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ABSTRACT

Single-domain offline reinforcement learning (RL) often suffers from limited data
coverage, while cross-domain offline RL handles this issue by leveraging addi-
tional data from other domains with dynamics shifts. However, existing studies
primarily focus on train-time robustness (handling dynamics shifts from training
data), neglecting the test-time robustness against dynamics perturbations when de-
ployed in practical scenarios. In this paper, we investigate dual (both train-time
and test-time) robustness against dynamics shifts in cross-domain offline RL. We
first empirically show that the policy trained with cross-domain offline RL ex-
hibits fragility under dynamics perturbations during evaluation, particularly when
target domain data is limited. To address this, we introduce a novel robust cross-
domain Bellman (RCB) operator, which enhances test-time robustness against dy-
namics perturbations while staying conservative to the out-of-distribution dynam-
ics transitions, thus guaranteeing the train-time robustness. To further counteract
potential value overestimation or underestimation caused by the RCB operator,
we introduce two techniques, the dynamic value penalty and the Huber loss, into
our framework, resulting in the practical Dual-RObust Cross-domain Offline RL
(DROCO) algorithm. Extensive empirical results across various dynamics shift
scenarios show that DROCO outperforms strong baselines and exhibits enhanced
robustness to dynamics perturbations.

1 INTRODUCTION

Deep reinforcement learning (RL) (Sutton & Barto, 1999) has been a vital tool in various fields,
such as embodied manipulation (Zakka et al., 2023; Shi et al., 2024) and natural language process-
ing (Ouyang et al., 2022; Rafailov et al., 2023). The success of typical RL often relies on numerous
online interactions with the environment. However, this trial-and-error manner can be costly or
even risky when applied in the real world. Offline RL (Levine et al., 2020), instead, trains the policy
with only a pre-logged offline dataset, eliminating the need for interactions with the environment.
However, large-scale and diverse offline datasets are not always accessible in practice, and offline
RL often struggle with a limited offline dataset. A line of recent studies (Wen et al., 2024; Lyu et al.,
2025; Liu et al., 2022) has explored a paradigm known as Cross-Domain Offline RL. In this setting,
data from the target domain is limited, but we have access to datasets from a relevant but distinct
domain (the source domain), which may contain sufficient offline data. The goal of cross-domain
offline RL is to utilize the datasets from both the source domain and the target domain to learn an
effective policy for the target environment.

Although cross-domain offline RL is promising, simply merging the source domain dataset and tar-
get domain dataset for policy training induces policy divergence and suboptimal performance (Wen
et al., 2024). The issue stems from the dynamics mismatch: the transition dynamics of the source
domain may differ from that of the target domain. Recent advances tackle this issue by learning
domain classifiers to estimate the dynamics gap (Liu et al., 2022), or by filtering source domain data
based on mutual information (Wen et al., 2024) or optimal transport (Lyu et al., 2025). These works
focus on enhancing the train-time robustness of the policy against dynamics shifts, that is, handling
the source-target dynamics mismatch. However, they overlook the occurrence of potential dynamics
shifts during deployment of the learned policy in real-world environments. For example, an RL
policy for robotics manipulation is trained on data collected from a real robot (target domain data)
and an imperfect simulator (source domain data). When the policy is deployed on the real robot,
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the robot’s physical components may degrade over time, causing the transition dynamics to deviate
from that observed in the target domain dataset. Consequently, the policy’s performance may dete-
riorate during deployment, highlighting the need for methods that ensure test-time robustness, that
is, addressing the dynamics mismatch between the target and deployment environment.

In this paper, we initiate the investigation of dual (both train-time and test-time) robustness to dy-
namics shifts in cross-domain offline RL. We first empirically show that with limited target domain
data, the learned policy could be highly fragile to test-time dynamics shifts. To address this is-
sue, we propose Dual-RObust Cross-domain Offline RL (DROCO), bringing a new perspective
on robustness specifically tailored for cross-domain offline RL, going beyond single-domain ro-
bust RL (Iyengar, 2005; Kuang et al., 2022). The core component of DROCO is a novel robust
cross-domain Bellman (RCB) operator, which we theoretically prove enhances test-time robust-
ness against dynamics perturbations while remaining conservative to the out-of-distribution (OOD)
dynamics transitions (Liu et al., 2024a), thus guaranteeing train-time robustness. However, value
overestimation or underestimation may occur when using the RCB operator. To mitigate this, we
introduce two techniques, the dynamic value penalty and the Huber loss (Huber, 1973), to our frame-
work, resulting in our practical DROCO algorithm. Our contributions are summarized as follows.

• We empirically demonstrate the fragility of cross-domain offline RL to test-time dynamics shifts
and initiate the study of dual robustness in this setting, contributing new perspectives to the field.

• We introduce a novel RCB operator which is theoretically proven to achieve dual robustness
against dynamics shifts. We further introduce dynamic value penalty and Huber loss to mitigate
value overestimation or underestimation, yielding our practical algorithm, DROCO.

• Extensive experiments across diverse dynamics shift scenarios including kinematic and morphol-
ogy shifts demonstrate that DROCO outperforms strong baselines and exhibits significant robust-
ness against various test-time dynamics perturbations.

2 PRELIMINARIES

We consider a Markov Decision Process (MDP) (Puterman, 1990) which is defined by the six-tuple
M = (S,A, P, r, ρ, γ) where S is the state space, A is the action space, P : S × A → ∆(S)
is the transition dynamics, ∆(·) is the probability simplex, r(s, a) : S × A → [−rmax, rmax] is
the reward function, ρ is the initial state distribution, and γ is the discount factor. The objective
of RL is to learn a policy π : S → ∆(A) that maximizes the expected discounted cumulative
return Eπ [

∑∞
t=0 γ

tr(st, at)]. We define Qπ(s, a) := Eπ [
∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] and
V π(s) := Ea∼π(·|s) [Qπ(s, a)].

Cross-Domain RL. In cross-domain RL, we have access to a source domain MDP Msrc =
(S,A, Psrc, r, ρ, γ) and a target domain MDP Mtar = (S,A, Ptar, r, ρ, γ). The only difference
between the two domains is the transition dynamics, as considered by previous works (Wen et al.,
2024; Lyu et al., 2025). In the offline setting, only a target domain dataset Dtar and a source domain
datasetDsrc are available. We aim to leverage the mixed datasetDsrc∪Dtar to learn a well-performing
agent in the target domain.

Enhancing Robustness in RL. Robust RL aims to optimize the worst-case policy performance to
enhance the robustness against environmental perturbations. Different from standard RL, robust RL
applies the following robust Bellman operator for Bellman backup:

TrobustQ(s, a) = r(s, a) + γ inf
M∈Mϵ

Es′∼PM(·|s,a)

[
max
a′∈A

Q(s′, a′)

]
,

whereMϵ is the dynamics uncertainty set under some distributional distance metric. If we choose
Wasserstein distance (Villani et al., 2008) as the distance metric, thenMϵ is the Wasserstein uncer-
tainty set:

Mϵ = {M̂ :W
(
PM(·|s, a), PM̂(·|s, a)

)
≤ ϵ}, (1)

where W
(
PM(·|s, a), PM̂(·|s, a)

)
= infγ∈Γ(PM,P

M̂
) Es′1,s′2∼γ [d(s

′
1, s

′
2)] is the Wasserstein dis-

tance between PM(·|s, a) and PM̂(·|s, a), Γ(·, ·) is the joint distribution, and d(·, ·) is an element-
wise distance metric such as the Euclidean distance.
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3 IS CROSS-DOMAIN OFFLINE RL SENSITIVE TO TEST-TIME DYNAMICS
PERTURBATIONS?

To motivate our approach, we conduct an empirical study on the sensitivity of cross-domain offline
RL to test-time perturbations. Our key finding is that cross-domain offline RL could be highly
sensitive to test-time dynamics perturbations, especially when limited target domain data is given.
Therefore, enhancing test-time robustness is crucial for cross-domain offline RL.
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Figure 1: Performance comparison with different
dataset sizes under dynamics perturbations.

We adopt the hopper-v2 task from Mu-
JoCo (Todorov et al., 2012) as our target do-
main, and the full-size hopper-expert-v2
dataset from D4RL (Fu et al., 2020) as the
target domain dataset. To simulate dynamics
shifts in the source domain, we create a modi-
fied hopper-v2 environment with kinematic
shifts (called hopper-kinematic-v2)
by constraining the robot’s joint rotation
range. For the source domain dataset, we
train an expert-level SAC (Haarnoja et al.,
2018) policy and collect 1M samples in
hopper-kinematic-v2 environment with
it. To examine the test-time robustness of
cross-domain offline RL, we first train a policy
using IGDF (Wen et al., 2024) on the full-size
source and target domain datasets for 1M steps.
We then evaluate the trained policy under four
conditions: (1) the original target environment (clean), and (2-4) kinematic perturbations with three
levels (easy, medium, hard) following Lyu et al. (2024b). As shown by the blue curve in Figure 1,
the policy demonstrates vulnerability to intense dynamics shifts, with performance degradation of
40.9% (medium) and 72.4% (hard) compared to the clean environment.

To better mimic the challenges when target domain data is limited in cross-domain offline RL, we
construct a reduced target domain dataset by sampling only 10% of the hopper-expert-v2
dataset. Our experiments reveal that the policy trained with this limited target data (while retaining
full source domain data) is significantly more vulnerable to dynamics perturbations. As illustrated
by the orange curve in Figure 1, performance degradation intensifies across all shift levels compared
to the full-data case, demonstrating substantially reduced test-time robustness.

We attribute this phenomenon to the discrepancy between the true dynamics and the observed dy-
namics in the target domain dataset, whose magnitude inversely correlates with the dataset size. This
discrepancy causes the policy to overfit to the dataset dynamics, thereby reducing its robustness to
dynamics perturbations. These results highlight the necessity of enhancing test-time robustness
against dynamics shifts for cross-domain offline RL, which we address in the following section.

4 DUAL-ROBUST CROSS-DOMAIN OFFLINE RL

In this section, we present our solution for fulfilling dual-robustness for cross-domain offline RL.
We first define the robust cross-domain Bellman (RCB) operator and additionally give a practical
version of it. We then show that dual-robustness can be achieved by applying the RCB operator
solely on the source domain data. Finally, we present our practical algorithm, DROCO.

4.1 ROBUST CROSS-DOMAIN BELLMAN OPERATOR

Definition 4.1 (RCB operator). The robust cross-domain Bellman (RCB) operator TRCB is defined
as

TRCBQ =


r + γEs′∼PM

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, ifM =Mtar

r + γ infM̂∈Mϵ
Es′∼PM̂

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, ifM =Msrc,

(2)

3
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where µ̂(·|·) is the behavior policy, and maxa′∼µ̂(·|s′) Q(s′, a′) denotes taking maximum over ac-
tions in the support of µ̂(·|s′), i.e., maxa′∈A s.t. µ̂(a′|s′)>0 Q(s′, a′).

In Equation 2, we assume that the source and target domain datasets share the same behavior policy
µ̂, following (Wen et al., 2024). Note that this assumption is only for notational simplicity. Even
if it does not hold, we could replace µ̂ with the respective behavior policies without affecting our
analysis. The basic idea behind the RCB operator is that if the triplet (s, a, s′) comes from the target
domain dataset, we use the standard in-sample Bellman operator (Kostrikov et al., 2021; Xu et al.,
2023) for backup to enhance the performance; while if the data are sampled from the source domain
dataset, we apply the in-sample robust Bellman operator (which integrates in-sample learning into
the robust Bellman operator) to achieve dual robustness to dynamics shifts, which we discuss later.

We now characterize the dynamic programming property of the RCB operator and give the following
proposition. All proofs are deferred to Appendix B.
Proposition 4.1 (γ-contraction). The RCB operator is a γ-contraction operator in the complete
state-action space (R|S×A|, ∥·∥∞) where ∥·∥∞ denotes the ℓ∞ norm, i.e., ∥TRCBQ1−TRCBQ2∥∞ ≤
γ∥Q1 −Q2∥∞ for any Q-functions Q1 and Q2.

