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ABSTRACT

Visual agents operating in the wild must respond to queries precisely when suf-
ficient evidence first appears in a video stream, a critical capability that is over-
looked by conventional video LLMs evaluated in offline settings. The shift to an
online, streaming paradigm introduces significant challenges: a lack of decision
transparency, the difficulty of aligning response timing with visual evidence, and
the need to maintain a global, causally consistent understanding under tight com-
putational budgets. To address these issues, we propose a novel framework that
decouples reasoning control from memory integration. We introduce Thinking-
QwenVL, an instantiation of this framework with two core components. First,
the Active Thinking Decision Maker (ATDM) is a transparent reasoning controller
that externalizes its decision process using observable progress (ρ) and confidence
(c) metrics. This allows it to precisely time its response tr to match the first-
sufficient-evidence timestamp t⋆ while streaming its reasoning to the user. Sec-
ond, the Hierarchical Progressive Semantic Integration (HPSI) module acts as an
efficient memory system. It employs a set of learnable, multi-level aggregation to-
kens that are propagated across clips to build a rich, global cognitive state without
exceeding token budgets. Extensive experiments demonstrate the effectiveness of
ATDM and HPSI, e.g., Thinking-QwenVL improves the accuracy of the previous
state-of-the-art from 67.63% to 71.60% on the StreamingBench benchmark.

1 INTRODUCTION

Visual evidence-aligned response timing is central to visual agents operating in the wild: an assistant
should answer only once the video first contains sufficient evidence, and it should show when and
why (Cai et al., 2025; Subramanian et al., 2024). Consider a domestic robot asked, “is the kettle
boiling?” It should wait for visible steam or a rolling boil and report immediately at the first frame
these signals appear to avoid danger (Li et al., 2019). A driver-assistance agent queried, “is it safe
to turn right?” must defer until the crosswalk and signal are jointly favorable.

Despite rapid progress, representative video-understanding LLMs such as VideoLLaMA3 (Zhang
et al., 2025), InternVL3 (Zhu et al., 2025), and Qwen2-VL (Wang et al., 2024a) are commonly
evaluated in idealized offline regimes. The entire video is preloaded; frames or clips may be retrieved
and re-encoded multiple times; and global reasoning precedes response generation. This practice
diverges from interactive, real-world operation in which users ask at time tq , but the earliest sufficient
evidence may not appear until t⋆. A system should respond at tr only when tr ≈ t⋆; otherwise,
avoidable compute and queuing delays degrade responsiveness and user experience. These issues
motivate the online video understanding setting, which constrains the model to act only on currently
accessible visual evidence while enabling perceivable and controllable interaction.

In online use, three aspects become decisive. First, decision transparency and real-time feedback.
Collapsing timing into a black-box gate (“answer” vs. “defer”) leaves no visibility into timestamps,
intermediate conclusions, or progress, undermining controllability and trust during streaming inter-
action. Second, evidence-aligned response timing. With tq , tr, and t⋆ as defined above, the goal is
to minimize δ = |tr − t⋆| under streaming uncertainty and latency constraints without sacrificing
correctness; recent benchmarks (e.g., OVOBench (Niu et al., 2025), RTVBench (Xun et al., 2025))
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stratify tasks by the relation between tq and t⋆, yet many systems fix tr = tq or use centered win-
dows. Third, global, causal updates under tight budgets. Let Vt = {v1, . . . , vt} denote the observed
stream and ht a compact cognition state summarizing entities, events, and relations supported by Vt.
As new clips arrive, the model should revise hypotheses and propagate temporal/spatial constraints
globally—not merely apply myopic, clip-local updates that break the storyline or causal consistency.

We address these needs with two complementary ideas that separate reasoning control from mem-
ory/integration. i) Evidence-aligned, transparent timing (reasoning controller). We replace a
single opaque gate with a multi-stage, observable decision process that surfaces evidence-aligned
timestamps, stage-wise progress ρ, concise rationales, and an estimated response time tr; the con-
troller self-triggers cross-clip reflection when confidence c is low, so users can see why now or why
wait. ii) Progressive and global causal state (memory & integration) with evolving visual ev-
idence. We maintain and refine a compact, relation-aware ht under token/latency budgets so that
cross-clip evidence updates the global understanding as the stream unfolds. The online framework
proceeds stepwise: ingest the next clip and update ht+1; the controller consults (ht+1, q), advances
ρ and c, and decides to answer (emitting tr) or to wait/reflect; timestamps and interim conclusions
are streamed to users for auditable, real-time interaction.

Building on these ideas, we present Thinking-QwenVL, which instantiates the framework with
two modules. Active Thinking Decision Maker (ATDM) implements the controller: it factorizes
timing into sub-goals with observable progress ρ and confidence c, predicts an evidence-aligned
tr via the quantitative indicators (ρ, c), and self-triggers cross-clip reflection when needed. In
doing so, it streams timestamps, interim conclusions, and rationale snippets to the user in real time,
decision-making becoming transparent, observable, and quantifiable—with real-time progress and
response feedback. Hierarchical Progressive Semantic Integration (HPSI) implements memory and
integration inside the vision–language decoder: at multiple decoder depths (e.g., lower/middle/upper
thirds), it inserts a small set of learnable multi-level aggregation tokens p that attend to frame/clip
tokens via structured sparse attention. The p tokens are carried forward across clips as part of ht

that is refined as new clips arrive, enabling causal, relation-preserving updates to the global visual
view without inflating the token budget.

We evaluate on benchmarks designed for online video understanding, including Streaming-
Bench (Lin et al., 2024), OVOBench (Niu et al., 2025), OVBench (Huang et al., 2024), and
RTVBench (Xun et al., 2025), where Thinking-QwenVL attains strong results due to HPSI and
ATDM of 71.6%, 46.9%, 35.6%, and 35.9%, respectively. Thinking-QwenVL also maintains
competitive long-video performance—up to 67.7% on VideoMME (Fu et al., 2024) and 68.3% on
MLVU (Zhou et al., 2024)—primarily due to HPSI that enables segment-wise attention perception
and cross-clip causal relations preservation. In summary, our contributions are:

• We formalize evidence-aligned timing in the online regime via (tq, tr, t⋆) and deviation δ, elevate
decision transparency to a first-class objective for streaming interaction, and propose a two-part
framework Thinking-QwenVL for online video understanding.

• Combining ATDM and HPSI, we instantiate the framework with a controller that exposes ρ
and c and aligns tr to first-sufficient evidence t⋆ with self-triggered reflection, and a hierarchi-
cal integration module with learnable multi-depth, multi-level aggregation tokens p that guides
segment-wise attention enhancement and preserves cross-clip relations, enabling globally con-
sistent updates of ht under tight budgets.

2 RELATED WORK

Offline Long Video Understanding. Research on long-form video understanding investigates how
to process vast numbers of visual tokens within limited context windows and constrained compute.
Recent efforts have extended capability from short clips to videos exceeding ten minutes (Shen et al.,
2024; Xue et al., 2024; Wang et al., 2024c; Zohar et al., 2024). Representative lines include adapt-
ing image-centric LMMs to long videos (e.g., LongVA building on LLaVA (Zhang et al., 2024b;
Liu et al., 2023)), retrieval over graph/tree indices to shorten effective context (VideoRAG (Luo
et al., 2024), Omni-AdaVideoRAG (Xue et al., 2025)), and improved temporal selection and train-
ing curricula (VideoLLaMA3 with differential frame pruning and vision-centric multi-stage train-
ing (Zhang et al., 2025)). InternVL3 (Zhu et al., 2025) further explores variable visual position
encoding and text–time scaling to better align temporal and textual streams. While recent advances
improve offline reasoning over long videos, most methods assume full-video access and prioritize
token reduction. So, offline pipelines sidestep interaction-critical needs: evidence-aligned response
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Figure 1: Comparing paradigms vs. Ours. Given a query Q, offline VLLMs answer only after the
full video is available (t = T ), while streaming models answer at the query moment (t = tq); neither
ensures evidence-aligned timing with the earliest evidence time t⋆. Our method decomposes Q into
sub-goals and maintains a progress estimate ρ, emitting real-time, stage-wise feedback at every step
and selecting a response time tr ≈ t⋆, thereby reducing latency without sacrificing correctness and
avoiding information-vacuum waiting.

timing. These gaps motivate our online formulation, which preserves progressive understanding and
couples inference with timely feedback.
Online Video Understanding. To better define and evaluate online video understanding, recent
benchmarks such as OVOBench, StreamingBench, and RTVBench (Niu et al., 2025; Lin et al.,
2024; Xun et al., 2025) have initiated systematic investigations in open-source settings. Existing
methods largely split into two families. In fixed-response streaming (simply tr = tq), Stream-
Bridge (Wang et al., 2025), StreamChat (Xiong et al., 2025), VideoStreaming (Qian et al., 2024),
Flash-VStream (Zhang et al., 2024a), and VideoLLM-Online (Chen et al., 2024a) mainly optimize
streaming readout, alignment, and memory, but do not make decision or align tr to t⋆. In timestamp-
deciding methods, Dispider (Qian et al., 2025) compresses incoming clips and applies a binary head
for answerability, yet the decision is opaque, repeatedly invoked without a principled stopping rule,
and prone to prolonged non-answerable states that appear stalled to users; Timechat-Online (Yao
et al., 2025) ties answerability to scene transitions, but scene change does not guarantee sufficient ev-
idence, rendering it brittle and threshold-sensitive. By contrast, our formulation provides evidence-
aligned timing and transparent decision progress, directly addressing these limitations. We employ
the same single-pass, single-turn streaming regime rather than the multi-round video processing
described in StreamBridge (Wang et al., 2025) to align with traditional streaming methods.

3 THINKING-QWENVL
Overview. We pursue visual evidence-aligned, progressive, causal understanding of a video stream.
Let Vt = {v1, . . . , vt} be the visible clips and ht a compact cognition state. With each new clip
vt+1, HPSI updates the state via ht+1 = U(ht, vt+1), using a small set of multi-depth aggrega-
tion tokens with structured sparse attention to aggregate locally, integrate hierarchically, and prop-
agate causally. On top of ht, ATDM decomposes the evidence-aligned response-timing decision
(tr = min

{
t|F(ht, Q) = A}) into a sequence of sub-goals S and maintains time-indexed tuples(

as(t), cs(t), ρs(t)
)
—sub-answer a, confidence c, and progress ρ—to quantify reasoning and ex-

pose rationales. F denotes decision function, A denotes answer for user question Q. ATDM returns
the final response time tr when each sub-goal s ∈ S is solved.

3.1 HIERARCHICAL PROGRESSIVE SEMANTIC INTEGRATION (HPSI)

To address the goal—progressive, causal understanding of the ever-expanding visible set Vt—we
introduce Hierarchical Progressive Semantic Integration (HPSI). HPSI equips the model with a
compact, relation-preserving cognition state that is advanced as new clips arrive. Concretely, we
insert a small number of learnable aggregation tokens p at multiple depths and enforce structured
sparsity so that evidence is aggregated locally, integrated hierarchically, and propagated causally.
Dynamic-Resolution Progressive Integration Overview. We segment the video into n clips and,
for each clipi, append a dynamic number of aggregation tokens after its visual tokens. These tokens
summarize the semantic content of each clip while leveraging the causal reasoning capabilities of
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Figure 2: (a) Visual information aggregation flow diagram. (b) The dynamic integration oper-
ation in LLM with a single clip as an example. The aggregation tokens are initialized in layer 1,
layer 1L/3 and layer 2L/3 according to the aggregation tokens of the previous level that can sup-
port dynamic resolution style, and these tokens are passed forward layer by layer within the LLM
to aggregate the visual information of the clip by the causal ability of the LLM and the coefficient
attention mask constructed in (c). (c) Attention mask and its changes.

