

000 001 002 003 004 005 DE-HALLUCINATING CLIP EMBEDDINGS TO IMPROVE 006 BRAIN-VISION MAPPING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent advances in vision-language models, such as CLIP, have enabled their widespread use in brain encoding and decoding, where global image embeddings serve as anchors linking visual stimuli to voxel-level brain responses. However, we observe that CLIP’s global visual embeddings often exhibit hallucinatory semantics: they encode objects not explicitly present in an image but inferred from prior associations. This imaginative bias poses a significant challenge for brain-vision mapping, particularly for natural scenes containing multiple annotated objects, where human neural responses are constrained to what is actually perceived. To address this issue, we propose a framework that suppresses CLIP’s visual hallucination by integrating object- and concept-level representations. First, we extract object-centric embeddings using segmentation masks, isolating visual features tied to explicitly present objects. Next, we stabilize these diverse segment embeddings with a concept bank of text-derived CLIP embeddings, aligning bottom-up perception with top-down categorical knowledge through cross-attention. The resulting concept-stabilized object features act as corrective signals to be fused with global scene embeddings to form de-hallucinated visual representations. Finally, these representations are used for voxel-wise regression. Experiments on the NSD dataset demonstrate that our method generates representations that better align with category-selective brain regions (bodies, faces, food, places, and words), leading to more accurate and reliable neuro-based image generation compared to standard CLIP regression. These results highlight the importance of suppressing model imagination in bridging human perception with multimodal foundation models and offer a new direction for robust, biologically grounded brain-vision alignment.

1 INTRODUCTION

Understanding how the human brain represents visual information remains a central challenge in both neuroscience and machine learning (Mathis et al., 2024). Recent advances in multimodal foundation models, such as CLIP (Radford et al., 2021), have enabled researchers to directly map brain activity onto powerful image-text embedding spaces, offering a promising framework for neural decoding and the study of brain-vision alignment (Cerdas et al., 2025; Yin et al., 2025). A widely adopted approach in this line of work is to anchor voxel-level brain responses to the global image embedding produced by the final layer of CLIP’s visual encoder (Wang et al., 2024; Li et al., 2024; Ma et al., 2025; Zhou et al., 2024)¹. This strategy assumes that the global embedding effectively captures the visual content experienced by a subject, providing a natural bridge between stimulus and brain activity.

However, this assumption overlooks an important limitation. The CLIP model and its embeddings are optimized for open-vocabulary recognition and image-text alignment, but not for faithfully identifying and disentangling multiple objects in complex natural scenes. This shortcoming is especially critical for the Natural Scenes Dataset (NSD) (Allen et al., 2022), where visual stimuli are drawn from MS-COCO (Lin et al., 2014) images containing rich multi-object compositions that trigger corresponding functional Magnetic Resonance Imaging (fMRI) brain responses (Matthews & Jezzard, 2004). For brain-vision mapping, where accurate alignment between visual content and neural representations is essential, such ambiguity in the embeddings becomes a fundamental obstacle to bridge the two modalities. To validate this, we evaluate CLIP on multi-object images with ground-truth annotations.

¹See Appendix A.1 for more related works.

Figure 1: Illustration of CLIP’s visual hallucination, where two images display ground-truth objects (green rectangle) and predicted object rankings. Top 8 objects are listed in terms of the similarity scores against canonical prompts: • means correct prediction, • shows contextual hallucination (which fits the context but isn’t actually present in the image), and • denotes spurious hallucination.

Leveraging CLIP’s canonical text prompts (“a photo of an [object]”), we compare the global image embedding against text embeddings of object names. Two systematic problems are observed:

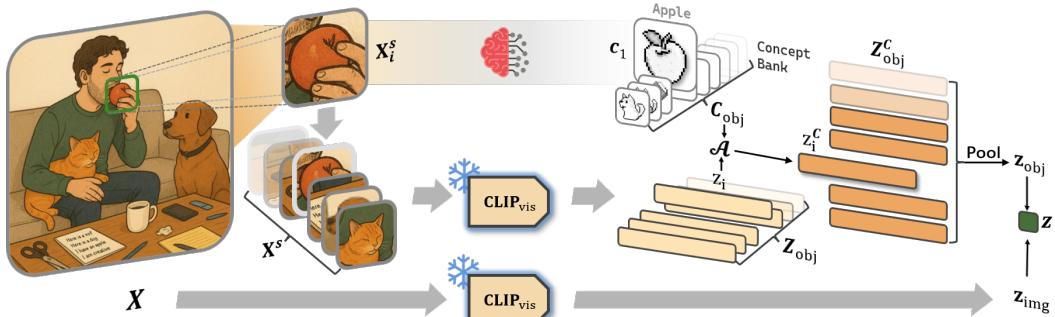
- (i) **Annotated objects frequently fail to appear among the top-ranked**, and;
- (ii) **Spurious, unannotated objects are incorrectly elevated to high ranks**.

