

000 001 002 003 004 005 006 PROGRESSIVE ONLINE VIDEO UNDERSTANDING WITH 007 EVIDENCE-ALIGNED TIMING AND TRANSPARENT DE- 008 CISIONS 009 010 011 012

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Visual agents operating in the wild must respond to queries precisely when suf-
014 ficient evidence first appears in a video stream, a critical capability that is over-
015 looked by conventional video LLMs evaluated in offline settings. The shift to an
016 online, streaming paradigm introduces significant challenges: a lack of decision
017 transparency, the difficulty of aligning response timing with visual evidence, and
018 the need to maintain a global, causally consistent understanding under tight com-
019 putational budgets. To address these issues, we propose a novel framework that
020 decouples reasoning control from memory integration. We introduce **Thinking-**
021 **QwenVL**, an instantiation of this framework with two core components. First,
022 the *Active Thinking Decision Maker (ATDM)* is a transparent reasoning controller
023 that externalizes its decision process using observable progress (ρ) and confidence
024 (c) metrics. This allows it to precisely time its response t_r to match the first-
025 sufficient-evidence timestamp t^* while streaming its reasoning to the user. Sec-
026 ond, the *Hierarchical Progressive Semantic Integration (HPSI)* module acts as an
027 efficient memory system. It employs a set of learnable, multi-level aggregation to-
028 kens that are propagated across clips to build a rich, global cognitive state without
029 exceeding token budgets. Extensive experiments demonstrate the effectiveness of
030 ATDM and HPSI, e.g., Thinking-QwenVL improves the accuracy of the previous
031 state-of-the-art from 67.63% to 71.60% on the StreamingBench benchmark.
032
033

1 INTRODUCTION

034 Visual evidence-aligned response timing is central to visual agents operating in the wild: an assistant
035 should answer only once the video first contains sufficient evidence, and it should show *when* and
036 *why* (Cai et al., 2025; Subramanian et al., 2024). Consider a domestic robot asked, “is the kettle
037 boiling?” It should *wait for* visible steam or a rolling boil and report immediately *at the first frame*
038 *these signals appear* to avoid danger (Li et al., 2019). A driver-assistance agent queried, “is it safe
039 to turn right?” must defer until the crosswalk and signal are jointly favorable.
040

041 Despite rapid progress, representative video-understanding LLMs such as VideoLLaMA3 (Zhang
042 et al., 2025), InternVL3 (Zhu et al., 2025), and Qwen2-VL (Wang et al., 2024a) are commonly
043 evaluated in idealized *offline* regimes. The entire video is preloaded; frames or clips may be retrieved
044 and re-encoded multiple times; and global reasoning precedes response generation. This practice
045 diverges from interactive, real-world operation in which users ask at time t_q , but the earliest sufficient
046 evidence may not appear until t^* . A system should respond at t_r only when $t_r \approx t^*$; otherwise,
047 avoidable compute and queuing delays degrade responsiveness and user experience. These issues
048 motivate the *online video understanding* setting, which constrains the model to act only on currently
049 accessible visual evidence while enabling perceivable and controllable interaction.
050

051 In online use, three aspects become decisive. *First, decision transparency and real-time feedback.*
052 Collapsing timing into a black-box gate (“answer” vs. “defer”) leaves no visibility into timestamps,
053 intermediate conclusions, or progress, undermining controllability and trust during streaming inter-
action. *Second, evidence-aligned response timing.* With t_q , t_r , and t^* as defined above, the goal is
054 to minimize $\delta = |t_r - t^*|$ under streaming uncertainty and latency constraints without sacrificing
055 correctness; recent benchmarks (e.g., OVOBench (Niu et al., 2025), RTVBench (Xun et al., 2025))

stratify tasks by the relation between t_q and t^* , yet many systems fix $t_r = t_q$ or use centered windows. *Third, global, causal updates under tight budgets.* Let $\mathbb{V}_t = \{v_1, \dots, v_t\}$ denote the observed stream and h_t a compact cognition state summarizing entities, events, and relations supported by \mathbb{V}_t . As new clips arrive, the model should revise hypotheses and propagate temporal/spatial constraints *globally*—not merely apply myopic, clip-local updates that break the storyline or causal consistency.

We address these needs with two complementary ideas that separate *reasoning control* from *memory/integration*. **i) Evidence-aligned, transparent timing (reasoning controller).** We replace a single opaque gate with a multi-stage, observable decision process that surfaces evidence-aligned timestamps, stage-wise progress ρ , concise rationales, and an estimated response time t_r ; the controller self-triggers cross-clip reflection when confidence c is low, so users can see *why now* or *why wait*. **ii) Progressive and global causal state (memory & integration)** with evolving visual evidence. We maintain and refine a compact, relation-aware h_t under token/latency budgets so that cross-clip evidence updates the *global* understanding as the stream unfolds. The online framework proceeds stepwise: ingest the next clip and update h_{t+1} ; the controller consults (h_{t+1}, q) , advances ρ and c , and decides to answer (emitting t_r) or to wait/reflect; timestamps and interim conclusions are streamed to users for auditable, real-time interaction.

Building on these ideas, we present **Thinking-QwenVL**, which instantiates the framework with two modules. *Active Thinking Decision Maker* (ATDM) implements the controller: it factorizes timing into sub-goals with observable progress ρ and confidence c , predicts an evidence-aligned t_r via the quantitative indicators (ρ, c) , and self-triggers cross-clip reflection when needed. In doing so, it streams timestamps, interim conclusions, and rationale snippets to the user in real time, decision-making becoming *transparent, observable, and quantifiable*—with real-time progress and response feedback. *Hierarchical Progressive Semantic Integration* (HPSI) implements memory and integration inside the vision–language decoder: at multiple decoder depths (e.g., lower/middle/upper thirds), it inserts a small set of learnable multi-level aggregation tokens p that attend to frame/clip tokens via structured sparse attention. The p tokens are *carried forward* across clips as part of h_t that is refined as new clips arrive, enabling causal, relation-preserving updates to the global visual view without inflating the token budget.

We evaluate on benchmarks designed for online video understanding, including Streaming-Bench (Lin et al., 2024), OVOBench (Niu et al., 2025), OV Bench (Huang et al., 2024), and RTVBench (Xun et al., 2025), where Thinking-QwenVL attains strong results due to HPSI and ATDM of **71.6%, 46.9%, 35.6%, and 35.9%**, respectively. Thinking-QwenVL also maintains competitive long-video performance—up to **67.7%** on VideoMME (Fu et al., 2024) and **68.3%** on MLVU (Zhou et al., 2024)—primarily due to HPSI that enables segment-wise attention perception and cross-clip causal relations preservation. In summary, our contributions are:

- We formalize evidence-aligned timing in the online regime via (t_q, t_r, t^*) and deviation δ , elevate *decision transparency* to a first-class objective for streaming interaction, and propose a two-part framework Thinking-QwenVL for online video understanding.
- Combining ATDM and HPSI, we instantiate the framework with a controller that exposes ρ and c and aligns t_r to first-sufficient evidence t^* with *self-triggered* reflection, and a hierarchical integration module with learnable multi-depth, multi-level aggregation tokens p that guides segment-wise attention enhancement and preserves cross-clip relations, enabling globally consistent updates of h_t under tight budgets.

2 RELATED WORK

Offline Long Video Understanding. Research on long-form video understanding investigates how to process vast numbers of visual tokens within limited context windows and constrained compute. Recent efforts have extended capability from short clips to videos exceeding ten minutes (Shen et al., 2024; Xue et al., 2024; Wang et al., 2024c; Zohar et al., 2024). Representative lines include adapting image-centric LMMs to long videos (e.g., LongVA building on LLaVA (Zhang et al., 2024b; Liu et al., 2023)), retrieval over graph/tree indices to shorten effective context (VideoRAG (Luo et al., 2024), Omni-AdaVideoRAG (Xue et al., 2025)), and improved temporal selection and training curricula (VideoLLaMA3 with differential frame pruning and vision-centric multi-stage training (Zhang et al., 2025)). InternVL3 (Zhu et al., 2025) further explores *variable visual position encoding* and *text-time scaling* to better align temporal and textual streams. While recent advances improve offline reasoning over long videos, most methods assume full-video access and prioritize token reduction. So, offline pipelines sidestep interaction-critical needs: *evidence-aligned response*

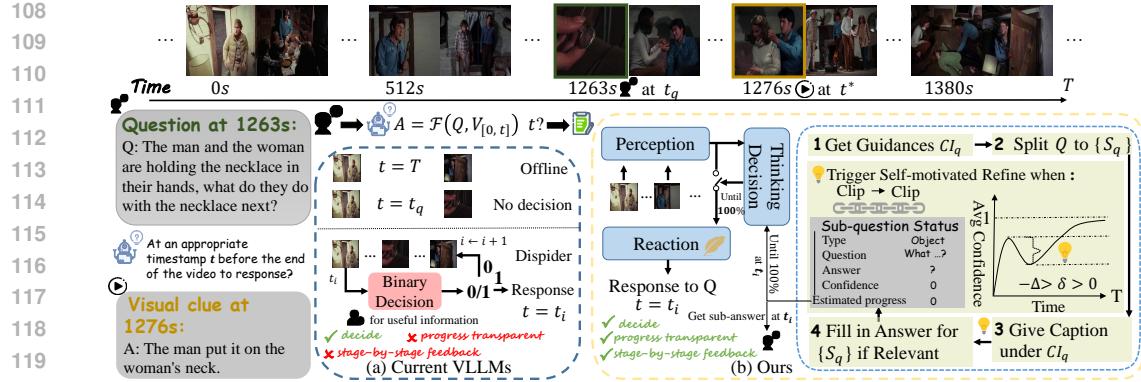


Figure 1: **Comparing paradigms vs. Ours.** Given a query Q , offline VLLMs answer only after the full video is available ($t = T$), while streaming models answer at the query moment ($t = t_q$); neither ensures *evidence-aligned* timing with the earliest evidence time t^* . Our method decomposes Q into sub-goals and maintains a progress estimate ρ , emitting real-time, stage-wise feedback at every step and selecting a response time $t_r \approx t^*$, thereby reducing latency without sacrificing correctness and avoiding information-vacuum waiting.

These gaps motivate our online formulation, which preserves progressive understanding and couples inference with timely feedback.

Online Video Understanding. To better define and evaluate online video understanding, recent benchmarks such as OVOBench, StreamingBench, and RTVBench (Niu et al., 2025; Lin et al., 2024; Xun et al., 2025) have initiated systematic investigations in open-source settings. Existing methods largely split into two families. In fixed-response streaming (simply $t_r = t_q$), StreamBridge (Wang et al., 2025), StreamChat (Xiong et al., 2025), VideoStreaming (Qian et al., 2024), Flash-VStream (Zhang et al., 2024a), and VideoLLM-Online (Chen et al., 2024a) mainly optimize streaming readout, alignment, and memory, but do not make decision or align t_r to t^* . In timestamp-deciding methods, Dispider (Qian et al., 2025) compresses incoming clips and applies a binary head for answerability, yet the decision is opaque, repeatedly invoked without a principled stopping rule, and prone to prolonged non-answerable states that appear stalled to users; Timechat-Online (Yao et al., 2025) ties answerability to scene transitions, but scene change does not guarantee sufficient evidence, rendering it brittle and threshold-sensitive. By contrast, our formulation provides evidence-aligned timing and transparent decision progress, directly addressing these limitations. We employ the same single-pass, single-turn streaming regime rather than the multi-round video processing described in StreamBridge (Wang et al., 2025) to align with traditional streaming methods.

3 THINKING-QWENVL

Overview. We pursue *visual evidence-aligned, progressive, causal* understanding of a video stream. Let $\mathbb{V}_t = \{v_1, \dots, v_t\}$ be the visible clips and h_t a compact cognition state. With each new clip v_{t+1} , **HPSI** updates the state via $h_{t+1} = \mathcal{U}(h_t, v_{t+1})$, using a small set of multi-depth aggregation tokens with structured sparse attention to aggregate locally, integrate hierarchically, and propagate causally. On top of h_t , **ATDM** decomposes the evidence-aligned response-timing decision ($t_r = \min\{t | \mathcal{F}(h_t, Q) = A\}$) into a sequence of sub-goals \mathcal{S} and maintains time-indexed tuples $(a_s(t), c_s(t), \rho_s(t))$ —sub-answer a , confidence c , and progress ρ —to quantify reasoning and expose rationales. \mathcal{F} denotes decision function, A denotes answer for user question Q . ATDM returns the final response time t_r when each sub-goal $s \in \mathcal{S}$ is solved.

3.1 HIERARCHICAL PROGRESSIVE SEMANTIC INTEGRATION (HPSI)

To address the goal—*progressive, causal understanding* of the ever-expanding visible set \mathbb{V}_t —we introduce **Hierarchical Progressive Semantic Integration** (HPSI). HPSI equips the model with a compact, relation-preserving *cognition state* that is *advanced* as new clips arrive. Concretely, we insert a small number of learnable *aggregation tokens* p at multiple depths and enforce structured sparsity so that evidence is aggregated locally, integrated hierarchically, and propagated causally.