LLMs. Let the original input be I = concat(w, v, w), with text tokens w and visual tokens
v =

(
vclip1

, . . . ,vclipn

)
. We introduce three aggregation levels j ∈ {1, 2, 3}, progressively inserted

at transformer depths ℓj ∈ {0, L/3, 2L/3} with target token ratios rj ∈ {3×, 2×, 1×}. For clipi,
level-j produces nj(i) tokens p(j)

clipi
. After inserting the last (level-3) aggregation tokens, the input

sequence becomes

Ĩ = concat
(
w,vclip1

,p
(1)
clip1

,p
(2)
clip1

,p
(3)
clip1

, . . . ,vclipn
,p

(1)
clipn

,p
(2)
clipn

,p
(3)
clipn

,w
)
. (1)

Aggregation Tokens Initialization. Each aggregation token is initialized via adaptive average pool-
ing over its clip’s visual tokens; let j = 1, 2, 3 denote the aggregation level, p(0)

clipi
= vclipi

, and Nvc

denote the final level’s token count (adjustable to match different video resolutions):

p
(j)
clipi

= AdapterPool
(
p
(j−1)
clipi

, (4−j)Nvc

)
, (2)

where vclipi
∈ Rnv×d represents the nv visual tokens of the i-th clip, and AdapterPool :

Rnv×d → Rnc×d outputs nc = (4− j)Nvc tokens of dimension d.
To guide the model to integrate visual information into these tokens, we construct sparse, struc-
tured attention masks (see Fig. 2) that enforce hierarchical visibility: each level-j aggregation token
attends only to the preceding level’s tokens, ensuring directional semantic consolidation. Text to-
kens attend causally only to the last-level aggregation tokens at each layer. Additionally, we retain
visibility for the first-frame tokens of each clip to preserve crucial anchor cues.
Progressive Integration. Unlike single-layer average pooling (e.g., LongVA (Zhang et al., 2024b)),
HPSI exploits decoder depth L by assigning different aggregation strengths across three layer
groups: 1) layers [0, 1L/3] integrate raw visual tokens; 2) layers [1L/3, 2L/3] integrate the pre-
vious level’s tokens; and 3) layers [2L/3, L] refine high-level semantics. With token ratios 3 : 2 : 1,
information is gradually condensed into fewer, more meaningful tokens. Let Lj = {0, L/3, 2L/3},

Ĩ(ℓ) = concat
(
w,

(
vclipi

, (p
(k)
clipi

)
m(ℓ)
k=1

)n
i=1

, w
)
, m(ℓ) = 1 +

⌊
3ℓ
L

⌋
, ℓ ∈ Lj , (3)

where n, ℓ, and m(ℓ) denote the number of clips, the layer index that triggers insertion, and the
highest visible aggregation level per clip at layer ℓ. The output hl at layer l ∈ {1, ..., L} is

hl = TransformerBlock
(
Ĩ(ℓ) ⊙ I l∈Lj + hl−1 ⊙

(
1− I l∈Lj

) )
, (4)

where I l∈Lj
is 1 when l ∈ Lj and 0 otherwise.

Finally, the progressive integration objective in the semantic space of LLM can be defined as:

min Tintegration =

L−1∑
l=0

3∑
j=1

(∥∥∥p(j)(l)
clipi

− Pool
(
vclipi

)∥∥∥
2
+
∥∥∥p(j)(l)

clipi
− p

(j−1)(l)
clipi

∥∥∥
2

)
, (5)

which encourages faithful integration toward clip evidence and smooth refinement across levels.
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Figure 3: Pipeline of Thinking-QwenVL. Given streamed clips and a query Q, ATDM generates
question-guided caption instructions, decomposes Q into sub-questions, and iteratively extracts ev-
idence from each clip (with progressive visual integration using HPSI), updating sub-answers with
progress ρ ∈ [0, 1] and confidence c ∈ [0, 1]. This process runs in parallel across clips and permits
to trigger active reflection according to c. The model emits an answer at tr = ti once ρ(ti) = 1.

Layer-wise Task Decomposition for Hierarchical Aggregation. Conceptually, HPSI treats the
depth of a transformer as a division of labor for aggregation, rather than a single pooling step. We
explicitly assign different aggregation roles to different layer segments: shallow layers focus on
preserving fine-grained local evidence, middle layers consolidate mid-range temporal and structural
patterns, and deep layers perform strong semantic condensation into a compact set of high-level
summary tokens. In this view, the three levels are not ad-hoc tricks but a progressive aggregation
pipeline that incrementally transforms dense visual streams into a small, semantically rich state
while preserving long-range information flow.

3.2 ACTIVE THINKING DECISION MAKER (ATDM)

Overview. ATDM converts online answering into a compact, observable chain-of-thought that car-
ries explicit telemetry. Given a streamed video (segmented into clips) and query q, ATDM (i) derives
question-guided caption requirements and produces a per-clip summary, (ii) decomposes q into K
concrete sub-questions, (iii) extracts and updates sub-answers with per-step progress ρ∈ [0, 1] and
confidence c ∈ [0, 1]K , and (iv) declares readiness and answers when all required sub-answers are
confidently resolved—thereby aligning tr with the first-sufficient evidence t⋆. A modular wrapper
schedules the per-clip evidence extraction and sub-answer updates in parallel across consecutive
clips (e.g., clipi, clipi+1, clipi+2), reducing idle time and preserving responsiveness.

Active, Self-triggered Thinking. Beyond the fixed CoT flow, ATDM monitors ρ and c over time;
when confidence remains low or the stream exhibits major semantic shifts, it self-triggers reflection
that revisits prior summaries, constructs cross-clip causal links, and revises hypotheses and metrics
(ρ, c). This mechanism prevents myopic updates, improves evidence alignment, and yields more
accurate, timely responses under evolving visual evidence.

Combining the above ideas, the Five-Part Chain-of-Thought Active Thinking Decision Maker
Process (ATDM) is as follows. Only Parts 3 and 4 require reasoning to be processed iteratively
across video clips rather than forcing all five parts to be executed sequentially for each clip.
▶ Part-1: Question-Guided Captioning instructions. Unlike general video captioning models
that produce either overly generic descriptions (e.g., “a person is cooking in a cluttered kitchen”)
or irrelevant ones due to unaligned attention, we first ask the model to analyze the question and
generate its own captioning guidelines, termed caption instructions CIq . These instructions focus
the captioning process on questioning-relevant elements.

Task: Analyze the user’s question and define exact observation requirements for video cap-
tioning to help answer it. Output: [<|Caption Requirements List|>]

▶ Part-2: Question Decomposition. Inspired by the progression of human-like reasoning, where
answering complex questions involves progressively addressing multiple semantic dimensions, we
decompose the original question into a set of sub-questions {Sq}. These sub-questions structure the
reasoning process and allow us to quantify decision progress.

Task: Break the user’s question down into a set of precise, concrete sub-questions. Each sub-
question can focus on an observable aspect of the video (e.g., object, person, action, spatial
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Question at 0:02:06: What text is visible on the right side of the street right now? 

A. Excavator.                       B. CRANE.                      C. WEST NEW YORK.                        D. Loader.

Part 1: To answer this question accurately, the caption must focus on those requirements:

• the text content and its location on the right side of the street

• identification of the objects 'Excavator', 'CRANE', 'WEST NEW YORK’, and 'Loader' 

based on their shapes and positions

• any context or signs indicating the location being referred to as 'WEST NEW YORK'

Part 2: The following sub-questions are derived: 

1) Is there any text visible on the right side of the street?  

2) What text is visible on the right side of the street?  

3) Is there any other object visible on the right side of the street?

Part 3: The clip spans from 0:01:04-0:02:08. "A rainy day in New York City, viewed 

from inside a vehicle navigating through wet streets lined with tall buildings. …. On 

the right side of the street, construction barriers and orange fencing indicate ongoing 

work. A sign reading 'WEST NEW YORK' is visible, providing context for the 

location. The wet pavement reflects the overcast sky, enhancing the urban atmosphere. 

Construction equipment like an excavator and loader are partially visible behind the 

barriers. The scene captures the bustling city life amidst rainy weather conditions."

Part 4: Output the updated sub-questions states list.

(The initial and final updated state of the sub-questions are listed as follows.)

Part 5 (Trigger at 0:01:36): "Causal chain:  All clip  → No relevant evidence for current attributes,  keep attribute status unchanged. " 

Flash-VStream Thinking-QwenVL

type: text

q: Is there any text visible on the right side of the street?

value: ?

confidence: 0.0

type: text

q: What text is visible on the right side of the street?

value: ?

confidence: 0.0

type: object

q: Is there any other object visible on the right side of the street?

value: ?

confidence: 0.0

type: text

q: Is there any text visible on the right side of the street?

value: "WEST NEW YORK" 

confidence: 0.95

type: text

q: What text is visible on the right side of the street?

value: "WEST NEW YORK"

confidence: 0.95

type: object

q: Is there any other object visible on the right side of the street?

value: "excavator, crane, loader"

confidence: 0.85

Estimated progress: 0

Estimated progress :100

Initial

Final

Figure 4: Visualization of qualitative example showcasing how our ATDM framework achieves
successful decision and video reasoning.

relation, etc.). These sub-questions represent the key things that must be visually or aurally ver-
ified in the video to answer the main question. Output: [<|Required Subquestions|>]

▶ Part-3: Video Clip Captioning. Based on the caption instructions CIq from part-1, the model
generates a summary {Cq} of the clip content. This streaming captioning continues until the model
determines that sufficient information is available to answer the question.

Task: Watch the current video clip and generate a descriptive caption, you must focus your
caption on the following key observation points: <|Caption Requirements List|>
Output: <|detailed caption that fulfills the requirements|>

▶ Part-4: Sub-answer Extraction and Filling. Using {Sq} and the current clip caption {Cq}, the
model attempts to answer each sub-question, forming a set of partial answers {SAq}. At each time
step, the most recent {SAq} is fed back into the model, enabling it to track historical answer states
across frames. This is crucial for effective task decomposition, as corroborated in (Jang et al., 2025).

Task: Read [Question], [<|Required Subquestions|>] and the caption of the cur-
rent video clip [<|Caption|>]. For each subquestion, determine whether the caption pro-
vides enough information to answer it: - If yes: provide an appropriate answer and a confidence
score c ∈ [0, 1]. - If no or uncertain: set value is ‘?’ and c = 0.0.
Output: <|Updated subquestion state (value,c) and progress ρ|>

▶ Part-5: Active Thinking Trigger: Low Confidence or Major Shifts. Rigid step-by-step rea-
soning can lead to tunnel vision, causing the model to miss globally coherent information and the
relationships between continuously changing information. To mitigate this, we monitor confidence
scores for each {SAq}. When scores exhibit sharp drops or remain low across time, the model trig-
gers active thinking: it reviews prior {Cq}, detects temporal shifts, constructs causal chains across
clips, and re-evaluates sub-answers accordingly.

Task: Given [question] Past reasoning state: [past cot state] and the [new clip
caption], 1) Cross-clip causal reasoning. Build an explicit, ordered chain that shows how
evidence from each new clip supports, contradicts, or refines the current hypothesis. 2) Consis-
tency check. Detect attributes that are contradicted, supported with higher certainty, still low-
confidence (≤ 0.50), or missing. 3) Update the attribute list and return. Output: <|Updated
subquestion state and progress|>

History-aware Decision Process. The explicit progress and confidence signals (ρ, c) transform
ATDM from a sequence of memoryless binary decisions into a genuinely history-aware control pro-
cess. Each judgment about whether the current visual evidence is “sufficient” is not an isolated
yes/no query. Treating it as a mere collection of independent binary decisions breaks the informa-
tion chain. In contrast, ATDM does not repeatedly decide “answer or wait” based only on the current
visual chunk; it observes its own past decisions and scores and can refine or revise them as addi-
tional evidence arrives. The continuous pair (ρ, c) therefore carries substantially higher information
content in context than a single 0/1 gate, as it not only encodes a bare “stop/continue” signal but
also compresses the entire history of intermediate judgments into a compact quantitative state.
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Table 1: Accuracy (100%) comparison on StreamingBench focusing on Real-Time Visual Under-
standing tasks. † indicates the reproduced results. The meaning of each subtask is in Appendix A.5.