Figure 1 exhibits two representative cases. In the first example, the annotated labels are *airplane* and *person*. While CLIP does rank *airplane* third among all 80 MS-COCO object categories, the similarity margin over candidates is negligible. Moreover, the high-ranked predictions fall into two types: (a) reasonable but misleading hallucinations such as *bird* and *kite*, correlating with the contextual cue *sky*; and (b) spurious hallucinations (e.g., *toothbrush*, *apple*, *bowl*), which carry no semantic relation to the image. In more complex cases, the issue worsens. For the second example annotated with *person*, *motorcycle*, *truck*, *horse*, and *car*. CLIP identifies only *horse* and *motorcycle* within its top predictions, while ignoring the rest, replaced by unrelated categories (*apple*, *oven*, etc.).

This evidence suggests that CLIP’s global visual embeddings encode imaginative or confounded object information, extending beyond the objects actually present. While tolerable in open-vocabulary recognition tasks, this behavior is fundamentally misaligned with human perception, which exhibits far greater semantic precision, exclusivity, and clarity (Stiglani et al., 2015; Jain et al., 2023; Firestone, 2020). Consequently, directly mapping CLIP’s global visual features to brain signals risks introducing hallucinated or diluted semantics, undermining the fidelity and quality of brain-vision alignment.

To mitigate this observed hallucination issue, we propose a multi-step de-hallucination framework that starts with CLIP’s global image-level embedding and progressively refines it through two key stages. First, we extract **object-centric embeddings** from segmented image regions, providing a grounded representation of the actual visual content. Next, these object embeddings are anchored to a stable, text-derived concept bank via cross-attention, producing **concept-enriched representations** that ensure semantic consistency and categorical correctness. The enriched object features are then fused with the global embedding to suppress its imaginative bias and form a human-aligned visual representation that balances holistic scene context with grounded concept-corrected object information. Finally, this de-hallucinated representation is mapped to voxel responses through a regression model, yielding a faithful and robust brain-vision correspondences. Our contributions can be summarized into four folds as follows:

- We identify and characterize a hallucination phenomenon in CLIP’s visual embeddings within complex scenes and further discuss their potential to undermine brain-vision tasks—a significant concern given CLIP’s prominence as a leading model in this domain.
- We propose a novel de-hallucination framework that grounds global embeddings with object- and concept-level refinements, directly mitigating CLIP’s tendency to over-imagine.
- Through extensive experiments, we demonstrate that our framework produces semantically faithful brain-to-vision mappings, yielding stronger and more selective activations in category-relevant voxel groups and improving both neural alignment and semantic generation quality.
- We show that our method preferentially enhances the connection to semantically selective voxels, validating its neuroscientific plausibility.

108
109
110
111
112
113
114
115
116
117
118
119
120
2 METHODS

121 Figure 2: **Overview of our de-hallucinated encoding framework:** An input visual stimulus \mathbf{X} is first
 122 decomposed into multiple object instances \mathbf{X}^s . A frozen CLIP Vision Encoder extracts: (1) the class
 123 token as a global image embedding \mathbf{z}_{img} , and (2) object-level embeddings \mathbf{Z}_{obj} for each segment. A
 124 fixed Concept Bank \mathbf{C}_{obj} , constructed from CLIP text prompts, provides stable semantic references.
 125 Object features \mathbf{Z}_{obj} interact with these concept embeddings via a trainable cross-attention module,
 126 yielding concept-aligned object features $\mathbf{Z}_{\text{obj}}^c$. Finally, the refined object-concept representations
 127 are pooled and fused with the global embedding to produce the de-hallucinated visual feature \mathbf{z} ,
 128 capturing both precise object semantics and holistic scene context.

129
130
131 2.1 PROBLEM FORMULATION

132 Let $\mathcal{D} := \{(\mathbf{X}_j, \mathbf{v}_j)\}_{j=1}^M$ denote a neuro-vision dataset, where each pair consists of a visual stimulus
 133 and its corresponding neural response. The stimulus $\mathbf{X} \in \mathbb{R}^{H \times W \times 3}$ is an RGB image with a spatial
 134 resolution of H and W . The neural response $\mathbf{v} \in \mathbb{R}^L$ is a one-dimensional vector of voxel intensities
 135 from an fMRI volume, recorded while a subject viewed \mathbf{X} . The length L of neural response vector
 136 varies across subjects (ranging from 12,682 to 17,907) due to neuro-anatomical differences. As the
 137 proposed model is trained and evaluated independently on a per-subject basis, this variation in L does
 not affect the formulation and can be treated as a fixed value for any given subject.

138 The goal is to build a subject-specific mapping \mathcal{M} from visual stimuli to corresponding brain
 139 responses. Formally, the problem is formulated by solving a regression task and can be described as:

$$140 \quad \mathcal{M} : \mathbb{R}^{H \times W \times 3} \rightarrow \mathbb{R}^L. \quad (1)$$

141
142 2.2 FRAMEWORK OVERVIEW

143 Pre-trained CLIP visual features, often trusted as the strongest encoders for representing visual stimuli
 144 (Wang et al., 2021; Conwell et al., 2022; 2023; Wang et al., 2023), are in fact prone to hallucinations
 145 and can fail to reliably capture the true visual content as pointed out previously in Figure 1.