Proposition 4.1 presents that the RCB operator is a γ-contraction in the tabular MDP setting. How-
ever, directly applying the RCB operator for backup is unrealistic, since we are not available to
the uncertainty setMϵ, given that the source environment is a blackbox. To handle this issue, we
introduce the following dual reformulation of Equation 2 under Wasserstein distance measure.
Proposition 4.2 (Dual Reformulation). LetMϵ be the Wasserstein uncertainty set defined by Equa-
tion 1, then the term infM̂∈Mϵ

Es′∼PM̂

[
maxa′∼µ̂(·|s′) Q(s′, a′)

]
in Equation 2 is equivalent to

Es′∼PM

[
inf
s̄

max
a′∼µ̂(·|s̄)

Q(s̄, a′)

]
, s.t. d(s′, s̄) ≤ ϵ.

Proposition 4.2 provides a solution for transforming the intractable dynamics disturbance into the
tractable state perturbations. Based on Proposition 4.2, we propose the practical RCB operator.

Definition 4.2 (Practical RCB operator). The practical RCB operator T̂RCB is defined as

T̂RCBQ =


r + γEs′∼PM

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, ifM =Mtar

r + γEs′∼PM

[
inf s̄∈Uϵ(s′) max

a′∼µ̂(·|s̄)
Q(s̄, a′)

]
, ifM =Msrc

where Uϵ(s
′) = {s̄ ∈ S | d(s′, s̄) ≤ ϵ} is the state uncertainty set.

The key distinction between T̂RCB and TRCB lies in their Bellman target computation for source
domain data. While TRCB requires the dynamics uncertainty set Mϵ that is typically unavailable,
T̂RCB solely relies on the state uncertainty set Uϵ(s′). Since s′ is observable in the source domain
dataset, Uϵ(s′) can be constructed through noise perturbations of s′. This makes T̂RCB more feasible
for Bellman backup than TRCB, and the subsequent analyses are based on T̂RCB. Moreover, the
following proposition shows that T̂RCB still possesses the same favorable property as TRCB, i.e.,
T̂RCB remains a γ-contraction.
Proposition 4.3 (γ-contraction). The practical RCB operator is a γ-contraction operator in the
space (R|S×A|, ∥ · ∥∞), i.e., ∥T̂RCBQ1 − T̂RCBQ2∥∞ ≤ γ∥Q1 −Q2∥∞ for any Q1 and Q2.

4.2 DUAL ROBUSTNESS AGAINST DYNAMICS SHIFTS

In this section, we conduct a comprehensive analysis of both train-time and test-time robustness
against dynamics shifts when employing the practical RCB operator. We first make the Lipschitz
continuity assumption about the learned Q function, which is widely used in prior theoretical studies
of RL (Mao et al., 2024; Ran et al., 2023; Xiong et al., 2022; Liu et al., 2024b).
Assumption 4.1 (Lipschitz Q function). The learned Q function is KQ-Lipschitz w.r.t. state s, i.e.,
∀a ∈ A, ∀s1, s2 ∈ S, |Q(s1, a)−Q(s2, a)| ≤ KQ ∥s1 − s2∥.

4
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We then analyze the train-time robustness against dynamics shifts from source domain data. Stan-
dard Bellman updates on source domain data might cause Q overestimation due to OOD dynamics
issues (Liu et al., 2024a; Niu et al., 2022), necessitating a conservative Q estimation for robust
performance. Proposition 4.4 shows that the learned Q̂RCB maintains bounded by applying T̂RCB.
Proposition 4.4 (Train-time robustness against dynamics shifts). If a proper ϵ is selected such that
support(Ptar(·|s, a)) ⊆ Uϵ(s

′
src), for any (s, a, s′src) in the source domain dataset. Then under

Assumption 4.1, the learned Q function by applying T̂RCB satisfies:

Q⋆
µ̂(s, a)−

2γϵKQ

1− γ
≤ Q̂RCB(s, a) ≤ Q⋆

µ̂(s, a), ∀(s, a) ∈ Dsrc,

where Q⋆
µ̂ is the Q function of optimal µ̂-supported policy1 in the target domain.

Proposition 4.4 suggests that, if a proper ϵ is chosen such that the uncertainty set Uϵ(s′src) covers
the support of Ptar(·|s, a), then the erroneous value overestimation will not occur, and the OOD dy-
namics issue is mitigated. Thus, the train-time robustness against dynamics shifts is guaranteed. We
then analyze the test-time robustness against the environmental dynamics perturbations. Let πRCB

and V̂RCB be the policy and value function learned by applying the practical RCB operator, respec-
tively. When the target environment undergoes dynamics perturbations (Ptar(·)→ Pper(·)), the value
function of πRCB within perturbed dynamics Pper, denoted as V πRCB

per , is bounded by Proposition 4.5.
Proposition 4.5 (Test-time robustness against dynamics shifts). If a proper ϵ is selected such that
support(Ptar(·|s, a)) ⊆ Uϵ(s

′
src), for any (s, a, s′src) in the source domain dataset. As long as

W(Pper(·|s, a), Ptar(·|s, a)) ≤ c, then for ∀s0 ∈ Dsrc, we have

V πRCB
per (s0) ≥ V̂RCB(s0), (3)

where c = max {c |Uc(s′tar) ⊆ Uϵ(s
′
src), s

′
tar ∼ Ptar(·|s, a), (s, a, s′src) ∼ Dsrc}.

Proposition 4.5 gives that, for any disturbance with intensity below the threshold c (measured in
Wasserstein distance), the value of the learned policy πRCB in Pper exceeds V̂RCB. This implies that
for any initial state s0 ∈ Dsrc, πRCB achieves better performance under perturbed dynamics Pper
than in the worst-case scenario, thereby improving test-time robustness against dynamics shifts.
Furthermore, Proposition 4.4 and Proposition 4.5 reveal that, (1) dual robustness could be achieved
by solely applying the RCB operator to the source domain data; (2) there is a trade-off between two
robustness and is controlled by ϵ. More discussions can be found in Appendix A.

4.3 PRACTICAL ALGORITHM

In Section 4.1, we formalize the practical RCB operator. Its application presents two key challenges:
(1) determining the uncertainty set Uϵ(s′src); (2) computing the minimum Q value within this set.
Although one can fix ϵ and adopt random sampling within Uϵ(s

′
src), it lacks flexibility. In addition,

if Psrc deviates far from Ptar, then ϵ would be too large, leading to overconservatism, compromising
the performance. To address these limitations, we propose our practical algorithm, DROCO.

Determining the uncertainty set via ensemble dynamics modeling. Instead of fixing ϵ and ran-
domly sampling from Uϵ(s

′
src), DROCO first trains an ensemble dynamics model (Janner et al.,

2019; Yu et al., 2020; Liu et al., 2024c) P̂ψ(·) = {P̂ψi(·)}Ni=1 on Dtar via maximum likelihood
estimation (MLE) to simulate Ptar(·):

Lψi = E(s,a,s′)∈Dtar

[
log P̂ψi(s

′|s, a)
]
, i = 1, 2, ..., N (4)

then we use the ensemble prediction set X =
{
s′1, · · · , s′N |s′i ∼ P̂ψi(·|s, a), (s, a) ∈ Dsrc

}
to

approximate sampling from the uncertainty set. This replacement is motivated by two key insights:
(1) dual-robustness only requires the uncertainty set around support of Ptar(·|s, a) rather than s′src,
thus alleviating the unnecessary conservatism; (2) each ensemble member’s prediction naturally
serves as a sample from this uncertainty set. In this way, the practical RCB operator for source
domain data becomes:

T̂RCBQ = r + γ inf
{s′i}N∼P̂ψi

[
max

a′i∼µ̂(·|s′i)
Q(s′i, a

′
i)

]
, if M =Msrc. (5)

1π(·|s) is µ̂-supported if π(a|s) = 0 for any action a that µ̂(a|s) = 0.

5
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However, the ensemble prediction set cannot cover the support of Ptar(·) as required in Proposi-
tion 4.4, such that the overestimation of Q value may still occur. Proposition 4.6 reveals that, only
limited overestimation would occur when applying Equation 5 as the Bellman target.

Proposition 4.6 (Limited overestimation). If sups,aDTV (P̂ψ(·|s, a), Ptar(·|s, a)) ≤ ϵ < 1
2 , we

have

inf
{s′i}N∼P̂ψi (·|s,a)

[
max

a′i∼µ̂(·|s′i)
Q(s′i, a

′
i)

]
≤ Es′∼Ptar(·|s,a)

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
+(1−(1−2ϵ)N )

rmax

1− γ
.

Proposition 4.6 holds under the assumption that the prediction error of the dynamics model stays
small, which is difficult to fulfill given that the target domain data is limited and the dynamics model
tends to overfit. Moreover, value underestimation may also occur due to the infimum operator.
Therefore, we introduce the following techniques for the underlying value estimation issue.

Tackling overestimation and underestimation. We adopt two techniques to address the value
estimation issue: dynamic value penalty, and using Huber loss (Huber, 1973) for Bellman update.

Instead of directly using Equation 5 for Bellman backup, we introduce a value penalty term:

u(s, a, s′) = I (s′ ∼ Psrc(·|s, a)) ·
(

max
a′∼µ̂(·|s′)

Q(s′, a′)− inf
{s′i}N∼P̂ψi (·|s,a)

[
max

a′i∼µ̂(·|s′i)
Q(s′i, a

′
i)

])
.

(6)
We then unify the source and target dynamics in the practical RCB operator, reformulating it as

T̂RCBQ(s, a) = r(s, a) + γEs′∼PM(·|s,a)

[
max

a′∼µ̂(·|s′)
Q(s′, a′)− β · u(s, a, s′)

]
, (7)

where M = Mtar or Msrc and β serves as a dynamic penalty coefficient that provides flexible
control over value estimation. Specifically, we recover the practical RCB operator by setting β to
1.0, β > 1.0 will increase the penalty to mitigate value overestimation, and β < 1.0 reduces the
penalty to alleviate value underestimation. Although the dynamics model and value penalty are
widely applied in offline RL (Yu et al., 2020; Sun et al., 2023; Liu et al., 2024c), our difference lies
in the specific usage of the dynamics model and design of the penalty term.

Remark. If we use IQL (Kostrikov et al., 2021) for policy optimization, then
maxa′∼µ̂(·|s′) Q(s′, a′) ≈ V (s′), and Equation 6 can be re-written as:

u(s, a, s′) = I (s′ ∼ Psrc(·|s, a)) ·
(
V (s′)− inf

{s′i}N∼P̂ψi (·|s,a)
[V (s′i)]

)
. (8)

We note that Equation 8 resembles the value discrepancy term in VGDF (Xu et al., 2024), which
is V (s′) − E{s′i}N∼P̂ψi (·|s,a)

[V (s′i)]. However, we extend this term by incorporating additional
penalties for test-time dynamics shifts, whereas VGDF only addresses train-time dynamics shifts.

The second technique we adopt is the Huber loss (Huber, 1973), a well-established technique for
noise-resistant optimization (Yang et al., 2024b; Roy et al., 2021). We replace the regular ℓ2 loss in
the Bellman update with the Huber loss:

LQ = EDsrc

[
lδ

(
Q(s, a)− T̂RCBQ(s, a)

)]
+

1

2
EDtar

[
(Q(s, a)− T Q(s, a))

2
]
, (9)

where lδ(a) =

{
0.5a2, |a| < δ

δ(|a| − 0.5δ), |a| ≥ δ
with δ being the transition threshold and T being the

standard Bellman operator for target domain data. Specifically, if severe value estimation error
occurs such that |Q(s, a) − T̂RCBQ(s, a)| > δ, the ℓ2 loss would transition to ℓ1 loss to improve
robustness against outliers. This technique helps mitigate value estimation error. The last step is to
utilize offline RL algorithms such as IQL to optimize the policy as in other works (Lyu et al., 2025;
Wen et al., 2024). We present the detailed pseudo-code of DROCO in Appendix D.2.
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Table 1: Evaluation Results with train-time kinematic shifts. half=halfcheetah, hopp=hopper,
walk=walker2d, m=medium, me=medium-expert, mr=medium-replay, e=expert. We report the nor-
malized score evaluated in the target domain and ± captures the standard deviation across 5 seeds.