Dynamic-Resolution Progressive Integration Overview. We segment the video into n clips and, for each clip i , append a dynamic number of aggregation tokens after its visual tokens. These tokens summarize the semantic content of each clip while leveraging the causal reasoning capabilities of

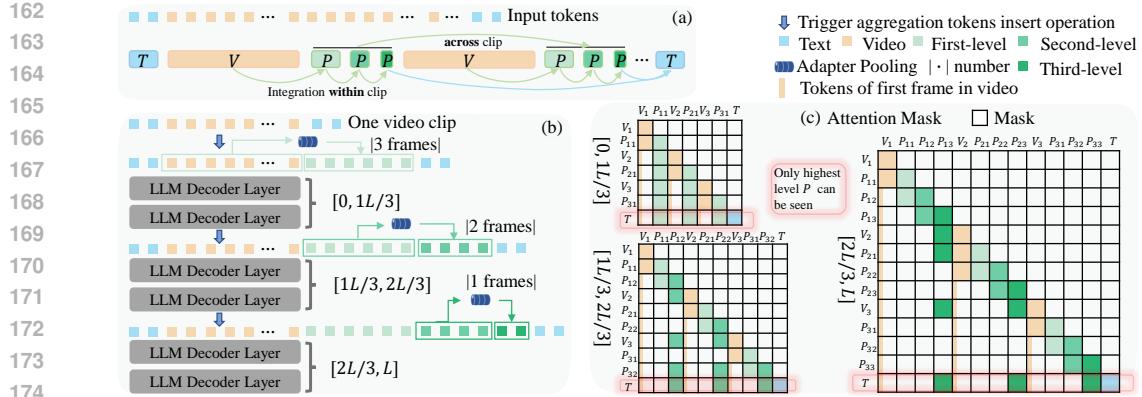


Figure 2: (a) **Visual information aggregation flow diagram.** (b) **The dynamic integration operation in LLM with a single clip as an example.** The aggregation tokens are initialized in layer 1, layer $1L/3$ and layer $2L/3$ according to the aggregation tokens of the previous level that can support dynamic resolution style, and these tokens are passed forward layer by layer within the LLM to aggregate the visual information of the clip by the causal ability of the LLM and the coefficient attention mask constructed in (c). (c) **Attention mask and its changes.**

LLMs. Let the original input be $\mathcal{I} = \text{concat}(\mathbf{w}, \mathbf{v}, \mathbf{w})$, with text tokens \mathbf{w} and visual tokens $\mathbf{v} = (\mathbf{v}_{\text{clip}_1}, \dots, \mathbf{v}_{\text{clip}_n})$. We introduce three aggregation levels $j \in \{1, 2, 3\}$, progressively inserted at transformer depths $\ell_j \in \{0, L/3, 2L/3\}$ with target token ratios $r_j \in \{3\times, 2\times, 1\times\}$. For clip $_i$, level- j produces $n_j(i)$ tokens $\mathbf{p}_{\text{clip}_i}^{(j)}$. After inserting the last (level-3) aggregation tokens, the input sequence becomes

$$\tilde{\mathcal{I}} = \text{concat}(\mathbf{w}, \mathbf{v}_{\text{clip}_1}, \mathbf{p}_{\text{clip}_1}^{(1)}, \mathbf{p}_{\text{clip}_1}^{(2)}, \mathbf{p}_{\text{clip}_1}^{(3)}, \dots, \mathbf{v}_{\text{clip}_n}, \mathbf{p}_{\text{clip}_n}^{(1)}, \mathbf{p}_{\text{clip}_n}^{(2)}, \mathbf{p}_{\text{clip}_n}^{(3)}, \mathbf{w}). \quad (1)$$

Aggregation Tokens Initialization. Each aggregation token is initialized via adaptive average pooling over its clip’s visual tokens; let $j = 1, 2, 3$ denote the aggregation level, $\mathbf{p}_{\text{clip}_i}^{(0)} = \mathbf{v}_{\text{clip}_i}$, and N_{vc} denote the final level’s token count (adjustable to match different video resolutions):

$$\mathbf{p}_{\text{clip}_i}^{(j)} = \text{AdapterPool}\left(\mathbf{p}_{\text{clip}_i}^{(j-1)}, (4-j)N_{vc}\right), \quad (2)$$

where $\mathbf{v}_{\text{clip}_i} \in \mathbb{R}^{n_v \times d}$ represents the n_v visual tokens of the i -th clip, and $\text{AdapterPool} : \mathbb{R}^{n_v \times d} \rightarrow \mathbb{R}^{n_c \times d}$ outputs $n_c = (4-j)N_{vc}$ tokens of dimension d .

To guide the model to integrate visual information into these tokens, we construct sparse, structured attention masks (see Fig. 2) that enforce hierarchical visibility: each level- j aggregation token attends only to the preceding level’s tokens, ensuring directional semantic consolidation. Text tokens attend causally only to the *last-level aggregation tokens* at each layer. Additionally, we retain visibility for the first-frame tokens of each clip to preserve crucial anchor cues.

Progressive Integration. Unlike single-layer average pooling (e.g., LongVA (Zhang et al., 2024b)), HPSI exploits decoder *depth L* by assigning different aggregation strengths across three layer groups: 1) layers $[0, 1L/3]$ integrate raw visual tokens; 2) layers $[1L/3, 2L/3]$ integrate the previous level’s tokens; and 3) layers $[2L/3, L]$ refine high-level semantics. With token ratios $3:2:1$, information is gradually condensed into fewer, more meaningful tokens. Let $\mathcal{L}_j = \{0, L/3, 2L/3\}$,

$$\tilde{\mathcal{I}}^{(\ell)} = \text{concat}\left(\mathbf{w}, (\mathbf{v}_{\text{clip}_i}, (\mathbf{p}_{\text{clip}_i}^{(k)})_{k=1}^{m(\ell)})_{i=1}^n, \mathbf{w}\right), \quad m(\ell) = 1 + \left\lfloor \frac{3\ell}{L} \right\rfloor, \ell \in \mathcal{L}_j, \quad (3)$$

where n , ℓ , and $m(\ell)$ denote the number of clips, the layer index that triggers insertion, and the highest visible aggregation level per clip at layer ℓ . The output \mathbf{h}_l at layer $l \in \{1, \dots, L\}$ is

$$\mathbf{h}_l = \text{TransformerBlock}(\tilde{\mathcal{I}}^{(\ell)} \odot \mathbb{I}_{l \in \mathcal{L}_j} + \mathbf{h}_{l-1} \odot (1 - \mathbb{I}_{l \in \mathcal{L}_j})), \quad (4)$$

where $\mathbb{I}_{l \in \mathcal{L}_j}$ is 1 when $l \in \mathcal{L}_j$ and 0 otherwise.

Finally, the progressive integration objective in the semantic space of LLM can be defined as:

$$\min \mathcal{T}_{\text{integration}} = \sum_{l=0}^{L-1} \sum_{j=1}^3 \left(\left\| \mathbf{p}_{\text{clip}_i}^{(j)(l)} - \text{Poo1}(\mathbf{v}_{\text{clip}_i}) \right\|_2 + \left\| \mathbf{p}_{\text{clip}_i}^{(j)(l)} - \mathbf{p}_{\text{clip}_i}^{(j-1)(l)} \right\|_2 \right), \quad (5)$$

which encourages faithful integration toward clip evidence and smooth refinement across levels.

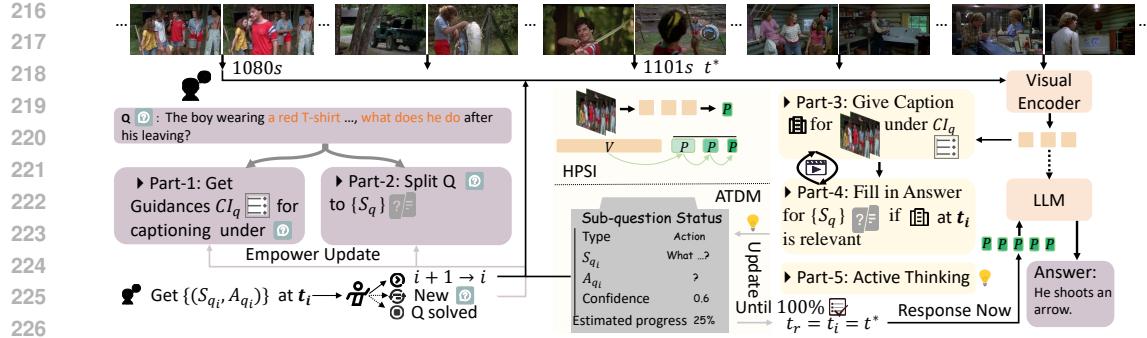


Figure 3: **Pipeline of Thinking-QwenVL.** Given streamed clips and a query Q , ATDM generates question-guided caption instructions, decomposes Q into sub-questions, and iteratively extracts evidence from each clip (with progressive visual integration using HPSI), updating sub-answers with progress $\rho \in [0, 1]$ and confidence $c \in [0, 1]$. This process runs in parallel across clips and permits to trigger active reflection according to c . The model emits an answer at $t_r = t_i$ once $\rho(t_i) = 1$.

Layer-wise Task Decomposition for Hierarchical Aggregation. Conceptually, HPSI treats the depth of a transformer as a *division of labor* for aggregation, rather than a single pooling step. We explicitly assign different aggregation roles to different layer segments: shallow layers focus on preserving fine-grained local evidence, middle layers consolidate mid-range temporal and structural patterns, and deep layers perform strong semantic condensation into a compact set of high-level summary tokens. In this view, the three levels are not ad-hoc tricks but a progressive aggregation pipeline that incrementally transforms dense visual streams into a small, semantically rich state while preserving long-range information flow.

3.2 ACTIVE THINKING DECISION MAKER (ATDM)

Overview. ATDM converts online answering into a compact, observable chain-of-thought that carries explicit telemetry. Given a streamed video (segmented into clips) and query q , ATDM (i) derives question-guided caption requirements and produces a per-clip summary, (ii) decomposes q into K concrete sub-questions, (iii) extracts and updates sub-answers with per-step progress $\rho \in [0, 1]$ and confidence $c \in [0, 1]^K$, and (iv) declares readiness and answers when all required sub-answers are *confidently* resolved—thereby aligning t_r with the first-sufficient evidence t^* . A modular wrapper schedules the per-clip evidence extraction and sub-answer updates in parallel across consecutive clips (e.g., $clip_i, clip_{i+1}, clip_{i+2}$), reducing idle time and preserving responsiveness.

Active, Self-triggered Thinking. Beyond the fixed CoT flow, ATDM monitors ρ and c over time; when confidence remains low or the stream exhibits major semantic shifts, it *self-triggers* reflection that revisits prior summaries, constructs cross-clip causal links, and revises hypotheses and metrics (ρ, c) . This mechanism prevents myopic updates, improves evidence alignment, and yields more accurate, timely responses under evolving visual evidence.

Combining the above ideas, the **Five-Part Chain-of-Thought Active Thinking Decision Maker Process (ATDM)** is as follows. **Only** Parts 3 and 4 require reasoning to be processed iteratively across video clips *rather than forcing all five parts to be executed sequentially for each clip*.

► **Part-1: Question-Guided Captioning instructions.** Unlike general video captioning models that produce either overly generic descriptions (e.g., “*a person is cooking in a cluttered kitchen*”) or irrelevant ones due to unaligned attention, we first ask the model to analyze the question and generate its own captioning guidelines, termed *caption instructions* CI_q . These instructions focus the captioning process on questioning-relevant elements.

Task: Analyze the user’s question and define exact observation requirements for video captioning to help answer it. Output: `<|Caption Requirements List|>`

► **Part-2: Question Decomposition.** Inspired by the progression of human-like reasoning, where answering complex questions involves progressively addressing multiple semantic dimensions, we decompose the original question into a set of sub-questions $\{S_q\}$. These sub-questions structure the reasoning process and allow us to quantify decision progress.

Task: Break the user’s question down into a set of precise, concrete sub-questions. Each sub-question can focus on an observable aspect of the video (e.g., object, person, action, spatial

286 Figure 4: Visualization of qualitative example showcasing how our ATDM framework achieves
 287 successful decision and video reasoning.

288 relation, etc.). These sub-questions represent the key things that must be visually or aurally verified
 289 in the video to answer the main question. Output: <| Required Subquestions |>
 290 ► **Part-3: Video Clip Captioning.** Based on the *caption instructions* CI_q from part-1, the model
 291 generates a summary $\{C_q\}$ of the clip content. This streaming captioning continues until the model
 292 determines that sufficient information is available to answer the question.

293 **Task:** Watch the current video clip and generate a descriptive caption, you must focus your
 294 caption on the following key observation points: <| Caption Requirements List |>
 295 Output: <| detailed caption that fulfills the requirements |>

296 ► **Part-4: Sub-answer Extraction and Filling.** Using $\{S_q\}$ and the current clip caption $\{C_q\}$, the
 297 model attempts to answer each sub-question, forming a set of partial answers $\{SA_q\}$. At each time
 298 step, the most recent $\{SA_q\}$ is fed back into the model, enabling it to track historical answer states
 299 across frames. **This is crucial for effective task decomposition**, as corroborated in (Jang et al., 2025).

300 **Task:** Read [Question], [<| Required Subquestions |>] and the caption of the current
 301 video clip [<| Caption |>]. For each subquestion, determine whether the caption pro-
 302 vides enough information to answer it: - If yes: provide an appropriate answer and a confidence
 303 score $c \in [0, 1]$. - If no or uncertain: set value is '?' and $c = 0.0$.
 304 Output: <| Updated subquestion state (value, c) and progress ρ |>

305 ► **Part-5: Active Thinking Trigger: Low Confidence or Major Shifts.** Rigid step-by-step rea-
 306 soning can lead to tunnel vision, causing the model to miss globally coherent information and the
 307 relationships between continuously changing information. To mitigate this, we monitor confidence
 308 scores for each $\{SA_q\}$. When scores exhibit sharp drops or remain low across time, the model trig-
 309 gers active thinking: it reviews prior $\{C_q\}$, detects temporal shifts, constructs causal chains across
 310 clips, and re-evaluates sub-answers accordingly.

311 **Task:** Given [question] Past reasoning state: [past cot state] and the [new clip
 312 caption], 1) Cross-clip causal reasoning. Build an explicit, ordered chain that shows how
 313 evidence from each new clip supports, contradicts, or refines the current hypothesis. 2) Consis-
 314 tency check. Detect attributes that are contradicted, supported with higher certainty, still low-
 315 confidence (≤ 0.50), or missing. 3) Update the attribute list and return. Output: <| Updated
 316 subquestion state and progress |>

317 **History-aware Decision Process.** The explicit progress and confidence signals (ρ, c) transform
 318 ATDM from a sequence of memoryless binary decisions into a genuinely history-aware control pro-
 319 cess. Each judgment about whether the current visual evidence is "sufficient" is not an isolated
 320 yes/no query. Treating it as a mere collection of independent binary decisions breaks the infor-
 321 mation chain. In contrast, ATDM does not repeatedly decide "answer or wait" based only on the current
 322 visual chunk; it *observes* its own past decisions and scores and can refine or revise them as addi-
 323 tional evidence arrives. The continuous pair (ρ, c) therefore carries substantially higher information
 324 content in context than a single 0/1 gate, as it not only encodes a bare "stop/continue" signal but
 325 also compresses the entire history of intermediate judgments into a compact quantitative state.