146 For this reason, we propose a biologically informed CLIP embedding de-hallucination framework
 147 that incrementally refines visual representations before mapping them to neural responses. Following
 148 the prior work (Luo et al., 2023a; Cerdas et al., 2025), we begin by extracting a normalized global
 149 image-level embedding $\mathbf{z}_{\text{img}} \in \mathbb{R}^d$ of the full image \mathbf{X} using the visual encoder of a frozen CLIP
 150 model. d here refers to the latent dimension of CLIP space after image-text alignment:

$$151 \quad \mathbf{z}_{\text{img}} := \frac{\text{CLIP}_{\text{vis}}(\mathbf{X})}{\|\text{CLIP}_{\text{vis}}(\mathbf{X})\|_2} \in \mathbb{R}^d. \quad (2)$$

152 While \mathbf{z}_{img} captures high-level semantic context and has proven effective in prior decoding studies,
 153 it also inherits biases from CLIP’s internet-scale training corpus. Specifically, it can over-weight
 154 dominant scene elements or encode “imaginative” semantics not present in the image, leading to
 155 mismatches with fMRI signals that reflect concrete perceptual content.

156 To address these issues, we introduce a two-stage framework for robust, human-aligned visual
 157 representations (Figure 2). First, object-centric embeddings capture segmented image objects,
 158 grounding the content. Then, these embeddings are enriched and stabilized via alignment with a
 159 text-derived concept bank, and eventually fused with the global image representation. This produces
 160 a scene-aware and concept-corrected feature, which is mapped to voxel responses through regression.

162 2.3 OBJECT-CENTRIC REPRESENTATION
163

164 As mentioned previously, each visual stimulus \mathbf{X} comes from MS-COCO dataset, where images were
165 collected in natural scenes containing multiple objects simultaneously. In such settings, relying solely
166 on global scene embeddings risks conflating distinct object representations and overemphasizing
167 dominant scene elements. Fortunately, MS-COCO provides ground-truth object-level segmentations,
168 allowing us to explicitly disentangle object-level information. Formally, each image can be
169 decomposed as $\mathbf{X} = \mathbf{X}_1^s \cup \mathbf{X}_2^s \cup \dots \cup \mathbf{X}_N^s$, where N denotes the total number of segmented objects.

170 To extract object-specific features, we crop each segment \mathbf{X}_i^s from \mathbf{X} and independently pass it
171 through the same CLIP visual encoder as in equation 2, yielding the representation \mathbf{z}_i for i -th object:
172

$$173 \mathbf{z}_i := \frac{\text{CLIP}_{\text{vis}}(\mathbf{X}_i^s)}{\|\text{CLIP}_{\text{vis}}(\mathbf{X}_i^s)\|_2} \in \mathbb{R}^d. \quad (3)$$

175 Collecting all N object-centric embeddings, we obtain a object-level representation \mathbf{Z}_{obj} that contains
176 fine-grained details for the whole image \mathbf{X} :
177

$$178 \mathbf{Z}_{\text{obj}} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N) \in \mathbb{R}^{N \times d}. \quad (4)$$

180 By isolating individual object segments from cluttered scenes, this representation \mathbf{Z}_{obj} offers an
181 opportunity to prevent global image-level features \mathbf{z}_{img} in equation 2 from “hallucinating” absent
182 semantics and instead grounds the representation in human-annotated object categories. Such de-
183 hallucination is particularly advantageous for neural decoding, as it aligns with evidence that distinct
184 voxel populations exhibit selectivity for specific object categories (Stigliani et al., 2015; Jain et al.,
185 2023), thereby providing a closer match to the brain’s object-centric encoding of natural vision.
186

187 2.4 CONCEPT-ENRICHED REPRESENTATION
188

189 While object-level features \mathbf{Z}_{obj} provide explicit embeddings for segmented object instances present
190 in the image, they remain tied to the raw pixel appearance of individual segments and can still inherit
191 CLIP visual encoder’s biases. Such segment-level embeddings may be noisy and diverse due to
192 imperfect boundaries, variable lighting, or occlusion, and they often lack the higher-level semantic
193 stability that guides human perception. Neuroscience research has shown that object recognition in
194 the ventral visual stream involves not only encoding raw visual input but also integrating categorical
195 knowledge, allowing robust recognition across changes in size, pose, or context (Kravitz et al., 2013;
196 Bracci et al., 2017; Henderson et al., 2025; Bougou et al., 2024; Schmidt et al., 2025). This motivates
197 us to enrich object embeddings with stable and semantically grounded conceptual representations.
198

199 To this end, we construct a **concept bank** $\mathbf{C}_{\text{obj}} \in \mathbb{R}^{K \times d}$ consisting of $K = 80$ object categories
200 defined by MS-COCO. Each category is represented by a CLIP text embedding using the prompt, “a
201 cropped centered photo of [object]”, which aligns with the nature of each segment at pixel-level and
202 provides a semantically consistent and language-aligned reference for each segmented object:
203

$$202 \mathbf{C}_{\text{obj}} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K) \in \mathbb{R}^{K \times d}. \quad (5)$$