Dataset IQL⋆ CQL⋆ BOSA DARA IGDF OTDF DROCO (Ours)

half-m 45.2 37.7 39.6 44.1 45.2±0.1 42.2±0.1 45.3±0.2
half-mr 22.1 23.6 26.3 21.6 22.9±1.4 15.6±3.1 26.9±3.2
half-me 43.7 54.8 42.2 52.7 57.1±8.9 46.7±4.4 60.1±7.1
half-e 49.7 36.0 84.3 47.4 47.6±2.1 79.6±3.0 67.4±5.8
hopp-m 48.8 35.7 71.4 48.8 54.3±6.6 46.3±3.7 55.4±5.3
hopp-mr 40.2 43.2 29.5 41.6 30.0±5.2 26.2±4.4 47.3±7.0
hopp-me 12.5 7.8 49.6 17.0 11.6±0.6 58.1±4.9 54.0±6.4
hopp-e 62.6 47.9 94.8 59.1 70.1±3.2 97.0±3.3 89.3±9.6
walk-m 48.7 47.7 44.5 43.4 51.8±2.4 43.0±2.1 70.8±3.3
walk-mr 12.6 17.8 4.8 15.6 11.2±1.1 10.7±1.9 27.7±3.0
walk-me 95.4 61.4 35.1 85.3 90.6±3.4 63.1±6.6 78.5±6.7
walk-e 90.1 83.8 41.9 85.5 93.7±5.8 98.9±2.1 106.0±0.8
ant-m 89.9 58.2 28.4 98.9 88.0±4.6 86.1±3.7 92.7±6.3
ant-mr 46.8 39.4 22.0 42.1 58.2±9.7 39.6±8.1 44.8±4.5
ant-me 106.1 100.6 102.5 104.8 112.8±4.0 105.1±3.9 119.0±3.6
ant-e 111.0 94.3 57.6 115.1 119.2±5.6 111.6±2.9 120.0±2.1
Total 925.4 789.9 774.5 923.0 964.3 969.8 1105.2

5 EXPERIMENTS

In this section, we conduct extensive experiments to examine our method. We aim to answer the
following two questions: (1) Can DROCO outperform prior strong baselines across various train-
time dynamics shifts and dataset qualities? (2) Can DROCO show enhanced robustness against
test-time dynamics perturbations? We also test the parameter sensitivity of DROCO.

5.1 MAIN RESULTS

Experimental Settings. Following previous works (Lyu et al., 2025; Wen et al., 2024), We employ
4 MuJoCo (Todorov et al., 2012) tasks as source domains: halfcheetah-v2, hopper-v2,
walker2d-v2, and ant-v3. For the target domain datasets, we utilize 4 data qualities from
D4RL (Fu et al., 2020) for each task: medium, medium-replay, medium-expert, and
expert, totaling 16 target domain datasets. For the source domain, we introduce kinematic
shifts and morphology shifts on the target domain setup. We collect source domain datasets with 4
data qualities, resulting in a total of 32 (4[tasks]× 2[shift types]× 4[data qualities])
source domain datasets. Each pair of the source and target domain datasets shares the same task
type (such as hopper-v2) and dataset quality (such as expert). More details about the tasks and
datasets can be found in Appendix C.1.

Baselines. We consider the following baselines: IQL⋆, CQL⋆ (which train IQL (Kostrikov et al.,
2021) and CQL (Kumar et al., 2020) with the mixed dataset Dtar ∪ Dsrc), BOSA (Liu et al., 2024a),
DARA (Liu et al., 2022), IGDF (Wen et al., 2024) and OTDF (Lyu et al., 2025).

Results. We run each baseline and DROCO for 1M training steps over 5 random seeds, and report
the results with train-time kinematic shifts in Table 1 (the results with morphology shifts are de-
ferred to Appendix E.2). Note that our evaluation is under the clean target environment. Empirical
results demonstrate that DROCO achieves superior performance in 9 out of 16 tasks, outperforming
all 6 baselines. Furthermore, in terms of the total normalized score, DROCO achieves a remarkable
1105.2, significantly surpassing the second-best method, OTDF (969.8), by 14.0%. We attribute
the suboptimal performance of DROCO on the remaining datasets to its trade-off between perfor-
mance and robustness, whereas other methods only consider performance. However, DROCO still
remains a competitive performance with other baselines on these datasets. These results indicate
that DROCO exhibits superior train-time robustness against dynamics shifts.
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Figure 2: Evaluation results under different types and levels of dynamics perturbations.
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Figure 3: Parameter sensitivity experiments on β and δ.

5.2 EVALUATION UNDER DYNAMICS PERTURBATIONS

Experimental Settings. Test-time robustness can be measured by the degree of performance degra-
dation in the face of dynamic perturbations, compared to the clean environment. To examine the
test-time robustness of DROCO, we introduce three kinds of dynamics perturbations during evalua-
tion in the target environment: kinematic perturbations, morphology perturbations, min Q perturba-
tions (Yang et al., 2022; 2024b). The first two perturbation types mirror the source domain dynamics
shifts, each implemented at three intensity levels following (Lyu et al., 2024b): easy, medium, and
hard. The third perturbation type represents an adversarial attack strategy that modifies dynamics
by finding the state s̄ from Uϵ(s

′) that minimizes the Q value, i.e., s̄ = argmins̄∈Uϵ(s′) Q(s̄, π(s̄)),
where ϵ is related to the perturbation scale. We consider DROCO to exhibit better test-time robust-
ness if it demonstrates less performance degradation than the baselines under the same shift severity.

Results. We evaluate our method against two baselines (IGDF and OTDF) under three perturbation
types with varying intensity levels. Due to space constraints, we only report results when the source
domain dataset is halfcheetah-kinematic-expert, as illustrated in Figure 2. A wider
range of evaluation can be found in Appendix E.3.

Our experiments demonstrate that DROCO exhibits superior robustness to dynamic perturbations
compared to baseline methods. Specifically, under easy-level kinematic shifts, DROCO shows only
a 19.3% performance degradation (from 67.4 to 54.4), whereas both IGDF and OTDF suffer over
50% performance deterioration. We notice that DROCO displays greater sensitivity to morpho-
logical perturbations than to kinematic perturbations, with a 42.1% performance decrease under
easy-level morphological variations. We attribute this to the absence of morphology shifts in the
source domain data, rendering the policy less adaptable to this unseen perturbation type. Neverthe-
less, DROCO still outperforms both baselines: under the same conditions, OTDF and IGDF exhibit
performance declines of 62.4% and 78.9% respectively. Notably, DROCO maintains consistent
robustness against min Q perturbations across all scales. At the highest perturbation scale of 0.2,
DROCO’s performance decreases by 37.9%, compared to 73.6% and 84.0% for OTDF and IGDF.
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5.3 PARAMETER SENSITIVITY

We examine the sensitivity of DROCO to the introduced hyperparameters. There are two main
hyperparameters in DROCO: the penalty coefficient β and the transition threshold δ.

Penalty coefficient β. The parameter β controls the intensity of value penalty, a larger β leads
to a stronger penalty and suppresses value overestimation, and vice versa. We sweep β across
{0.1, 0.5, 1.0, 1.2} and show the experimental results with medium datasets in Figure 3 (a). We
observe different tasks prefer distinct β. For example, setting β = 0.1 achieves the best performance
for hopper-kinematic-medium, while walker2d-kinematic-medium prefers β = 1.0.

Transition threshold δ. The parameter δ determines when the ℓ2 loss turns to ℓ1 loss for Bellman
update. A larger δ corresponds to a more lenient transition condition. To test the effect of δ, we select
δ among {5, 10, 30, 50} and conduct experiments with medium-replay datasets. The results in
Figure 3 (b) indicate that a too small δ (e.g., δ = 5) leads to inferior performance, while setting
δ = 30 achieves a good performance. However, we find the optimal δ varies across different tasks
through additional experiments, and more discussions are provided in Appendix E.5.

Remark. Although different values of β and δ are preferred for different tasks (as shown in Ap-
pendix E.5), we could still find some patterns across different tasks. We find that setting β ≤ 1.0
works for most tasks, implying that value underestimation occurs more often due to the infimum
operator. We also find a larger δ (30 and 50) is preferred for most tasks. We believe it is because
ℓ2 loss is beneficial for training stability. Therefore, for a new task, we could first try β ≤ 1.0 and
δ = 30 (or δ = 50). This could serve as a guideline for finding the best hyperparameter.

6 RELATED WORK

Offline RL. Offline RL often suffers from OOD action issues (Kumar et al., 2020; Fujimoto et al.,
2019). Existing solutions include incorporating policy constraints (Kumar et al., 2019; Fujimoto
& Gu, 2021), learning a conservative value function (Kumar et al., 2020; Lyu et al., 2022), etc.
However, these methods require that the offline dataset contains a large amount of data. In contrast,
we focus on cross-domain offline RL, which relaxes the target data requirement.

Cross-domain RL. Cross-domain RL (Niu et al., 2024) faces the challenge of domain mismatch,
including observation mismatch (Yang et al., 2023), viewpoints mismatch (Liu et al., 2018; Sadeghi
et al., 2018), and dynamics mismatch (Wen et al., 2024; Lyu et al., 2025; Xu et al., 2024; Niu et al.,
2022; 2023), etc. In this paper, we exclusively focus on dynamics mismatch. Previous studies handle
this issue by adaptively penalizing Q value on source domain samples (Niu et al., 2022), capturing
dynamics mismatch from a representation learning perspective (Lyu et al., 2024a) and value dis-
crepancy perspective (Xu et al., 2024), modifying the reward function in the source domain (Liu
et al., 2022; Eysenbach et al., 2020; Xue et al., 2023; Wang et al., 2024), etc. We focus on the offline
setting, where the current works (Liu et al., 2022; 2024a; Wen et al., 2024; Lyu et al., 2025; Wang
et al., 2024) primarily consider the dynamics shifts from the source domain data, while we further
consider the dynamics shifts from environmental perturbations.

Robust RL. Robust RL (Iyengar, 2005; Xu & Mannor, 2010) aims to learn a policy resilient to
environmental perturbations or data corruption. One line of research in robust RL focuses on train-
time robustness against data corruption (Yang et al., 2024b; Zhang et al., 2021; 2022; Ye et al.,
2023; Yang et al., 2024a), while another line addresses test-time robustness against environmental
perturbations (Yang et al., 2022; Zhihe & Xu, 2023; Shi & Chi, 2024; Liu et al., 2024c). These works
focus only on a single perspective of robustness (train-time or test-time) and the single-domain
offline settings. For the cross-domain setting, (He et al., 2025; Liu & Xu, 2024a) study robust off-
dynamics RL, but they are different from our work, since they still only consider one aspect of
robustness and focus on the online setting. In contrast, our work addresses the cross-domain offline
setting and jointly considers both train-time and test-time robustness.

7 CONCLUSION

In this paper, we investigate the dual (train-time and test-time) robustness against dynamics shifts in
cross-domain offline RL. We propose a novel RCB operator and theoretically demonstrate its ability
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of dual robustness. To further handle the potential value estimation error, we add a dynamic value
penalty and use Huber loss for Bellman update, yielding our practical DROCO algorithm. Through
extensive experiments across various dynamics shifts scenarios, we show that DROCO outperforms
prior strong baselines and exhibits strong robustness to dynamics perturbations.
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A MORE DISCUSSIONS OF DROCO

In this section, we provide further clarifications on several questions regarding DROCO that readers
might be concerned about.

1. Why not test DROCO on more tasks such as Antmaze and Adroit?

In our experiments, we evaluate our method DROCO and other baselines on MuJoCo-based tasks
(e.g., halfcheetah-v2 and hopper-v2). This experimental setting is standard and has been
adopted by recent works such as VGDF (Xu et al., 2024), IGDF (Wen et al., 2024), OTDF (Lyu
et al., 2025), and CompFlow (Kong et al., 2025). By following these established settings, we believe
our experiments are sufficient for evaluating DROCO’s effectiveness.

On the other hand, existing literature (Lyu et al., 2024b) indicates that Antmaze tasks with vary-
ing map structures are highly challenging for cross-domain RL (Observation 3, p.7), as adapting
policies across structural barriers remains difficult. Similarly, cross-domain RL methods often fail
on dexterous hand manipulation tasks (Adroit) with kinematic or morphology shifts (Observation
4, p.8). Empirically, we find that not only DROCO but all baseline methods (e.g., BOSA, DARA,
IGDF, OTDF) struggle to achieve meaningful performance on Antmaze and Adroit tasks.

We emphasize that enabling cross-domain RL to succeed in such challenging settings (Antmaze
and Adroit) remains an open problem (p.17 in (Lyu et al., 2024b)) and falls beyond the scope of
this work. We believe that MuJoCo tasks with dynamics shift provide a sufficient and appropriate
testbed for evaluating our method.