Model Size Frames Pub Subtasks

OP CR CS ATP EU TR PR SU ACP CT All
Human – – – 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46

Proprietary MLLMs
Gemini 1.5 pro – 1 fps – 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 75.69
GPT-4o – 64 – 77.11 80.47 83.91 76.47 70.19 83.80 66.67 62.19 69.12 49.22 73.28
Claude 3.5 Sonnet – 20 – 73.33 80.47 84.09 82.02 75.39 79.53 61.11 61.79 69.32 43.09 72.44

Open-source Offline Long Video LLMs
Video-LLaMA2 7B 32 ARXIV24 55.86 55.47 57.41 58.17 52.80 43.61 39.81 42.68 45.61 35.23 49.52
VILA-1.5 8B 14 ARXIV25 53.68 49.22 70.98 56.86 53.42 53.89 54.63 48.78 50.14 17.62 52.32
Video-CCAM 14B 96 ARXIV24 56.40 57.81 65.30 62.75 64.60 51.40 42.59 47.97 49.58 31.61 53.96
LongVA 7B 128 ARXIV24 70.03 63.28 61.20 70.92 62.73 59.50 61.11 53.66 54.67 34.72 59.96
InternVL-V2 8B 16 ARXIV24 68.12 60.94 69.40 77.12 67.70 62.93 59.26 53.25 54.96 56.48 63.72
Kangaroo 7B 64 ARXIV24 71.12 84.38 70.66 73.20 67.08 61.68 56.48 55.69 62.04 38.86 64.60
LLaVA-NeXT-Video 32B 64 BLOG24 78.20 70.31 73.82 76.80 63.35 69.78 57.41 56.10 64.31 38.86 66.96
MiniCPM-V-2.6 8B 32 ARXIV25 71.93 71.09 77.92 75.82 64.60 65.73 70.37 56.10 62.32 53.37 67.44
LLaVA-OneVision 7B 32 CVPR25 80.38 74.22 76.03 80.72 72.67 71.65 67.59 65.45 65.72 45.08 71.12
Qwen2.5-VL 7B 1fps ARXIV24 78.32 80.47 78.86 80.45 76.73 78.50 79.63 63.41 66.19 53.19 73.68
Offline-Long VLLMs Avg – – – 62.78 62.75 65.18 65.17 60.73 59.52 54.31 51.36 53.28 41.52 53.78

Open-source Online Video LLMs
Flash-VStream 7B – ICCV25 25.89 43.57 24.91 23.87 27.33 13.08 18.52 25.20 23.87 48.70 23.23
VideoLLM-online 8B 2fps CVPR24 39.07 40.06 34.49 31.05 45.96 32.40 31.48 34.16 42.49 27.89 35.99
Dispider 7B 1fps CVPR25 74.92 75.53 74.10 73.08 74.44 59.92 76.14 62.91 62.16 45.80 67.63
Thinking-QwenVL (Ours) 7B 1fps – 70.27 66.67 80.00 77.97 79.31 68.66 78.26 68.18 72.31 52.38 71.60 +3.97↑

Flash-VStream† 7B 1fps ICCV25 24.52 21.53 21.45 19.00 26.42 26.56 22.22 22.36 21.45 24.35 22.53
Flash-VStream +ATDM 7B 1fps ICCV25 28.53 27.34 24.68 26.45 31.01 27.00 25.00 24.90 27.64 26.60 26.58 +4.05↑

Model ACR FPD Real. Back. Forw. Overall
Human Agents 92.6 91.1 93.2 92.3 92.9 92.8
Gemini 1.5 Pro 67.0 68.3 70.8 62.3 57.2 65.3

LLaVA-NeXT-Video-7B 59.6 72.3 63.3 41.7 54.2 53.1
LLaVA-OneVision-7B 58.7 71.3 62.8 45.0 50.9 52.9
Qwen2-VL-7B 53.2 66.3 60.7 48.6 48.9 52.7
LongVU-7B 49.5 68.3 57.4 39.5 48.5 48.5

Open-source Online Video-LLMs

Flash-VStream-7B 32.1 29.7 29.9 25.4 44.2 33.2
VideoLLM-online-8B 23.9 45.5 20.8 17.7 – –
Dispider-7B 49.5 61.4 54.5 36.1 34.7 41.8
Ours (↓ 93.75%) 54.9 67.5 55.8 47.4 28.6 46.9
TimeChat-Online-7B (100%) 46.8 69.3 61.9 41.7 36.7 46.7
Ours (100%) 57.2 75.0 64.7 44.3 37.6 52.5

Table 2: Accuracy on OVOBench. Real.: Real-Time Vi-
sual Perception, Back.: Backward Tracing, Forw.: For-
ward Active Responding. –: The specific requirements of
Forw. task resulted in VideoLLM-online not being able to
response in demanded format.

TP

VP

SP

GU

PU

IA

FP

SR

30%

40%

50%

+5.3%

+3.5%

+2.8%

+8.5% +2.2%

VideoLLaMA2 (7B)
VideoLLaMA3 (7B)
LLaVA-OneVision (7B)
LLaVA-Video (7B)
Qwen2.5-VL (7B) [Baseline]
Ours (7B)
Gemini 2.0 Flash
GPT-4o

Figure 5: Accuracy improvements over
our baseline model on sub-tasks of the
RTVBench under the same experimen-
tal conditions as the RTVBench paper.
The overall accuracy of our model in-
creased from 32.75% to 35.87%.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Training Details. Our model is built upon the Qwen2.5-VL-7B architecture and all experiments
are conducted using 4× A100-80G GPUs. The learning rate is set to 2 × 10−6, and the model
is configured with a maximum input resolution of 448 × 448. More hyperparameter details can
be found in Appendix A.3. In our setting, the number of clip frames is 32, the number of the
three aggregation tokens is 3, 2, and 1 frames’s tokens of the videos. So, the number of the final
aggregation tokens can be changed with the video resolution setting.

Benchmarks. Our evaluation spans complementary online and offline long-video QA suites that
jointly stress real-time perception, temporal alignment, and long-horizon reasoning. Streaming-
Bench (Lin et al., 2024) targets low-latency, timestamped queries under streaming constraints.
OVOBench (Niu et al., 2025) enforces answer-when-ready timing—models defer responses until
sufficient future evidence (real-time perception, forward tracking, active responding). RTVBench
and OVBench (Xun et al., 2025; Huang et al., 2024) probe continuous perception and online spatio-
temporal reasoning via multi-timestamp, hierarchical questions and Past/Current/Future anchoring.
For offline long-form understanding, VideoMME, MLVU, LongVideoBench, and LVBench (Fu
et al., 2024; Zhou et al., 2024; Wu et al., 2024; Wang et al., 2024b) cover short clips to hour-long
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Table 3: Accuracy on offline long-video benchmarks: MLVU, LongVideoBench, VideoMME
(w/o subtitles), and LVBench. Videos are divided into 16-frame clips in HPSI (↓93.75% signi-
fies 93.75% reduction in video frames) and up to 256 frames are sampled per video. “100%” for
TimeChat-Online (based on Qwen2.5-VL) denotes no dropping-only model parameters; we repro-
duce this setting in the last row. “100%”(ours) indicates no insertion—only attention redistribution.

Model Frames MLVU LongVideoBench VideoMME LVBench
Overall Long

Video Length - 3∼120 min 8 sec∼60 min 1∼60 min 30∼60 min 30∼120 min

Open-source Offline Video LLMs
LLaMA-VID-7B [ECCV24] 1fps 33.2 - - - 23.9
MovieChat-7B [CVPR24] 2048 25.8 - 38.2 33.4 22.5
LLaVA-NeXT-Video-7B [BLOG24] 32 - 43.5 46.6 - 32.2
VideoChat2-7B [CVPR24] 16 47.9 39.3 39.5 33.2 32.5
LongVA-7B [ARXIV24] 128 56.3 - 52.6 46.2 35.7
Kangaroo-7B [ARXIV24] 64 61.0 54.2 56.0 46.6 39.4
Video-XL-7B [CVPR25] 128 64.9 - 55.5 49.2 -
Qwen2.5-VL-7B [ARXIV25] 1fps 66.9 61.5 63.2 50.4 43.1
VISTA-7B [CVPR25] - 62.1 53.1 55.5 49.2 39.0

Open-source Online Video LLMs
Dispider-7B [CVPR25] 1fps 61.7 - 57.2 - -
VideoChat-Online-8B [CVPR25] 2fps - - 52.8 44.9 -
Thinking-QwenVL 1fps (↓93.75%) 59.6 - 56.3 49.1 -
TimeChat-Online-7B [ACM25] 1fps (100%) 62.6 55.4 62.4 48.4 -
∆ - Qwen2.5-VL - -4.5 -6.1 -0.8 -1.6 -
Thinking-QwenVL 1fps (100%) 68.3 62.0 67.7 56.4 43.6
∆ - Qwen2.5-VL - +1.4 +0.5 +4.5 +6.0 +0.5

videos, emphasizing granular recall and cross-scale reasoning. We follow official scoring protocols
(per-suite QA accuracy and aggregates); full task/metric definitions are in Appendix §A.5.
Comparative Models. 1) Proprietary Assistants. For completeness, the strong closed-source
models as upper-bound references are included: GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Team
et al., 2023), and Claude 3.5 Sonnet (Anthropic, 2024). 2) Offline Long-Video MLLMs. We com-
pare to the SOTA long-context video understanding models: Video-LLaMA2 (Cheng et al., 2024),
VideoChat2 (Li et al., 2024b), Video-CCAM (Fei et al., 2024), VILA-1.5 (Lin et al., 2023), LLaMA-
VID (Li et al., 2025), LongVA (Zhang et al., 2024b), Kangaroo (Liu et al., 2024b), MiniCPM-V-
2.6 (Yao et al., 2024) and Video-XL (Shu et al., 2024), along with commonly reported baselines (
LLaVA-OneVision (Li et al., 2024a), LLaVA-NeXT-Video (Liu et al., 2024a), InternVL-V2 (Chen
et al., 2024c), Qwen2.5-VL (Wang et al., 2024a)). 3) Online Video LLMs. Online methods include
VideoLLM-online (Chen et al., 2024a), Flash-VStream (Zhang et al., 2024a), Dispider (Qian et al.,
2025), and TimeChat(-Online) (Ren et al., 2024).

4.2 MAIN RESULTS

StreamingBench. In Table 1, we compare our model with recent state-of-the-art systems, including
Dispider. Our model achieves an accuracy of 71.60%, setting a new benchmark for this task. Com-
pared to previous online and streaming models, we have improved the state-of-the-art performance
by 3.97% on the online task, increasing the accuracy from Dispider’s 67.63% to our 71.60%. Fur-
thermore, we also evaluated the effectiveness of our ATDM approach on models without decision-
making capabilities, such as Flash-VStream and Qwen2.5-VL. The results indicate that, in the case
of Flash-VStream, the model’s accuracy increased from 22.53% to 26.58%, representing an im-
provement of 4.01%. This demonstrates the general applicability of our decision-making method
for online video understanding.

OVOBench, RTVBench, and OVBench. In Table 2, we compare our proposed method, Thinking-
QwenVL, with existing models on OVOBench. Compared to Flash-VStream, which lacks decision-
making capabilities (33.2%), and Dispider, which incorporates binary opaque decision-making
(41.8%), our model achieves an accuracy of 46.9%, marking an improvement of 4.9% over Dispi-
der. Compared to our baseline, the overall accuracy of our model increased on RTVBench from
32.75% to 35.87%. We achieved 35.6% accuracy on OVBench. The performance on sub-tasks is
in Fig. 5 and Table 6& 7. The meaning of each symbol in Fig. 5 is: TP - Temporal Perception, VP
- Visual Perception, SP - Scene Perception, PU - Phenomenological Understanding, GU - Global
Understanding, IA - Intent Analysis, FP - Faithfulness Prediction, SR - Similarity Reasoning.
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Table 4: Impact of 3 level aggregation on VideoMME w/o subs and OVOBench. We ablate by
directly removing the corresponding level tokens. ♠ denotes that the first-stage compressed-token
count is set as the final token budget (1×)—equivalent to applying adaptive pooling to visual tokens
before the LLM, as in prior long-video models. FF: First Frame. LV: Level. ■ : burden of tokens.