324 Table 1: Accuracy (100%) comparison on StreamingBench focusing on Real-Time Visual Under-
 325 standing tasks. \dagger indicates the reproduced results. The meaning of each subtask is in Appendix A.5.
 326

Model	Size	Frames	Pub	Subtasks									
				OP	CR	CS	ATP	EU	TR	PR	SU	ACP	CT
Proprietary MLLMs													
Gemini 1.5 pro	–	1 fps	–	79.02	80.47	83.54	79.67	80.00	84.74	77.78	64.23	71.95	48.70
GPT-4o	–	64	–	77.11	80.47	83.91	76.47	70.19	83.80	66.67	62.19	69.12	49.22
Claude 3.5 Sonnet	–	20	–	73.33	80.47	84.09	82.02	75.39	79.53	61.11	61.79	69.32	43.09
Open-source Offline Long Video LLMs													
Video-LLaMA2	7B	32	ARXIV24	55.86	55.47	57.41	58.17	52.80	43.61	39.81	42.68	45.61	35.23
VILA-1.5	8B	14	ARXIV25	53.68	49.22	70.98	56.86	53.42	53.89	54.63	48.78	50.14	17.62
Video-CCAM	14B	96	ARXIV24	56.40	57.81	65.30	62.75	64.60	51.40	42.59	47.97	49.58	31.61
LongVA	7B	128	ARXIV24	70.03	63.28	61.20	70.92	62.73	59.50	61.11	53.66	54.67	34.72
InternVL-V2	8B	16	ARXIV24	68.12	60.94	69.40	77.12	67.70	62.93	59.26	53.25	54.96	56.48
Kangaroo	7B	64	ARXIV24	71.12	84.38	70.66	73.20	67.08	61.68	56.48	55.69	62.04	38.86
LLaVA-NeXT-Video	32B	64	BLOG24	78.20	70.31	73.82	76.80	63.35	69.78	57.41	56.10	64.31	38.86
MiniCPM-V-2.6	8B	32	ARXIV25	71.93	71.09	77.92	75.82	64.60	65.73	70.37	56.10	62.32	53.37
LLaVA-OneVision	7B	32	CVPR23	80.38	74.22	76.03	80.72	72.67	71.65	67.59	65.45	65.72	45.08
Qwen2.5-VL	7B	1fps	ARXIV24	78.32	80.47	78.86	80.45	76.73	78.50	79.63	63.41	66.19	53.19
Offline-Long VLLMs Avg	–	–	–	62.78	62.75	65.18	65.17	60.73	59.52	54.31	51.36	53.28	41.52
Open-source Online Video LLMs													
Flash-VStream	7B	–	ICCV25	25.89	43.57	24.91	23.87	27.33	13.08	18.52	25.20	23.87	48.70
VideoLLM-online	8B	2fps	CVPR24	39.07	40.06	34.49	31.05	45.96	32.40	31.48	34.16	42.49	27.89
Dispider	7B	1fps	CVPR25	74.92	75.53	74.10	73.08	74.44	59.92	76.14	62.91	62.16	45.80
Thinking-QwenVL (Ours)	7B	1fps	–	70.27	66.67	80.00	77.97	79.31	68.66	78.26	68.18	72.31	52.38
Flash-VStream \dagger	7B	1fps	ICCV25	24.52	21.53	21.45	19.00	26.42	26.56	22.22	22.36	21.45	24.35
Flash-VStream +ATDM	7B	1fps	ICCV25	28.53	27.34	24.68	26.45	31.01	27.00	25.00	24.90	27.64	26.60
Open-source Online Video-LLMs													
Flash-VStream-7B	–	32.1	29.7	29.9	25.4	44.2	33.2	–	–	–	–	–	–
VideoLLM-online-8B	–	23.9	45.5	20.8	17.7	–	–	–	–	–	–	–	–
Dispider-7B	–	49.5	61.4	54.5	36.1	34.7	41.8	–	–	–	–	–	–
Ours ($\downarrow 93.75\%$)	–	54.9	67.5	55.8	47.4	28.6	46.9	–	–	–	–	–	–
TimeChat-Online-7B (100%)	–	46.8	69.3	61.9	41.7	36.7	46.7	–	–	–	–	–	–
Ours (100%)	–	57.2	75.0	64.7	44.3	37.6	52.5	–	–	–	–	–	–

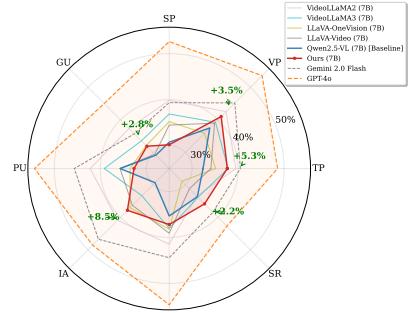
355 Table 2: Accuracy on **OVOBench**. Real.: Real-Time Vi-
 356 sual Perception, Back.: Backward Tracing, Forw.: For-
 357 ward Active Responding. -: The specific requirements of
 358 Forw. task resulted in VideoLLM-online not being able to
 359 response in demanded format.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

364 **Training Details.** Our model is built upon the Qwen2.5-VL-7B architecture and all experiments
 365 are conducted using $4 \times$ A100-80G GPUs. The learning rate is set to 2×10^{-6} , and the model
 366 is configured with a maximum input resolution of 448×448 . More hyperparameter details can
 367 be found in Appendix A.3. In our setting, the number of clip frames is 32, the number of the
 368 three aggregation tokens is 3, 2, and 1 frames’s tokens of the videos. So, the number of the final
 369 aggregation tokens can be changed with the video resolution setting.

370 **Benchmarks.** Our evaluation spans complementary *online* and *offline long-video* QA suites that
 371 jointly stress real-time perception, temporal alignment, and long-horizon reasoning. **Streaming-**
 372 **Bench** (Lin et al., 2024) targets low-latency, timestamped queries under streaming constraints.
 373 **OVOBench** (Niu et al., 2025) enforces *answer-when-ready* timing—models defer responses until
 374 sufficient future evidence (real-time perception, forward tracking, active responding). **RTVBench**
 375 and **OVBench** (Xun et al., 2025; Huang et al., 2024) probe continuous perception and online spatio-
 376 temporal reasoning via multi-timestamp, hierarchical questions and Past/Current/Future anchoring.
 377 For offline long-form understanding, **VideoMME**, **MLVU**, **LongVideoBench**, and **LVBench** (Fu
 378 et al., 2024; Zhou et al., 2024; Wu et al., 2024; Wang et al., 2024b) cover short clips to hour-long



379 Figure 5: Accuracy improvements over
 380 our baseline model on sub-tasks of the
 381 **RTVBench** under the same experimen-
 382 tal conditions as the RTVBench paper.
 383 The overall accuracy of our model in-
 384 creased from 32.75% to 35.87%.

378 Table 3: **Accuracy on offline long-video benchmarks:** MLVU, LongVideoBench, VideoMME
 379 (w/o subtitles), and LVBench. Videos are divided into 16-frame clips in HPSI ($\downarrow 93.75\%$ signifies
 380 93.75% reduction in video frames) and up to 256 frames are sampled per video. “100%” for
 381 TimeChat-Online (based on Qwen2.5-VL) denotes no dropping-only model parameters; we repro-
 382 duce this setting in the last row. “100%”(ours) indicates no insertion—only attention redistribu-
 383

Model	Frames	MLVU	LongVideoBench	VideoMME		LVBench
				Overall	Long	
Video Length	-	3~120 min	8 sec~60 min	1~60 min	30~60 min	30~120 min
Open-source Offline Video LLMs						
LLaMA-VID-7B	[ECCV24]	1fps	33.2	-	-	23.9
MovieChat-7B	[CVPR24]	2048	25.8	-	38.2	33.4
LLaVA-NeXT-Video-7B	[BLOG24]	32	-	43.5	46.6	-
VideoChat2-7B	[CVPR24]	16	47.9	39.3	39.5	33.2
LongVA-7B	[ARXIV24]	128	56.3	-	52.6	46.2
Kangaroo-7B	[ARXIV24]	64	61.0	54.2	56.0	46.6
Video-XL-7B	[CVPR25]	128	64.9	-	55.5	49.2
Qwen2.5-VL-7B	[ARXIV25]	1fps	66.9	61.5	63.2	50.4
VISTA-7B	[CVPR25]	-	62.1	53.1	55.5	49.2
Open-source Online Video LLMs						
Dispider-7B	[CVPR25]	1fps	61.7	-	57.2	-
VideoChat-Online-8B	[CVPR25]	2fps	-	-	52.8	44.9
Thinking-QwenVL		1fps ($\downarrow 93.75\%$)	59.6	-	56.3	49.1
TimeChat-Online-7B	[ACM25]	1fps (100%)	62.6	55.4	62.4	48.4
Δ - Qwen2.5-VL		-	-4.5	-6.1	-0.8	-1.6
Thinking-QwenVL		1fps (100%)	68.3	62.0	67.7	56.4
Δ - Qwen2.5-VL		-	+1.4	+0.5	+4.5	+6.0
						+0.5

400 videos, emphasizing granular recall and cross-scale reasoning. We follow official scoring protocols
 401 (per-suite QA accuracy and aggregates); full task/metric definitions are in Appendix §A.5.

402 **Comparative Models.** **1) Proprietary Assistants.** For completeness, the strong closed-source
 403 models as upper-bound references are included: GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Team
 404 et al., 2023), and Claude 3.5 Sonnet (Anthropic, 2024). **2) Offline Long-Video MLLMs.** We com-
 405 pare to the SOTA long-context video understanding models: Video-LLaMA2 (Cheng et al., 2024),
 406 VideoChat2 (Li et al., 2024b), Video-CCAM (Fei et al., 2024), VILA-1.5 (Lin et al., 2023), LLaMA-
 407 VID (Li et al., 2025), LongVA (Zhang et al., 2024b), Kangaroo (Liu et al., 2024b), MiniCPM-V-
 408 2.6 (Yao et al., 2024) and Video-XL (Shu et al., 2024), along with commonly reported baselines (LLaVA-OneVision (Li et al., 2024a), LLaVA-NeXT-Video (Liu et al., 2024a), InternVL-V2 (Chen
 409 et al., 2024c), Qwen2.5-VL (Wang et al., 2024a)). **3) Online Video LLMs.** Online methods include
 410 VideoLLM-online (Chen et al., 2024a), Flash-VStream (Zhang et al., 2024a), Dispider (Qian et al.,
 411 2025), and TimeChat(-Online) (Ren et al., 2024).
 412

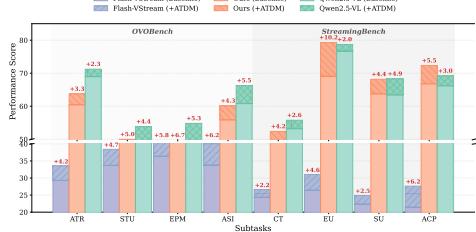
4.2 MAIN RESULTS

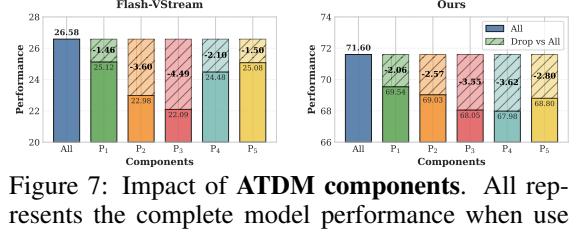
413 **StreamingBench.** In Table 1, we compare our model with recent state-of-the-art systems, including
 414 Dispider. Our model achieves an accuracy of **71.60%**, setting a new benchmark for this task. Com-
 415 pared to previous **online** and **streaming** models, we have improved the state-of-the-art performance
 416 by **3.97%** **on the online task**, increasing the accuracy from Dispider’s **67.63%** to our **71.60%**. Fur-
 417 thermore, we also evaluated the effectiveness of our ATDM approach on models without decision-
 418 making capabilities, such as Flash-VStream and Qwen2.5-VL. The results indicate that, in the case
 419 of Flash-VStream, the model’s accuracy increased from **22.53%** to **26.58%**, representing an im-
 420 provement of **4.01%**. This demonstrates the general applicability of our decision-making method
 421 for online video understanding.

422 **OVOBench, RTVBench, and OVbench.** In Table 2, we compare our proposed method, Thinking-
 423 QwenVL, with existing models on OVOBench. Compared to Flash-VStream, which lacks decision-
 424 making capabilities (**33.2%**), and Dispider, which incorporates binary opaque decision-making
 425 (**41.8%**), our model achieves an accuracy of **46.9%**, marking an improvement of **4.9%** over Dispider.
 426 Compared to our baseline, the overall accuracy of our model increased on RTVBench from
 427 32.75% to 35.87%. We achieved 35.6% accuracy on OVbench. The performance on sub-tasks is
 428 in Fig. 5 and Table 6 & 7. The meaning of each symbol in Fig. 5 is: TP - Temporal Perception, VP
 429 - Visual Perception, SP - Scene Perception, PU - Phenomenological Understanding, GU - Global
 430 Understanding, IA - Intent Analysis, FP - Faithfulness Prediction, SR - Similarity Reasoning.

432
 433 Table 4: Impact of **3 level aggregation** on VideoMME w/o subs and OVOBench. We ablate by
 434 directly removing the corresponding level tokens. ♠ denotes that the first-stage compressed-token
 435 count is set as the final token budget ($1\times$)—equivalent to applying adaptive pooling to visual tokens
 before the LLM, as in prior long-video models. **FF**: First Frame. **LV**: Level. **■** : burden of tokens.

436	FF	LV-1	LV-2	LV-3	■	OVOBench				VideoMME			AVG	
						Overall	Real.	Back.	Forw.	Overall	Short	Medium	Long	
438	✓	✓	✓	✓	1×	46.9	55.8	47.4	28.6	56.3	66.0	53.9	49.1	51.6
439	✓	✓	✓	✗	2×	46.0	53.2	48.5	29.1	56.0	65.6	53.6	49.0	51.0
440	✓	✓	✗	✗	3×	49.6	56.7	53.9	31.4	54.7	61.9	54.7	47.6	52.2
441	✗	✓	✓	✓	-	42.6	49.1	42.2	30.2	49.7	55.9	48.6	44.7	46.2
442	✓	♠	✗	✗	1×	43.4 ↓3.5	45.4	52.7	29.9	48.9 ↓7.4	52.4	49.0	45.1	46.2

443 

444 

445 Figure 6: The impact of **ATDM** on OVOBench and StreamingBench subtasks.

446 **VideoMME and MLVU.** Although our model is optimized for online scenarios, it still demonstrates
 447 competitive performance on long-video benchmarks. Our model achieves **56.3%** on VideoMME,
 448 **49.1%** on VideoMME-Long, and **61.2%** on MLVU, outperforming several models specifically de-
 449 signed for offline long-video understanding. When the experimental setup is configured to use only
 450 the modified attention weight distributions (100%), the accuracy reaches **68.3%** on MLVU, **62.0%**
 451 on LongVideoBench, **67.7%** on VideoMME, and **43.6%** on LVbench, surpassing existing state-
 452 of-the-art offline long-video models. Notably, on VideoMME-Long (30 ~ 60 min), it outperforms
 453 the leading Qwen2.5-VL-7B by **6%** in accuracy. This strongly demonstrates the effectiveness of
 454 our HPSI module for video understanding, as this progressive causal approach that incrementally
 455 enhances the model’s cognitive state proves effective for tasks requiring long-term dependencies.

4.3 ABLATION STUDY

456 **Overview.** We conduct a comprehensive ablation study in two dimensions: 1) the impact of hierar-
 457 chical integration across different layers, and 2) the contribution of each part in ATDM.

458 **HPSI and Three-Level Aggregation Tokens.** Table 4 ablates the per-level insertions of HPSI. A
 459 salient finding is that removing levels 2–3 and forcing level 1 (the first LLM layer) to downsample
 460 directly to the same token budget as our level-3 setting—i.e., a *single-shot AdapterPooling* baseline
 461 applied *before* the LLM—reduces accuracy by **3.5%** on OVOBench and **7.4%** on VideoMME-Long.
 462 This confirms that one-stage pooling discards fine-grained cues and disrupts long-range, cross-clip
 463 dependencies; HPSI cannot be replaced by simple pooling. On offline long-video benchmarks (Ta-
 464 ble 3), Thinking-QwenVL further surpasses the baseline by **4.5%** on VideoMME, and—under the
 465 same backbone and comparable data coverage—outperforms TimeChat-Online by **5.9%** on MLVU,
 466 **6.6%** on LongVideoBench, and **7.6%** on VideoMME-Long. Together, these results show that
 467 HPSI’s *multi-depth aggregation tokens* and *structured sparse attention* preserve semantics under
 468 tight budgets and enable stronger causal reasoning over extended evidence than single-step pooling.