2. Can DROCO be extended into settings where the source and target domain have distinct
state-action representations?

The answer is yes. Although this work follows the setting of recent studies (e.g., BOSA, DARA,
IGDF, OTDF) and assumes identical state and action spaces across source and target domains,
DROCO can be generalized to domains with distinct state-action representations. This can be
achieved by incorporating techniques such as inter-domain mapping via dynamics cycle consis-
tency (Zhang et al., 2020). Other mapping methods (You et al., 2022; Pan et al.) are also compatible
with our framework and could be seamlessly integrated. Thus, DROCO remains applicable even
under varying state-action spaces.

3. Why the Wasserstein uncertainty set is chosen instead of other uncertainty sets?

Although there are other possible choices of uncertainty set like the (s, a)-rectangularity (Iyengar,
2005) and d-rectangularity (Liu & Xu, 2024b), their dual reformulations often result in complex
constraints or regularizations and are typically limited to simple linear MDP settings. In contrast,
the Wasserstein uncertainty set admits an elegant closed-form dual reformulation (Proposition 4.2),
which allows converting dynamics perturbations into a simple state uncertainty set—a property crit-
ical for practical implementation. Moreover, the Wasserstein metric inherently couples state transi-
tions, enabling a natural mapping to state perturbations and providing geometric interpretability.

4. Why not apply the RCB operator on target domain data to improve test-time robustness?

On the one hand, Propositions 4.4 and 4.5 show that dual robustness is guaranteed as long as
support(Ptar(·|s, a)) ⊆ Uϵ(s

′
src) holds—even when the RCB operator is applied only to source

domain data. Even when this condition is not fully satisfied, our techniques (dynamic value penalty
and Huber loss) still enhance robustness. Therefore, applying the RCB operator to target domain
data is unnecessary.

On the other hand, target domain data is important for achieving high performance on the clean
target environment. Applying the RCB operator to it would introduce conservatism and compromise
performance. Moreover, since target data are scarce, any improvement in test-time robustness from
using them would be limited. Thus, the optimal strategy is to apply the standard Bellman operator
to target data to improve performance, and the RCB operator to source data to enhance robustness.

5. Is there a trade-off between train-time and test-time robustness?

There is a trade-off between train-time and test-time robustness, and it is controlled by ϵ. Specifi-
cally, when support(Ptar(·|s, a)) ⊆ Uϵ(s

′
src) is satisfied, further increasing ϵ might bring excessive

conservatism. While this enhances test-time robustness against dynamics shifts (since c is mono-
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tonically increasing with respect to ϵ), it sacrifices performance on the clean target domain, thereby
reducing train-time robustness.

B PROOFS OF PROPOSITIONS

B.1 PROOF OF PROPOSITION 4.1

Proof. We recall the definition of the RCB operator below:

TRCBQ(s, a) =


r + γEs′∼PM

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, ifM =Mtar

r + γ infM∈Mϵ
Es′∼PM

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, ifM =Msrc

.

Let Q1 and Q2 be two arbitrary Q functions. Then for any state-action pair (s, a), if the next state
s′ ∼ Ptar(·|s, a), we have

∥TRCBQ1 − TRCBQ2∥∞ = γmax
s,a

∣∣∣∣Es′ [ max
a′∼µ̂(·|s′)

Q1(s
′, a′)− max

a′∼µ̂(·|s′)
Q2(s

′, a′)

]∣∣∣∣
≤ γmax

s,a
Es′
∣∣∣∣ max
a′∼µ̂(·|s′)

Q1(s
′, a′)− max

a′∼µ̂(·|s′)
Q2(s

′, a′)

∣∣∣∣
≤ γmax

s,a
∥Q1 −Q2∥∞

= γ ∥Q1 −Q2∥∞ ,

where the second inequality holds from the fact that for any function f1, f2, any variant x ∼ X ,∣∣∣max
x∼X

f1(x)−max
x∼X

f2(x)
∣∣∣ ≤ max

x∼X
|f1(x)− f2(x)| (10)

If the next state s′ ∼ Psrc(·|s, a), we have

∥TRCBQ1 − TRCBQ2∥∞

= γmax
s,a

∣∣∣∣ inf
M∈Mϵ

Es′
[

max
a′∼µ̂(·|s′)

Q1(s
′, a′)

]
− inf

M∈Mϵ

Es′
[

max
a′∼µ̂(·|s′)

Q2(s
′, a′)

]∣∣∣∣
≤ γ max

s,a,s′

∣∣∣∣ max
a′∼µ̂(·|s′)

Q1(s
′, a′)− max

a′∼µ̂(·|s′)
Q2(s

′, a′)

∣∣∣∣
≤ γmax

s,a
∥Q1 −Q2∥∞

= γ ∥Q1 −Q2∥∞ .

where the first inequality comes from the fact that for any function f1, f2, any variant x ∼ X ,∣∣∣min
x∼X

f1(x)− min
x∼X

f2(x)
∣∣∣ ≤ max

x∼X
|f1(x)− f2(x)| . (11)

Combining the results together, we conclude that the RCB operator is a γ-contraction operator in
the complete state-action space, which naturally leads to the conclusion that any initial Q function
would converge to a unique fixed point by repeatedly applying TRCB. This completes the proof.

B.2 PROOF OF PROPOSITION 4.2

We first introduce the following lemma before proving Proposition 4.2.
Lemma B.1. Let S be a measure space, and P a probability measure on S, and let f : S → R
be any measure function, let c : S × S → R≥0 be a cost function. Then for any scalar λ ≥ 0, the
following equality holds:

inf
P̂∼P(S)

(
Eŝ∼P̂ [f(ŝ)] + λW(P̂ , P )

)
= Es∼P

[
inf
ŝ∼S

(f(ŝ) + λc(s, ŝ))

]
(12)

where P(S) represents all probability measures on S, andW is the Wasserstein distance w.r.t. the
cost function c.
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Proof. We prove this lemma by showing the left-hand-side (LHS) of Equation 12 is equivalent to its
right-hand-side (RHS).

According to the definition of Wasserstein distance, the LHS could be written as:

LHS = inf
P̂∈P(S)

(
Eŝ∼P̂ [f(ŝ)] + λ inf

γ∈Γ(P,P̂ )
E(s,ŝ)∼γ [c(s, ŝ)]

)
(13)

The optimization of P̂ and the inner optimization over γ ∈ Γ(P, P̂ ) could be combined into a single
optimization over all couplings γ whose first marginal is P , and the second marginal, P̂ , could be
arbitrary in P(S). We then have:

LHS = inf
γ∈Γ(P,P̂ )

(
Eŝ∼P̂ [f(ŝ)] + λE(s,ŝ)∼γ [c(s, ŝ)]

)
= inf
γ∈Γ(P,P̂ )

E(s,ŝ)∼γ [f(ŝ) + λc(s, ŝ)]
(14)

where the second equality holds by the linearity of expectation.

By the disintegration theorem for measures, any coupling γ ∈ Γ(P, P̂ ) could be represented as the
product of its first marginal P and a stochastic kernel K(dŝ|s) : S → P(S):

γ(ds, dŝ) = K(dŝ|s)P (ds) (15)

This implies that optimizing over all couplings γ ∈ Γ(P, P̂ ) is equivalent to optimizing over all
possible stochastic kernels K. We substitute Equation 15 into Equation 14:

LHS = inf
K

∫
S

∫
S
[f(ŝ) + λc(s, ŝ)]K(dŝ|s)P (ds)

= inf
K

Es∼P
[
Eŝ∼K(·|s) [f(ŝ) + λc(s, ŝ)]

] (16)

We change the position of the infimum operator and the inner expectation:

LHS = Es∼P
[

inf
K(·|s)∈P(S)

Eŝ∼K(·|s) [f(ŝ) + γc(s, ŝ)]

]
(17)

We then solve the inner minimization problem for a fixed s ∈ S:

inf
K(·|s)∈P(S)

Eŝ∼K(·|s) [f(ŝ) + γc(s, ŝ)] (18)

Let gs(ŝ) ≜ f(ŝ) + γc(s, ŝ). The problem is to find a probability measure K(·|s) that minimizes
the expectation of gs(ŝ). It is obvious that this minimum is achieved by concentrating the entire
probability mass on point ŝ where gs(ŝ) attains its infimum.

Let ŝ⋆ = arg inf ŝ∈S gs(ŝ). The optimal measure is a Dirac measure δŝ⋆ centered on ŝ⋆. Therefore:

inf
K(·|s)∈P(S)

Eŝ∼K(·|s) [f(ŝ) + γc(s, ŝ)]

= Eŝ∼δŝ⋆ [gs(ŝ)]
= f(ŝ⋆) + γc(s, ŝ⋆)

= inf
ŝ∈S

[f(ŝ) + γc(s, ŝ)]

(19)

Finally, substituting Equation 19 back into Equation 17, we obtain the RHS of the lemma:

LHS = Es∼P
[
inf
ŝ∈S

(f(ŝ) + γc(s, ŝ))

]
= RHS

(20)

This concludes the proof.

Now we give our formal proof for Proposition 4.2. We restate it as follows.
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Proposition B.1 (Proposition 4.2). LetMϵ be the Wasserstein uncertainty set defined by Equation 1,
then the term infM̂∈Mϵ

Es′∼PM̂

[
maxa′∼µ̂(·|s′) Q(s′, a′)

]
in Equation 2 is equivalent to

Es′∼PM

[
inf
s̄

max
a′∼µ̂(·|s̄)

Q(s̄, a′)

]
, s.t. d(s′, s̄) ≤ ϵ. (21)

Proof. The original term (OT) is a constrained optimization problem which could be solved with
Lagrange multiplier method. Let V̂ (s) = maxa∼µ̂(·|s) Q(s, a), then we define the Lagrange function
as:

L(M̂, λ) = E
ŝ′∼M̂(·|s,a)V̂ (ŝ′) + λ

(
W(M̂,M)− ϵ

)
(22)

The LHS is equivalent to solving the dual problem:

OT = sup
λ≥0

inf
M̂
L(M̂, λ) (23)

For a fixed λ, we solve the inner minimization problem inf
M̂
L(M̂, λ):

inf
M̂
L(M̂, λ) = inf

M̂

(
E
ŝ′∼M̂(·|s,a)V̂ (ŝ′) + λW(M̂,M)

)
− λϵ (24)

According to Lemma B.1, we have:

inf
M̂

(
E
ŝ′∼M̂(·|s,a)V̂ (ŝ′) + λW(M̂,M)

)
= Es′∼M(·|s,a)

[
inf
ŝ′

(
V̂ (ŝ′) + λc(s′, ŝ′)

)]
(25)

Substituting Equation 25 into Equation 24 and Equation 23, we obtain the dual reformulation of the
original term:

OT = sup
λ≥0

{
Es′∼T (·|s,a)

[
inf
ŝ′

(
V̂ (ŝ′) + λc(s′, ŝ′)

)]
− λϵ

}
(26)

The RHS in Equation 26 is exactly the Lagrange dual reformulation of Equation 21. This implies
Equation 21 holds, which concludes the proof.

B.3 PROOF OF PROPOSITION 4.3

Proof. We only discuss the case where s′ ∼ Psrc(·|s, a), since for s′ ∼ Ptar(·|s, a), the proof is
identical as Proposition 4.1. For s′ ∼ Psrc(·|s, a), let Q1 and Q2 be two arbitrary Q functions, we
have

∥TRCBQ1 − TRCBQ2∥∞ = γmax
s,a

∣∣∣∣Es′ [ inf
s̄∈Uϵ(s′)

max
a′∼µ̂(·|s̄)

Q1(s̄, a
′)− inf

s̄∈Uϵ(s′)
max

a′∼µ̂(·|s̄)
Q2(s̄, a

′)

]∣∣∣∣
≤ γmax

s,a
Es′
∣∣∣∣ inf
s̄∈Uϵ(s′)

max
a′∼µ̂(·|s̄)

Q1(s̄, a
′)− inf

s̄∈Uϵ(s′)
max

a′∼µ̂(·|s̄)
Q2(s̄, a

′)

∣∣∣∣
≤ γmax

s,a
∥Q1 −Q2∥∞

= γ ∥Q1 −Q2∥∞ ,

where the second inequality holds from Equation 10 and Equation 11. Then, we can conclude that
the practical RCB operator is still a γ-contraction operator.

