci · (EMAC +ERead

weight +32 ·Esparse
move )+Ci ·Eleakage +2Eclamp +Ewrite

kv ) (25)

EFC−score = B · h · S2 · (dk · γ · (ERead
kv + EMAC + 32 · Esparse

move ) + dk · Eleakage + 2Eclamp) (26)
Quantized BERT
EFCq

= B·S·Co·(γ·Ci·(EMAC+ERead
weight+log2(T+1)Esparse

move )+Ci·Eleakage+2Eclamp+Ewrite
kv ) (27)

EFCq−score = B ·h·S2 ·(dk ·γ ·(ERead
kv +EMAC+log2(T+1)·Esparse

move )+dk ·Eleakage+2Eclamp) (28)

Typical SNNs
ESNN-FC = B·S·Co·(Ci·sr·T ·(EACC+ERead

weight+Esparse
move )+Ci·T ·Eleakage+T ·(ECMP+s·ESUB)+EWrite

kv )
(29)

ESNN-score = B·h·S2·(dk·sr·T ·(ERead
kv +EACC+Esparse

move )+dk·T ·Eleakage+T ·(ECMP+s·ESUB)) (30)

Otters

EOpto-FC = B · S · Co︸ ︷︷ ︸
Total Outputs

·
(
Ci · T ·

(
sr · (EACC + ERead

Analog + Esparse
move )︸ ︷︷ ︸

Spike Processing

+ Eleakage
)
+ T · (ECMP + ERead

threshold)︸ ︷︷ ︸
Thresholding

+EWrite
binarykv︸ ︷︷ ︸

K/V Write

) (31)

EOpto-score = B · h · S2︸ ︷︷ ︸
Total Scores

·
(
dk · T ·

(
sr · (EACC + ERead

Analog + Esparse
move + ERead

binarykv)︸ ︷︷ ︸
Spike Processing

+Eleakage
)
+ T · (ECMP + ERead

threshold)︸ ︷︷ ︸
Thresholding

) (32)

Key differences between Otters and other typical SNNs include replacing digital weight reads with
lower-energy analog reads from the TFT (ERead

Analog) and, for the QKV calculation, using an energy-
efficient binary KV read (ERead

binarykv). The energy model is configured for a BERT-base architecture
with a batch size (B) of 64, a sequence length (S) of 128, and input/output channel dimensions
(Ci, Co) of 768. The model features 12 attention heads (h), with a per-head dimension (dk) of
64. Energy costs are derived from established models. For FP32 operations, we assume that a
multiply-accumulate (MAC) consumes 4.6 pJ and a clamp operation consumes 0.9 pJ which is
from (Horowitz, 2014) cause our platform doesn’t support FP calculations. For our INT4 models,
we differentiate between a 4-4-16bits MAC (0.0848 pJ) and a 1-4-16bits MAC (0.0663 pJ). The
costs for 4-16-16bits, 2-16-16bits and 1-16-16bits ACC are 0.0502 pJ, 0.0477 pJ and 0.0429 pJ,
respectively. SNN-specific operations, such as comparison and subtraction, are each modeled at
0.0502 pJ. The total energy for an analog read operation is 0.0246 pJ (0.00875pJ for power the TFT,
1.33e-6pJ for sampling, 0.0053pJ for ADC including the amplifier and 0.010505 for the 4bits LUT).
The model accounts for a static leakage energy Eleakage of 0.002 pJ per cycle, a weight activation
(read/write) cost of 0.0985 pJ/bit, and a sparse data movement cost of 0.18 pJ per bit. All integer
compute, data movement, and memory access costs are based on measurements from a commercial
22nm process, while the floating-point compute energy (Horowitz, 2014) and ADC values (Su et al.,
2023) are taken from existing literature.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3.2 DETAILED ENERGY BREAKDOWN

Table 5 and Figure 6 detail the energy breakdown of Otters-1bitkv. Spike movement is the main
energy consumer, accounting for approximately 55% of the total. The next largest contributor is
membrane potential accumulation (Mem. ACC), while K/V read/write (K/V R/W) consumes the
least energy.

Table 5: Energy breakdown of the Otters self-attention block (in mJ). “Mem. ACC” denotes
membrane-potential accumulation; “K/V R/W” denotes key/value read/write.