469 **ATDM and its Components.** We evaluate the decision-making capability of ATDM across
 470 three models on OVOBench and StreamingBench, as shown in Fig. 6. Models without decision-
 471 making capabilities show significant performance improvements with ATDM. For example, on the
 472 OVOBench-EPM sub-task, all three models achieve more than a **5%** accuracy boost. In Table 1,
 473 Flash-VStream’s performance on StreamingBench increases from **22.53%** to **26.58%**, a **4.05%**
 474 gain. These results demonstrate that streaming and offline video understanding models, when
 475 operating under paradigms like $t_r = t_q$ or $t_r = T$, suffer from performance limitations. However,
 476 when equipped with decision-making capabilities aligned with visual evidence, model accuracy
 477 significantly improves. We further isolate the contribution of each component (P₁–P₅) on Thinking-
 478 QwenVL and Flash-VStream in Fig. 7. Each part is either removed or replaced with alternative
 479 operations. More detailed experimental setups are provided in Appendix A.2.

486

Robust			
Setting	100%	80%	70%
Acc. (%)	71.60	68.75	67.81

487 **Applicability**

Framework		Ours	
Base Model	LLaVA-7B	QwenVL-3B	QwenVL-7B
Acc. (%)	26.58	62.62	71.60

488 **Table 5: Robustness and Applicability.**

489 **Top:** Stress-testing streaming robustness under abnormal conditions by uniformly dropping frames *after* 1 FPS extraction (retaining 100%, 80%, 70%). **Bottom:** The ATDM controller is applied to multiple backbones (Flash-VStream-LLaVA-7B, Thinking-Qwen2.5-VL-3B/7B), showing its framework-agnostic utility.

490 **Robustness and Applicability.** We evaluate stability under abnormal streaming conditions (*missing frames* and *abrupt scene transitions*) by starting from the 1 FPS protocol and uniformly retaining only 80% and 70% of frames. As shown in Table 5, the degradation is mild: even at **70%** retention, StreamingBench accuracy remains **67.81%**. Combined with the ablations in Table 4, this indicates that HPSI and ATDM preserve performance under aggressive frame loss. Beyond robustness, the two modules transfer across backbones and frameworks. Instantiating ATDM on the real-time Flash-VStream pipeline (built on LLaVA) consistently activates time-stamped decision making and yields a $\sim 4.0\%$ accuracy gain on StreamingBench (Table 1). Applying HPSI and ATDM to a smaller Qwen2.5-VL-3B backbone, Thinking-QwenVL-3B reaches **62.62%** in Table 5, only about 5% below the 7B Dispider model and far above the 8B VideoLLM-Online model (35.99%). Methodologically, HPSI requires only a deep LLM, which we partition into three segments with increasing aggregation strength, without backbone changes (Fig. 2). ATDM relies only on basic instruction-following and visual comprehension, arousing the decision-making ability of generic VLMs easily.

491 **Efficiency and Feasibility.** On StreamingBench (NVIDIA A100 GPUs), our 93.75% aggregation 492 setting matches Flash-VStream in frame throughput (8.49 vs. 8.45 FPS) while yielding higher accuracy (71.60% vs. 22.53%). The explicit decision pipeline adds a modest $\sim 3.7\text{s}$ end-to-end latency (13.2s vs. 9.5s). Sweeping aggregation (75% \rightarrow 97.5%) monotonically improves total average FPS (5.28 \rightarrow 9.12) and token throughput (tokens/s) (786 \rightarrow 1351; scaled $\times 0.01$ in Fig. 8), providing a simple speed-quality knob. A 3B variant at 93.75% still attains average 7.07 FPS / 1050 throughput.

493 **Qualitative Effect of HPSI on ATDM.** On the painting clip in Fig. 13, HPSI supplies ATDM with a 494 temporally consolidated memory, yielding captions that explicitly **encode state changes over time** (e.g., “*the brush moves from right to left*” and “*the hand adjusts its angle*”), rather than a single, 495 static snapshot. In contrast, the baseline—lacking hierarchical integration—produces short, largely 496 scene-static descriptions with weak cross-frame cohesion. This qualitative gap indicates that **HPSI’s 497 multi-level aggregation preserves and stabilizes evolving visual evidence across frames**, which 498 ATDM then leverages to issue timestamped, evidence-aligned decisions; the same synergy remains 499 observable even when frames are missing or hard cuts introduce abrupt scene transitions. We also 500 provide an intuitive comparison of our model and Flash-VStream’s output examples in Fig. 11&12.

501 **5 CONCLUSION**

502 We introduced Thinking-QwenVL, which integrates Hierarchical Progressive Semantic Integration 503 (HPSI) with an Active Thinking Decision Maker (ATDM). HPSI maintains a compact, relation- 504 preserving cognition state that is progressively updated as evidence accrues under structured sparsity, 505 while ATDM complements this with a decision process that decomposes tasks into observable sub- 506 goals, enriched by progress metrics, confidence estimates, and a readiness head aligned to first- 507 sufficient evidence. Empirical evaluation shows that Thinking-QwenVL achieves strong results on 508 online benchmarks and remains competitive on offline long-video tasks, with ablations confirming 509 that HPSI’s multi-depth aggregation and ATDM’s decision process are key to both accuracy and 510 timely responses.

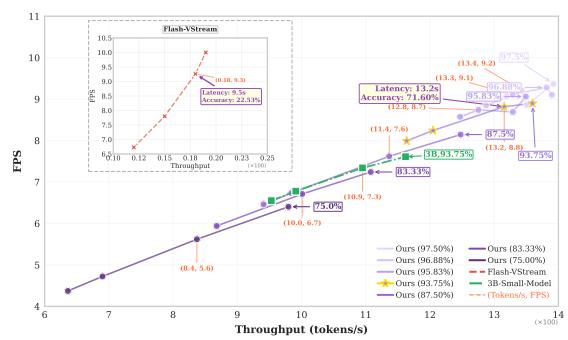


Figure 8: **Efficiency on NVIDIA A100 GPUs.** Impact of the aggregation rate in HPSI on FPS and token throughput. At 93.75% aggregation rate, our method matches Flash-VStream’s FPS (8.49 vs. 8.45) with 78 \times higher avg. token throughput (1261 vs. 16), and a slight latency increase (13.2ms vs. 9.5ms).

540
541 Reproducibility Statement. We have included the architecture of Thinking-QwenVL in Section 3.1& 3.2 and the complete training procedure in Section 4.1 and Appendix A.3. The training
542 data recipe and hyper-parameter settings are listed in Tab. 9 in detail. Furthermore, our code and
543 checkpoints of Thinking-QwenVL will be released on GitHub and Huggingface.
544

545 REFERENCES
546

547 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>.
548

549 Min Cai, Qixuan Jin, Jia Zhou, and Xinggang Luo. How transparency shapes the quality of human-
550 robot interaction: An examination of trust, perception, and workload. *International Journal of*
551 *Social Robotics*, 17:1335–1362, 05 2025. doi: 10.1007/s12369-025-01255-0.
552

553 Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
554 Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large lan-
555 guage model for streaming video. In *Proceedings of the IEEE/CVF Conference on Computer*
556 *Vision and Pattern Recognition*, pp. 18407–18418, 2024a.

557 Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
558 Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and genera-
559 tion with better captions. *arXiv preprint arXiv:2406.04325*, 2024b.

560 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
561 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
562 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
563 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.
564

565 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
566 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
567 audio understanding in video-llms. *arXiv preprint arXiv:2406.07476*, 2024.

568 Jiajun Fei, Dian Li, Zhidong Deng, Zekun Wang, Gang Liu, and Hui Wang. Video-ccam: Enhancing
569 video-language understanding with causal cross-attention masks for short and long videos. *arXiv*
570 *preprint arXiv:2408.14023*, 2024.

571 Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
572 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
573 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.
574

575 Zhenpeng Huang, Xinhao Li, Jiaqi Li, Jing Wang, Xiangyu Zeng, Cheng Liang, Tao Wu, Xi Chen,
576 Liang Li, and Limin Wang. Online video understanding: A comprehensive benchmark and
577 memory-augmented method. *arXiv preprint arXiv:2501.00584*, 2024.

578 Youwon Jang, Woo Suk Choi, Minjoon Jung, Minsu Lee, and Byoung-Tak Zhang. Confidence-
579 guided refinement reasoning for zero-shot question answering, 2025. URL <https://arxiv.org/abs/2509.20750>.
580

581 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
582 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
583 *arXiv:2408.03326*, 2024a.
584

585 Huao Li, Stephanie Milani, Vigneshram Krishnamoorthy, Michael Lewis, and Katia Sycara. Per-
586 ceptions of domestic robots’ normative behavior across cultures. In *Proceedings of the 2019*
587 *AAAI/ACM Conference on AI, Ethics, and Society*, pp. 345–351, 2019.

588 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
589 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
590 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
591 22195–22206, 2024b.
592

593 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. In *European Conference on Computer Vision*, pp. 323–340. Springer, 2025.

594 Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz,
 595 Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023.
 596

597 Junming Lin, Zheng Fang, Chi Chen, Zihao Wan, Fuwen Luo, Peng Li, Yang Liu, and Maosong
 598 Sun. Streamingbench: Assessing the gap for mllms to achieve streaming video understanding.
 599 *arXiv preprint arXiv:2411.03628*, 2024.

600 Haotian Liu, Chunyuan Li, Qingsyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 601 2023.

602 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 603 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 604

605 Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao,
 606 Enhua Wu, and Jie Hu. Kangaroo: A powerful video-language model supporting long-context
 607 video input. *arXiv preprint arXiv:2408.15542*, 2024b.

608 Yongdong Luo, Xiawu Zheng, Xiao Yang, Guilin Li, Haojia Lin, Jinfa Huang, Jiayi Ji, Fei Chao,
 609 Jiebo Luo, and Rongrong Ji. Video-rag: Visually-aligned retrieval-augmented long video com-
 610 prehension. *arXiv preprint arXiv:2411.13093*, 2024.

611 Junbo Niu, Yifei Li, Ziyang Miao, Chunjiang Ge, Yuanhang Zhou, Qihao He, Xiaoyi Dong,
 612 Haodong Duan, Shuangrui Ding, Rui Qian, et al. Ovo-bench: How far is your video-lm from
 613 real-world online video understanding? In *Proceedings of the Computer Vision and Pattern
 614 Recognition Conference*, pp. 18902–18913, 2025.

615 OpenAI. Hello GPT-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.
 616

617 Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Shuangrui Ding, Dahua Lin, and Jiaqi Wang.
 618 Streaming long video understanding with large language models. *Advances in Neural Information
 619 Processing Systems*, 37:119336–119360, 2024.

620 Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin, and
 621 Jiaqi Wang. Dispider: Enabling video lm with active real-time interaction via disentangled
 622 perception, decision, and reaction. *arXiv preprint arXiv:2501.03218*, 2025.

623 Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal
 624 large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference
 625 on Computer Vision and Pattern Recognition*, pp. 14313–14323, 2024.

626 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 627 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adap-
 628 tive compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

629 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
 630 and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
 631 *arXiv preprint arXiv:2409.14485*, 2024.

632 Karthik Subramanian, Liya Thomas, Melis Sahin, and Ferat Sahin. Supporting human–robot in-
 633 teraction in manufacturing with augmented reality and effective human–computer interaction: a
 634 review and framework. *Machines*, 12(10):706, 2024.

635 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 636 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 637 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

638 Haibo Wang, Bo Feng, Zhengfeng Lai, Mingze Xu, Shiyu Li, Weifeng Ge, Afshin Dehghan, Meng
 639 Cao, and Ping Huang. Streambridge: Turning your offline video large language model into a
 640 proactive streaming assistant. *arXiv preprint arXiv:2505.05467*, 2025.

641 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 642 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 643 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

648 Weihuan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
 649 Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark.
 650 *arXiv preprint arXiv:2406.08035*, 2024b.

651 Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and
 652 Mohit Bansal. Videotree: Adaptive tree-based video representation for llm reasoning on long
 653 videos. *arXiv preprint arXiv:2405.19209*, 2024c.

654 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 655 interleaved video-language understanding. *arXiv preprint arXiv:2407.15754*, 2024.

656 Haomiao Xiong, Zongxin Yang, Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Jiawen Zhu, and Huchuan Lu.
 657 Streaming video understanding and multi-round interaction with memory-enhanced knowledge.
 658 *arXiv preprint arXiv:2501.13468*, 2025.

659 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 660 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 661 long videos. *arXiv preprint arXiv:2408.10188*, 2024.

662 Zhucun Xue, Jiangning Zhang, Xurong Xie, Yuxuan Cai, Yong Liu, Xiangtai Li, and Dacheng
 663 Tao. Omni-adavideorag: Omni-contextual adaptive retrieval-augmented for efficient long video
 664 understanding. *arXiv preprint arXiv:2506.13589*, 2025.

665 Shuhang Xun, Sicheng Tao, Jungang Li, Yibo Shi, Zhixin Lin, Zhanhui Zhu, Yibo Yan, Hanqian Li,
 666 Linghao Zhang, Shikang Wang, et al. Rtv-bench: Benchmarking mllm continuous perception,
 667 understanding and reasoning through real-time video. *arXiv preprint arXiv:2505.02064*, 2025.

668 Linli Yao, Yicheng Li, Yuancheng Wei, Lei Li, Shuhuai Ren, Yuanxin Liu, Kun Ouyang, Lean
 669 Wang, Shicheng Li, Sida Li, et al. Timechat-online: 80% visual tokens are naturally redundant in
 670 streaming videos. *arXiv preprint arXiv:2504.17343*, 2025.

671 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 672 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint
 673 arXiv:2408.01800*, 2024.

674 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 675 Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation
 676 models for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

677 Haoji Zhang, Yiqin Wang, Yansong Tang, Yong Liu, Jiashi Feng, Jifeng Dai, and Xiaojie Jin.
 678 Flash-vstream: Memory-based real-time understanding for long video streams. *arXiv preprint
 679 arXiv:2406.08085*, 2024a.

680 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 681 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 682 *arXiv preprint arXiv:2406.16852*, 2024b.

683 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 684 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 685 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

686 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 687 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 688 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

689 Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch,
 690 Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, et al. Apollo: An exploration of
 691 video understanding in large multimodal models. *arXiv preprint arXiv:2412.10360*, 2024.

692

693

694

695

696

697

698

699

700

701

702 A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

704 A.1 MORE RESULTS

706 To thoroughly showcase the capabilities of Thinking-QwenVL, we provide supplementary experimental data in Table 6& 7& 8, and and attention mask visualization in Fig. 10.