B.4 PROOF OF PROPOSITION 4.4

Proof. For any (s, a) ∈ Dsrc,

TRCBQ(s, a)− T Q(s, a)

= γ

(
Es′∼PMsrc

[
inf

s̄∈Uϵ(s′)
max

a′∼µ̂(·|s̄)
Q(s̄, a′)

]
− Es′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

])
≤ γ

(
inf

s′∼PMtar

max
a′∼µ̂(·|s′)

Q(s′, a′)− Es′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

])
≤ 0,

(27)
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where the first inequality holds by support(Ptar(·|s, a)) ⊆ Uϵ(s
′
src). In the mean time, for any (s, a) ∈

Dsrc,
TRCBQ(s, a)− T Q(s, a)

= γ

(
Es′∼PMsrc

[
inf

s̄∈Uϵ(s′)
max

a′∼µ̂(·|s̄)
Q(s̄, a′)

]
− Es′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

])
= γ

(
Es̄
[

max
a′∼µ̂(·|s̄)

Q(s̄, a′)

]
− Es′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

])
≥ γ

(
min
s̄

[
max

a′∼µ̂(·|s̄)
Q(s̄, a′)

]
− max
s′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

])
.

(28)

Let s̄⋆ = argmins̄

[
max

a′∼µ̂(·|s̄)
Q(s̄, a′)

]
and s⋆ = arg max

s′∼PMtar

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
, then we have

TRCBQ(s, a)− T Q(s, a)

≥ γ

(
max

a′∼µ̂(·|s̄⋆)
Q(s̄, a′)− max

a′∼µ̂(·|s⋆)
Q(s⋆, a′)

)
≥ γ (Q(s̄, a⋆)−Q(s⋆, a⋆))

≥ −2γϵKQ,

where a⋆ = arg max
a′∼µ̂(·|s⋆)

Q(s⋆, a′), and the last inequality holds by the Lipschitz continuity as-

sumption and triangle inequality.

Combining the above results, we have
T Q(s, a)− 2γϵKQ ≤ TRCBQ(s, a) ≤ T Q(s, a). (29)

Let Qk denote the Q value at iteration k, and the initial Q value is Q0. After one iteration using the
RCB operator and the oracle optimal Bellman operator, according to Equation 29,

Q1(s, a)− 2γϵKQ

1− γ
(1− γ) ≤ Q̂1

RCB(s, a) ≤ Q1(s, a). (30)

Suppose when k = i, we have

Qi(s, a)− 2γϵKQ

1− γ
(1− γi) ≤ Q̂i

RCB(s, a) ≤ Qi(s, a), i ∈ Z+ (31)

For k = i+ 1, we have
T Q̂i

RCB(s, a)− 2γϵKQ ≤ Q̂i+1
RCB(s, a) = TRCBQ̂

i
RBC(s, a) ≤ T Q̂i

RCB(s, a).

On the one hand, we have

T Q̂i
RCB(s, a)

≥ T
(
Qi(s, a)− 2γϵKQ

1− γ
(1− γi)

)
= r(s, a) + γEs′∼Ptar

[
max

a′∼µ̂(·|s′)

(
Qi(s′, a′)− 2γϵKQ

1− γ
(1− γi)

)]
= r(s, a) + γEs′∼Ptar

[
max

a′∼µ̂(·|s′)
Qi(s′, a′)

]
− γ

2γϵKQ

1− γ
(1− γi)

= T Qi(s, a)− γ
2γϵKQ

1− γ
(1− γi)

= Qi+1(s, a)− γ
2γϵKQ

1− γ
(1− γi).

Therefore, we have
Q̂i+1

RCB(s, a)

≥ Qi+1(s, a)− γ
2γϵKQ

1− γ
(1− γi)− 2γϵKQ

= Qi+1(s, a)− 2γϵKQ

1− γ
(1− γi+1).

(32)
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On the other hand,
T Q̂i

RCB(s, a) ≤ T Qi(s, a) = Qi+1(s, a).

Therefore, we have
Q̂i+1

RCB(s, a) ≤ Qi+1(s, a). (33)

Combining the results of Equation 32 and Equation 33, we have

Qi+1(s, a)− 2γϵKQ

1− γ
(1− γi+1) ≤ Q̂i+1

RCB(s, a) ≤ Qi+1(s, a).

Hence, Equation 31 still holds for k = i + 1. Therefore, Equation 31 holds for all k ∈ Z+. If k is
large enough, such that Q̂RCB and Q(s, a) converge to the fixed point, then we have

Q⋆
µ̂(s, a)−

2γϵKQ

1− γ
≤ Q̂RCB(s, a) ≤ Q⋆

µ̂(s, a),

which concludes the proof.

B.5 PROOF OF PROPOSITION 4.5

Proof. The learned value function V̂RCB(s) by repeatedly applying TRCB satisfies:

V̂RCB(s) = r(s, a⋆) + γEs′∼Psrc

[
inf

s̄∈Uϵ(s′)
V̂RCB(s̄)

]

where a⋆ = πRCB(·|s) = arg max
a∼µ̂(·|s)

[
r(s, a) + γEs′∼Psrc

[
inf

s̄∈Uϵ(s′)
V̂RCB(s̄)

]]
.

Let c = max {c |Uc(s′tar) ⊆ Uϵ(s
′
src), s

′
tar ∼ Ptar(·|s, a), (s, a, s′src) ∼ Dsrc}, then we have

Es′∼Ptar

[
inf

s̄∈Uc(s′)
V̂RCB(s̄)

]
≥ Es′∼Psrc

[
inf

s̄∈Uϵ(s′)
V̂RCB(s̄)

]
,

since Uϵ(s
′
src) has a broader region than Uc(s

′
tar). Given any dynamics P which satisfies

W(P (·|s, a), Ptar(·|s, a)) ≤ c, we can iteratively evaluate πRCB within P :

V k+1(s) = T πRCB
P (V k(s))

= r(s, a ∼ πRCB(·|s)) + γEs′∼P (·|s,a)
(
V k(s′)

)
≥ r(s, a ∼ πRCB(·|s)) + γEs′∼Ptar

[
inf

s̄∈Uc(s′)
V k(s̄)

]
.

if we initialize V 0(s) as V̂RCB(s), we have

V 1(s) = T πRCB
P (V 0(s))

≥ r(s, a ∼ πRCB(·|s)) + γEs′∼Ptar

[
inf

s̄∈Uc(s′)
V̂RCB(s̄)

]
≥ r(s, a ∼ πRCB(·|s)) + γEs′∼Psrc

[
inf

s̄∈Uϵ(s′)
V̂RCB(s̄)

]
= V̂RCB(s)

= V 0(s).

According to the monotonicity of the Bellman operator, we have V 2(s) = T πRCB
P (V 1(s)) ≥

T πRCB
P (V 0(s)) = V 1(s). Similarly, we can get V k(s) ≥ V k−1(s) ≥ · · · ≥ V 0(s) = V̂RCB(s).

Given that T πRCB
P is a γ-contraction, V πRCB

P (s) = lim
k→∞

V k(s) ≥ V̂RCB(s), which proves Equation 3

and conclude the proof.
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B.6 PROOF OF PROPOSITION 4.6

Proof. We draw the proof inspiration from (Lyu et al., 2022). Given that
sups,aDTV (P̂tar(·|s, a), Ptar(·|s, a)) ≤ ϵ < 1

2 , we have

1 > 2ϵ

≥ 2 sup
s,a

DTV (P̂tar(·|s, a), Ptar(·|s, a))

≥
∑
s′

∣∣∣P̂tar(s
′|s, a)− Ptar(s

′|s, a)
∣∣∣

=
∑

s′∈support(Ptar(·|s,a))

∣∣∣P̂tar(s
′|s, a)− Ptar(s

′|s, a)
∣∣∣+ ∑

s′ /∈support(Ptar(·|s,a))

∣∣∣P̂tar(s
′|s, a)− Ptar(s

′|s, a)
∣∣∣

≥
∑

s′ /∈support(Ptar(·|s,a))

P̂tar(s
′|s, a).

Note that the maximum Q value Qmax ≤ rmax
1−γ . Thus, we have

inf
{s′i}N∼P̂tar(·|s,a)

[
max

a′i∼µ̂(·|s′i)
Q(s′i, a

′
i)

]
≤ E{s′i}N∼P̂tar(·|s,a)

[
max

a′i∼µ̂(·|s′i)
Q(s′i, a

′
i)

]
≤ P

(⋂
i

{s′ ∈ support(Ptar(·|s, a))}

)
· Es′∼Ptar(·|s,a)

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]

+ P

(⋃
i

{s′ /∈ support(Ptar(·|s, a))}

)
·Qmax

≤ Es′∼Ptar(·|s,a)

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
+
(
1− (P(s′1 ∈ support(Ptar(·|s, a))))

N
) rmax

1− γ

≤ Es′∼Ptar(·|s,a)

[
max

a′∼µ̂(·|s′)
Q(s′, a′)

]
+
(
1− (1− 2ϵ)N

) rmax

1− γ
,

where the first inequality uses the law of total expectation. Thus, we conclude the proof.

C EXPERIMENTAL SETTINGS

In this section, we introduce the detailed environmental settings missing in the main text.

C.1 TASKS AND DATASETS

Target domain and datasets. We directly adopt the four locomotion tasks from MuJoCo En-
gine (Todorov et al., 2012) as the target domain tasks: halfcheetah-v2, hopper-v2,
walker2d-v2, ant-v3. For the target domain datasets, we reuse the datasets in D4RL (Fu
et al., 2020) for each task. Since cross-domain offline RL only allows a small quantity of target do-
main data, we sample 10% data from the original D4RL datasets as the target domain datasets. The
target domain datasets consist of four data qualities for each task: the medium datasets that contain
samples collected by an early-stopped SAC policy; the medium-replay datasets that represent the
replay buffer of the medium-level SAC agent; the medium-expert datasets that mix the medium
data and expert data at a 50-50 ratio; the expert datasets that are collected by an SAC policy trained
to the expert level. The trained policy is evaluated in the target domain, and the evaluation metric
we use is Normalized Score in D4RL:

Normalized Score =
Jπ − Jrandom

Jexpert − Jrandom
× 100%, (34)
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Halfcheetah Hopper Walker2d Ant

Target Domain

Kinematic Shifts

Morphology Shifts

Figure 4: Visualization of the target domains and source domains with kinematic shifts and mor-
phology shifts, across four tasks (halfcheetah, hopper, walker2d, ant).

where Jπ is the return acquired by the trained policy in the target domain, and Jexpert and Jrandom are
the returns acquired by the expert policy and the random policy in the target domain, respectively.

Source domain and datasets. To simulate the source domain with dynamics shifts, we consider
the four MuJoCo tasks (halfcheetah-v2, hopper-v2, walker2d-v2, ant-v3) with kine-
matic shifts and morphology shifts introduced as the source domain. The kinematic shifts refer to
some joints of the robot being broken and unable to rotate, while the morphology shifts indicate that
the robot’s morphology is modified, differing from the target domain. To illustrate this more clearly,
we visualize the robots in both the target and source domains for all four tasks in Figure 4. We also
provide detailed code-level modifications for implementing the dynamics shifts in the following
section.

For the source domain datasets, we follow a data collection process similar to D4RL. Specifically,
we train an SAC policy in the source domain for 1M environmental steps and log policy checkpoints
at different steps for trajectory rollouts. The medium datasets are collected using a logged policy
that achieves approximately half the performance of the expert policy. The medium-replay datasets
consist of the logged replay buffer from the medium-level agent. The expert datasets are collected
using the final policy checkpoint, while the medium-expert datasets are a 50-50 mixture of medium-
level and expert-level data. Note that all the source domain datasets contain about 1M samples,
whereas the target domain datasets contain much fewer samples.

C.2 KINEMATIC SHIFTS REALIZATION

To simulate the kinematic shifts in the source domain, we modify the xml files of the original
environments. Specifically, we change the rotation angle of some joints of the simulated robot for
different tasks:

halfcheetah-kinematic: The rotation angle of the joint on the thigh of the robot’s back leg is modi-
fied from [−0.52, 1.05] to [−0.0052, 0.0105].

# broken back thigh joint
<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="

-.0052 .0105" stiffness="240" type="hinge"/>
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hopper-kinematic: The rotation angle of the head joint is modified from [−150, 0] to [−0.15, 0] and
the rotation angle of the foot joint is modified from [−45, 45] to [−18, 18].

# broken head joint
<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="

-0.15 0" type="hinge"/>
# broken foot joint
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-18 18

" type="hinge"/>

walker2d-kinematic: The rotation angle of the right foot joint is modified from [−45, 45] to
[−0.45, 0.45].

# broken right foot joint
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-0.45

0.45" type="hinge"/>

ant-kinematic: The rotation angles of the joints on the hip of two front legs are modified from
[−30, 30] to [−0.3, 0.3].