204 These text-derived concept representations are invariant to visual idiosyncrasies of individual images
205 and thus serve as an anchor for stabilizing highly-diverse object segment embeddings. We then
206 integrate the segment-level features \mathbf{Z}_{obj} with the built concept bank \mathbf{C}_{obj} using a cross-attention
207 module $\mathcal{A} : \mathbb{R}^{N \times d} \times \mathbb{R}^{K \times d} \times \mathbb{R}^{K \times d} \rightarrow \mathbb{R}^{N \times d}$ as shown below:
208

$$209 \mathbf{Z}_{\text{obj}}^{\mathcal{C}} = \mathcal{A}(\text{Query} = \mathbf{Z}_{\text{obj}}, \text{Key} = \mathbf{C}_{\text{obj}}, \text{Value} = \mathbf{C}_{\text{obj}}) \in \mathbb{R}^{N \times d}. \quad (6)$$

211 In the formulation above, the object features $\mathbf{Z}_{\text{obj}} \in \mathbb{R}^{N \times d}$ derived from direct visual stimuli serve
212 as **queries**, which are compared against the **keys** $\mathbf{C}_{\text{obj}} \in \mathbb{R}^{K \times d}$ representing stable human-defined
213 concepts. This matching process establishes correspondences between diverse visual segments and
214 consistent semantic categories, after which the corresponding concept embeddings (the **values**) are
215 retrieved and adjusted accordingly. This design can be viewed as a computational analogue of how
the brain integrates perceptual features \mathbf{Z}_{obj} with category-level knowledge \mathbf{C}_{obj} to achieve stable and

selective understandings $\mathbf{Z}_{\text{obj}}^{\text{C}} = (\mathbf{z}_1^{\text{C}}, \mathbf{z}_2^{\text{C}}, \dots, \mathbf{z}_N^{\text{C}}) \in \mathbb{R}^{N \times d}$ for all N perceived objects. Eventually, we pool the attended representations to obtain a stabilized object embedding at conceptual level:

$$\mathbf{z}_{\text{obj}} = \text{AvgPool}(\mathbf{Z}_{\text{obj}}^{\text{C}}) = \frac{1}{N} \sum_{i=1}^N \mathbf{z}_i^{\text{C}} \in \mathbb{R}^d, \quad (7)$$

which eventually integrates **bottom-up** visual evidence with **top-down** human-annotated concepts, leading to a stabilized object-level semantics.

2.5 FUSED VISUAL REPRESENTATION

We construct the final representation $\mathbf{z} \in \mathbb{R}^d$ by simply fusing the image-level embedding $\mathbf{z}_{\text{img}} \in \mathbb{R}^d$ from equation 2 with the concept-enriched object-level embedding $\mathbf{z}_{\text{obj}} \in \mathbb{R}^d$ from equation 7:

$$\mathbf{z} = \frac{\mathbf{z}_{\text{img}} + \mathbf{z}_{\text{obj}}}{2} \in \mathbb{R}^d. \quad (8)$$

This fusion balances two complementary information streams. First, the global image-level embedding captures holistic scene layout and contextual relations, while the concept-stabilized object-level embedding grounds the representation in explicitly present and human-annotated semantics. Importantly, \mathbf{z}_{obj} serves as a **corrective signal** that counteracts the tendency of \mathbf{z}_{img} to overweight dominant scene elements or encode “imagined” semantics not present in the actual stimulus. As a result, the fused representation therefore reflects both the broad visual layout and the precise, semantically anchored content that human participants are likely to perceive.

From a neuroscientific perspective, this integration mirrors how the brain combines coarse global context with fine-grained object-specific information to form robust visual representations across multiple regions of the ventral stream (Kravitz et al., 2013). The resulting feature \mathbf{z} is thus not only semantically richer but also more aligned with voxel-level neural responses.

Finally, the representation \mathbf{z} is mapped to voxel responses using a single layer linear regression model $f : \mathbb{R}^d \rightarrow \mathbb{R}^L$ with L denoting the length of fMRI signals:

$$\hat{\mathbf{v}} = f(\mathbf{z}) = \mathbf{W}\mathbf{z} + \mathbf{b} \in \mathbb{R}^L, \quad (9)$$

where $\mathbf{W} \in \mathbb{R}^{L \times d}$ and $\mathbf{b} \in \mathbb{R}^L$ are learnable parameters optimized via a mean squared error (MSE) loss \mathcal{L} against the ground-truth voxel activations \mathbf{v} paired with its visual stimulus \mathbf{X} :

$$\mathcal{L} := \mathcal{L}_{\text{MSE}}(\mathbf{v}, \hat{\mathbf{v}}). \quad (10)$$