FF LV-1 LV-2 LV-3 ■
OVOBench VideoMME AVG

Overall Real. Back. Forw. Overall Short Medium Long
✓ ✓ ✓ ✓ 1× 46.9 55.8 47.4 28.6 56.3 66.0 53.9 49.1 51.6
✓ ✓ ✓ ✗ 2× 46.0 53.2 48.5 29.1 56.0 65.6 53.6 49.0 51.0
✓ ✓ ✗ ✗ 3× 49.6 56.7 53.9 31.4 54.7 61.9 54.7 47.6 52.2
✗ ✓ ✓ ✓ - 42.6 49.1 42.2 30.2 49.7 55.9 48.6 44.7 46.2
✓ ♠ ✗ ✗ 1× 43.4 ↓ 3.5 45.4 52.7 29.9 48.9 ↓ 7.4 52.4 49.0 45.1 46.2
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Figure 6: The impact of ATDM on OVO-
Bench and StreamingBench subtasks.
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Figure 7: Impact of ATDM components. All rep-
resents the complete model performance when use
ATDM. Each column beyond this represents the ab-
lation of the corresponding part of ATDM.

VideoMME and MLVU. Although our model is optimized for online scenarios, it still demonstrates
competitive performance on long-video benchmarks. Our model achieves 56.3% on VideoMME,
49.1% on VideoMME-Long, and 61.2% on MLVU, outperforming several models specifically de-
signed for offline long-video understanding. When the experimental setup is configured to use only
the modified attention weight distributions (100%), the accuracy reaches 68.3% on MLVU, 62.0%
on LongVideoBench, 67.7% on VideoMME, and 43.6% on LVBench, surpassing existing state-
of-the-art offline long-video models. Notably, on VideoMME-Long (30 ∼ 60 min), it outperforms
the leading Qwen2.5-VL-7B by 6% in accuracy. This strongly demonstrates the effectiveness of
our HPSI module for video understanding, as this progressive causal approach that incrementally
enhances the model’s cognitive state proves effective for tasks requiring long-term dependencies.

4.3 ABLATION STUDY

Overview. We conduct a comprehensive ablation study in two dimensions: 1) the impact of hierar-
chical integration across different layers, and 2) the contribution of each part in ATDM.
HPSI and Three-Level Aggregation Tokens. Table 4 ablates the per-level insertions of HPSI. A
salient finding is that removing levels 2–3 and forcing level 1 (the first LLM layer) to downsample
directly to the same token budget as our level-3 setting—i.e., a single-shot AdapterPooling baseline
applied before the LLM—reduces accuracy by 3.5% on OVOBench and 7.4% on VideoMME-Long.
This confirms that one-stage pooling discards fine-grained cues and disrupts long-range, cross-clip
dependencies; HPSI cannot be replaced by simple pooling. On offline long-video benchmarks (Ta-
ble 3), Thinking-QwenVL further surpasses the baseline by 4.5% on VideoMME, and—under the
same backbone and comparable data coverage—outperforms TimeChat-Online by 5.9% on MLVU,
6.6% on LongVideoBench, and 7.6% on VideoMME-Long. Together, these results show that
HPSI’s multi-depth aggregation tokens and structured sparse attention preserve semantics under
tight budgets and enable stronger causal reasoning over extended evidence than single-step pooling.
ATDM and its Components. We evaluate the decision-making capability of ATDM across
three models on OVOBench and StreamingBench, as shown in Fig. 6. Models without decision-
making capabilities show significant performance improvements with ATDM. For example, on the
OVOBench-EPM sub-task, all three models achieve more than a 5% accuracy boost. In Table 1,
Flash-VStream’s performance on StreamingBench increases from 22.53% to 26.58%, a 4.05%
gain. These results demonstrate that streaming and offline video understanding models, when op-
erating under paradigms like tr = tq or tr = T , suffer from performance limitations. However,
when equipped with decision-making capabilities aligned with visual evidence, model accuracy
significantly improves. We further isolate the contribution of each component (P1-P5) on Thinking-
QwenVL and Flash-VStream in Fig. 7. Each part is either removed or replaced with alternative
operations. More detailed experimental setups are provided in Appendix A.2.
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Robust
Setting 100% 80% 70%

Acc. (%) 71.60 68.75 67.81

Applicability
Framework F-VStream Ours

Base Model LLaVA-7B QwenVL-3B QwenVL-7B

Acc. (%) 26.58 62.62 71.60

Table 5: Robustness and Applicability.
Top: Stress-testing streaming robustness
under abnormal conditions by uniformly
dropping frames after 1 FPS extraction
(retaining 100%, 80%, 70%). Bottom:
The ATDM controller is applied to multi-
ple backbones (Flash-VStream-LLaVA-7B,
Our Thinking-Qwen2.5-VL-3B/7B), show-
ing its framework-agnostic utility.
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Figure 8: Efficiency on NVIDIA A100 GPUs. Im-
pact of the aggregation rate in HPSI on FPS and token
throughput. At 93.75% aggregation rate, our method
matches Flash-VStream’s FPS (8.49 vs. 8.45) with
78× higher avg. token throughput (1261 vs. 16), and
a slight latency increase (13.2ms vs. 9.5ms).

Robustness and Applicability. We evaluate stability under abnormal streaming conditions (miss-
ing frames and abrupt scene transitions) by starting from the 1 FPS protocol and uniformly retaining
only 80% and 70% of frames. As shown in Table 5, the degradation is mild: even at 70% retention,
StreamingBench accuracy remains 67.81%. Combined with the ablations in Table 4, this indi-
cates that HPSI and ATDM preserve performance under aggressive frame loss. Beyond robustness,
the two modules transfer across backbones and frameworks. Instantiating ATDM on the real-time
Flash-VStream pipeline (built on LLaVA) consistently activates time-stamped decision making and
yields a ∼ 4.0% accuracy gain on StreamingBench (Table 1). Applying HPSI and ATDM to a
smaller Qwen2.5-VL-3B backbone, Thinking-QwenVL-3B reaches 62.62% in Table 5, only about
5% below the 7B Dispider model and far above the 8B VideoLLM-Online model (35.99%). Method-
ologically, HPSI requires only a deep LLM, which we partition into three segments with increasing
aggregation strength, without backbone changes (Fig. 2). ATDM relies only on basic instruction-
following and visual comprehension, arousing the decision-making ability of generic VLMs easily.

Efficiency and Feasibility. On StreamingBench (NVIDIA A100 GPUs), our 93.75% aggregation
setting matches Flash-VStream in frame throughput (8.49 vs. 8.45 FPS) while yielding higher accu-
racy (71.60% vs. 22.53%). The explicit decision pipeline adds a modest ∼ 3.7s end-to-end latency
(13.2s vs. 9.5s). Sweeping aggregation (75%→97.5%) monotonically improves total average FPS
(5.28→9.12) and token throughput (tokens/s) (786→1351; scaled ×0.01 in Fig. 8), providing a
simple speed–quality knob. A 3B variant at 93.75% still attains average 7.07 FPS / 1050 throughput.

Qualitative Effect of HPSI on ATDM. On the painting clip in Fig. 13, HPSI supplies ATDM with a
temporally consolidated memory, yielding captions that explicitly encode state changes over time
(e.g., “the brush moves from right to left” and “the hand adjusts its angle”), rather than a single,
static snapshot. In contrast, the baseline—lacking hierarchical integration—produces short, largely
scene-static descriptions with weak cross-frame cohesion. This qualitative gap indicates that HPSI’s
multi-level aggregation preserves and stabilizes evolving visual evidence across frames, which
ATDM then leverages to issue timestamped, evidence-aligned decisions; the same synergy remains
observable even when frames are missing or hard cuts introduce abrupt scene transitions. We also
provide an intuitive comparison of our model and Flash-VStream’s output examples in Fig. 11&12.

5 CONCLUSION

We introduced Thinking-QwenVL, which integrates Hierarchical Progressive Semantic Integration
(HPSI) with an Active Thinking Decision Maker (ATDM). HPSI maintains a compact, relation-
preserving cognition state that is progressively updated as evidence accrues under structured sparsity,
while ATDM complements this with a decision process that decomposes tasks into observable sub-
goals, enriched by progress metrics, confidence estimates, and a readiness head aligned to first-
sufficient evidence. Empirical evaluation shows that Thinking-QwenVL achieves strong results on
online benchmarks and remains competitive on offline long-video tasks, with ablations confirming
that HPSI’s multi-depth aggregation and ATDM’s decision process are key to both accuracy and
timely responses.
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Reproducibility Statement. We have included the architecture of Thinking-QwenVL in Sec-
tion 3.1& 3.2 and the complete training procedure in Section 4.1 and Appendix A.3. The training
data recipe and hyper-parameter settings are listed in Tab. 9 in detail. Furthermore, our code and
checkpoints of Thinking-QwenVL will be released on GitHub and Huggingface.
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A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

A.1 MORE RESULTS

To thoroughly showcase the capabilities of Thinking-QwenVL, we provide supplementary experi-
mental data in Table 6& 7& 8, and and attention mask visualization in Fig. 10.

Table 6: Performance comparison (accuracy 100%) on OVBench. Subtasks in it are AA: Action
Anticipation, GSP: Goal/Step Prediction, MP: Movement Prediction, AP: Action Persistence, SV:
Step Verification, OP: Object Presence, AR: Action Retrieval, PR: Procedure Recall, TR: Trajectory
Retrieval, AL: Action Location, OP: Object Position, AT: Action Trajectory, OT: Object Trajectory,
AS: Action Sequence, SL: Step Localization, OES: Object Existence State.

Task Name Size FP THV PM SP STP TP AVG
AA GSP MP AP SV OP AR PR TR AL OP AT OT AS SL OES

Proprietary Multimodal Models
Gemini-1.5-Flash - 71.4 53.6 21.9 56.5 60.8 40.6 36.7 47.9 62.5 32.3 37.5 87.0 50.0 83.3 22.3 46.9 50.7

Open-source Offline Long Video LLMs
InternVL2 7B 52.6 60.2 27.6 57.5 52.0 58.5 38.8 67.1 58.3 38.1 31.3 87.4 37.0 75.4 31.4 5.9 48.7
InternVL2 4B 57.7 57.0 14.4 59.2 49.4 60.0 30.3 61.8 46.3 30.9 20.1 83.0 32.3 70.7 29.4 3.4 44.1
LLaMA-VID 7B 43.6 50.9 19.6 64.0 47.5 46.8 29.4 48.9 51.2 31.9 11.2 75.7 24.8 59.1 26.0 40.0 41.9
LLaVA-Onevision 7B 68.0 62.7 35.9 58.4 50.3 46.5 29.4 60.7 58.0 43.1 14.2 86.5 49.7 70.7 28.1 30.2 49.5
LongVA 7B 64.1 56.5 29.5 54.9 51.9 34.8 35.3 55.6 57.7 31.6 3.4 67.4 44.7 80.0 26.7 4.0 43.6
MiniCPM-V2.6 7B 33.3 35.9 15.0 59.2 50.8 55.1 25.0 37.4 41.7 26.6 11.8 98.3 36.3 66.1 26.4 6.2 39.1
Qwen2-VL 7B 60.3 66.1 22.1 54.9 51.5 51.1 37.8 64.4 69.3 35.3 28.5 97.0 49.4 65.1 30.8 11.7 49.7
LITA 7B 19.2 24.5 19.9 40.8 48.9 24.9 3.1 27.3 6.4 6.9 14.6 35.2 23.9 27.4 0.5 3.4 20.4
TimeChat 7B 7.7 15.3 18.7 20.6 15.7 11.7 9.1 14.7 9.8 7.5 19.5 13.9 10.3 9.3 10.1 10.8 12.8
VTimeLLM 7B 37.2 23.4 15.0 64.8 43.8 53.2 25.9 38.8 32.5 25.9 20.4 40.9 6.8 48.4 43.5 8.6 33.1

Open-source Online Video-LLMs
VideoLLM-Online 7B 0 1.8 20.9 5.2 5.9 32.6 0 2.3 26.7 0.6 26.6 0.9 19.9 0.9 1.7 8.3 9.6
MovieChat 7B 23.1 27.5 23.6 58.4 43.9 40.3 25.6 31.1 23.9 26.9 39.6 24.4 28.9 29.3 25.5 21.9 30.9
Flash-Vstream 7B 26.9 37.6 23.9 60.1 41.9 40.0 23.4 35.3 26.1 24.7 28.8 27.0 21.4 29.8 25.6 26.8 31.2
Thinking-QwenVL 7B 27.8 39.6 25.9 62.2 42.3 41.4 25.3 36.3 27.1 24.4 30.8 27.6 25.1 30.2 26.5 27.6 35.6 +4.4↑

Table 7: Accuracy (100%) on RTVBench. We evaluate without audio; otherwise, all set-
tings—including the frame-sampling method—follow RTVBench (Xun et al., 2025) for a fair com-
parison. Compared with our baseline model, the overall accuracy of our approach improves from
32.75% to 35.87%, yielding a gain of 3.12%. The Subtasks in it are: Temporal Perception (TP),
Visual Perception (VP), Scene Perception (SP), Global Understanding (GU), Phenomenological Un-
derstanding (PU), Intent Analysis (IA), Future Prediction (FP), and Spatiotemporal Reasoning (SR).