# broken hip joints of front legs
<joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-0.3 0.3

" type="hinge"/>
<joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-0.3 0.3

" type="hinge"/>

C.3 MORPHOLOGY SHIFTS REALIZATION

Akin to the kinematic shifts, we modify the xml files to simulate morphology shifts:

halfcheetah-morph: The sizes of the back thigh and the forward thigh are modified.

# back thigh
<geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046"

type="capsule"/>
<body name="bshin" pos="-0.0001 0 -0.0001">
# front thigh
<geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046"

type="capsule"/>
<body name="fshin" pos="0.0001 0 0.0001">

hopper-morph: The head size of the robot is modified.

# head size
<geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom"

size="0.125" type="capsule"/>

walker2d-morph: The thigh on the right leg of the robot is modified.

# right leg
<body name="thigh" pos="0 0 1.05">
<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-150

0" type="hinge"/>
<geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom"

size="0.05" type="capsule"/>
<body name="leg" pos="0 0 0.35">
<joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="

-150 0" type="hinge"/>
<geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom"

size="0.04" type="capsule"/>
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<body name="foot" pos="0.2 0 0">
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="-45

45" type="hinge"/>
<geom friction="0.9" fromto="-0.0 0 0.3 0.2 0 0.3" name="

foot_geom" size="0.06" type="capsule"/>
</body>

</body>
</body>

ant-morph: The size of the robot’s two front legs is reduced.

# front leg 1
<geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size

="0.08" type="capsule"/>
# front leg 2
<geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom"

size="0.08" type="capsule"/>

D IMPLEMENTATION DETAILS

In this section, we provide the implementation details for the baselines we use in our experiments
and our method, DROCO.

D.1 BASELINES

IQL⋆: IQL⋆ is the cross-domain adaptation of IQL (Kostrikov et al., 2021). IQL⋆ follows the same
algorithmic procedure except being trained on both target and source domain datasets. The state
value function is trained by expectile regression:

LV = E(s,a)∼Dsrc∪Dtar [L
τ
2(Qθ′(s, a)− Vψ(s))] ,

where Lτ2(u) = |τ − I(u < 0)|u2, I(·) is the indicator function, and θ′ is the parameter of the
target network. This expectile regression enables learning an in-sample optimal value function.
Subsequently, the state-action value function is updated by:

LQ = E(s,a,r,s′)∼Dsrc∪Dtar

[
(r(s, a) + γVψ(s

′)−Qθ(s, a))
2
]
.

Then the advantage value is computed as A(s, a) = Q(s, a)− V (s, a). Based on this, the policy is
obtained through exponential advantage-weighted behavior cloning:

Lπ = −E(s,a)∼Dsrc∪Dtar [exp(β ×A(s, a)) log πϕ(a|s)] ,

where β is the inverse temperature coefficient. We implement IQL⋆ based on the official codebase2

of IQL.

CQL⋆: the cross-domain version of CQL (Kumar et al., 2020) similar to IQL⋆. CQL learns a
conservative value function that lower bounds the true value function:

LQ = αEs∈D

[
log
∑
a

exp(Q(s, a))− Ea∼µ[Q(s, a)]

]
+

1

2
E(s,a,s′)∈D

[
(Q(s, a)− T Q(s, a))2

]
The policy π is then optimized with SAC (Haarnoja et al., 2018). We implement CQL⋆ based on the
implementation of CORL3.

BOSA: BOSA (Liu et al., 2024a) identifies two key challenges in cross-domain offline RL: the
state-action OOD problem and the dynamics OOD problem. To address these, BOSA proposes two
support constraints. Specifically, BOSA handles the OOD state-action problem by supported policy

2https://github.com/ikostrikov/implicit q learning.git
3https://github.com/tinkoff-ai/CORL.git
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optimization, and mitigates the OOD dynamics problem by supported value optimization. The critic
is updated through supported value optimization:

LQ = E(s,a)∼Dsrc [Qθi(s, a)] + E(s,a,r,s′)∼Dsrc∪Dtar,
a′∼πϕ(s′)

[
I(P̂tar(s′|s, a) > ϵ)(Qθi(s, a)− y)2

]
,

where I(·) is the indicator function, and P̂tar(s
′|s, a) is the estimated target domain dynamics, and

ϵ is the threshold coefficient. The policy in BOSA is updated by supported policy optimization to
mitigate the OOD action issue:

Lπ = Es∼Dsrc∪Dtar, a∼πϕ(s) [Qθi(s, a)] , s.t. Es∼Dsrc∪Dtar [π̂mix(πϕ(s) | s)] > ϵ′,

where ϵ′ is the threshold coefficient, and π̂ϕmix(·|s) is the behavior policy of the mixed datasets
Dsrc ∪ Dtar learned with CVAE (Kingma et al., 2013). We adopt the BOSA implementation from
ODRL4 benchmark (Lyu et al., 2024b), which provides reliable implementations for various off-
dynamics RL algorithms.

DARA. DARA (Liu et al., 2022) employs dynamics-aware reward modification to achieve dynamics
adaptation, extending DARC (Eysenbach et al., 2020) to the offline setting. Specifically, DARA
trains two domain classifiers qθSAS (target|st, at, st+1) and qθSA(target|st, at) as follows:

LθSAS = EDtar [log qθSAS (target|st, at, st+1)] + EDsrc [log(1− qθSAS (target|st, at, st+1))]

LθSA = EDtar [log qθSA(target|st, at)] + EDsrc [log(1− qθSA(target|st, at))] .

The domain classifiers are used to quantify the dynamics gap log
PMtar (st+1|st,at)
PMsrc (st+1|st,at) between the source

domain and the target domain according to Bayes’ rule. Then the estimated dynamics gap serves as
a penalty to the source domain rewards:

r̂DARA = r − λ× δr, δr(st, at) = − log
qθSAS(target|st, at, st+1)qθSA(source|st, at)
qθSAS(source|st, at, st+1)qθSA(target|st, at)

, (35)

where λ controls the intensity of the reward penalty. We use the DARA implementation from ODRL
and follow the hyperparameter setting in the original paper: λ is set to 0.1, and the reward penalty
is clipped within [−10, 10] for training stability.

IGDF. IGDF (Wen et al., 2024) quantifies the domain discrepancy between the source domain and
the target domain with contrastive representation learning. To facilitate effective knowledge transfer,
IGDF implements data filtering to selectively share source domain samples exhibiting smaller dy-
namics gaps. Specifically, IGDF trains a score function h(·) using (s, a, s′tar) ∼ Dtar as the positive
samples, and transitions (s, a, s′src) as the negative samples, where (s, a) ∼ Dtar and s′src ∼ Dsrc.
h(·) is optimized via the following contrastive learning objective:

L = −E(s,a,s′tar)
Es′src

[
log

h(s, a, s′tar)∑
s′∈s′tar∪s′src

h(s, a, s′)

]
.

Based on the learned score function, IGDF proposes to selectively share source domain data for
training value functions:

LQ =
1

2
EDtar

[
(Qθ − T Qθ)

2
]
+

1

2
α · h(s, a, s′)E(s,a,s′)∼Dsrc

[
I(h(s, a, s′) > hξ%)(Qθ − T Qθ)

2
]
,

where I(·) is the indicator function, α is the weighting coefficient, ξ is the data selection ratio. We
implement IGDF based on its official codebase5.

OTDF. OTDF (Lyu et al., 2025) estimates the discrepancy between the source domain and target
domain by computing the Wasserstein distance (Peyré et al., 2019):

W(u, u′) = min
µ∈M

|Dsrc|∑
t=1

|Dtar|∑
t′=1

C(ut, u
′
t′) · µt,t′ , (36)

4https://github.com/OffDynamicsRL/off-dynamics-rl.git
5https://github.com/BattleWen/IGDF.git
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where u = ssrc⊕asrc⊕s′src, u′ = star⊕atar⊕s′tar are the concatenated vectors, C is the cost function
and M is the coupling matrices. After solving Equation 36 for the optimal coupling matrix µ⋆, the
OTDF computes the distance between a source domain sample and the target domain dataset via

d(ut) = −
|Dtar|∑
t′=1

C(ut, ut′)µ
⋆
t,t′ , ut = (stsrc, a

t
src, (s

′
src)

t) ∼ Dsrc.

Then the critic is updated by

LQ = EDtar

[
(Qθ − T Qθ)

2
]
+ E(s,a,s′)∼Dsrc

[
exp(α× d)I(d > d%)(Qθ − T Qθ)

2
]
.

Furthermore, OTDF incorporates a policy regularization term that forces the policy to stay close to
the support of the target dataset:

L̂π = Lπ − β × Es∼Dsrc∪Dtar log π
b
tar(π(·|s)|s),

where Lπ is the original policy optimization objective and β is the weight coefficient, πbtar is the
behavior policy of the target domain dataset learned with a CVAE. We run the official code6 for
OTDF in our experiments.

D.2 IMPLEMENTATION DETAILS OF DROCO

In this part, we provide more implementation details of DROCO omitted in the main text.

First, we model the target domain dynamics using a neural network that outputs a Gaussian dis-
tribution over the next state: P̂ψ(s

′|s, a) = N (µψ(s, a),Σψ(s, a)). We learn an ensemble of N
dynamics models {P̂ψi = N (µψi ,Σψi)}Ni=1, with each model trained independently with maxi-
mum likelihood estimation (MLE) on the target domain dataset:

Lψi = E(s,a,s′)∈Dtar

[
log P̂ψi(s

′|s, a)
]
. (37)

When we sample from the uncertainty set, we can directly sample from each dynamics model
N (µψi ,Σψi) as the sampling points. We can then compute the value penalty and penalize the Q
value of source domain data when leveraging IQL for policy optimization. Specifically, we perform
expectile regression to train the V function:

LV (η) = E(s,a)∼Dsrc∪Dtar [L
τ
2(Qθ(s, a)− Vη(s))] ,

where Lτ2(u) = |τ − I(u < 0)|u2 and τ ∈ (0, 1). For τ ≈ 1, Vη can capture the in-sample maximal
Q (Kostrikov et al., 2021): Vη(s) ≈ maxa∼µ̂(·|s) Q(s, a). We can then practically compute the value
penalty as:

u(s, a, s′) = I (s′ ∼ Psrc(·|s, a)) ·
(
V (s′)− inf

{s′i}N∼P̂ψi (·|s,a)
[V (s′i)]

)
, (38)

and the practical Bellman target can be written as

T̂RCBQ(s, a) = r(s, a) + γEs′∼PM(·|s,a) [V (s′)− β · u(s, a, s′)] . (39)

Then, we incorporate Huber loss and have the following Q training loss:

LQ(θ) = EDsrc

[
lδ

(
Qθ(s, a)− T̂RCBQθ(s, a)

)]
+

1

2
EDtar

[
(Qθ(s, a)− T Qθ(s, a))

2
]
, (40)

where lδ is the Huber loss. The final step is policy learning. We follow IQL and utilize exponential
advantage-weighted imitation learning to extract the policy:

Lπ(ϕ) = −EDsrc∪Dtar [exp(Q(s, a)− V (s)) log πϕ(a|s)] .

We show the detailed pseudocode of DROCO in Algorithm 1.

6https://github.com/dmksjfl/OTDF.git
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Algorithm 1 Dual-Robust Cross-domain Offline RL (DROCO)
1: Require: Source domain offline dataset Dsrc, target domain offline dataset Dtar, mixed offline

dataset Dmix
2: Initialization: Policy network πϕ, value network Vη , Q network Qθ, ensemble dynamics model

P̂ψ = {P̂ψi}Ni=1, penalty coefficient β, transition threshold δ for Huber loss
3: // Train the ensemble dynamics model
4: for each model gradient step do
5: for each ensemble member P̂ψi do
6: Compute loss Lψi = E(s,a,s′)∈Dtar

[
log P̂ψi(s

′|s, a)
]

7: Update P̂ψi using Lψi
8: end for
9: end for

10: // TD Learning
11: for each gradient step do
12: Sample bsrc := {(s, a, r, s′)} from Dsrc
13: Sample btar := {(s, a, r, s′)} from Dtar
14: // Optimize the Vβ function
15: Compute loss LV :
16: LV = E(s,a)∼Dsrc∪Dtar [Lτ2 (Qθ(s, a)− Vη(s))]
17: Update Vη using LV
18: // Compute the value penalty

19: compute u(s, a, s′) = I (s′ ∼ Psrc(·|s, a)) ·
(
V (s′)− inf{s′i}N∼P̂ψi (·|s,a)

[V (s′i)]

)
20: // Optimize the Qθ function
21: Compute loss LQ:

22: LQ = 1
2 · E(s,a,r,s′)∼Dtar

[
(Qθ(s, a)− (r + γVη(s

′)))
2
]

23: + 1
2 · E(s,a,r,s′)∼Dsrc [lδ (Qθ(s, a)− (r + γVη(s

′)− βu(s, a, s′)))]
24: Update Qθ using LQ
25: // Update target network
26: Update target network parameters: θ′ ← (1− µ)θ + µθ′

27: // Policy Extraction (AWR)
28: Compute advantage A(s, a) = Qθ(s, a)− Vη(s)
29: Optimize policy network πη using advantage-weighted regression (AWR):
30: Lπ = E(s,a)∼Dsrc∪Dtar [exp(αA(s, a)) log πϕ(a|s)]
31: end for
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Figure 5: Evaluation results of IGDF under morphology and min Q perturbations with different sizes
of target domain data.