This deliberately simple regression transparentizes the contribution of the proposed de-hallucination strategy, ensuring that improvements in regression quality arise from \mathbf{z} rather than model complexity.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset. We evaluate our framework on the Natural Scenes Dataset (NSD) (Allen et al., 2022), the largest fMRI dataset containing responses from eight participants viewing naturalistic images sampled from MS-COCO (Lin et al., 2014). Each participant was intended to complete 40 scanning sessions (10,000 images, each viewed for 3 seconds with three repetitions). Among these stimuli, 1,000 images are shared across all participants and are used as the **test set**, while the remaining $\sim 9,000$ subject-unique images serve as the **training set**. Following standard NSD protocols (Gu et al., 2024; Takagi & Nishimoto, 2023; Scotti et al., 2024a;b), we average neural responses across repetitions for each image and conduct voxel-wise standardization. Although the NSD experimental design specifies 40 sessions per subject, the actual number of publicly available sessions varies due to session interruptions and other data-quality issues Allen et al. (2022). **As a result, only four subjects (subj01, subj02, subj05, and subj07) have the full 40 sessions. For subj03 and subj06, 32 usable sessions are released, while subj04 and subj08 each contain merely 30 sessions. All models in this paper are trained independently for each subject using the available sessions for that individual.**

Model Training. Our model focuses on refining CLIP-derived visual embeddings without heavy computation. **The cross-attention module is implemented with trainable K/Q/V projections with a**

single attention head. The predictive model is implemented as a one-layer linear regression head with a bias term that maps the de-hallucinated CLIP features to voxel activations. All parameters are optimized with a weight decay of 0.05, making the predictor equivalent to ridge regression. We take OpenAI’s *clip-vit-large-patch14* as our pretrained and frozen backbone, which fixes the latent feature dimension at $d = 768$. The whole model is trained for 200 epochs, including 10 warm-up epochs. The learning rate is initialized at 7.5×10^{-3} , annealed gradually to zero with a cosine scheduler. Optimization is performed with AdamW, gradient clipping at 0.8, and a batch size of 1,000.

Image Generation. To evaluate the effectiveness of our refined features and learned brain-vision mapping, we perform semantic-selectivity image generation following Luo et al. (2023a). Given a trained brain encoder and a subset of voxels S from the whole L voxels, we generate images that maximize the mean activation of voxels in S using a frozen but modified latent diffusion model (Rombach et al., 2022). We employ *stable-diffusion-2-1-base* with ϵ -prediction to generate 512×512 images. Sampling is performed via multi-step second order DPM-Solver++ (Lu et al., 2025) with 50 steps and an SAG (Hong et al., 2023) of 0.75. Generated images are re-encoded (by *clip-vit-large-patch14* as well) before being passed to the brain encoder of interest. We use a NULL prompt, ensuring the diffusion process is guided solely by voxel activations rather than text conditioning.

All hyperparameters are kept consistent across subjects unless otherwise specified. Experiments are run on two NVIDIA RTX 6000 Ada GPUs. Training requires about 15 minutes per subject, while generation takes 2.5 hours per subject for 1,000 samples.

3.2 TARGETED IMPROVEMENTS IN SEMANTICALLY SELECTIVE VOXELS

To assess regression quality, we compute the coefficient of determination R^2 per voxel on the held-out testing set. For a straightforward comparison, we treat BrainDiVE’s (Luo et al., 2023a) image-to-voxel regression as our baseline and report the voxel-wise R^2 improvement, defined as the R^2 difference between our model and the baseline. Figure 3 on the right illustrates the distribution of improvements across voxels for each of eight subject.

The distributions are consistently centered just above zero across all subjects, suggesting that our model matches the baseline’s predictive power while providing modest overall gains. This stability highlights that our approach maintains reliable regression performance across diverse subjects without introducing systematic degradation. Importantly, while broad gains are not observed, we note an increase in the maximum average R^2 across subjects, rising from 65.54% for the baseline to 67.04% with our framework. This implies that while widespread improvements are limited, localized enhancements do exist and may be concentrated in some specific subsets of voxels.

To investigate if these gains align with functional specialization, we examine relationship between R^2 improvement and voxel-level association with semantic categories, quantified by the t-statistics from the NSD functional Region Of Interest (ROI) maps. For representative ROIs (faces, words, places, and bodies), we plot voxel-wise R^2 improvements against their corresponding t-values in Figure 4. Each point denotes a voxel, colored red if our model outperforms the baseline and blue otherwise.

Two consistent patterns are observed. First, red points outnumber blue ones across all four ROIs, demonstrating that a larger proportion of voxels benefit rather than degrade under our framework. Second, the regression lines fitted on **all points** in each scatter plot consistently slope upward, indicating that **R^2 improvements systematically increase with stronger voxel semantic selectivity**. In other words, our de-hallucination framework directs its gains toward voxels most tightly linked to semantic categories, rather than distributing them uniformly. See more results in Appendix A.7.

These results reinforce the neuroscientific validity of our approach that improvements are not arbitrary but concentrated in semantically meaningful regions of the visual cortex, where human perception is most selective. Thus, our framework not only purifies and stabilizes image features but also enhances the fidelity of brain-vision mapping precisely where neural representations are most robust.

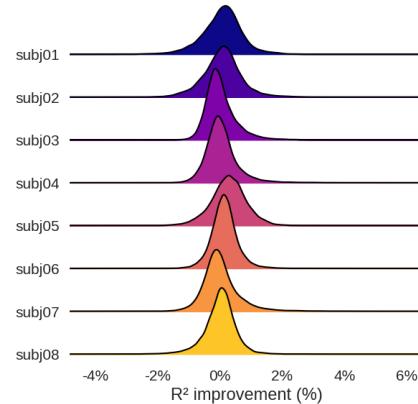


Figure 3: R^2 improvement for 8 subjects.