Block Compute Data movement Read analog Leakage Total
Mem. ACC Thresh. Spike movement K/V R/W

Opto-FC 0.5611 0.1257 2.0117 0.0012 0.2744 0.4349 3.4091
Opto-qkv 0.0623 0.1676 0.2235 0.1223 0.0305 0.0483 0.6546

Total 0.6235 0.2933 2.2352 0.1235 0.3049 0.4832 4.0637

55.0%

15.3%

11.9%

7.5%

7.2%
3.0%

Total Energy: 4.06 mJ

Energy Breakdown of TTFS-SNN

Spike Movement
(55.0%, 2.24 mJ)
Membrane Potential ACC
(15.3%, 0.62 mJ)
Leakage
(11.9%, 0.48 mJ)
Analog Read
(7.5%, 0.30 mJ)
Thresholding
(7.2%, 0.29 mJ)
K/V Read/Write
(3.0%, 0.12 mJ)

Figure 6: Proportional Energy Breakdown of Otters-1bitkv.

A.3.3 ABLATION STUDY OF SOFTMAX AND LAYER NORMALIZATION

We initially omitted Softmax and Layer Normalization from our energy analysis, as their consump-
tion is negligible compared to the matrix multiplication operations. In this section, we present an
ablation study that accounts for these operations. We adopt the energy models from Sorbet (Tang
et al., 2025), which define the costs for Softmax as O(d) ACC, O(d) division, and O(d) exponential
operations. The same model defines LayerNorm costs as O(5d) ACC, O(3d) MAC, O(d) division,
and O(1) exponential operations. We calculated the total energy for one complete transformer block
in Figure 7, including QKV projections, attention score calculations, the attention output projection,
Softmax, Layer Normalization, and the feedforward layers (intermediate size of 3072). The results
show that Softmax and LayerNorm account for only 0.32% of the energy in the Otters block. Also,
Otters remains the most efficient method compared to related works.

A.3.4 ABLATION STUDY OF USING OTTERS AND TRADITIONAL TTFS METHODS

We can group TTFS encoding into two main classes: continuous-time TTFS and quantized-time
TTFS. In other work, like TTFSFormer (Zhao et al., 2025), the time domain is continuous. This
means they pass the time-to-first-spike between layers using floating-point (FP32) values. This high-
precision FP32 number helps keep the SNN accurate after the ANN–SNN conversion. However,
comparing the energy of these continuous-time methods with our approach, which uses quantized
time, is not fair. In TTFSFormer, their main math unit (e.g., the accumulator, ACC) is FP32 and
costs about 0.9 pJ per operation, while our INT4 ACC only costs 0.05 pJ. Also, the data movement
cost grows with bit-width. This means continuous-time TTFS designs use much more memory and
movement energy than low-bit designs.
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Figure 7: Energy Consumption per Transformer Block with softmax and layerNorm.

To make a fair comparison, we re-evaluated the continuous-time TTFS method in the same quantized
time domain as Otters. We did this by quantizing the spike times while keeping the weights, network
structure, and all other hyperparameters the same. This lets us clearly see the benefit of Otters’
analog-based computing. Traditional quantized-time TTFS requires digital encoding, additional
MAC operations (Eencoding+EMAC), and extra weight accesses. With T=15 using the simplest T−t
encoding (4–4–4-bit ACC, 0.0163 pJ), traditional TTFS attention block consumes 5.12mJ, 26.1%
more energy than 1bit Otters.

A.4 FORWARD PROCESS OF OTTERS

The forward process is shown in Algorithm 1:

Algorithm 1 Otters Neuron Forward Pass (TTFS)

1: Inputs: Presynaptic spikes {sl−1
i (t)}Nin

i=1 ; weights {γl
ij}

Nin
i=1 ; bias blj ; threshold function θl(t);

total time steps T .
2: Output: Postsynaptic spike train {slj(t)}Tt=1.
3: Vj ← blj {Initialize membrane potential with bias}
4: slj [1 : T ]← 0 {Initialize output spike train to zeros}
5: has fired← false
6: for t = 1, 2, . . . , T do
7: for i = 1, 2, . . . , Nin do
8: if sl−1

i (t) = 1 then
9: vi ← γl

ij ·O(t) {Compute PSP using the physical decay function O(t)}
10: Vj ← Vj + vi {Accumulate potential}
11: end if
12: end for
13: if Vj ≥ θl(t) and not has fired then
14: slj(t)← 1 {Fire a spike at the current time step}
15: has fired← true
16: break {TTFS constraint: emit at most one spike and stop}
17: end if
18: end for
19: return slj

A.5 QNN TRAINING ALGORITHM

To mitigate the accuracy degradation from quantization, we employ a knowledge distillation (KD)
framework for our quantization-aware training (Liu et al., 2022; Tang et al., 2025). This approach
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Table 6: Task-specific training hyperparameters.