E EXTENDED EXPERIMENTAL RESULTS

E.1 EXTENDED RESULTS OF MOTIVATION EXAMPLE

In Section 3, we demonstrate our motivation with a simple example. In this part, we provide more
details and results for the motivation example.

The source and target domains are hopper-kinematic-v2 and hopper-v2 respectively, with
their corresponding datasets being hopper-kinematic-expert and hopper-expert. Fig-
ure 1 in Section 3 demonstrates performance across different target domain data sizes under three
test-time kinematic perturbation levels (easy, medium, hard), implemented as in (Lyu et al., 2024b).
We further evaluate the trained IGDF under morphology perturbations and min-Q perturbations
(with other settings unchanged), presenting results in Figure 5.

The results clearly show that with only 10% D4RL data, IGDF’s robustness to dynamics perturba-
tions is significantly weaker compared to using 100% D4RL data. Notably, under easy-level mor-
phology perturbations, IGDF with 10% D4RL data exhibits a 66.9% performance drop, versus only
21.8% degradation with 100% data. These findings, combined with the results in Section 3, validate
our motivation that cross-domain offline RL is particularly sensitive to dynamics perturbations when
limited target domain data is available, underscoring the need for enhanced test-time robustness.

E.2 EVALUATION UNDER MORPHOLOGY SHIFTS

In the main text, we present DROCO’s evaluation results under kinematic shifts. In this section, we
supplement with additional results under morphological shifts, providing a comprehensive assess-
ment of DROCO’s train-time robustness against diverse dynamics shifts.

Experimental Settings. The target domain tasks and datasets remain consistent with Sec-
tion 5.1: the target domain tasks include halfcheetah-v2, hopper-v2, walker2d-v2 and
ant-v3, and the target domain datasets comprise four data qualities (medium, medium-replay,
medium-expert, expert) for each task. The difference lies in the dynamics shift type in the
source domain. We implement morphology shifts as described in Appendix C.3 and collect the
corresponding source domain datasets.

Baselines. We adopt the same baselines as in Section 5.1: IQL⋆, CQL⋆, BOSA, DARA, IGDF and
OTDF.

Results. We run each baseline and DROCO for 1M steps over 5 random seeds, and present the
results with train-time morphology shifts in Table 2. It is clear that DROCO delivers superior per-
formance to baselines. Specifically, DROCO achieves the highest performance in 9 out of 16 tasks.
In terms of the total normalized score across all 16 tasks, DROCO attains a remarkable 1166.4,
significantly outperforming the second-best baseline OTDF (1025.1). Combined with the results in
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Table 2: Evaluation results with train-time morphology shifts. half=halfcheetah, hopp=hopper,
walk=walker2d, m=medium, me=medium-expert, mr=medium-replay, e=expert. We report the nor-
malized score evaluated in the target domain and ± captures the standard deviation across 5 seeds.
We bold the highest scores for each task.

Dataset IQL⋆ CQL⋆ BOSA DARA IGDF OTDF DROCO (Ours)

half-m 45.8 40.2 41.3 45.6 45.5±0.1 44.3±0.2 45.8±0.2
half-mr 26.1 21.3 27.8 28.9 24.2±3.3 19.7±2.5 27.9±4.4
half-me 63.0 54,6 44.4 59.2 61.9± 4.9 42.9±3.6 70.1±5.6
half-e 65.2 66.7 78.6 55.4 56.0±6.2 74.2±5.0 79.2±3.9
hopp-m 56.4 32.8 28.7 49.5 55.5±2.9 49.1±2.2 56.3±1.6
hopp-mr 51.3 37.6 40.6 53.5 54.9±5.8 24.9±3.4 51.6±8.7
hopp-me 35.8 36.6 20.2 38.2 43.3±3.6 51.8±3.9 82.3±4.1
hopp-e 87.2 67.9 64.3 77.1 51.5±2.9 113.2±5.9 92.5±1.2
walk-m 32.6 43.1 40.3 25.0 33.0±2.3 40.3±7.1 60.1±3.4
walk-mr 9.0 2.0 2.9 6.9 9.5±0.4 14.1±1.8 15.5±4.7
walk-me 27.6 22.4 46.7 42.2 75.7±11.8 66.7±5.3 78.9±9.4
walk-e 103.4 79.0 30.2 102.7 108.3±6.7 103.5±1.9 104.5±1.7
ant-m 89.1 57.3 36.1 96.4 91.6±4.4 92.5±2.7 94.5±2.8
ant-mr 59.7 39.5 24.0 64.1 58.2±7.1 69.6±8.1 66.9±4.9
ant-me 113.1 107.3 100.5 111.9 116.8±3.5 107.3±4.4 120.3±1.5
ant-e 116.3 94.4 76.3 124.5 126.8±1.7 111.0±2.4 120.0±1.3

Total 981.6 802.7 702.9 981.1 1012.7 1025.1 1166.4

Section 5.1, these findings conclusively demonstrate DROCO’s superiority across different types of
dynamics shifts, highlighting its strong train-time robustness against dynamics shifts.

E.3 EXTENDED EVALUATION UNDER DYNAMICS PERTURBATIONS

In this section, we supplement with more experimental results for evaluating the test-time robustness
of DROCO.

We first extend the results in Section 5.2 by incorporating a broader range of datasets. We evalu-
ate the robustness of DROCO against two baselines (IGDF, OTDF) under varying levels of three
perturbation types: kinematic, morphology, and min Q perturbations, following the methodol-
ogy in Section 5.2. Additional experiments are conducted using hopper-morph-expert,
walker2d-kinematic-expert, and ant-morph-expert as source domain datasets,
with results presented in Figure 6. We can see that DROCO demonstrates superior ro-
bustness to all three perturbation types compared to the baselines. For instance, on the
walker2d-kinematic-expert dataset under min Q perturbations, DROCO exhibits only
23.4% performance degradation (from 106.0 to 81.2) at the highest perturbation level (0.2), sub-
stantially lower than IGDF (75.3%) and OTDF (55.9%). This enhanced robustness is consistently
observed across all datasets and perturbation types, confirming DROCO’s improved test-time ro-
bustness against dynamics perturbations.

We further evaluate DROCO’s test-time robustness using varying target domain dataset sizes. Ex-
periments are conducted under different levels of min Q perturbations, with target domain sizes set
to 100%, 50%, and 10% of the original D4RL datasets. The source domain datasets comprise
hopper-morph-expert, walker2d-kinematic-expert, and ant-morph-expert.
As shown in Figure 7, all methods demonstrate improved robustness against dynamics perturbations
with increasing target domain data size, consistent with our claim in Section 3. Notably, DROCO
maintains superior robustness across varying data sizes and perturbation scales compared to IGDF
and OTDF, further validating its effectiveness in enhancing test-time robustness.
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Figure 6: Evaluation results under different types and levels of dynamics perturbations.
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Figure 7: Evaluation results under different perturbation levels and different data size.
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Figure 8: Ablation study on value penalty

E.4 ABLATION STUDY

We provide supplementary ablation study results that are omitted from the main text. Specifically,
we examine the effects of replacing the adaptive value penalty with a fixed value penalty and substi-
tuting the Huber loss with the regular ℓ2 loss.

Fixed Value Penalty. A fixed value penalty corresponds to setting β = 1.0 across all tasks. Figure 8
compares the performance of DROCO with dynamic versus fixed penalties across eight datasets.
The results demonstrate that the dynamic value penalty generally outperforms the fixed penalty
(β = 1.0), with the exception of the ant-morph-expert dataset where the fixed penalty achieves
the highest performance.

We further evaluate the test-time robustness of DROCO under diverse dynamic shifts using both
penalty schemes. Following the experimental setup in Appendix E.3, our results in Figure 9 reveal
an interesting trade-off: while the fixed value penalty leads to slightly degraded performance, it
provides marginally improved robustness against dynamic perturbations. This suggests that setting
β to a larger value induces a more conservative policy that is less sensitive to dynamic perturbations,
albeit at the cost of policy performance.

Regular ℓ2 Loss. The standard ℓ2 loss implements conventional Bellman updates for source domain
data without special outlier handling. We evaluate DROCO’s performance on 8 medium-expert
datasets comparing the Huber loss versus the ℓ2 loss and present the results in Figure 10. The results
show that Huber loss generally produces superior performance, while ℓ2 loss achieves marginally
better results on halfcheetah-morph-me and walker2d-kine-me datasets.

We further examine the test-time robustness against dynamic perturbations using both loss functions.
Figure 11 reveals that using Huber loss consistently provides stronger robustness across perturbation
types, underscoring its critical role in enhancing robustness.

E.5 EXTENDED PARAMETER STUDY

In the main text, we test the sensitivity of DROCO to the penalty coefficient β and the transition
threshold δ on certain datasets. In this section, we present extended results for a more comprehensive
analysis.

Penalty coefficient β. β controls the intensity of the value penalty. We sweep β
across {0.1, 0.5, 1.0, 1.2} and further conduct experiments on walker2d-morph-expert and
ant-morph-expert datasets, we present the learning curves of the performance and the Q value
in Figure 12. We find that β ≤ 1.0 is generally preferred, yielding better performance and Q value
convergence, while setting β = 1.2 would cause value underestimation and inferior performance.

Transition threshold δ. δ determines the transition point from ℓ2 loss to ℓ1 loss. We vary δ
among {5, 10, 30, 50} and conduct experiments on walker2d-morph-me and ant-morph-me
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Figure 9: Ablation study on value penalty
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Figure 10: Ablation study on Huber loss
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Figure 11: Ablation study on Huber loss
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Figure 12: Effect of β
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Figure 13: Effect of δ

datasets, with Figure 13 showing the performance and Q value learning curves. Our results demon-
strate dataset-dependent sensitivity to δ: while δ = 50 exhibits a satisfying performance and
δ = 5 yields suboptimal performance on walker2d-morph-me, DROCO is not sensitive to δ
on ant-morph-me. Since no single δ value universally outperforms across all tasks, we specify
the δ values used for each dataset in Appendix F.

Ensemble size N . We also examine the effect of dynamics model ensemble size N on training.
In DROCO, N represents the sampling number within the uncertainty set. Typically, a larger N
corresponds to a smaller sampling error when computing T̂RCB. We conduct experiments on various
datasets with N across {3, 5, 7, 9}. The results are presented in Table 3, where we find no distinct
difference across different N , which means the ensemble size is not a sensitive hyperparameter.
Thus, we could use the default value of 7.

Table 3: Effect of N
Dataset N = 3 N = 5 N = 7 N = 9

half-me-kinematic 58.4 ± 4.4 62.2 ± 8.6 60.1 ± 7.1 57.9 ± 9.6
half-me-morph 65.4 ± 8.4 71.7 ± 5.9 70.1 ± 5.6 74.9 ± 3.3
half-e-kinematic 68.7 ± 6.8 67.0 ± 4.7 67.4 ± 5.8 66.3 ± 7.2
half-e-morph 76.0 ± 4.1 75.6 ± 5.1 79.2 ± 3.9 78.4 ± 3.0
hopper-me-kinematic 51.7 ± 3.4 54.4 ± 5.7 54.0 ± 6.4 52.5 ± 6.9
hopper-me-morph 85.6 ± 6.7 84.9 ± 5.5 82.3 ± 4.1 83.2 ± 4.0
hopper-e-kinematic 88.3 ± 10.2 87.0 ± 8.1 89.3 ± 9.6 86.9 ± 7.2
hopper-e-morph 91.1 ± 1.0 94.9 ± 2.2 92.5 ± 1.2 90.7 ± 0.8

Average 73.2 74.7 74.4 73.9

E.6 PERFORMANCE COMPARISON UNDER OBSERVATION AND REWARD SHIFTS

In this part, we further examine the generality of DROCO under observation and reward shifts, in
addition to dynamics shifts.