Method Size TP VP SP GU PU IA FP SR

Closed-Source Business Models

Gemini 2.0 Flash - 40.49 45.19 39.34 35.70 45.65 46.78 44.42 38.46
GPT-4o - 48.60 53.59 52.63 45.02 54.32 48.58 54.67 42.75

Open-Source Offline Video Models

VideoLLaMA2 7B 39.52 42.49 39.85 37.34 42.21 40.92 41.47 33.50
VideoLLaMA3 7B 37.82 39.24 36.87 33.54 39.13 33.39 38.05 33.84
LLaVA-OneVision 7B 35.09 35.86 35.20 32.07 33.51 37.06 38.23 28.91
LLaVA-Video 7B 34.07 38.97 34.45 29.42 35.69 36.33 39.08 31.22
Qwen2.5-VL 7B 32.37 37.48 30.73 29.11 35.69 29.36 35.33 33.67
Ours 7B 37.65 +5.3↑ 41.00 +3.5↑ 30.17 31.86 32.66 37.86 +8.5↑ 37.20 35.88

A.2 DETAILS ABOUT THE COMPONENTS ANALYSIS OF ATDM

In Fig. 7, we present five sets of ablation experiments on the components of ATDM, conducted on
two models. These five sets of experiments are based on the following control conditions:

1) P1: Remove P1 (caption instructions CIq); demand P2 give captions directly.

2) P2: Disable P2 Question decomposition; retain a single query Q and require P4 to answer Q at
each step while still emitting per-step confidence c and progress ρ.

3) P3: Remove P3 Streaming captioning to test the value of the textual intermediary; P4 is switched
from text-only consumption to multimodal extraction—directly retrieving evidence from the current
visual stream to fill sub-answers.
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Table 8: Comparison with current online Video understanding LMMs on OVOBench. The subtasks
are: i) Real-Time Visual Perception (OCR: Optical Character Recognition, ACR: Action Recogni-
tion, ATR: Attribute Recognition, STU: Spatial Understanding, FPD: Future Prediction, OJR: Object
Recognition), ii) Backward Tracing (EPM: Episodic Memory, ASI: Action Sequence Identification,
HLD: Hallucination Detection), and iii) Forward Active Responding (REC: Repetition Event Count,
SSR: Sequential Steps Recognition, CRR: Clues Reveal Responding).

Model #Frames Real-Time Visual Perception Backward Tracing Forward Active Responding Overall
OCR ACR ATR STU FPD OJR Avg. EPM ASI HLD Avg. REC SSR CRR Avg. Avg.

Human Agents - 94.0 92.6 94.8 92.7 91.1 94.0 93.2 92.6 93.0 91.4 92.3 95.5 89.7 93.6 92.9 92.8

Proprietary Multimodal Models
Gemini 1.5 Pro 1fps 87.3 67.0 80.2 54.5 68.3 67.4 70.8 68.6 75.7 52.7 62.3 35.5 74.2 61.7 57.2 65.3
GPT-4o 64 69.1 65.1 65.5 50.0 68.3 63.7 63.6 49.8 71.0 55.4 58.7 27.6 73.2 59.4 53.4 58.6

Open-source Offline Long Video LLMs
LLaVA-NeXT-Video-7B 64 69.8 59.6 66.4 50.6 72.3 61.4 63.3 51.2 64.2 9.7 41.7 34.1 67.6 60.8 54.2 53.1
LLaVA-OneVision-7B 64 67.1 58.7 69.8 49.4 71.3 60.3 62.8 52.5 58.8 23.7 45.0 24.8 66.9 60.8 50.9 52.9
Qwen2-VL-7B 64 69.1 53.2 63.8 50.6 66.3 60.9 60.7 44.4 66.9 34.4 48.6 30.1 65.7 50.8 48.9 52.7
InternVL-V2-8B 64 68.5 58.7 69.0 44.9 67.3 56.0 60.7 43.1 61.5 27.4 44.0 25.8 57.6 52.9 45.4 50.1
LongVU-7B 1fps 55.7 49.5 59.5 48.3 68.3 63.0 57.4 43.1 66.2 9.1 39.5 16.6 69.0 60.0 48.5 48.5

Open-source Online Video-LLMs
Flash-VStream-7B 1fps 25.5 32.1 29.3 33.7 29.7 28.8 29.9 36.4 33.8 5.9 25.4 5.4 67.3 60.0 44.2 33.2
VideoLLM-online-8B 2fps 8.1 23.9 12.1 14.0 45.5 21.2 20.8 22.2 18.8 12.2 17.7 - - - - -
Dispider 1fps 57.7 49.5 62.1 44.9 61.4 51.6 54.5 48.5 55.4 34.7 4.3 36.1 18.0 37.4 48.8 41.8
TimeChat-Online-7B 1fps (100%) 75.2 46.8 70.7 47.8 69.3 61.4 61.9 55.9 59.5 9.7 41.7 31.6 38.5 40.0 36.7 46.7
Ours 1fps (↓ 93.75%) 56.4 54.9 60.4 45.0 67.5 50.4 55.8 41.7 55.9 44.7 47.4 12.0 33.8 40.0 28.6 46.9
Ours 1fps (100%) 74.1 57.2 68.1 55.3 75.0 58.3 64.7 48.0 56.3 28.8 44.3 29.1 39.3 40.0 36.1 52.5

4) P4: Replace the graded (ρ, c) update in P4 (Progressive tracking sub-questions status) with a
single binary answerable flag (0/1), eliminating accumulated progress and confidence smoothing.

5) P5: Remove P5 (self-triggered reflection) to assess the benefit of cross-clip causal revision under
low confidence or major semantic shifts.

A.3 SUMMARY OF HYPERPARAMETER SETTINGS

The training process of our Thinking-QwenVL is structured into three distinct phases. 1) In-
tegration Pre-training. We pretrain the model on LLAVA-Video-178k (Li et al., 2024a) and
ShareGPT4v-40k (Chen et al., 2024b), both containing caption-style data. This stage enables the
model to learn how to aggregate and compress visual information into the inserted compress to-
kens at specified positions. 2) Integration-Based Time Perception Learning. We fine-tune the
model on TimeChat-Online-139k (Yao et al., 2025), a dataset annotated with binary labels indicat-
ing whether a question is answerable at a given timestamp. This trains the model to decide whether
the compressed visual information is sufficient for answering, relying solely on the compress tokens.
3) Interaction-Focused QA Fine-Tuning. We further fine-tune the model using general QA-style
dialog data to enhance its interaction ability and improve alignment with user queries in a stream-
ing setting. Throughout all stages, only the intermediate Merge layers and the LLM backbone are
fine-tuned, while the visual encoder remains frozen. All experiments are run on A100 GPUs.
Table 9 provides a comprehensive overview of the hyperparameter configurations employed during
each training stage.

A.4 POSITION IDS EMBEDDING FOR INTEGRATION

Impact of Positional Encoding. The original QwenVL2.5 model adopts a 3D Rotary Position
Embedding (3D RoPE) mechanism. When introducing new aggregation tokens, it becomes nec-
essary to redefine their positional encoding. To maintain compatibility with the model’s dynamic
spatial resolution handling, we insert aggregation tokens in multiples of the original frame tokens.
In Thinking-QwenVL, we retain the 3D RoPE format while adjusting the temporal dimension of
the inserted aggregation tokens as in Algorithm 1. This ensures the spatial indices are aligned with
the original frames while preserving temporal distinction across hierarchical aggregation levels. To
evaluate this strategy, we replace 3D RoPE with a sequential positional encoding and introduce a
new variant, Offset Sequential Positional Embedding (OSPR). OSPR explicitly offsets the sequential
position IDs of aggregation tokens according to their hierarchy level. On OVOBench, substituting
3D RoPE with OSPR reduces overall accuracy from 46.9% to 43.3% (a drop of 3.6 percentage
points), which is also a reason we retain 3D RoPE in our model.
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Table 9: Training hyperparameters of Thinking-QwenVL for all stages.

Configuration Integration Pre-training Time Perception Learning Interaction-Focused QA Tuning

Training Datasets LLAVA-Video-178k&ShareGPT4v-40k TimeChat-Online-139k LLAVA-Video-178k

Training Datasets Type Caption Open-ended QA Multiple-choice QA

Training Modules LLM&Merge Layer LLM&Merge Layer LLM&Merge Layer

Frame Resolution 448× 448 448× 448 448× 448

Max Frames 128 196 128

Optimizer AdamW AdamW AdamW

Learning Rate 2e−6&1e−5 2e−6&1e−5 2e−6&1e−5

Learning Rate Schedule cosine decay cosine decay cosine decay

Weight Decay 0.1 0.1 0.1

Gradient Clip 1.0 1.0 1.0

Warm-up Ratio 0.03 0.03 0.03

Global Batch Size 16 16 16

Numerical Precision bfloat16 bfloat16 bfloat16

Algorithm 1 The algorithm of Position IDs embedding for aggregation tokens.

Require: X: Input tokens
Require: G: video grid (T,H,W )

Require: C: compress params (Nclips, N
(l)
comp)

Require: P: position params (∆t, τ, S)

1: Textended ← T +Nclips ×N
(l)
comp

2: Pt ← [0, 1, . . . , Textended − 1]×∆t× τ
3: Ph ← ⌊[0, 1, . . . , ⌊H/S⌋ − 1]⌋
4: Pw ← ⌊[0, 1, . . . , ⌊W/S⌋ − 1]⌋
5: Mt ← repeat(Pt, along spatial dims)
6: Mh ← repeat(Ph, along temporal and width dims)
7: Mw ← repeat(Pw, along temporal and height dims)
8: Pos3D ← stack(Mt,Mh,Mw)
9: return Pos3D

A.5 EVALUATION METRICS

StreamingBench (Lin et al., 2024) is a large-scale online video benchmark spanning 900 videos
with 4,500 timestamped multiple-choice QAs, designed to test real-time perception and interaction
under realistic stream constraints. Tasks are grouped into three families: Real-Time Visual Un-
derstanding, Omni-Source Understanding, and Contextual Understanding. Findings reveal clear
gaps: offline long-video MLLMs transfer modestly to real-time visual tasks but underperform on
omni-source and contextual tasks requiring audio fusion, long-horizon memory, and event-timed ac-
tuation; dedicated streaming models remain immature. Each of the 3 types has a split, and since the
other two test tasks are non-visual modality-dominant, e.g., the omni-source subset is dominated by
the audio modality, we tested on the first split–Real-Time Visual Understanding (2,500 QAs). The
subtasks in it are as follows: Object Perception (OP), Causal Reasoning (CR), Clips Summariza-
tion (CS), Attribute Perception (ATP), Event Understanding (EU), Text-Rich Understanding (TR),
Prospective Reasoning (PR), Spatial Understanding (SU), Action Perception (ACP), and Counting
(CT). We use abbreviations for these subtasks in Table 1.