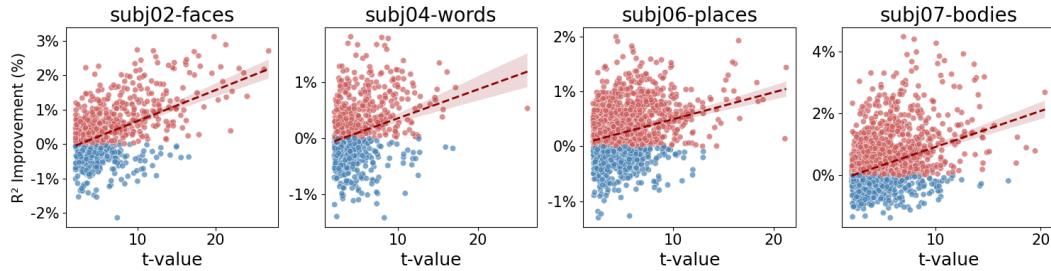


Figure 4: Voxel-wise R^2 improvement versus semantic selectivity (t-values) across representative ROIs. Red points (improvement) dominate over blue (decrease), and the upward regression trends indicate that our model captures gains primarily in voxels most strongly linked to semantic categories.

Table 1: Zero-shot category classification accuracy across subjects and voxel groups.

Subject	Method	Faces	Places	Bodies	Words	Food	Group _{avg}
subj01	BrainDiVE	61.5	91.8	36.6	34.0	33.0	51.4
	Ours	66.7	92.2	42.8	38.5	37.7	55.6
subj02	BrainDiVE	50.7	92.6	44.4	44.4	29.4	52.3
	Ours	64.5	95.9	49.8	49.6	36.5	59.3
subj03	BrainDiVE	57.9	90.9	39.8	31.1	21.5	48.2
	Ours	67.1	90.9	49.0	47.8	18.8	54.7
subj04	BrainDiVE	56.5	94.2	42.5	20.8	27.9	48.4
	Ours	64.9	93.5	49.7	31.8	31.3	54.2
subj05	BrainDiVE	52.9	92.5	62.4	37.6	27.8	54.6
	Ours	62.3	93.8	68.4	51.4	40.7	63.3
subj06	BrainDiVE	45.4	86.5	39.5	33.4	22.2	45.4
	Ours	57.6	86.6	43.5	48.1	28.8	52.9
subj07	BrainDiVE	47.2	92.5	41.1	19.8	26.7	45.5
	Ours	62.5	92.6	46.1	25.4	27.8	50.9
subj08	BrainDiVE	46.0	82.2	30.3	16.6	17.8	38.6
	Ours	46.3	84.4	31.9	19.0	24.2	41.2
subj _{avg}	BrainDiVE	52.3	90.4	42.1	29.7	25.8	48.1
	Ours	61.5	91.2	47.7	39.0	30.7	54.0

3.3 SEMANTIC CONSISTENCY OF GENERATED IMAGES

We assess whether our de-hallucinated representations yield a more accurate brain-vision mapping by producing reconstructions that more faithfully reflect the object categories encoded by functional voxel groups defined in neuroscience (Stigliani et al., 2015; Jain et al., 2023), thereby preserving the intended category semantics. Following the Luo et al. (2023a) protocol, we employ the trained brain encoder to guide a diffusion model. For each voxel group (faces, food, bodies, places, and words), we generate 1,000 synthetic images by optimizing diffusion sampling to maximally activate the selected voxels. These images are expected to reflect the internal representations carried by each voxel group.

To establish a comparison, we perform generations with both our proposed model and the standard regression baseline. We then evaluate the semantic fidelity of the generated images using CLIP-based probing. Specifically, we feed each generated image into the same CLIP model and perform zero-shot classification using category-specific prompts (see Appendix A.10 for details). Each image is forced into one of the five categories, and we compute the classification accuracy, i.e., the percentage of images assigned to the voxel group’s preferred category. If the generations faithfully capture the semantics encoded in the brain, CLIP should consistently identify them with the correct category.

Table 1 reports the results across eight subjects. Our method achieves consistent improvements in semantic alignment across nearly all voxel groups. For instance, face-selective voxels show notable gains (e.g., +13.8% for subj02 and +15.3% for subj07), reflecting the ability of concept-enriched features to capture fine-grained category structure. Similarly, word-selective voxels benefit strongly