709 **Table 6: Performance comparison (accuracy 100%) on OVBench.** Subtasks in it are AA: Action
710 Anticipation, GSP: Goal/Step Prediction, MP: Movement Prediction, AP: Action Persistence, SV:
711 Step Verification, OP: Object Presence, AR: Action Retrieval, PR: Procedure Recall, TR: Trajectory
712 Retrieval, AL: Action Location, OP: Object Position, AT: Action Trajectory, OT: Object Trajectory,
713 AS: Action Sequence, SL: Step Localization, OES: Object Existence State.

714 Task Name	715 Size	716 FP			717 THV			718 PM			719 SP			720 STP			721 TP			722 AVG
		AA	GSP	MP	AP	SV	OP	AR	PR	TR	AL	OP	AT	OT	AS	SL	OES			
723 Proprietary Multimodal Models																				
Gemini-1.5-Flash	-	71.4	53.6	21.9	56.5	60.8	40.6	36.7	47.9	62.5	32.3	37.5	87.0	50.0	83.3	22.3	46.9	50.7		
724 Open-source Offline Long Video LLMs																				
InternVL2	7B	52.6	60.2	27.6	57.5	52.0	58.5	38.8	67.1	58.3	38.1	31.3	87.4	37.0	75.4	31.4	5.9	48.7		
InternVL2	4B	57.7	57.0	14.4	59.2	49.4	60.0	30.3	61.8	46.3	30.9	20.1	83.0	32.3	70.7	29.4	3.4	44.1		
LLaMA-VID	7B	43.6	50.9	19.6	64.0	47.5	46.8	29.4	48.9	51.2	31.9	11.2	75.7	24.8	59.1	26.0	40.0	41.9		
LLaVA-Onevision	7B	68.0	62.7	35.9	58.4	50.3	46.5	29.4	60.7	58.0	43.1	14.2	86.5	49.7	70.7	28.1	30.2	49.5		
LongVA	7B	64.1	56.5	29.5	54.9	51.9	34.8	35.3	55.6	57.7	31.6	3.4	67.4	44.7	80.0	26.7	4.0	43.6		
MiniCPM-V2.6	7B	33.3	35.9	15.0	59.2	50.8	55.1	25.0	37.4	41.7	26.6	11.8	98.3	36.3	66.1	26.4	6.2	39.1		
Qwen2-VL	7B	60.3	66.1	22.1	54.9	51.5	51.1	37.8	64.4	69.3	35.3	28.5	97.0	49.4	65.1	30.8	11.7	49.7		
LITA	7B	19.2	24.5	19.9	40.8	48.9	24.9	3.1	27.3	6.4	6.9	14.6	35.2	23.9	27.4	0.5	3.4	20.4		
TimeChat	7B	7.7	15.3	18.7	20.6	15.7	11.7	9.1	14.7	9.8	7.5	19.5	13.9	10.3	9.3	10.1	10.8	12.8		
VTimeLLM	7B	37.2	23.4	15.0	64.8	43.8	53.2	25.9	38.8	32.5	25.9	20.4	40.9	6.8	48.4	43.5	8.6	33.1		
725 Open-source Online Video-LLMs																				
VideoLLM-Online	7B	0	1.8	20.9	5.2	5.9	32.6	0	2.3	26.7	0.6	26.6	0.9	19.9	0.9	1.7	8.3	9.6		
MovieChat	7B	23.1	27.5	23.6	58.4	43.9	40.3	25.6	31.1	23.9	26.9	39.6	24.4	28.9	29.3	25.5	21.9	30.9		
Flash-Vstream	7B	26.9	37.6	23.9	60.1	41.9	40.0	23.4	35.3	26.1	24.7	28.8	27.0	21.4	29.8	25.6	26.8	31.2		
Thinking-QwenVL	7B	27.8	39.6	25.9	62.2	42.3	41.4	25.3	36.3	27.1	24.4	30.8	27.6	25.1	30.2	26.5	27.6	35.6 <small>+4.4↑</small>		

726 **Table 7: Accuracy (100%) on RTVBench.** We evaluate without audio; otherwise, all settings—including the frame-sampling method—follow RTVBench (Xun et al., 2025) for a fair comparison. Compared with our baseline model, the *overall accuracy* of our approach improves from 32.75% to 35.87%, yielding a gain of **3.12%**. The Subtasks in it are: Temporal Perception (TP), Visual Perception (VP), Scene Perception (SP), Global Understanding (GU), Phenomenological Understanding (PU), Intent Analysis (IA), Future Prediction (FP), and Spatiotemporal Reasoning (SR).

736 Method	737 Size	738 TP	739 Closed-Source Business Models						746 SR
			740 VP	741 SP	742 GU	743 PU	744 IA	745 FP	
747 Closed-Source Business Models									
Gemini 2.0 Flash	-	40.49	45.19	39.34	35.70	45.65	46.78	44.42	38.46
748 Open-Source Offline Video Models									
VideoLLaMA2	7B	39.52	42.49	39.85	37.34	42.21	40.92	41.47	33.50
VideoLLaMA3	7B	37.82	39.24	36.87	33.54	39.13	33.39	38.05	33.84
LLaVA-OneVision	7B	35.09	35.86	35.20	32.07	33.51	37.06	38.23	28.91
LLaVA-Video	7B	34.07	38.97	34.45	29.42	35.69	36.33	39.08	31.22
Qwen2.5-VL	7B	32.37	37.48	30.73	29.11	35.69	29.36	35.33	33.67
Ours	7B	37.65 <small>+5.3↑</small>	41.00 <small>+3.5↑</small>	30.17	31.86	32.66	37.86 <small>+8.5↑</small>	37.20	35.88

749 A.2 DETAILS ABOUT THE COMPONENTS ANALYSIS OF ATDM

750 In Fig. 7, we present five sets of ablation experiments on the components of ATDM, conducted on
751 two models. These five sets of experiments are based on the following control conditions:

- 752 1) P₁: Remove P₁ (*caption instructions* CI_q); demand P₂ give captions directly.
- 753 2) P₂: Disable P₂ *Question decomposition*; retain a single query Q and require P₄ to answer Q at
 each step while still emitting per-step confidence c and progress ρ .
- 754 3) P₃: Remove P₃ *Streaming captioning* to test the value of the textual intermediary; P₄ is switched
 from text-only consumption to *multimodal* extraction—directly retrieving evidence from the current
 visual stream to fill sub-answers.

756 Table 8: Comparison with current online Video understanding LMMs on **OVOBench**. The subtasks
 757 are: i) *Real-Time Visual Perception* (OCR: Optical Character Recognition, ACR: Action Recog-
 758 nition, ATR: Attribute Recognition, STU: Spatial Understanding, FPD: Future Prediction, OJR: Object
 759 Recognition), ii) *Backward Tracing* (EPM: Episodic Memory, ASI: Action Sequence Identification,
 760 HLD: Hallucination Detection), and iii) *Forward Active Responding* (REC: Repetition Event Count,
 761 SSR: Sequential Steps Recognition, CRR: Clues Reveal Responding).

Model	#Frames	Real-Time Visual Perception						Backward Tracing				Forward Active Responding				Overall Avg.	
		OCR	ACR	ATR	STU	FPD	OJR	Avg.	EPM	ASI	HLD	Avg.	REC	SSR	CRR		
Human Agents																92.8	
Proprietary Multimodal Models																	
Gemini 1.5 Pro	1fps	87.3	67.0	80.2	54.5	68.3	67.4	70.8	68.6	75.7	52.7	62.3	35.5	74.2	61.7	57.2	
GPT-4o	64	69.1	65.1	65.5	50.0	68.3	63.7	63.6	49.8	71.0	55.4	58.7	27.6	73.2	59.4	53.4	
Open-source Offline Long Video LLMs																	
LLaVA-NeXT-Video-7B	64	69.8	59.6	66.4	50.6	72.3	61.4	63.3	51.2	64.2	9.7	41.7	34.1	67.6	60.8	54.2	
LLaVA-OneVision-7B	64	67.1	58.7	69.8	49.4	71.3	60.3	62.8	52.5	58.8	23.7	45.0	24.8	66.9	60.8	50.9	
Qwen2-VL-7B	64	69.1	53.2	63.8	50.6	66.3	60.9	60.7	44.4	66.9	34.4	48.6	30.1	65.7	50.8	48.9	
InternVL-V2-8B	64	68.5	58.7	69.0	44.9	67.3	56.0	60.7	43.1	61.5	27.4	44.0	25.8	57.6	52.9	45.4	
LongVU-7B	1fps	55.7	49.5	59.5	48.3	68.3	63.0	57.4	43.1	66.2	9.1	39.5	16.6	69.0	60.0	48.5	
Open-source Online Video-LLMs																	
Flash-VStream-7B	1fps	25.5	32.1	29.3	33.7	29.7	28.8	29.9	36.4	33.8	5.9	25.4	5.4	67.3	60.0	44.2	
VideoLLM-online-8B	2fps	8.1	23.9	12.1	14.0	45.5	21.2	20.8	22.2	18.8	12.2	17.7	-	-	-	-	
Dispider	1fps	57.7	49.5	62.1	44.9	61.4	51.6	54.5	48.5	55.4	34.7	4.3	36.1	18.0	37.4	48.8	
TimeChat-Online-7B	1fps (100%)	75.2	46.8	70.7	47.8	69.3	61.4	61.9	55.9	59.5	9.7	41.7	31.6	38.5	40.0	36.7	
Ours	1fps (↓ 93.75%)	56.4	54.9	60.4	45.0	67.5	50.4	55.8	41.7	55.9	44.7	47.4	12.0	33.8	40.0	28.6	
Ours	1fps (100%)	74.1	57.2	68.1	55.3	75.0	58.3	64.7	48.0	56.3	28.8	44.3	29.1	39.3	40.0	36.1	

776 4) P_4 : Replace the graded (ρ, c) update in P_4 (*Progressive tracking sub-questions status*) with a
 777 single binary answerable flag (0/1), eliminating accumulated progress and confidence smoothing.

778 5) P_5 : Remove P_5 (*self-triggered reflection*) to assess the benefit of cross-clip causal revision under
 779 low confidence or major semantic shifts.

781 A.3 SUMMARY OF HYPERPARAMETER SETTINGS

782 The training process of our Thinking-QwenVL is structured into three distinct phases. **1) Integration Pre-training.** We pretrain the model on LLAVA-Video-178k (Li et al., 2024a) and ShareGPT4v-40k (Chen et al., 2024b), both containing caption-style data. This stage enables the model to learn how to aggregate and compress visual information into the inserted compress tokens at specified positions. **2) Integration-Based Time Perception Learning.** We fine-tune the model on TimeChat-Online-139k (Yao et al., 2025), a dataset annotated with binary labels indicating whether a question is answerable at a given timestamp. This trains the model to decide whether the compressed visual information is sufficient for answering, relying solely on the compress tokens. **3) Interaction-Focused QA Fine-Tuning.** We further fine-tune the model using general QA-style dialog data to enhance its interaction ability and improve alignment with user queries in a streaming setting. Throughout all stages, only the intermediate Merge layers and the LLM backbone are fine-tuned, while the visual encoder remains frozen. All experiments are run on A100 GPUs. Table 9 provides a comprehensive overview of the hyperparameter configurations employed during each training stage.

797 A.4 POSITION IDs EMBEDDING FOR INTEGRATION

800 **Impact of Positional Encoding.** The original QwenVL2.5 model adopts a 3D Rotary Position
 801 Embedding (3D RoPE) mechanism. When introducing new aggregation tokens, it becomes nec-
 802 essary to redefine their positional encoding. To maintain compatibility with the model’s dynamic
 803 spatial resolution handling, we insert aggregation tokens in multiples of the original frame tokens.
 804 In Thinking-QwenVL, we retain the 3D RoPE format while adjusting the temporal dimension of
 805 the inserted aggregation tokens as in Algorithm 1. This ensures the spatial indices are aligned with
 806 the original frames while preserving temporal distinction across hierarchical aggregation levels. To
 807 evaluate this strategy, we replace 3D RoPE with a sequential positional encoding and introduce a
 808 new variant, *Offset Sequential Positional Embedding* (OSPR). OSPR explicitly offsets the sequential
 809 position IDs of aggregation tokens according to their hierarchy level. On OVOBench, substituting
 810 3D RoPE with OSPR reduces overall accuracy from 46.9% to 43.3% (a drop of **3.6** percentage
 811 points), which is also a reason we retain 3D RoPE in our model.

810 Table 9: Training hyperparameters of Thinking-QwenVL for all stages.
811

812 Configuration	813 Integration Pre-training	814 Time Perception Learning	815 Interaction-Focused QA Tuning
816 Training Datasets	817 LLAVA-Video-178k&ShareGPT4v-40k	818 TimeChat-Online-139k	819 LLAVA-Video-178k
820 Training Datasets Type	821 Caption	822 Open-ended QA	823 Multiple-choice QA
824 Training Modules	825 LLM&Merge Layer	826 LLM&Merge Layer	827 LLM&Merge Layer
828 Frame Resolution	829 448×448	830 448×448	831 448×448
832 Max Frames	833 128	834 196	835 128
836 Optimizer	837 AdamW	838 AdamW	839 AdamW
840 Learning Rate	841 $2e^{-6} \& 1e^{-5}$	842 $2e^{-6} \& 1e^{-5}$	843 $2e^{-6} \& 1e^{-5}$
844 Learning Rate Schedule	845 cosine decay	846 cosine decay	847 cosine decay
848 Weight Decay	849 0.1	850 0.1	851 0.1
852 Gradient Clip	853 1.0	854 1.0	855 1.0
856 Warm-up Ratio	857 0.03	858 0.03	859 0.03
860 Global Batch Size	861 16	862 16	863 16
864 Numerical Precision	865 bfloat16	866 bfloat16	867 bfloat16

828 **Algorithm 1** The algorithm of Position IDs embedding for aggregation tokens.
829

830 **Require:** \mathbf{X} : Input tokens
 831 **Require:** \mathcal{G} : video grid (T, H, W)
 832 **Require:** \mathcal{C} : compress params ($N_{\text{clips}}, N_{\text{comp}}^{(l)}$)
 833 **Require:** \mathcal{P} : position params ($\Delta t, \tau, S$)
 834 1: $T_{\text{extended}} \leftarrow T + N_{\text{clips}} \times N_{\text{comp}}^{(l)}$
 835 2: $\mathbf{P}_t \leftarrow [0, 1, \dots, T_{\text{extended}} - 1] \times \Delta t \times \tau$
 836 3: $\mathbf{P}_h \leftarrow [[0, 1, \dots, [H/S] - 1]]$
 837 4: $\mathbf{P}_w \leftarrow [[0, 1, \dots, [W/S] - 1]]$
 838 5: $\mathbf{M}_t \leftarrow \text{repeat}(\mathbf{P}_t, \text{along spatial dims})$
 839 6: $\mathbf{M}_h \leftarrow \text{repeat}(\mathbf{P}_h, \text{along temporal and width dims})$
 840 7: $\mathbf{M}_w \leftarrow \text{repeat}(\mathbf{P}_w, \text{along temporal and height dims})$
 841 8: $\mathbf{Pos}_{3D} \leftarrow \text{stack}(\mathbf{M}_t, \mathbf{M}_h, \mathbf{M}_w)$
 9: **return** \mathbf{Pos}_{3D}

842
843 A.5 EVALUATION METRICS
844

845 **StreamingBench** (Lin et al., 2024) is a large-scale **online** video benchmark spanning 900 videos
 846 with 4,500 timestamped multiple-choice QAs, designed to test real-time perception and interaction
 847 under realistic stream constraints. Tasks are grouped into three families: *Real-Time Visual Under-*
 848 *standing*, *Omni-Source Understanding*, and *Contextual Understanding*. Findings reveal clear
 849 gaps: offline long-video MLLMs transfer modestly to real-time *visual* tasks but underperform on
 850 *omni-source* and *contextual* tasks requiring audio fusion, long-horizon memory, and event-timed ac-
 851 tuation; dedicated streaming models remain immature. Each of the 3 types has a split, and since the
 852 other two test tasks are non-visual modality-dominant, e.g., the *omni-source* subset is dominated by
 853 the audio modality, we tested on the first split-Real-Time Visual Understanding (2,500 QAs). The
 854 subtasks in it are as follows: Object Perception (OP), Causal Reasoning (CR), Clips Summariza-
 855 tion (CS), Attribute Perception (ATP), Event Understanding (EU), Text-Rich Understanding (TR),
 856 Prospective Reasoning (PR), Spatial Understanding (SU), Action Perception (ACP), and Counting
 857 (CT). We use abbreviations for these subtasks in Table 1.