OVOBench (Niu et al., 2025) is a dedicated benchmark designed to evaluate online video under-
standing models with tasks of 3 types (real-time visual perception / forward tracking / forward
active response). It comprises 644 videos and around 2800 QA pairs, requiring models to with-
hold an answer until sufficient future evidence arrives. OVOBench specifically evaluates temporal
alignment capabilities by enforcing strict separation between the query timestamp and the earliest
timestamp at which the question becomes answerable. This is particularly important for assessing
whether a model can respond at the right moment based on sufficient and relevant visual evidence.
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The suite spans 12 tasks grouped into three modes: Backward Tracing—Episodic Memory (EPM),
Action Sequence Identification (ASI), Hallucination Detection (HLD); Real-Time Visual Percep-
tion—Spatial Understanding (STU), Object/Attribute/Action Recognition (OJR/ATR/ACR), OCR,
and Future Prediction (FPD); and Forward Active Responding—Repetition Event Count (REC),
Scene-State Regression (SSR), and Cautious Response Regulation (CRR).

RTVBench (Xun et al., 2025) and OVBench (Huang et al., 2024) jointly offer a complementary
yardstick for online video understanding—probing continuous perception and online spatiotempo-
ral reasoning under real-time constraints. RTVBench (552 videos / 4,631 QA pairs) is built around
(i) Multi-Timestamp QA and a Hierarchical Question Structure to prevent shortcutting that can be
summarized into three sub-tasks—Perception, Understanding, and Reasoning (future prediction/s-
patiotemporal reasoning). OVBench (5,000 QAs) scales online evaluation across 6 task types with
videos ranging from seconds to one hour; it uniquely anchors each query to Past/Current/Future
temporal contexts, requires fine-grained grounding. Together, the two benchmarks expose persistent
limitations of current MLLMs: offline long-video models lose robustness under cluttered, evolving
streams and dedicated online models still trail top proprietary systems—highlighting the need for
more advanced architectures.

VideoMME, MLVU, LongVideoBench and LVBench (Fu et al., 2024; Zhou et al., 2024; Wu
et al., 2024; Wang et al., 2024b) are four long video QA benchmarks. VideoMME (2,700 QA pairs)
spans six domains with videos from short clips (< 4 min) to long-form (> 1 h), testing perception,
reasoning, and synopsis across temporal scales. MLVU (1,730 videos / 2,593 QA pairs) ranges
from 3 minutes to 2 hours, providing complementary coverage of long-form video understanding.
LVBench probes extreme long-video comprehension with videos up to two hours (68 min on aver-
age). LongVideoBench (3,763 videos / 6,678 human-authored QA pairs) is a large-scale benchmark
for understanding long contexts, which collectively demand granular recall and spatio-temporal rea-
soning under long inputs.

A.6 EVALUATION OF DECISION CLARITY AND RATIONALE CORRECTNESS

To systematically assess whether ATDM genuinely improves users’ understanding and trust in the
model’s behaviour, we design four complementary metrics and apply them to the intermediate rea-
soning traces produced by each ATDM component as well as to the overall decision process. All
four metrics are rated on a 1–5 Likert scale (higher is better), and are used consistently by human
experts, trained non-experts, and strong LLM judges (GPT-4o and Qwen2.5-VL-72B). Together,
they disentangle: 1) Reasoning Readability: how well the full reasoning text is written and struc-
tured; 2) Decision Transparency: how clearly the timing of “answer” vs. “wait” is explained; 3) (ρ, c)
Consistency: whether the explicit progress/confidence signals (ρ, c) behave in a numerically consis-
tent manner; and 4) Rationale Correctness: whether the rationale is factually and causally sufficient
to justify the decision. The detailed indicators and the meaning of each corresponding score are in
Table 12.

Reasoning Readability evaluates whether each part (e.g., caption, sub-question answers) in the
ATDM reasoning trace follows the requested content specification, is easy to read, and is locally
coherent. High scores indicate that each component strictly adheres to the instructions, the content
is strongly related to the corresponding sub-question, the caption is fluent and covers the required
aspects, and the sub-question answers align naturally with the caption, yielding a globally coherent
and well-structured reasoning trajectory.

Decision Transparency measures whether a rater can clearly understand why ATDM decides to
answer or to keep waiting at each step, given access to the reasoning trace, the current sub-task
states, and the associated progress/confidence scores (ρ, c). A high transparency score means that
the trace explicitly indicates when key evidence appears, how sub-tasks are resolved, how (ρ, c) are
updated, and how these factors jointly trigger the timing of the decision.

(ρ, c) Consistency focuses specifically on the numerical behaviour of the progress and confidence
signals. It assesses whether the magnitudes and step-wise trends of (ρ, c) are internally consis-
tent with the textual description of task progress and uncertainty. High scores correspond to well-
calibrated dynamics: ρ increases as sub-tasks are resolved, c increases when decisive evidence is
observed and remains low for ambiguous sub-questions, and overall the numbers “make sense” as a
faithful quantitative reflection of the explained state.
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Reasoning
Readability
1 Unreadable
2 Mostly hard to read
3 Mostly readable
4 Moderately readable
5 Clearly readable and well-

structured

(ρ, c)
Consistency
1 Clearly inconsistent
2 Mostly inconsistent
3 Weakly aligned
4 Generally well-aligned
5 Well-calibrated and tightly consis-

tent

Decision
Transparency
1 Completely opaque
2 Mostly opaque
3 Partially transparent
4 Generally transparent
5 Highly transparent

Rationale
Correctness
1 Incorrect or misleading
2 Mostly incorrect
3 Partially correct but incomplete
4 Generally correct and sufficient
5 Generally correct and well-justified

Figure 9: The four rubrics for evaluating ATDM’s reasoning traces.

Rationale Correctness evaluates whether the reasoning at a given step is factually grounded in the
underlying video and question, and whether the cited evidence and causal explanation objectively
justify the chosen action (“answer” vs. “wait”). High scores require both factual accuracy (no hal-
lucinated events or incorrect descriptions) and a logically appropriate use of evidence, such that the
selected segments/events and the corresponding explanation are necessary and sufficient to support
the decision.

Table 10: Expert evaluation of the reasoning process of ATDM on StreamingBench. The data in
the table represents the average score for each indicator. The detailed indicators and the meaning of
each corresponding score are in Table 12.

Expert Readable Transparency ρ/c Matching Degree Correctness

Qwen2.5-VL-72B 4.6 4.2 4.3 4.0
GPT-4o 4.5 4.2 4.0 3.8
Average 4.55 4.20 4.15 3.90

A.7 SUB-QUESTIONS RELEVANCE AND TYPE CORRECTNESS

Expert Evaluation. To further verify that ATDM generates task-relevant and structurally mean-
ingful sub-questions, we conduct an additional expert evaluation using the LLM judge (GPT{4o).
Given the original question and the corresponding list of ATDM-generated sub-questions, the LLM
is prompted to assess each sub-question along two dimensions: 1) task relevance to the main ques-
tion, and 2) the correctness of its semantic type label, which is required by our decomposition prompt
of Part-2 in Section F. For each sub-question, the judge returns a scalar task-relatedness score in
{1, . . . , 5}, a boolean flag indicating whether the declared type is appropriate.

Task relevance is designed to quantify how strongly a sub-question contributes to solving the origi-
nal main question, assuming that it can be answered correctly. We adopt a 1–5 Likert scale with the
following rubric: 1-Completely unrelated, 2-Mostly unrelated, 3-Partially related, 4-Clearly related,
5-Strongly task-critical.
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Type correctness evaluates whether the declared sub-question type matches the semantics of the
sub-question content. The LLM judge is instructed to output a binary decision (correct / incorrect).

We further compare three prompt variants: (a) the full model with relevance/observability con-
straints, (b) a no-constraint variant that removes phrases enforcing explicit task relevance, and (c)
a free-exploration variant that additionally encourages broad, unconstrained decomposition. As re-
ported in Table 11, relaxing the constraints consistently degrades both LLM-judged task-relatedness
and downstream streaming accuracy (e.g., from 71.60% for the full model to 69.58% and 68.40% for
the no-constraint and free-exploration prompts, respectively). These results are aligned with the fail-
ure modes discussed in our concurrent analysis (Jang et al., 2025): indiscriminate sub-questioning
increases reasoning complexity without improving task utility, whereas ATDM’s controlled Part-2
prompt reliably steers the model toward focused, task-critical sub-questions.

Table 11: Evaluation for relevance of sub-questions and the prompt’s influence in Part-2.

Avg Task relevance Avg Type correctness Full Prompt w.o. Requirement “Freely”

4.971/5 0.9992/1 71.60 69.58 68.40

B MORE DISCUSSION AND FUTURE WORK.
(1) Depth-as-memory. We encourage treating Transformer depth as staged memory for streaming:
assign progressively stronger aggregation to deeper segments and study depth-aware schedules with
mask-guided fusion across backbones. This line of inquiry, consistent with hierarchical/aggrega-
tion evidence for long-range spatiotemporal reasoning and robustness, merits systematic, model-
agnostic exploration. (2) Decision timing and control. We advocate explicit, calibrated internal
signals in LLMs—e.g., progress ρ and confidence c—to govern when to answer, wait, or reflect,
moving beyond ad-hoc “longer CoT.” This connects naturally to work on model self-calibration and
self-reflection. (3) Extensions from video QA. (i) Multi-stream evidence alignment: equip each
modality (vision, audio, motion, text) with its own HPSI-style memory and fuse per-stream ρ/c via
a lightweight controller to decide when joint evidence is sufficient—useful under missing frames
and hard cuts. (ii) Open benchmarks for decision quality: complement accuracy/latency with ex-
plicit scoring of decision timing and evidence alignment (e.g., rewarding on-time, well-supported
answers) for the video understanding task.
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Figure 10: A real example of the attention mask in our final 1L/3 layer of the LLM. The ratio
between the original video tokens and the 3-level aggregated tokens is depicted. Compared to the
original video input tokens, the proportion of aggregated tokens we introduce is minimal. As shown
in this figure and Fig. 2, our custom attention mask guides the model in hierarchically allocating
attention across different visual regions, fostering progressive focus on the visual tokens themselves
for improved video understanding in LLMs.
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Table 12: Evaluation rubric for ATDM’s reasoning traces along four dimensions, each scored from
1 (worst) to 5 (best).

Score

Metric 1 2 3 4 5

Reasoning Readability Unreadable Mostly hard to
read

Moderately
readable

Clearly readable Highly readable

Severely
disorganized or
largely irrelevant to
the requested
content, with
contradictory or
unrelated statements
forced into the same
step; the overall
meaning is very
hard to recover.

Some segments are
understandable, but
the output is only
weakly related to
the requested
content or to
previous
sub-questions; the
context feels jumpy
or redundant, and
captions are not
clearly written.

Each part broadly
follows the
instructions; there
are no blatant
off-topic or highly
confusing jumps,
and captions are
mostly coherent,
though some text
shows weak
contextual linkage.

Each part strictly
follows the
instructions;
contextual relevance
is clear, captions are
coherent and
sufficiently detailed,
and answers align
well with the
caption.

All parts strictly
follow the
instructions with
strong cross-part
coherence, forming
a globally consistent
and logically
connected reasoning
process.

Decision Transparency Completely
opaque

Mostly opaque Partially
transparent

Generally
transparent

Highly transparent

Even after reading
the full reasoning
and inspecting the
relationship
between (ρ, c) and
sub-task states, the
rater cannot see how
they relate to main
question nor why
answers or waits at
this step; decisive
cues are missing or
sub-tasks appear
irrelevant.

The high-level
relation to the main
question is
intelligible, but the
updates of sub-tasks
are unclear; if
active-thinking
steps are present,
update reasons are
opaque and the
causal chain is
confusing.

The rater can
basically follow the
overall reasoning,
the sub-task
updates, and the
rough causes of
(ρ, c) changes; if
reflection steps
exist, the causal
chain is largely
reasonable, though
some details remain
implicit.

It is reasonably
clear when evidence
is considered
sufficient or
insufficient, and
why (ρ, c) and
sub-task states are
updated; if
reflection steps
exist, the causal
chain before and
after the update is
clear and coherent.