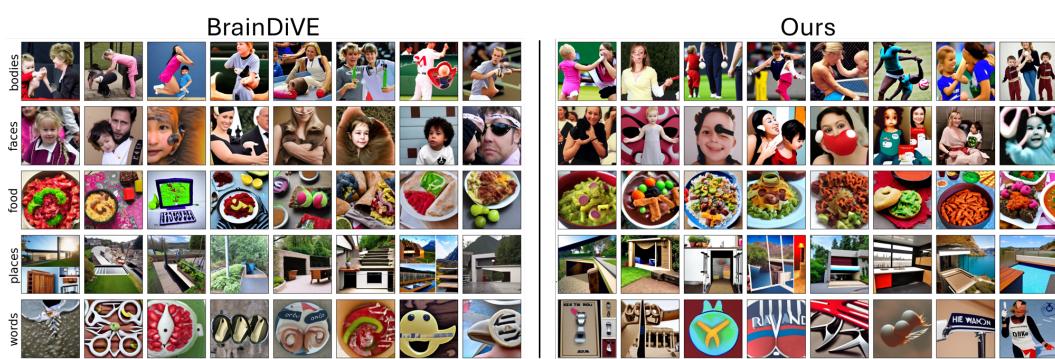


Figure 5: Qualitative comparison of generated images for subj01 between BrainDiVE and our method. The rows correspond to five semantic categories (bodies, faces, food, places, and words). For each category, we visualize the top-8 images selected from 1,000 generated samples, ranked by their average predicted activation across the voxels of the respective semantic ROI.

from our correction (+9.3% on average), mitigating a known weakness of global CLIP embeddings in representing abstract or symbolic stimuli (Materzyńska et al., 2022; Bhalla et al., 2024; Abbasi et al., 2025). Food-related voxels also show substantial improvements for most subjects (e.g., +12.9% for subj05), highlighting the value of grounding generations in explicit object concepts. The places category is already highly saturated under BrainDiVE (above 90% accuracy for most subjects), yet our approach still yields marginal but consistent gains or maintains performance.

In addition to quantitative evaluation, we include a qualitative comparison of images generated for subj01 by BrainDiVE and our method (Figure 5). Across all semantic categories, both approaches produce images that broadly match the category preferences of the corresponding ROI, indicating consistent high-level semantics. However, several differences highlight the improved quality of our brain-vision mapping. In the **food** row, the third BrainDiVE sample depicts a non-food object with noticeable distortions, whereas all samples generated by our method are clear and unambiguous food items. Similar patterns are observed in the **words** category. BrainDiVE often outputs shapes or textures only weakly suggestive of textual structure, while our method more reliably produces glyph-like or typographic elements, reflecting stronger alignment with the intended semantic content.

These qualitative patterns reinforce our quantitative findings that incorporating object-grounded features, enriched by stable semantic concepts, helps mitigate the imaginative bias present in global CLIP embeddings. While hallucinations are not fully eliminated, the fused representation shifts the distribution toward more faithful category-level semantics. As a result, the generated images better reflect the underlying brain-represented categories, improving semantic consistency across subjects and voxel groups and supporting a more accurate, biologically grounded brain-vision mapping.

3.4 NEURAL ACTIVATION ALIGNMENT

In the previous subsection, we demonstrated that images generated with our brain encoder achieve high semantic fidelity and cross-subject consistency. Here, we assess whether these generations also trigger neural responses that align with the category-specific selectivity of functional voxel groups. Concretely, for each subject and semantic category (faces, places, bodies, words, and food), we feed the generated images from two models into their trained brain encoder respectively and compute the mean predicted activation within the corresponding voxel group. This measure captures how strongly the generations drive the expected neural activations.

As shown in Figure 6, radar plots for three representative subjects (subj03, subj04, and subj05) reveal a consistent pattern that our method yields stronger and more category-selective activations than the BrainDiVE baseline. The gains are particularly pronounced for visually heterogeneous categories, such as bodies and words, where our stabilized concept-enriched features provide a corrective signal that better captures category-specific neural tuning. Check Appendix A.8 for plots on all subjects.

Overall, these results highlight that our de-hallucinated features not only preserve semantic consistency at the perceptual level but also improve the neural plausibility of generations. By mitigating

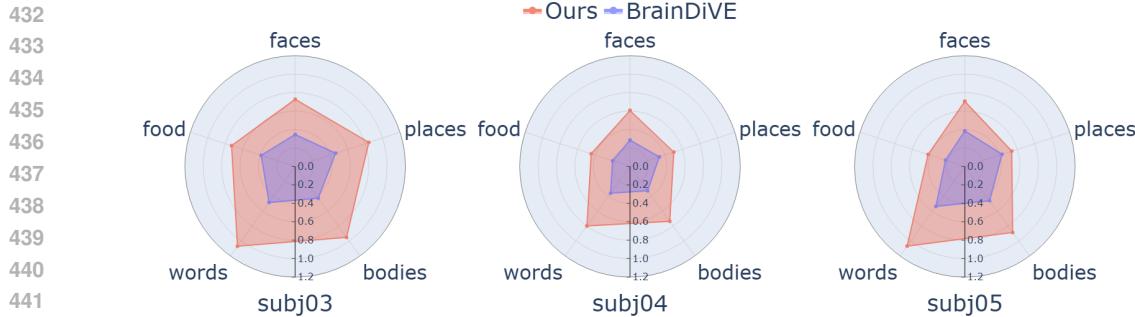


Figure 6: Neural activation alignment across semantic voxel groups. Radar plots show mean predicted activations for five voxel groups (bodies, faces, food, places, and, words) in three representative subjects (subj03, subj04, and subj05). Generations with our method (red) consistently produce stronger and more category-selective activations than the BrainDiVE baseline (blue), particularly for visually variable categories, such as bodies, food, and words.