Task Max. Seq. Length Batch Size Learning Rate

MNLI 128 80 2× 10−4

MRPC 128 80 5× 10−5

SST-2 64 80 1× 10−4

STS-B 128 80 5× 10−5

QQP 128 80 2× 10−5

QNLI 128 80 2× 10−4

RTE 128 80 5× 10−5

transfers inductive biases from a pre-trained, full-precision teacher model to the quantized student
network. Our training objective is a hybrid loss function that aligns both the output distributions
and the intermediate representations of the student with those of the teacher. The total distillation
loss LKD is a weighted combination of two components: a logits distillation loss Llogits and a
representation distillation loss Lreps:

LKD = Llogits + λLreps (33)
where λ is a hyperparameter that balances the two terms.

The first component, Llogits, is the Kullback-Leibler (KL) divergence between the teacher’s soft
target distribution p and the student’s output distribution q. This loss encourages the student to learn
the teacher’s predictions and its understanding of inter-class similarities.

Llogits = KL(p||q) (34)
The second component, Lreps, minimizes the Mean Squared Error (MSE) between the intermediate
feature representations from corresponding transformer blocks of the teacher (rti) and the student
(rsi ). This forces the student to mimic the teacher’s internal representation structure.

Lreps =
∑
i

∥rti − rsi ∥22 (35)

The student model is trained end-to-end by minimizing LKD using the Adam optimizer, while the
teacher model’s weights remain frozen. We use task-specific hyperparameters for training, which
are detailed in Table 6. All models are trained on A100 GPUs.

A.6 EVALUATION BENCHMARK

We evaluated our model, Otters, on seven datasets from the GLUE benchmark:

• MNLI (Multi-Genre Natural Language Inference): A large-scale, crowdsourced collection
of sentence pairs annotated for textual entailment across multiple genres.

• QQP (Quora Question Pairs): A paraphrase identification task to determine if two questions
from Quora are semantically equivalent.

• QNLI (Question-Answering NLI): A natural language inference task converted from the
Stanford Question Answering Dataset (SQuAD), where the goal is natural language infer-
ence

• SST-2 (Stanford Sentiment Treebank): A single-sentence classification task for sentiment
analysis (positive or negative) on movie reviews.

• STS-B (Semantic Textual Similarity Benchmark): A regression task to predict the degree
of similarity (on a 1–5 scale) between sentence pairs drawn from news headlines, video
titles, and image captions.

• RTE (Recognizing Textual Entailment): A compilation of data from several textual entail-
ment challenges, using text from news articles and Wikipedia.

• MRPC (Microsoft Research Paraphrase Corpus): A paraphrase detection task using sen-
tence pairs from online news sources. The dataset is imbalanced, with 68% of pairs being
paraphrases.
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A.7 INFERENCE TIME ANALYSIS

In Otters, the inference latency is mainly determined by the duration of the optical decay function
(Figure 2b in the revised manuscript). Within this time window, the SNN neuron compares its
accumulated membrane potential with the dynamic threshold at each time step tk. If the membrane
potential is larger than the threshold, the neuron fires. It then samples the value from the thin-film
transistor and adds it to the next neuron’s membrane potential. Once the decay period finishes, the
next layer is ready to start. Thus, in theory, the computation for one layer is completed within a
single time window. Taking a Transformer block as an example, the calculation requires roughly 8
optical cycles: 6 cycles for the Self-Attention module (projections of Q, K, V, their multiplication
and output) and 2 cycles for the Feedforward module.

In our current measurements, the transient optoelectronic response was recorded using a source-
measure unit (SMU), whose minimum integration time is on the order of tens of microseconds.
To ensure a window that can reliably acquire complete attenuation and fit parameters, we used a
conservative sampling configuration, which resulted in a coding window of about 100 µs. This
results in a total latency of 0.8 ms for one block. Further, in theory, the window can be compressed
by faster readout and higher light intensity.