Observation shift. To simulate the observation shift, we follow the observation corruption setting
in (Yang et al., 2024b), and corrupt 30% source domain data by modifying the state of transitions
(s, a, r, s′) to ŝ = s + λ · std(s), λ ∼ Uniform[−1, 1]ds . ds represents the state dimension, and
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Table 4: Performance comparison under observation shifts without observation normalization.
Dataset IQL IGDF OTDF DROCO

half-e-kinematic 21.7±6.2 13.4±2.0 28.6±3.4 34.7±5.8
half-e-morph 43.3±9.5 33.8±5.8 46.4±8.3 40.8±5.5
half-me-kinematic 38.9±4.4 40.0±4.6 37.5±6.2 46.3±9.3
half-me-morph 37.2±4.1 45.3±5.4 33.7±4.0 43.4±6.8
hopper-e-kinematic 34.6±6.4 43.5±4.8 36.2±7.9 48.6±7.4
hopper-e-morph 60.6±4.5 32.3±4.9 53.9±11.5 62.9±8.7
hopper-me-kinematic 1.4±0.1 0.0±0.0 16.9±3.1 20.3±7.4
hopper-me-morph 16.7±2.3 22.7±4.0 31.4±5.7 36.5±6.8

Average 31.8 28.9 35.6 41.7

Table 5: Performance comparison under observation shifts with observation normalization.
Dataset IQL IGDF OTDF DROCO

half-e-kinematic 26.5±4.7 21.4±5.0 33.8±6.1 42.6±7.1
half-e-morph 42.7±7.0 42.5±5.7 51.9±4.4 44.6±7.4
half-me-kinematic 41.2±5.2 35.5±2.9 44.3±2.9 51.3±3.6
half-me-morph 46.4±3.6 49.2±6.0 45.6±3.3 43.0±2.1
hopper-e-kinematic 39.6±7.3 57.8±6.2 49.3±5.7 54.4±9.3
hopper-e-morph 66.3±6.9 38.5±3.7 57.7±4.0 73.2±6.2
hopper-me-kinematic 9.0±1.3 2.4±0.1 22.2±3.4 34.2±5.6
hopper-me-morph 16.4±2.4 29.7±3.0 26.7±1.1 46.6±8.2

Average 36.0 34.6 41.4 48.7

std(s) is the ds-dimensional standard deviation of all states in the source dataset. Our experiments
consist of two parts: (1) we directly employ several baselines (IQL, IGDF, OTDF) and DROCO in
this observation shift setting without introducing other techniques; (2) we introduce the observation
normalization technique (Yang et al., 2024b) to baselines and DROCO. Both parts of the experi-
ments are conducted on multiple datasets, with results presented in Table 4 and Table 5. We find that
introducing observation shifts would degrade the algorithm’s performance, and the observation nor-
malization technique can mitigate performance degradation. In both experimental settings, DROCO
demonstrates better performance than baselines on most datasets.

Reward shift. To examine the generality of DROCO to reward shifts, we further design a reward
shift setting: we randomly select 30% of source transitions (s, a, r, s′) and modify the reward r to
r̂ ∼ Uniform[−1, 1]. That is, we completely abandon the reward information and switch to random
rewards.

Under this reward shift setting, we conduct experiments on multiple datasets to compare the perfor-
mance of DROCO with baseline methods (IQL, IGDF, OTDF). The experimental results are reported
in Table 6. Surprisingly, we find that reward shift does not significantly affect performance. This
observation may be explained by the survival instinct of offline RL (Li et al., 2023), which suggests
that offline RL naturally exhibits robustness to misspecified reward.

The results show that DROCO still outperforms other baselines under both reward shift and dynam-
ics shift settings. We attribute the enhanced performance of DROCO under observation and reward
shifts to the components of dynamic value penalty and Huber loss which mitigate value estimation
error caused by observation and reward shifts. We believe this finding, along with our above re-
sults under the observation shift setting, demonstrates the generality of DROCO across observation,
reward, and dynamics shift.
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Table 6: Performance comparison under reward shifts.
Dataset IQL IGDF OTDF DROCO

half-e-kinematic 47.5±4.2 45.8±3.0 72.2±3.8 66.0±6.3
half-e-morph 60.7±5.3 52.2±3.6 70.3±5.8 76.4±4.2
half-me-kinematic 41.1±3.7 55.2±4.4 43.6±4.9 57.4±3.6
half-me-morph 61.7±2.1 55.8±4.9 39.0±3.3 63.9±2.4
hopper-e-kinematic 58.8±6.1 67.0±5.7 95.5±11.3 85.0±8.2
hopper-e-morph 84.7±5.1 46.2±4.8 100.3±6.8 91.4±4.5
hopper-me-kinematic 10.1±1.3 8.3±0.7 42.6±6.3 48.1±6.4
hopper-me-morph 34.8±4.3 41.1±4.7 47.3±5.6 78.6±8.3

Average 49.9 46.5 63.9 70.9

Table 7: Performance comparison under distinct behavior policies between source and target domain
datasets.

Source Target IQL IGDF OTDF DROCO

half-medium medium 45.2±0.1 45.2±0.1 42.2±0.1 45.3±0.2
half-medium expert 47.5±1.1 45.4±1.3 58.3±2.8 52.6±4.2
half-expert medium 47.1±1.5 46.8±2.4 51.7±0.4 58.5±0.3
half-expert expert 49.7±3.6 47.6±2.1 79.6±3.0 67.4±5.8
hopper-medium medium 48.8±2.1 54.3±6.6 46.3±3.7 55.4±5.3
hopper-medium expert 56.1±4.4 61.8±4.4 69.3±3.9 80.8±6.2
hopper-expert medium 53.6±2.4 61.3±4.7 51.4±2.1 62.2±4.6
hopper-expert expert 62.6±6.9 70.1±3.2 97.0±3.3 89.3±9.6
walker2d-medium medium 48.7±1.9 51.8±2.4 43.0±2.1 70.8±3.3
walker2d-medium expert 71.4±3.7 82.5±5.3 76.8±4.1 94.6±5.8
walker2d-expert medium 55.4±3.1 58.6±5.5 57.9±2.0 83.0±4.8
walker2d-expert expert 90.1±3.2 93.7±5.8 98.9±2.1 106.0±0.8
ant-medium medium 89.9±5.1 88.0±4.6 86.1±3.7 92.7±6.3
ant-medium expert 107.6±1.8 112.4±3.3 105.9±2.3 110.3±2.0
ant-expert medium 93.7±3.5 90.2±2.8 98.6±4.5 100.4±2.3
ant-expert expert 111.0±3.3 119.2±5.6 111.6±2.9 120.0±2.1

Average 67.4 70.6 73.4 80.6

E.7 PERFORMANCE COMPARISON UNDER DISTINCT SOURCE AND TARGET BEHAVIOR
POLICIES

In practice, the behavior policies between the source and target domain datasets could be different.
To address this concern, We consider four tasks (halfcheetah, hopper, walker2d, ant) with
kinematic shifts. We relax the constraint of identical behavior policies, allowing the source and target
datasets to have different qualities (medium or expert). For instance, a medium-quality source
dataset may be paired with either a medium- or expert-quality target dataset. All other experimental
settings follow Section 5.1, with IQL, IGDF, and OTDF as baselines. The results are presented in
Table 7. The results indicate that DROCO maintains its superiority over the baselines even when
the source and target behavior policies differ. It achieves the highest average score (80.6) and best
performance on 12 out of 16 datasets. These findings demonstrate the effectiveness of DROCO in
scenarios with differing behavior policies.

F HYPERPARAMETER SETUP

In this section, we provide the detailed hyperparameter setup for DROCO in our experiments. In
Table 8, we list the network architecture and the training setup of DROCO, as well as the main
hyperparameters of IQL, since we utilize IQL for policy optimization. The distinct value of β and δ
for each dataset under kinematic shifts and morphology shifts are presented in Table 9 and Table 10.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameter setup for DROCO
Hyperparameter Value
Network
Actor network (256, 256)
Critic network (256, 256)
Ensemble model network (400,400,400,400)
Ensemble size 7
Activation function ReLU (Agarap, 2018)

Training
Learning rate 3× 10−4

Optimizer Adam (Kingma & Ba, 2014)
Discount factor 0.99
Target update rate 5× 10−3

Source domain batch size 128
Target domain batch size 128
Dynamics model batch size 256
Dynamics model training steps 1× 105

Policy training steps 1× 106

IQL
Temperature coefficient 0.2
Maximum log std 2
Minimum log std -20
Inverse temperature parameter β 3.0
Expectile parameter τ 0.7

Table 9: Detailed hyperparameter setup for
DROCO, where the source domain datasets are
under kinematic shifts.

Dataset Value of β Value of δ

half-m 0.1 30
half-mr 0.5 50
half-me 0.5 30
half-e 0.1 30
hopp-m 0.1 50
hopp-mr 0.5 50
hopp-me 1.0 30
hopp-e 0.5 30
walk-m 1.0 50
walk-mr 0.5 30
walk-me 0.5 50
walk-e 0.1 10
ant-m 0.1 30
ant-mr 1.0 30
ant-me 0.1 30
ant-e 1.0 30

Table 10: Detailed hyperparameter setup for
DROCO, where the source domain datasets are
under morphology shifts.

Dataset Value of β Value of δ

half-m 0.1 10
half-mr 0.5 50
half-me 1.2 30
half-e 1.2 30
hopp-m 0.5 50
hopp-mr 0.1 50
hopp-me 0.1 10
hopp-e 0.1 10
walk-m 0.1 50
walk-mr 0.5 50
walk-me 0.1 10
walk-e 0.1 10
ant-m 0.1 30
ant-mr 0.1 30
ant-me 0.1 10
ant-e 1.0 30

G COMPUTE INFRASTRUCTURE

The compute infrastructure we use for all experiments is listed in Table 11.
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Table 11: Compute Infrastructure
CPU GPU Memory

AMD EPYC 7452 RTX3090×8 288GB

Table 12: Training time comparison between various methods. h=hour(s), m=minute(s).
IQL⋆ CQL⋆ BOSA DARA IGDF OTDF DROCO

5h24m 10h22m 5h49m 6h13m 6h56m 9h17m 7h26m

H TIME COST

We list the training time of DROCO and all baselines (IQL⋆, CQL⋆, BOSA, DARA, IGDF, OTDF)
for 1M training steps in Table 12. We note that the additional time cost for DROCO mainly comes
from the training of the ensemble dynamics model. However, since we can save the trained dynamics
model weights, no retraining is required for subsequent experiments.

I BROADER IMPACTS

This paper presents a method aimed at enhancing dual robustness against dynamic shifts in cross-
domain offline RL. Our work has potential positive social impacts; for example, it could inspire
the development of humanoid robots capable of robust performance in non-stationary environments.
Currently, we have not identified any negative impacts of our research.

J DECLARATION ON LLM USE

In this work, LLMs are used solely for grammar polishing of an early draft and are excluded from
core aspects of the research, such as method conception, theoretical proof, and experimental work.

38


	Introduction
	Preliminaries
	Is Cross-Domain Offline RL Sensitive to Test-Time Dynamics Perturbations?
	Dual-Robust Cross-Domain Offline RL
	Robust Cross-Domain Bellman Operator
	Dual Robustness against Dynamics Shifts
	Practical Algorithm

	Experiments
	Main Results
	Evaluation under Dynamics Perturbations
	Parameter Sensitivity

	Related Work
	Conclusion
	More Discussions of DROCO
	Proofs of Propositions
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	Proof of Proposition 4.5
	Proof of Proposition 4.6

	Experimental Settings
	Tasks and Datasets
	Kinematic Shifts Realization
	Morphology Shifts Realization

	Implementation Details
	Baselines
	Implementation details of DROCO

	Extended Experimental Results
	Extended Results of Motivation Example
	Evaluation under Morphology Shifts
	Extended Evaluation under Dynamics Perturbations
	Ablation Study
	Extended Parameter Study
	Performance Comparison under Observation and Reward Shifts
	Performance Comparison under Distinct Source and Target Behavior Policies

	Hyperparameter Setup
	Compute Infrastructure
	Time Cost
	Broader Impacts
	Declaration on LLM Use