858 **OVOBench** (Niu et al., 2025) is a dedicated benchmark designed to evaluate online video under-
 859 standing models with tasks of 3 types (*real-time visual perception / forward tracking / forward*
 860 *active response*). It comprises 644 videos and around 2800 QA pairs, requiring models to *with-
 861 hold* an answer until sufficient future evidence arrives. OVOBench specifically evaluates temporal
 862 alignment capabilities by enforcing strict separation between the query timestamp and the earliest
 863 timestamp at which the question becomes answerable. This is particularly important for assessing
 864 whether a model can respond at the right moment based on sufficient and relevant visual evidence.

864 The suite spans **12 tasks** grouped into three modes: *Backward Tracing*—Episodic Memory (EPM),
 865 Action Sequence Identification (ASI), Hallucination Detection (HLD); *Real-Time Visual Perception*—Spatial
 866 Understanding (STU), Object/Attribute/Action Recognition (OJR/ATR/ACR), OCR,
 867 and Future Prediction (FPD); and *Forward Active Responding*—Repetition Event Count (REC),
 868 Scene-State Regression (SSR), and Cautious Response Regulation (CRR).

869 **RTVBench** (Xun et al., 2025) and **OVBench** (Huang et al., 2024) jointly offer a complementary
 870 yardstick for online video understanding—probing *continuous perception* and *online spatiotemporal*
 871 *reasoning* under real-time constraints. **RTVBench** (552 videos / 4,631 QA pairs) is built around
 872 (i) *Multi-Timestamp QA* and a *Hierarchical Question Structure* to prevent shortcircuiting that can be
 873 summarized into three sub-tasks—*Perception*, *Understanding*, and *Reasoning* (future prediction/s-
 874 patiotemporal reasoning). **OVBench** (5,000 QAs) scales *online* evaluation across 6 task types with
 875 videos ranging from seconds to one hour; it uniquely anchors each query to *Past/Current/Future*
 876 temporal contexts, requires fine-grained grounding. Together, the two benchmarks expose persistent
 877 limitations of current MLLMs: offline long-video models lose robustness under cluttered, evolving
 878 streams and dedicated online models still trail top proprietary systems—highlighting the need for
 879 more advanced architectures.

880 **VideoMME**, **MLVU**, **LongVideoBench** and **LBench** (Fu et al., 2024; Zhou et al., 2024; Wu
 881 et al., 2024; Wang et al., 2024b) are four long video QA benchmarks. VideoMME (2,700 QA pairs)
 882 spans six domains with videos from short clips (< 4 min) to long-form (> 1 h), testing perception,
 883 reasoning, and synopsis across temporal scales. MLVU (1,730 videos / 2,593 QA pairs) ranges
 884 from 3 minutes to 2 hours, providing complementary coverage of long-form video understanding.
 885 LBench probes extreme long-video comprehension with videos up to two hours (68 min on aver-
 886 age). LongVideoBench (3,763 videos / 6,678 human-authored QA pairs) is a large-scale benchmark
 887 for understanding long contexts, which collectively demand granular recall and spatio-temporal rea-
 888 soning under long inputs.

889 A.6 EVALUATION OF DECISION CLARITY AND RATIONALE CORRECTNESS

890 To systematically assess whether ATDM genuinely improves users’ understanding and trust in the
 891 model’s behaviour, we design four complementary metrics and apply them to the intermediate rea-
 892 soning traces produced by each ATDM component as well as to the overall decision process. All
 893 four metrics are rated on a 1–5 Likert scale (higher is better), and are used consistently by human
 894 experts, trained non-experts, and strong LLM judges (GPT-4o and Qwen2.5-VL-72B). Together,
 895 they disentangle: 1) Reasoning Readability: how well the full reasoning text is written and struc-
 896 tured; 2) Decision Transparency: how clearly the timing of “answer” vs. “wait” is explained; 3) (ρ, c)
 897 Consistency: whether the explicit progress/confidence signals (ρ, c) behave in a numerically consis-
 898 tent manner; and 4) Rationale Correctness: whether the rationale is factually and causally sufficient
 899 to justify the decision. The detailed indicators and the meaning of each corresponding score are in
 900 Table 12.

901 **Reasoning Readability** evaluates whether each part (e.g., caption, sub-question answers) in the
 902 ATDM reasoning trace follows the *requested content specification, is easy to read, and is locally*
 903 *coherent*. High scores indicate that each component strictly adheres to the instructions, the content
 904 is strongly related to the corresponding sub-question, the caption is fluent and covers the required
 905 aspects, and the sub-question answers align naturally with the caption, yielding a globally coherent
 906 and well-structured reasoning trajectory.

907 **Decision Transparency** measures whether a rater can clearly understand *why* ATDM decides to
 908 answer or to keep waiting at each step, given access to the reasoning trace, the current sub-task
 909 states, and the associated progress/confidence scores (ρ, c) . A high transparency score means that
 910 the trace explicitly indicates when key evidence appears, how sub-tasks are resolved, how (ρ, c) are
 911 updated, and how these factors jointly trigger the timing of the decision.

912 (ρ, c) **Consistency** focuses specifically on the numerical behaviour of the progress and confidence
 913 signals. It assesses whether the magnitudes and step-wise trends of (ρ, c) are *internally consist-
 914 ent with the textual description of task progress and uncertainty*. High scores correspond to well-
 915 calibrated dynamics: ρ increases as sub-tasks are resolved, c increases when decisive evidence is
 916 observed and remains low for ambiguous sub-questions, and overall the numbers “make sense” as a
 917 faithful quantitative reflection of the explained state.

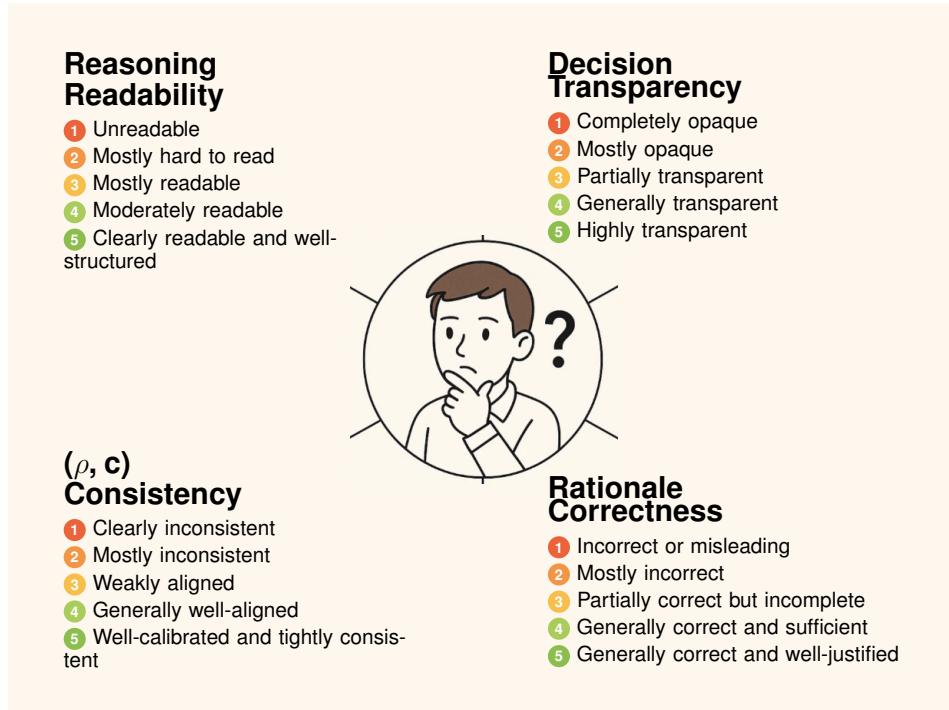


Figure 9: The four rubrics for evaluating ATDM’s reasoning traces.

Rationale Correctness evaluates whether the reasoning at a given step is factually grounded in the underlying video and question, and *whether the cited evidence and causal explanation objectively justify the chosen action* (“answer” vs. “wait”). High scores require both factual accuracy (no hallucinated events or incorrect descriptions) and a logically appropriate use of evidence, such that the selected segments/events and the corresponding explanation are necessary and sufficient to support the decision.

Table 10: **Expert evaluation** of the reasoning process of ATDM on StreamingBench. The data in the table represents the *average score* for each indicator. The detailed indicators and the meaning of each corresponding score are in Table 12.

Expert	Readable	Transparency	ρ/c Matching Degree	Correctness
Qwen2.5-VL-72B	4.6	4.2	4.3	4.0
GPT-4o	4.5	4.2	4.0	3.8
Average	4.55	4.20	4.15	3.90

A.7 SUB-QUESTIONS RELEVANCE AND TYPE CORRECTNESS

Expert Evaluation. To further verify that ATDM generates task-relevant and structurally meaningful sub-questions, we conduct an additional expert evaluation using the LLM judge (GPT-4o). Given the original question and the corresponding list of ATDM-generated sub-questions, the LLM is prompted to assess each sub-question along two dimensions: 1) task relevance to the main question, and 2) the correctness of its semantic *type* label, which is required by our decomposition prompt of Part-2 in Section F. For each sub-question, the judge returns a scalar task-relatedness score in $\{1, \dots, 5\}$, a boolean flag indicating whether the declared type is appropriate.

Task relevance is designed to quantify how strongly a sub-question contributes to solving the original main question, assuming that it can be answered correctly. We adopt a 1–5 Likert scale with the following rubric: 1–Completely unrelated, 2–Mostly unrelated, 3–Partially related, 4–Clearly related, 5–Strongly task-critical.

972 **Type correctness** evaluates whether the declared sub-question type matches the semantics of the
 973 sub-question content. The LLM judge is instructed to output a binary decision (correct / incorrect).
 974

975 We further compare three prompt variants: (a) the full model with relevance/observability con-
 976 straints, (b) a no-constraint variant that removes phrases enforcing explicit task relevance, and (c)
 977 a free-exploration variant that additionally encourages broad, unconstrained decomposition. As re-
 978 ported in Table 11, relaxing the constraints consistently degrades both LLM-judged task-relatedness
 979 and downstream streaming accuracy (e.g., from 71.60% for the full model to 69.58% and 68.40% for
 980 the no-constraint and free-exploration prompts, respectively). These results are aligned with the fail-
 981 ure modes discussed in our concurrent analysis (Jang et al., 2025): indiscriminate sub-questioning
 982 increases reasoning complexity without improving task utility, whereas ATDM’s controlled Part-2
 983 prompt reliably steers the model toward focused, task-critical sub-questions.
 984

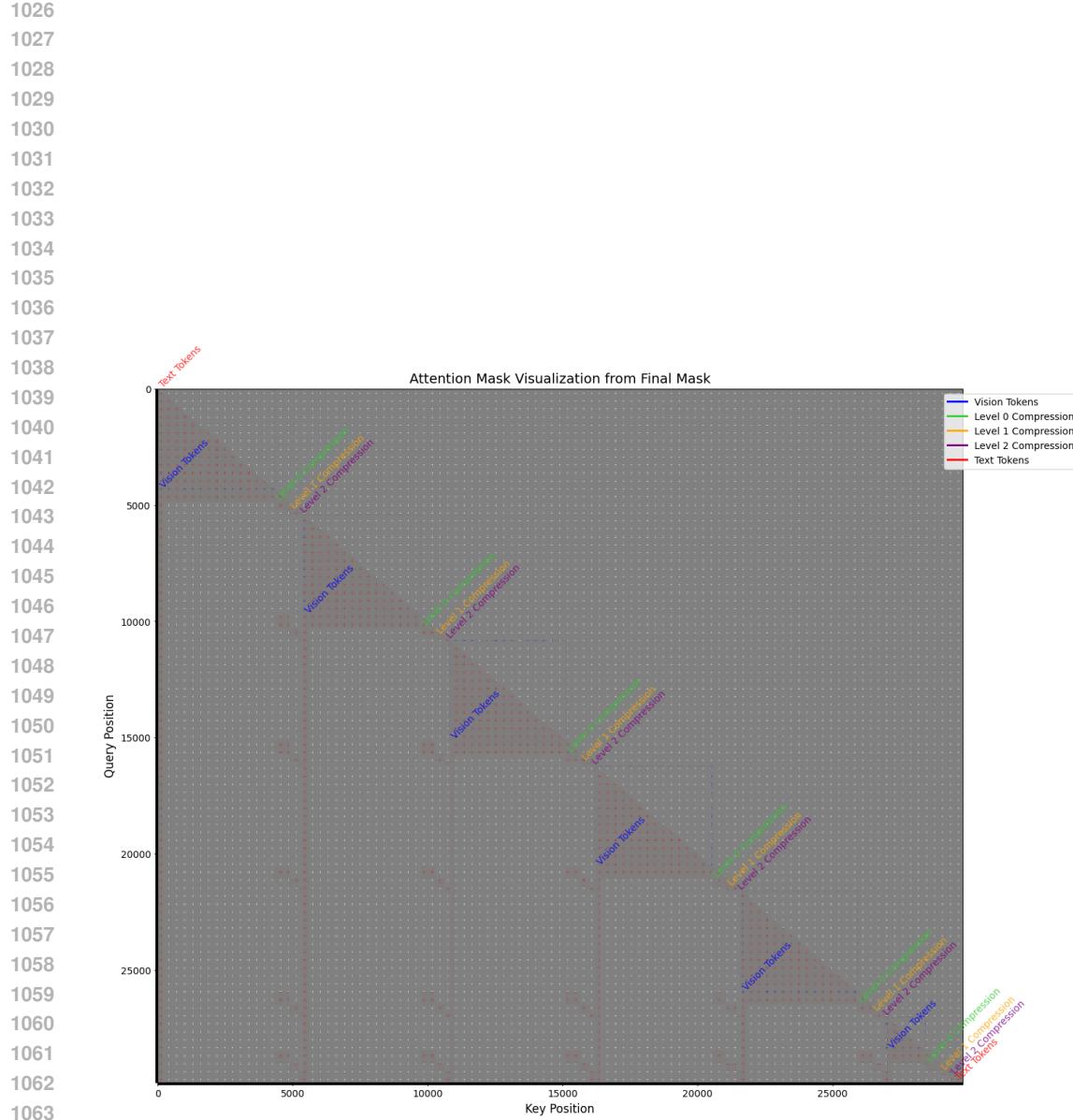
985 Table 11: Evaluation for relevance of sub-questions and the prompt’s influence in Part-2.