A.8 ACCURACY GAP ANALYSIS

In this section, we show an analysis to separate the two sources of accuracy loss: the Quantization
step (Full BERT to QNN) and the Otters implementation step (QNN to Otters). As the Table 7 shows,
the main drop in accuracy occurs during the first step which is the expected performance loss from
quantizing the model’s weights and activations. We then measured a second, much smaller accuracy
drop when converting from the QNN to our Otters SNN. The average drop is 0.59%, which mainly
comes from sampling errors (the exact physical time tk needed for value O(tk) might fall between
two sampling points, causing a representation error). We believe this small accuracy trade-off is
highly favorable, as the Otters implementation achieves this performance while consuming only
36.8% of the QNN energy.

Table 7: Accuracy gap analysis on the GLUE benchmark, where all scores are accuracy except for
STS-B (Pearson correlation).

Model QQP MNLI-m SST-2 QNLI RTE MRPC STS-B Avg

Full BERT 91.3 84.7 93.3 91.7 72.6 88.2 89.4 87.31
QNN 87.81 78.40 91.28 86.80 70.03 86.51 85.87 83.81
Otters 87.67 78.50 91.28 86.42 68.95 84.56 85.19 83.22

A.9 GENERALIZABILITY OF OTTERS

Otters is proposed to optimize the temporal decay function and its subsequent multiplication by
sampling the natural decay of an oxide optoelectronic synapse. In other words, Otters provides
an analog alternative to digital matrix multiplication, which is a basic and commonly used unit in
most models. Therefore, Otters has the potential to be applied to most network structures (or at least
optimize parts of them) since it is an optimization for base units. In Table 8, we provide VGG/ResNet
on CIFAR-10 with different time window size as an example to demonstrate the generalizability.

Table 8: Top-1 accuracy (%) of SNNs converted from ResNet18 and VGG16 across different time
steps T . The time steps T = 2n − 1 (for n = 2, 3, 4, 5) are selected based on the n-bit QNN
conversion discussed in Proposition 1.

Model Time steps T

3 7 15 31

Otters-ResNet18 89.27 89.31 92.02 92.05
Otters-VGG16 87.38 89.42 91.62 91.49

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.10 1-BIT KV ENERGY ABLATION STUDY

In this section, we recalculate the energy of other SNN methods, assuming all K/V projections are
quantized to 1-bit for a fair comparison with our Otters-1bitkv model. The spike rates and time
window sizes are set to be consistent with those in Appendix A.3.1. As shown in Table 9, Otters still
achieves the best energy efficiency within this 1-bit KV setting.

Table 9: Energy consumption analysis on the SST-2 dataset. The Energy Ratio is Energy(Otters) /
Energy(Model).

Model FC (mJ) QKV (mJ) Total (mJ) Energy Ratio
Sorbet (1bit kv) (Tang et al., 2025) 3.39 0.58 11.32 2.79x
SpikingBERT (1bit kv) (Bal & Sengupta, 2024) 6.37 1.07 21.27 5.24x
SpikingLM (1bit kv) (Xing et al., 2024b) 2.09 0.35 6.97 1.72x
Otters (1bit kv) 1.14 0.33 4.06 1x

A.11 QNN-TO-SNN CONVERSION DISCUSSION

Direct training of SNNs is challenging because the binary spike activation is non-differentiable.
Instead of using approximate gradients, QNN-to-SNN conversion trains a functionally equivalent
QNN first and transfers the weights to the SNN. This approach often yields higher accuracy for
deep networks. Many related works have implemented this. For example, in language tasks, Sor-
bet achieves 79.80% accuracy on GLUE using an average spike generation method (Tang et al.,
2025); for vision tasks, Wang et al. reach 85.31% on ImageNet using a Multi-basis Exponential
Decay (MBE) neuron (Wang et al., 2025a). Liu et al. (Liu & Liu, 2018) propose quantization-aware
DNNs using neuron convergence and weight clustering, and deploy the resulting 4-bit networks on
memristor-based Spiking neuromorphic computing systems, achieving 90.33% for CIFAR-10. Be-
yond these, Ajay et al. (Ajay et al., 2024) introduce MC-QDSNN, a quantized deep evolutionary
SNN that uses Multi-Compartment Leaky (MCLeaky) neurons for better and more efficient model-
ing of time-series data. However, most prior works rely on rate encoding and do not target optical
hardware. In contrast, Otters focuses on TTFS-based SNNs using optical spiking neurons. To adapt
QNNs to our In2O3 devices, we propose specific conversion techniques, including dynamic thresh-
olding and mapping quantization bits to the natural decay. This allows us to replace expensive digital
matrix multiplication with energy-efficient analog sampling.

A.12 THE USE OF LARGE LANGUAGE MODELS

We use LLMs to aid or polish writing.
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