The trace makes
explicit when and
why the decision is
triggered, which
evidence makes it
sufficient to answer
now, and how the
current sub-task
states and (ρ, c)
jointly justify
answering versus
waiting; the timing
logic is easy to
understand.

(ρ/c) Consistency Clearly
inconsistent

Mostly
inconsistent

Weakly aligned Generally
well-aligned

Well-calibrated
and tightly
consistent

(ρ, c) are often at
odds with the
reasoning (e.g., very
high progress when
the text emphasises
strong uncertainty,
or very low progress
when most
sub-tasks are stated
as resolved);
mismatches are
frequent and severe.

Some steps look
plausible, but
overall (ρ, c) rarely
align with the
described state;
across the full trace,
their magnitudes or
changes feel
arbitrary or
untrustworthy.

The coarse trend of
(ρ, c) roughly
follows the narrative
(e.g., both increase
as evidence
accumulates), but
many local steps
feel off (e.g.,
unexplained spikes
or plateaus).

For most steps, the
level and evolution
of (ρ, c) are
consistent with the
textual description
of progress and
uncertainty; minor
mismatches exist
but do not
substantially
undermine trust in
the signals.

Step-wise changes
in (ρ, c) closely
track the reasoning:
ρ rises as sub-tasks
are completed, c
rises when decisive
evidence appears
and stays low for
unresolved or
ambiguous
sub-questions.

Rationale Correctness Incorrect or
misleading

Mostly incorrect Partially correct
but incomplete

Generally correct
and sufficient

Clearly correct
and well-justified

The rationale
contains clear
factual errors,
hallucinates events
that do not occur, or
relies on irrelevant
or contradictory
evidence; it fails to
justify the chosen
action and may even
support the
opposite.

Some parts touch on
relevant content, but
important evidence
is missing or
misinterpreted; the
causal story is weak
or flawed, so the
decision is only
very weakly
supported.

The rationale
captures several
correct and
pertinent aspects,
but omits critical
evidence or leaves
key causal links
under-specified; the
decision is
somewhat
supported, yet the
justification is not
fully convincing.

The cited evidence
is largely accurate
and relevant, and
the overall
reasoning provides
a plausible,
reasonable
explanation that
covers most key
factors needed to
solve the task.

The rationale is
factually accurate,
targets the right
segments/events,
and the
sub-question
answers are correct
while highlighting,
from multiple
angles, the key
factors needed to
solve the question.
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A. To mix the ingredients.                     B. To cool down the pan.     C. To stop the steam.               D. To clean the pan.

Question (at 00:06:26): Why does the person shake the frying pan after pouring the liquid into it?

Part 2: the following sub-questions are derived: 

• "type": "action", "question": "What action is performed after pouring the liquid into the 

frying pan?" 

• "type": "object", "question": "What is poured into the frying pan?" 

• "type": "causal relation", "question": "What is the purpose of shaking the frying pan after 

pouring the liquid?"

Part 3: The clip spans from 0:07:30-0:08:34：
A chef prepares a dish in a modern kitchen. He begins by seasoning raw fish 

fillets with herbs and spices. He then adds the seasoned fish to a hot frying pan 

containing sautéed vegetables. Using tongs, he flips the fish to ensure even 

cooking. Next, he transfers the cooked fish from one pan to another. He then 

prepares a sauce, squeezing lemon juice into a pot filled with yellow ingredients. 

He stirs the sauce, ensuring it is well mixed. Finally, he adds the sauce to the pan 

with the vegetables and fish, stirring everything together. The chef then plates the 

dish, arranging the fish and vegetables neatly. He garnishes the plate with fresh 

herbs and lemon slices. The kitchen counter is cluttered with various ingredients 

and utensils, reflecting an active cooking process.

Flash VStreamThinking-QwenVL

Part 1: To answer this question accurately, the caption must focus on those requirements:

• direction of the person's hand while shaking the frying pan

• position of the frying pan before and after shaking

• any visible mixing action inside the pan after shaking

• any visible signs of cooling or cleaning behavior after shaking

type: action

q: What action is performed after pouring the liquid into 

the frying pan?

value: ?

confidence: 0.0

type: object

q: What is poured into the frying pan?

value: ?

confidence: 0.0

type: causal relation

q: What is the purpose of shaking the frying pan after pouring the liquid?

value: ?

confidence: 0.0

type: object

q: What action is performed after pouring the liquid into 

the frying pan?

value: shake the frying pan

confidence: 0.95

type: object

q: What is poured into the frying pan?

value: ?

confidence: 0

type: causal relation

q: What is the purpose of shaking the frying pan after pouring the liquid?

value: ?

confidence: 0

Part 5: It is not triggered during the process of the progress bar continuously increasing to 100%. 

Estimated progress: 0

Estimated progress :33

Part 4: Output the updated sub-questions states list. (Three representative intermediate states of the sub-questions are listed as follows.)

type: object

q: What action is performed after pouring the liquid into 

the frying pan?

value: shake the frying pan

confidence: 0.95

type: object

q: What is poured into the frying pan?

value: liquid

confidence: 0.90

type: causal relation

q: What is the purpose of shaking the frying pan after pouring the liquid?

value: To mix the ingredients

confidence: 0.85

Estimated progress: 33

Estimated progress :100

Figure 11: An example illustrating the outputs of each ATDM component in Thinking-QwenVL;
in this case, the model’s response confidence increases monotonically, so Part-5 (active thinking for
reflection) is not triggered.

C ADDITIONAL VISUALIZATIONS

In addition to the examples presented in the main text, we provide further decision-making illustra-
tions using ATDM for both Thinking-QwenVL and Flash-VStream in Fig. 11& 12. We also include
concise examples of cases that trigger active thinking, to clarify the outputs produced by each ATDM
component and to demonstrate their specific roles across the two models.
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E LLM USAGE

Large Language Models (LLMs) were used solely to assist with writing—primarily for grammar
correction and minor phrasing edits to improve coherence and readability. The LLM did not par-
ticipate in ideation, research methodology, experimental design, data analysis, or interpretation of
results. All research concepts and analyses were conceived, executed, and validated by the authors.
The authors take full responsibility for the content of the manuscript, including any text revised with
LLM assistance. We verified that all LLM-assisted text complies with ethical guidelines and does
not introduce plagiarism or scientific misconduct.
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A. Reading a book.             B. Polishing his shoes.          C. Adjusting his trousers and shoes.           D. Writing a letter.

Question (at 00:01:10): What is the man doing while sitting on a chair?

Part 1: To answer this question accurately, the caption must focus on those requirements:

• exact count of actions performed by the man (e.g., sitting, standing, walking, etc.)

• spatial relationship between the man and the chair (e.g., distance, angle, orientation)

• description of the man's actions (e.g., what he is doing with his hands, body posture, etc.)

• any sounds or spoken content (e.g., what the man is saying, any background noise, etc.)

Part 2: The following sub-questions are derived: 

• "type": "action", "question": "What action is the man performing while sitting on the 

chair?" 

• "type": "spatial relation", "question": "Where is the man sitting in relation to the chair?" 

• “type”: “temporal change”, “question”: “When is the man sitting on the chair?”
• “type”: “causal relation”, “question”: “Is the man sitting on the chair because of a specific 

reason or event?”

Part 3: The clip spans from 0:00:00-0:01:04：
The man is sitting on a chair in a room. He is wearing a blue shirt and has his 

hands on his knees. There is a table in front of him with a laptop on it. The room is 

well-lit and has a few pieces of furniture. The man appears to be focused on the 

laptop and is not interacting with anyone or anything else in the room.

The clip spans from 0:01:04-0:02:08：
The man adjusts his vest while another assists him. He buttons up the vest. 

Another individual helps adjust the collar and sleeves of his shirt. The background 

includes a door and a mirror. 

type: action

q: What action is the man performing while 

sitting on the chair?

value: Adjusting his trousers and shoes

confidence: 0.99

type: spatial relation

q: Where is the man sitting in relation to the 

chair?

value: On the chair

confidence: 0.99

type: temporal change

q: When is the man sitting on the chair?

value: Now

confidence: 0.99

Part 4: Based on the provided caption, the man is sitting on a chair and adjusting his trousers and shoes. Therefore, the answer to the main question "What is the man doing while sitting on 

a chair?" is "Adjusting his trousers and shoes."

The confidence for the main question is 0.99.

The output json list for the current clip would be: 

type: causal relation

q: Is the man sitting on the chair because of 

a specific reason or event?

value: Yes

confidence: 0.99

Estimated progress: 100

Figure 12: An example illustrating the outputs of each ATDM component in Flash-VStream. The
output of each part is influenced by the model’s foundational visual comprehension and its ability to
follow instructions.

Ours (with HPSI):

A hand holding a round brush labeled ‘Sap green Round brush no 4’ applies green paint to a canvas. The canvas features a blue sky 

gradient with green foliage at the bottom. The hand moves the brush from right to left, adding details to the green area. A palette 

with blue paint is visible nearby. The hand adjusts the brush’s position and angle to enhance the foliage details. The scene 

focuses on the meticulous application of paint to create a realistic tree outline against the blue sky background.

Qwen2.5-VL:

A hand holding a round brush no 4 applies sap green paint to a canvas, which already has a blue sky painted at the top. The artist

carefully blends the green paint into the blue, creating a gradient effect. A palette with blue and green paint is visible nearby, 

indicating the mixing process. The hand moves methodically, adding texture and depth to the green area, suggesting an early stage 

in the landscape painting.

Figure 13: Comparison of model-generated captions for the same clip. Our caption explicitly en-
codes state changes over time (“moves from right to left”, “adjusts position and angle”), which
implies that the model is using historical visual memory and new frames to form a coherent, evolv-
ing narrative. The baseline, lacking hierarchical integration, mainly describes a single static scene.
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F DETAILS OF THINKING-QWENVL’S PROMPT

Here, we provide detailed prompts of the five parts as well as their inputs and outputs. Question
“What is the width of the road right now?” is as the example.

▶ Part-1: The prompt for Part-1 giving the instructions for preparing for future steps should be:

Part-1: Question-Guided Captioning Instructions

▶ Input:

<TASK DEFINITION>
Your task is to analyze the user’s question and define EXACT observation requirements for
video captioning from the video in order to help answer it.
Think carefully: What aspects of the video should a caption focus on to make answering
this question possible?

<INSTRUCTIONS>
From the given question, generate a list of observation requirements: Each requirement
should describe an important dimension that a future caption must pay attention to.
Some CRITICAL FOCUS: 1. Quantification: Require exact counts when applicable 2.
Directionality: Specify spatial relationships, positions and movement vectors 3. Object-
anchored 4. Disambiguation of Confusable Concepts: If options include visually similar
or easily confused concepts (e.g., “table” vs “counter”, “cabinet” vs “shelf”), ensure cap-
tions distinguish them clearly through spatial context, object functions, or visual appearance.

For example: exact count of objects in someplace or the number of people, actions and
their order, hand movements or object manipulation, specific visual details, interactions,
gestures, spatial relationships, direction, distance, any sounds or spoken content
Such as: “exact count of apples placed in basket”, “direction of sword thrust relative to
opponent”, “distance between white car and pedestrian when braking”, “rotation angle of
wrench during tightening”
<INSTRUCTIONS>

<CONSTRAINTS>
Only generate points that are visually observable. Do not speculate. Focus on fine-grained
but relevant aspects. Max 5 points. Return your result in this JSON format:
{ “question”: [What is the width of the road right now?], “cap-
tion requirements”: [ “<|quantifiable requirement 1|>”, “<|space
observation requirement 2|>”, “<|other observation point 3|>”,
..., ] }
<CONSTRAINTS>

<TASK DEFINITION>

▶ Output:

{
"caption_requirements": [

"width measurement of the road",
"position of the road within the frame",
"any obstacles or landmarks for scale reference",
"any changes to the road width over time"

]
}
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▶ Part-2: The detailed prompt for Part-2 is shown as follows:

Part-2: Question Decomposition

▶ Input:

<TASK DEFINITION>
Your ONLY goal in this step is to read the user’s main question below. Break it down into
a set of precise, concrete sub-questions. Each sub-question should focus on a specific,
observable aspect of the video (e.g., object, person, action, spatial relation, etc.). These
sub-questions represent the key elements that must be visually or aurally verified in the
video to answer the main question.