Avg Task relevance	Avg Type correctness	Full Prompt	w.o. Requirement	“Freely”
4.971/5	0.9992/1	71.60	69.58	68.40

989 B MORE DISCUSSION AND FUTURE WORK.

990 **(1) Depth-as-memory.** We encourage treating Transformer *depth* as staged memory for streaming:
 991 assign progressively stronger aggregation to deeper segments and study depth-aware schedules with
 992 mask-guided fusion across backbones. This line of inquiry, consistent with hierarchical/aggrega-
 993 tion evidence for long-range spatiotemporal reasoning and robustness, merits systematic, model-
 994 agnostic exploration. **(2) Decision timing and control.** We advocate explicit, calibrated internal
 995 signals in LLMs—e.g., progress ρ and confidence c —to govern *when* to answer, wait, or reflect,
 996 moving beyond ad-hoc “longer CoT.” This connects naturally to work on model self-calibration and
 997 self-reflection. **(3) Extensions from video QA.** (i) *Multi-stream evidence alignment*: equip each
 998 modality (vision, audio, motion, text) with its own HPSI-style memory and fuse per-stream ρ/c via
 999 a lightweight controller to decide when joint evidence is sufficient—useful under missing frames
 1000 and hard cuts. (ii) *Open benchmarks for decision quality*: complement accuracy/latency with ex-
 1001 plicit scoring of *decision timing* and *evidence alignment* (e.g., rewarding on-time, well-supported
 1002 answers) for the video understanding task.
 1003

1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

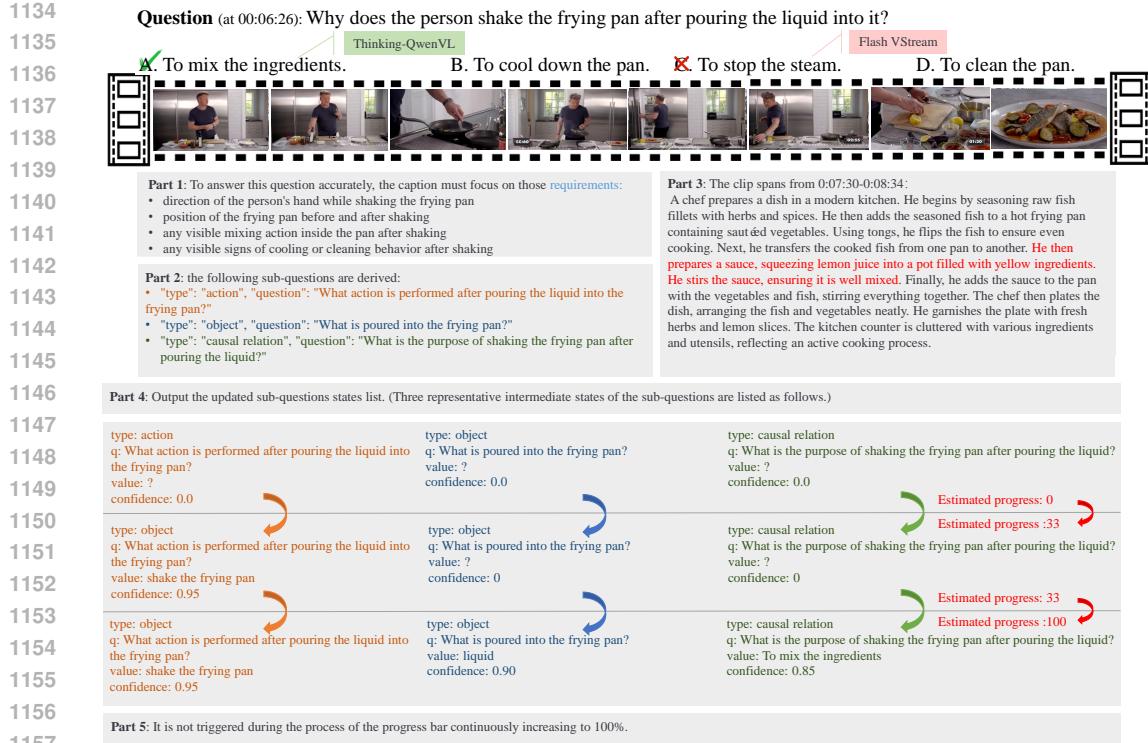


1064 Figure 10: A real example of the attention mask in our final 1L/3 layer of the LLM. The ratio
1065 between the original video tokens and the 3-level aggregated tokens is depicted. Compared to the
1066 original video input tokens, the proportion of aggregated tokens we introduce is minimal. As shown
1067 in this figure and Fig. 2, our custom attention mask guides the model in hierarchically allocating
1068 attention across different visual regions, fostering progressive focus on the visual tokens themselves
1069 for improved video understanding in LLMs.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081
 1082
 1083
Table 12: Evaluation rubric for ATDM’s reasoning traces along four dimensions, each scored from 1 (worst) to 5 (best).
 1084
 1085

Metric	Score				
	1	2	3	4	5
Reasoning Readability	Unreadable	Mostly hard to read	Moderately readable	Clearly readable	Highly readable
	Severely disorganized or largely irrelevant to the requested content, with contradictory or unrelated statements forced into the same step; the overall meaning is very hard to recover.	Some segments are understandable, but the output is only weakly related to the requested content or to previous sub-questions; the context feels jumpy or redundant, and captions are not clearly written.	Each part broadly follows the instructions; there are no blatant off-topic or highly confusing jumps, and captions are mostly coherent, though some text shows weak contextual linkage.	Each part strictly follows the instructions; contextual relevance is clear, captions are coherent and sufficiently detailed, and answers align well with the caption.	All parts strictly follow the instructions with strong cross-part coherence, forming a globally consistent and logically connected reasoning process.
Decision Transparency	Completely opaque	Mostly opaque	Partially transparent	Generally transparent	Highly transparent
	Even after reading the full reasoning and inspecting the relationship between (ρ, c) and sub-task states, the rater cannot see how they relate to main question nor why answers or waits at this step; decisive cues are missing or sub-tasks appear irrelevant.	The high-level relation to the main question is intelligible, but the updates of sub-tasks are unclear; if active-thinking steps are present, update reasons are opaque and the causal chain is confusing.	The rater can basically follow the overall reasoning, the sub-task updates, and the rough causes of (ρ, c) changes; if reflection steps exist, the causal chain is largely reasonable, though some details remain implicit.	It is reasonably clear when evidence is considered sufficient or insufficient, and why (ρ, c) and sub-task states are updated; if reflection steps exist, the causal chain before and after the update is clear and coherent.	The trace makes explicit <i>when and why</i> the decision is triggered, <i>which evidence</i> makes it sufficient to answer now, and <i>how</i> the current sub-task states and (ρ, c) jointly justify answering versus waiting; the timing logic is easy to understand.
(ρ/c) Consistency	Clearly inconsistent	Mostly inconsistent	Weakly aligned	Generally well-aligned	Well-calibrated and tightly consistent
	(ρ, c) are often at odds with the reasoning (e.g., very high progress when the text emphasises strong uncertainty, or very low progress when most sub-tasks are stated as resolved); mismatches are frequent and severe.	Some steps look plausible, but overall (ρ, c) rarely align with the described state; across the full trace, their magnitudes or changes feel arbitrary or untrustworthy.	The coarse trend of (ρ, c) roughly follows the narrative (e.g., both increase as evidence accumulates), but many local steps feel off (e.g., unexplained spikes or plateaus).	For most steps, the level and evolution of (ρ, c) are consistent with the textual description of progress and uncertainty; minor mismatches exist but do not substantially undermine trust in the signals.	Step-wise changes in (ρ, c) closely track the reasoning: ρ rises as sub-tasks are completed, c rises when decisive evidence appears and stays low for unresolved or ambiguous sub-questions.
Rationale Correctness	Incorrect or misleading	Mostly incorrect	Partially correct but incomplete	Generally correct and sufficient	Clearly correct and well-justified
	The rationale contains clear factual errors, hallucinates events that do not occur, or relies on irrelevant or contradictory evidence; it fails to justify the chosen action and may even support the opposite.	Some parts touch on relevant content, but important evidence is missing or misinterpreted; the causal story is weak or flawed, so the decision is only very weakly supported.	The rationale captures several correct and pertinent aspects, but omits critical evidence or leaves key causal links under-specified; the decision is somewhat supported, yet the justification is not fully convincing.	The cited evidence is largely accurate and relevant, and the overall reasoning provides a plausible, reasonable explanation that covers most key factors needed to solve the task.	The rationale is factually accurate, targets the right segments/events, and the sub-question answers are correct while highlighting, from multiple angles, the key factors needed to solve the question.



1158 Figure 11: An example illustrating the outputs of each ATDM component in Thinking-QwenVL; in this case, the model's response confidence increases monotonically, so Part-5 (active thinking for reflection) is not triggered.

C ADDITIONAL VISUALIZATIONS

1165 In addition to the examples presented in the main text, we provide further decision-making illustrations using ATDM for both Thinking-QwenVL and Flash-VStream in Fig. 11& 12. We also include 1166 concise examples of cases that trigger *active thinking*, to clarify the outputs produced by each ATDM 1167 component and to demonstrate their specific roles across the two models.

D ETHICS STATEMENT

1172 This work strictly adheres to the ICLR Code of Ethics. No human-subjects studies or animal 1173 experimentation were conducted. All datasets used for training and evaluation were sourced from 1174 the open-source community and used in compliance with their licenses and usage guidelines; no 1175 personally identifiable information was collected or processed. We took care to assess and mitigate 1176 potential biases and discriminatory outcomes, and we performed no experiments that could raise pri- 1177 vacy or security concerns. We are committed to transparency and integrity throughout the research 1178 process.

E LLM USAGE

1182 Large Language Models (LLMs) were used solely to assist with writing—primarily for grammar 1183 correction and minor phrasing edits to improve coherence and readability. The LLM did not par- 1184 ticipate in ideation, research methodology, experimental design, data analysis, or interpretation of 1185 results. All research concepts and analyses were conceived, executed, and validated by the authors. 1186 The authors take full responsibility for the content of the manuscript, including any text revised with 1187 LLM assistance. We verified that all LLM-assisted text complies with ethical guidelines and does 1188 not introduce plagiarism or scientific misconduct.

1188

1189

1190

1191

Question (at 00:01:10): What is the man doing while sitting on a chair?

1192

A. Reading a book. B. Polishing his shoes. C. Adjusting his trousers and shoes. D. Writing a letter.

1193

1194

1195

Part 1: To answer this question accurately, the caption must focus on those requirements:

- exact count of actions performed by the man (e.g., sitting, standing, walking, etc.)
- spatial relationship between the man and the chair (e.g., distance, angle, orientation)
- description of the man's actions (e.g., what he is doing with his hands, body posture, etc.)
- any sounds or spoken content (e.g., what the man is saying, any background noise, etc.)

1196

Part 2: The following sub-questions are derived:

- “type”: “action”, “question”: “What action is the man performing while sitting on the chair?”
- “type”: “spatial relation”, “question”: “Where is the man sitting in relation to the chair?”
- “type”: “temporal change”, “question”: “When is the man sitting on the chair?”
- “type”: “causal relation”, “question”: “Is the man sitting on the chair because of a specific reason or event?”

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

Part 4: Based on the provided caption, the man is sitting on a chair and adjusting his trousers and shoes. Therefore, the answer to the main question “What is the man doing while sitting on a chair?” is “Adjusting his trousers and shoes.”

The confidence for the main question is 0.99.

The output json list for the current clip would be:

type: action
q: What action is the man performing while sitting on the chair?
value: Adjusting his trousers and shoes
confidence: 0.99

type: spatial relation
q: Where is the man sitting in relation to the chair?
value: On the chair
confidence: 0.99

type: temporal change
q: When is the man sitting on the chair?
value: Now
confidence: 0.99

type: causal relation
q: Is the man sitting on the chair because of a specific reason or event?
value: Yes
confidence: 0.99

Estimated progress: 100

Figure 12: An example illustrating the outputs of each ATDM component in Flash-VStream. The output of each part is influenced by the model’s foundational visual comprehension and its ability to follow instructions.

Ours (with HPSI):

A hand holding a round brush labeled ‘Sap green Round brush no 4’ applies green paint to a canvas. The canvas features a blue sky gradient with green foliage at the bottom. The hand **moves the brush from right to left**, adding details to the green area. A palette with blue paint is visible nearby. The hand **adjusts the brush’s position and angle to enhance the foliage details**. The scene focuses on the meticulous application of paint to create a realistic tree outline against the blue sky background.

Qwen2.5-VL:

A hand holding a round brush no 4 applies sap green paint to a canvas, which already has a blue sky painted at the top. The artist carefully blends the green paint into the blue, creating a gradient effect. A palette with blue and green paint is visible nearby, indicating the mixing process. The hand moves methodically, adding texture and depth to the green area, suggesting an early stage in the landscape painting.

Figure 13: Comparison of model-generated captions for the same clip. Our caption explicitly encodes state changes over time (“moves from right to left”, “adjusts position and angle”), which implies that the model is using historical visual memory and new frames to form a coherent, evolving narrative. The baseline, lacking hierarchical integration, mainly describes a single static scene.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 F DETAILS OF THINKING-QWENVL'S PROMPT
12431244 Here, we provide detailed prompts of the five parts as well as their inputs and outputs. Question
1245 “*What is the width of the road right now?*” is as the example.
12461247 ► **Part-1:** The prompt for Part-1 *giving the instructions* for preparing for future steps should be:
1248

1249 Part-1: Question-Guided Captioning Instructions

1250 ► **Input:**

1251 <TASK DEFINITION>

1252 Your task is to analyze the user's question and define EXACT observation requirements for
1253 video captioning from the video in order to help answer it.1254 Think carefully: What aspects of the video should a caption focus on to make answering
1255 this question possible?
1256

1257 <INSTRUCTIONS>

1258 From the given question, generate a list of **observation requirements**: Each requirement
1259 should describe an important dimension that a future caption must pay attention to.
1260 Some CRITICAL FOCUS: 1. Quantification: Require exact counts when applicable
1261 2. Directionality: Specify spatial relationships, positions and movement vectors
1262 3. Object-anchored
1263 4. Disambiguation of Confusable Concepts: If options include visually similar
1264 or easily confused concepts (e.g., “table” vs “counter”, “cabinet” vs “shelf”), ensure captions
1265 distinguish them clearly through spatial context, object functions, or visual appearance.
12661267 For example: exact count of objects in someplace or the number of people, actions and
1268 their order, hand movements or object manipulation, specific visual details, interactions,
1269 gestures, spatial relationships, direction, distance, any sounds or spoken content
1270 Such as: “exact count of apples placed in basket”, “direction of sword thrust relative to
1271 opponent”, “distance between white car and pedestrian when braking”, “rotation angle of
1272 wrench during tightening”
1273 <INSTRUCTIONS>

1274 <CONSTRAINTS>

1275 Only generate points that are visually observable. Do not speculate. Focus on fine-grained
1276 but relevant aspects. Max 5 points. Return your result in this **JSON** format:1277 { “question”: [What is the width of the road right now?], “caption requirements”: [“<|quantifiable requirement 1|>”, “<|space
1278 observation requirement 2|>”, “<|other observation point 3|>”,
1279 ...,] }
1280 <CONSTRAINTS>

1281 <TASK DEFINITION>

1282 ► **Output:**1283 {
1284 “caption_requirements”: [
1285 “width measurement of the road”,
1286 “position of the road within the frame”,
1287 “any obstacles or landmarks for scale reference”,
1288 “any changes to the road width over time”
1289]
1290 }
1291

1296 ▶ **Part-2:** The detailed prompt for Part-2 is shown as follows:
1297

1298 Part-2: Question Decomposition

1299

1300 ▶ **Input:**

1301

1302 <TASK DEFINITION>
1303 Your ONLY goal in this step is to read the user's main question below. Break it down into
1304 a set of precise, concrete sub-questions. Each sub-question should focus on a specific,
1305 observable aspect of the video (e.g., object, person, action, spatial relation, etc.). These
1306 sub-questions represent the key elements that must be visually or aurally verified in the
1307 video to answer the main question.

1308 <CONSTRAINTS>

1309

1310 • Only include attributes that are **explicitly required** or clearly implied by the question.
1311 • Do NOT use background knowledge, commonsense, or speculate.
1312 • Do NOT include any explanations or commentary.
1313 • Output must be in **valid JSON**, under the top-level key "required_attributes".
1314 • **Do not include trailing commas.**

1315

1316 Return your result in this JSON format: {"question": [What is the width of the
1317 road right now?], "required_subquestions": [{"type": <|type|>, "description":
1318 <|Required Subquestion description|>}]}
1319 <CONSTRAINTS>

1320

1321 <TASK DEFINITION>

1322

1323 ▶ **Output:**

1324

1325

```
{
  "required_subquestions": [
    { "type": "object", "question": "Is there a road visible in the video? " },
    { "type": "temporal_change", "question": "Is the road width consistent throughout the video, or does it change over time? " },
    { "type": "spatial_relation", "question": "Is the road width measured from edge to edge, or from center to center? " },
    { "type": "other", "question": "Is there any measurement tool used to measure the road width? " }
  ]
}
```

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338 In our sub-question decomposition prompt in Part-2, requirements such as "focus on a specific,
1339 observable aspect of the video" and "explicitly required or clearly implied by the question" are ex-
1340 plicitly designed to avoid failure modes where the model generates freely diverging sub-questions
1341 with only weak relevance to the main query. Instead of allowing free-form decomposition, ATDM
1342 tightly controls both the *generation* and the *use* of sub-questions. The prompt guides the model to
1343 propose only a small set (typically 3–5) of sub-questions that are directly derived from the main
1344 question and cover it from complementary, semantically aligned perspectives. Beyond this con-
1345 strained construction, ATDM incorporates two refinement mechanisms in Part 4 and Part 5: Part 4
1346 continuously updates each sub-question's answer as new clips arrive, while Part 5 explicitly corrects
1347 them using cross-clip evidence. Together, these mechanisms ensure that both the generation and use
1348 of sub-questions remain well controlled.

1349

1350
 1351 **► Part-3:** The detailed prompt for Part-3 is shown as follows. To convey the overall message, we
 1352 present some content of clip captions before 0 : 07 : 46 here:
 1353

1354 A bustling city street is captured during a rainy day. **The road is wide**, with multiple lanes
 1355 for traffic. Vehicles, including yellow taxis and various cars, navigate through the wet asphalt.
 1356 ... A few pedestrians walk along the sidewalks, while vehicles move steadily despite the rain.
 1357 The scene transitions from a more open area to a busier intersection with more traffic and
 1358 pedestrians. **The road remains consistently wide throughout**, with clear lane markings and
 1359 traffic flow.
 1360

1361 **Part-3: Video Clip Captioning**

1362 **► Input:**

1363 **<TASK DEFINITION>**

1364 Watch the current video clip and generate a descriptive caption, you must focus your caption
 1365 on the following key observation points:

1366 **<|Caption Requirements List|>**
 1367 **<|Video|>**

1368 **<INSTRUCTIONS>**

1369 1. Base your caption only on what is clearly visible. Limit to 500 words max.
 1370 2. Be specific and concrete: describe actions, hand use, counts, object states, etc.
 1371 3. Use short, factual sentences. No speculation, no vague summaries.
 1372 4. Precision first if required: "three apples" NOT "some fruits", "thrusting
 1373 downward at 45° angle" NOT "attacking", "2.3m left of tree" NOT
 1374 "near tree", etc.

1375 **<CONSTRAINTS>**

1376 Return the caption in valid JSON format:

1377
 1378
 1379 {
 1380 "clip_timestamp": "{timestamp}",
 1381 "caption": "detailed caption that fulfills the requirements"
 1382 }

1383 **<CONSTRAINTS>**

1384 **► Output:**

1385
 1386
 1387 {
 1388 "clip_timestamp": "0:07:46-0:08:50",
 1389 "caption": "A busy urban street scene during rainy weather. The
 1390 road is wet and reflective, with multiple lanes of traffic
 1391 moving in both directions. Skyscrapers line both sides of the
 1392 street, creating a dense cityscape. Pedestrians cross the street
 1393 at a crosswalk, some holding umbrellas. Vehicles, including
 1394 yellow taxis and various cars, navigate through the traffic. The
 1395 road surface shows signs of wear but remains functional. There
 1396 are no visible construction or obstacles affecting the road
 1397 width. The overall atmosphere reflects a bustling city
 1398 environment despite the rain."
 1399 }

1400
 1401 **► Part-4:** The full prompt used in Part-4 is provided below. For brevity, we omit the complete
 1402 problem statement and the intermediate outputs referenced in earlier parts.

1404
 1405 Part-4: Sub-answer Extraction and Filling Information
 1406
 1407 **► Input:**
 1408 <TASK DEFINITION>
 1409 Your task is to:
 1410 1. Read the main user question and the list of required **subquestions** (from Part-1).
 1411 2. Read the caption of the current video clip.
 1412 3. For **each subquestion**, determine whether the caption provides enough information to
 1413 answer it:
 1414 - If yes: provide an appropriate answer ('value') and a confidence score between 0 and 1.
 1415 - If no or uncertain: set "value": "?" and "confidence": 0.0.
 1416
 1417 <INPUT>
 1418 **Main Question:**
 1419 <|Question|>
 1420 **Required Subquestions** (from Part-2 or latest output from Part-4):
 1421 <|Required Subquestions|>
 1422 **Caption of the current clip:**
 1423 <|Past caption|>
 1424
 1425 <OUTPUT FORMAT>
 1426 Return one top-level JSON object with the key "subquestion_status".
 1427 Each item must include:
 1428 - "type": one of ["object", "attribute", "person", "action",
 1429 "scene", "event", "temporal change", "spatial relation",
 1430 "causal relation", "count", "other"]
 1431 - "question": the original subquestion (from Part-1)
 1432 - "value": the answer extracted from the caption (or "?" if not found)
 1433 - "confidence": a float between 0 and 1
 1434
 1435 Also include an overall "estimated_progress" field (e.g., percentage of subquestions
 1436 with confidence ≥ 0.85).
 1437
 1438 <OUTPUT TEMPLATE>
 1439
 1440 {
 1441 "subquestion_status": [
 1442 {
 1443 "type": "<attribute_type>",
 1444 "question": "<subquestion_text>",
 1445 "value": "<answer_or_?>",
 1446 "confidence": 0.xx
 1447 },
 1448 ...
 1449],
 1450 "estimated_progress": <int from 0 to 100>
 1451 }
 1452
 1453 <CONSTRAINTS>
 1454 - Only rely on what is explicitly visible or audible in the current caption.
 1455 - Do NOT use prior background knowledge or context.
 1456 - Do NOT speculate or fabricate.
 1457 - Ensure output is valid JSON (no trailing commas).
 1458 - If nothing is observed, return all values as "?" with "confidence": 0.0.
 1459
 1460 **► Output:**
 1461
 1462

1458

Part-4: Sub-answer Extraction and Filling Information

1459

1460

(Here, we present only a single representative intermediate state.)

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

Self-triggered reflection is a deterministic cross-clip reasoning step that revises answers, progress, and confidence when confidence-based triggers indicate high uncertainty or significant semantic shifts. In the prompt of Part-5, the “self-triggered reflection” stage is implemented as a cross-clip reasoning pass built on the confidence signals c . Given the decomposed sub-questions, their current answers, the corresponding (ρ, c) values, and the recent relative clip captions, reflection (i) restructures these local pieces into a globally coherent reasoning chain across clips, and (ii) revises sub-question answers and (ρ, c) whenever single-clip evidence is unreliable or mutually inconsistent. This prevents the controller from being myopically tied to a single clip and yields a smoother, more globally consistent reasoning trajectory.

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

```
{
  "subquestion_status": [
    {
      "type": "object",
      "question": "Is there a road visible in the video?",
      "value": "yes",
      "confidence": 0.95
    },
    {
      "type": "temporal_change",
      "question": "Is the road width consistent throughout the video, or does it change over time?",
      "value": "consistent",
      "confidence": 0.90
    },
    {
      "type": "spatial_relation",
      "question": "Is the road width measured from edge to edge, or from center to center?",
      "value": "?",
      "confidence": 0.0
    },
    {
      "type": "other",
      "question": "Is there any measurement tool used to measure the road width?",
      "value": "no",
      "confidence": 0.85
    }
  ],
  "estimated_progress": 75
}
```

1512
 1513 ► **Part-5:** The detailed prompt for Part-5 is shown as follows. Then, we provide two specific
 1514 examples of the output.

1515 Part-5: Active Thinking for Refining the Reasoning across Clips

1516 ► **Input:**

1517 <TASK DEFINITION>

1518 **1. Cross-clip causal reasoning**

- Analyze each new clip caption for **direct** evidence related to each attribute.
- Build an explicit, ordered chain **only** for attributes with relevant evidence. Use arrow notation: “Clip X → [supports/contradicts/provides evidence for] [attribute] because [exact caption text]”. If a clip provides no relevant evidence for any attribute, state: “Clip X → No relevant evidence for current attributes”.

1519 **2. Evidence relevance check**

- For each attribute, explicitly check whether the captions contain relevant information. Mark attributes as “relevant evidence found” or “no relevant evidence”.

1520 **3. Update the attribute list**

- **Preserve** original values and confidences for attributes without relevant evidence. Modify attributes **only** where direct, explicit evidence is found; quote the exact caption text that supports the change.

1521 <INPUT>

1522 **Question:**

1523 <|Question|>

1524 **Latest reasoning state** (attribute list + confidences):

1525 <|Past CoT State|>

1526 **Past clip captions when confidence changes** (chronological order):

1527 <|Clip Captions|>

1528 <OUTPUT FORMAT>

1529 Return exactly **one** JSON object (no extra prose).

```
1530
1531 {
1532     "causal_chain": [
1533         "Clip X → [reasoning or 'No relevant evidence']"
1534     ],
1535     "attribute_status": {
1536         "<Attribute-Type>": {
1537             "value": "<value>",
1538             "confidence": 0.xx,
1539             "status": "upgraded | downgraded | unchanged | newly_added",
1540             "note": "old 0.yy → new 0.xx, [exact caption evidence] |"
1541             "unchanged - no evidence"
1542         }
1543     },
1544     "estimated_progress": "<percentage with confidence > 0.5>"
1545 }
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
```

1566 <CONSTRAINTS>

1567 **Remember: NO EVIDENCE = NO CHANGE.**

- No evidence ⇒ status “unchanged”, original confidence preserved.
- Quote the **exact** caption text in notes when updating.

1568 ► **Output:**

```

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

{
  "causal_chain": [
    "Clip 3 -> [provides evidence for] [Is there a black SUV directly in front of the camera right now? because A vehicle directly ahead is visible, appearing to be a dark-colored car.]"
  ],
  "attribute_status": {
    "Is there a black SUV directly in front of the camera right now ?": {
      "value": "A vehicle directly ahead is visible, appearing to be a dark-colored car.",
      "confidence": 0.75,
      "status": "upgraded",
      "note": "old 0.6 -> new 0.75, [A vehicle directly ahead is visible, appearing to be a dark-colored car.]"
    }
  },
  ...
  "estimated_progress": 50
}

{
  "causal_chain": [
    "Clip 4 -> [provides evidence for] [is there a painting visible on the wall? because] 'A close-up view of an artist's hand meticulously painting details on a canvas.'",
    "Clip 4 -> [provides evidence for] [is text readable on the painting? because] 'Text 'IT'S IN THE DETAILS' appears prominently over the artwork.'",
    "Clip 4 -> [provides evidence for] [is the camera focused on the lower left corner of the wall while showing the painting? because] 'Text 'IT'S IN THE DETAILS' appears prominently over the artwork.'"
  ],
  "attribute_status": {
    "is there a painting visible on the wall?": {
      "value": "yes",
      "confidence": 0.95,
      "status": "upgraded",
      "note": "old 0.00 -> new 0.95, 'A close-up view of an artist's hand meticulously painting details on a canvas.'"
    },
    "is text readable on the painting?": {
      "value": "yes",
      "confidence": 0.95,
      "status": "upgraded",
      "note": "old 0.00 -> new 0.95, 'Text 'IT'S IN THE DETAILS' appears prominently over the artwork.'"
    },
    "is the camera focused on the lower left corner of the wall while showing the painting?": {
      "value": "yes",
      "confidence": 0.95,
      "status": "upgraded",
      "note": "old 0.00 -> new 0.95, 'Text 'IT'S IN THE DETAILS' appears prominently over the artwork.'"
    }
  },
  "estimated_progress": 95
}

```