<CONSTRAINTS>

• Only include attributes that are explicitly required or clearly implied by the question.
• Do NOT use background knowledge, commonsense, or speculate.
• Do NOT include any explanations or commentary.
• Output must be in valid JSON, under the top-level key “required attributes”.
• Do not include trailing commas.

Return your result in this JSON format: {“question”: [What is the width of the
road right now?], “required subquestions”: [{“type”: <|type|>, “description”:
<|Required Subquestion description|>]}
<CONSTRAINTS>

<TASK DEFINITION>

▶ Output:

{
"required_subquestions": [
{ "type": "object", "question": "Is there a road
visible in the video?" },
{ "type": "temporal_change", "question": "Is the road width
consistent throughout the video, or does it change over time?"
},
{ "type": "spatial_relation", "question": "Is the road width
measured from edge to edge, or from center to center?" },
{ "type": "other", "question": "Is there any
measurement tool used to measure the road width?" }

]
}

In our sub-question decomposition prompt in Part-2, requirements such as “focus on a specific,
observable aspect of the video” and ”explicitly required or clearly implied by the question” are ex-
plicitly designed to avoid failure modes where the model generates freely diverging sub-questions
with only weak relevance to the main query. Instead of allowing free-form decomposition, ATDM
tightly controls both the generation and the use of sub-questions. The prompt guides the model to
propose only a small set (typically 3–5) of sub-questions that are directly derived from the main
question and cover it from complementary, semantically aligned perspectives. Beyond this con-
strained construction, ATDM incorporates two refinement mechanisms in Part 4 and Part 5: Part 4
continuously updates each sub-question’s answer as new clips arrive, while Part 5 explicitly corrects
them using cross-clip evidence. Together, these mechanisms ensure that both the generation and use
of sub-questions remain well controlled.
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▶ Part-3: The detailed prompt for Part-3 is shown as follows. To convey the overall message, we
present some content of clip captions before 0:07:46 here:

A bustling city street is captured during a rainy day. The road is wide, with multiple lanes
for traffic. Vehicles, including yellow taxis and various cars, navigate through the wet asphalt.
... A few pedestrians walk along the sidewalks, while vehicles move steadily despite the rain.
The scene transitions from a more open area to a busier intersection with more traffic and
pedestrians. The road remains consistently wide throughout, with clear lane markings and
traffic flow.

Part-3: Video Clip Captioning

▶ Input:

<TASK DEFINITION>
Watch the current video clip and generate a descriptive caption, you must focus your caption
on the following key observation points:
<|Caption Requirements List|>
<|Video|>

<INSTRUCTIONS>
1. Base your caption only on what is clearly visible. Limit to 500 words max.
2. Be specific and concrete: describe actions, hand use, counts, object states, etc.
3. Use short, factual sentences. No speculation, no vague summaries.
4. Precision first if required: "three apples" NOT "some fruits", "thrusting
downward at 45° angle" NOT "attacking", "2.3m left of tree" NOT
"near tree", etc.

<CONSTRAINTS>
Return the caption in valid JSON format:

{
"clip_timestamp": "{timestamp}",
"caption": "detailed caption that fulfills the requirements"

}

<CONSTRAINTS>

▶ Output:

{
"clip_timestamp": "0:07:46-0:08:50",
"caption": "A busy urban street scene during rainy weather. The
road is wet and reflective, with multiple lanes of traffic
moving in both directions. Skyscrapers line both sides of the
street, creating a dense cityscape. Pedestrians cross the street
at a crosswalk, some holding umbrellas. Vehicles, including

yellow taxis and various cars, navigate through the traffic. The
road surface shows signs of wear but remains functional. There

are no visible construction or obstacles affecting the road
width. The overall atmosphere reflects a bustling city
environment despite the rain."

}

▶ Part-4: The full prompt used in Part-4 is provided below. For brevity, we omit the complete
problem statement and the intermediate outputs referenced in earlier parts.
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Part-4: Sub-answer Extraction and Filling Information

▶ Input:

<TASK DEFINITION>
Your task is to:
1. Read the main user question and the list of required subquestions (from Part-1).
2. Read the caption of the current video clip.
3. For each subquestion, determine whether the caption provides enough information to
answer it:
- If yes: provide an appropriate answer (‘value’) and a confidence score between 0 and 1.
- If no or uncertain: set “value”: “?” and “confidence”: 0.0.

<INPUT>
Main Question:
<|Question|>
Required Subquestions (from Part-2 or latest output from Part-4):
<|Required Subquestions|>
Caption of the current clip:
<|Past caption|>

<OUTPUT FORMAT>
Return one top-level JSON object with the key “subquestion status”.
Each item must include:
- “type”: one of ["object", "attribute", "person", "action",
"scene", "event", "temporal change", "spatial relation",
"causal relation", "count", "other"]
- “question”: the original subquestion (from Part-1)
- “value”: the answer extracted from the caption (or “?” if not found)
- “confidence”: a float between 0 and 1

Also include an overall “estimated progress” field (e.g., percentage of subquestions
with confidence ≥ 0.85).

<OUTPUT TEMPLATE>

{
"subquestion_status": [
{
"type": "<attribute_type>",
"question": "<subquestion_text>",
"value": "<answer_or_?>",
"confidence": 0.xx

},
...

],
"estimated_progress": <int from 0 to 100>

}

<CONSTRAINTS>
- Only rely on what is explicitly visible or audible in the current caption.
- Do NOT use prior background knowledge or context.
- Do NOT speculate or fabricate.
- Ensure output is valid JSON (no trailing commas).
- If nothing is observed, return all values as “?” with “confidence”: 0.0.

▶ Output:
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Part-4: Sub-answer Extraction and Filling Information

(Here, we present only a single representative intermediate state.)

{
"subquestion_status": [
{
"type": "object",
"question": "Is there a road visible in the video?",
"value": "yes",
"confidence": 0.95

},
{
"type": "temporal_change",
"question": "Is the road width consistent throughout the

video, or does it change over time?",
"value": "consistent",
"confidence": 0.90

},
{
"type": "spatial_relation",
"question": "Is the road width measured from edge to edge, or

from center to center?",
"value": "?",
"confidence": 0.0

},
{
"type": "other",
"question": "Is there any measurement tool used to measure

the road width?",
"value": "no",
"confidence": 0.85

}
],
"estimated_progress": 75

}

Self-triggered reflection is a deterministic cross-clip reasoning step that revises answers, progress,
and confidence when confidence-based triggers indicate high uncertainty or significant semantic
shifts. In the prompt of Part-5, the “self-triggered reflection” stage is implemented as a cross-
clip reasoning pass built on the confidence signals c. Given the decomposed sub-questions, their
current answers, the corresponding (ρ, c) values, and the recent relative clip captions, reflection (i)
restructures these local pieces into a globally coherent reasoning chain across clips, and (ii) revises
sub-question answers and (ρ, c) whenever single-clip evidence is unreliable or mutually inconsistent.
This prevents the controller from being myopically tied to a single clip and yields a smoother, more
globally consistent reasoning trajectory.

Reflection is triggered purely by the quantitative signals, in particular by the confidence c ∈ [0, 1]
and its change |∆c| between adjacent clips. The threshold c ≈ 0.5 represents the boundary between
“clearly relevant” and “not clearly relevant” visual evidence for a sub-question. Large |∆c| indicates
a major semantic shift between clips, while persistently low c suggests that the required evidence
is distributed across multiple clips rather than concentrated in the current or some single one. In
both cases, we trigger reflection to explicitly re-examine and consolidate evidence across clips. For
decision commitment, ATDM uses a higher threshold c > 0.85: this encodes that the model believes
the currently accumulated evidence is both relevant and sufficient, while still leaving room for skep-
ticism so that hypotheses formed from a single-clip perspective are not over-committed. Together
with the progress signal ρ, these thresholds define a normalized [0, 1] semantics for “relevance” and
“sufficiency”, and they directly govern when ATDM keeps waiting, when it invokes reflection, and
when it finally decides that the visual evidence is first sufficient.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

▶ Part-5: The detailed prompt for Part-5 is shown as follows. Then, we provide two specific
examples of the output.

Part-5: Active Thinking for Refining the Reasoning across Clips

▶ Input:

<TASK DEFINITION>
1. Cross-clip causal reasoning
- Analyze each new clip caption for direct evidence related to each attribute.
- Build an explicit, ordered chain only for attributes with relevant evidence. Use arrow
notation: “Clip X→ [supports/contradicts/provides evidence for] [attribute] because [exact
caption text]”. If a clip provides no relevant evidence for any attribute, state: “Clip X→ No
relevant evidence for current attributes”.
2. Evidence relevance check
- For each attribute, explicitly check whether the captions contain relevant information.
Mark attributes as “relevant evidence found” or “no relevant evidence”.
3. Update the attribute list
- Preserve original values and confidences for attributes without relevant evidence. Modify
attributes only where direct, explicit evidence is found; quote the exact caption text that
supports the change.

<INPUT>
Question:
<|Question|>
Latest reasoning state (attribute list + confidences):
<|Past CoT State|>
Past clip captions when confidence changes (chronological order):
<|Clip Captions|>

<OUTPUT FORMAT>
Return exactly one JSON object (no extra prose).

{
"causal_chain": [
"Clip X -> [reasoning or 'No relevant evidence']"

],
"attribute_status": {
"<Attribute-Type>": {
"value": "<value>",
"confidence": 0.xx,
"status": "upgraded | downgraded | unchanged | newly_added",
"note": "old 0.yy -> new 0.xx, [exact caption evidence] |

unchanged - no evidence"
}

},
"estimated_progress": "<percentage with confidence > 0.5>"

}

<CONSTRAINTS>
Remember: NO EVIDENCE = NO CHANGE.
- No evidence⇒ status “unchanged”, original confidence preserved.
- Quote the exact caption text in notes when updating.

▶ Output:
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{
"causal_chain": [
"Clip 3 -> [provides evidence for] [Is there a black SUV directly
in front of the camera right now? because A vehicle directly

ahead is visible, appearing to be a dark-colored car.]"
],
"attribute_status": {
"Is there a black SUV directly in front of the camera right now
?": {

"value": "A vehicle directly ahead is visible, appearing to be
a dark-colored car.",

"confidence": 0.75,
"status": "upgraded",
"note": "old 0.6 -> new 0.75, [A vehicle directly ahead is

visible, appearing to be a dark-colored car.]"
}

},
...,
"estimated_progress": 50

}

{
"causal_chain": [
"Clip 4 -> [provides evidence for] [is there a painting visible
on the wall? because] 'A close-up view of an artist's hand
meticulously painting details on a canvas.'",
"Clip 4 -> [provides evidence for] [is text readable on the
painting? because] 'Text 'IT'S IN THE DETAILS' appears
prominently over the artwork.'",
"Clip 4 -> [provides evidence for] [is the camera focused on the
lower left corner of the wall while showing the painting? because
] 'Text 'IT'S IN THE DETAILS' appears prominently over the
artwork.'"

],
"attribute_status": {
"is there a painting visible on the wall?": {
"value": "yes",
"confidence": 0.95,
"status": "upgraded",
"note": "old 0.00 -> new 0.95, 'A close-up view of an artist's

hand meticulously painting details on a canvas.'"
},
"is text readable on the painting?": {
"value": "yes",
"confidence": 0.95,
"status": "upgraded",
"note": "old 0.00 -> new 0.95, 'Text 'IT'S IN THE DETAILS'

appears prominently over the artwork.'"
},
"is the camera focused on the lower left corner of the wall while
showing the painting?": {
"value": "yes",
"confidence": 0.95,
"status": "upgraded",
"note": "old 0.00 -> new 0.95, 'Text 'IT'S IN THE DETAILS'

appears prominently over the artwork.'"
},

},
"estimated_progress": 95

}
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