CLIP’s bias, our mapping produces voxel-group activations that more faithfully reflect the brain’s true category preferences, establishing a tighter alignment between generated content and brain activity.

3.5 CROSS-MODEL VALIDATION

Previous subsections demonstrate that our framework delivers generations with richer semantic fidelity and a tighter correspondence to functional voxel activations. A remaining question, however, is whether these gains stem merely from improved image quality or whether our feature de-hallucination strategy effectively unlocks a more powerful and reliable brain-to-vision mapping compared to the baseline.

To figure these effects out, we perform a cross-model validation. Specifically, we feed the images generated by our framework through both our encoder and the baseline encoder, then compare the predicted voxel activations. For each subject and semantic voxel group, we calculate the relative gain in terms of “(ours - baseline) / baseline” and visualize the results as a delta heatmap, highlighting where our approach most effectively enhances the brain-vision mapping. Figure 7 reveals clear and systematic patterns. Across selected five subjects, our model consistently produces stronger activations than the baseline given the same visual inputs. The most significant improvements were observed for *places*, where relative gains range from +72% to +120%. Notably, although zero-shot classification already reaches near-saturated performance on our generated places images (Table 1), our brain encoder is still capable of driving substantially higher activations in place-selective voxels, confirming that our de-hallucination framework establishes a stronger mapping to underlying neural selectivity. More results can be found in Appendix A.9.

The second category showing substantial gains is *food*, which benefits from the availability of 10 annotated object categories within MS-COCO. These annotations enrich food-object representations, enabling our refinement strategy to build stronger visual features that the encoder captures more effectively, leading to consistent activation boosts. In contrast, *faces* and *bodies* exhibit smaller but still positive improvements. We attribute this to the limited availability of human-related object categories—merely *person*—in the label space of training data, leading to marginal refinement allocation across face- and body-related voxels despite their different neural specializations.

At the subject level, subj06 shows the smallest overall activation gains, though still positive across all five semantic groups. This may reflect two factors: (i) distributional differences in the visual stimuli seen by subj06, with fewer overlaps among the five evaluated categories, and (ii) fewer training samples relative to other subjects, which limits the effectiveness of the proposed refinement strategy.

Figure 7: Delta heatmap shows the relative gain in predicted voxel activations (ours-baseline) / baseline when feeding the same generated images.

Figure 7 reveals clear and systematic patterns. Across selected five subjects, our model consistently produces stronger activations than the baseline given the same visual inputs. The most significant improvements were observed for *places*, where relative gains range from +72% to +120%. Notably, although zero-shot classification already reaches near-saturated performance on our generated places images (Table 1), our brain encoder is still capable of driving substantially higher activations in place-selective voxels, confirming that our de-hallucination framework establishes a stronger mapping to underlying neural selectivity. More results can be found in Appendix A.9.

The second category showing substantial gains is *food*, which benefits from the availability of 10 annotated object categories within MS-COCO. These annotations enrich food-object representations, enabling our refinement strategy to build stronger visual features that the encoder captures more effectively, leading to consistent activation boosts. In contrast, *faces* and *bodies* exhibit smaller but still positive improvements. We attribute this to the limited availability of human-related object categories—merely *person*—in the label space of training data, leading to marginal refinement allocation across face- and body-related voxels despite their different neural specializations.

At the subject level, subj06 shows the smallest overall activation gains, though still positive across all five semantic groups. This may reflect two factors: (i) distributional differences in the visual stimuli seen by subj06, with fewer overlaps among the five evaluated categories, and (ii) fewer training samples relative to other subjects, which limits the effectiveness of the proposed refinement strategy.

486 These consistent activation boosts obtained under identical generations indicate that our improvements
 487 extend beyond semantic fidelity. Our de-hallucination strategy directly strengthens the brain-vision
 488 mapping, refining the feature space to trigger more robust and category-selective neural responses.
 489

490 **3.6 ABLATION STUDY**
 491

492 Our proposed de-hallucination framework relies on three
 493 levels of representation—image features, object-centric fea-
 494 tures, and concept-enriched features—together with their re-
 495 finement and fusion. To understand the contribution of each
 496 component, we conduct ablation studies examining how
 497 progressively integrating these representations improves
 498 the construction of a reliable brain-vision mapping.

499 **Representational Analysis & Comparison.** We directly
 500 compare the original CLIP global embedding with our de-
 501 hallucinated embedding using a retrieval-based quantitative
 502 evaluation in Appendix A.3. This analysis formalizes the
 503 phenomenon illustrated in Figure 1 and provides a dataset-
 504 level assessment of how each representation suppresses
 505 spurious object hallucinations and prioritizes true objects.
 506 We additionally include visual comparisons following the
 507 style of Figure 1 in Appendix A.6 to give intuitive examples alongside the quantitative results.

508 **Semantic Selectivity.** Following the zero-shot semantic selectivity evaluation in Section 3.3, we
 509 measure top-1 accuracy across the eight NSD subjects for each ablated variant (Figure 8). The
 510 full model—combining image, object, and concept features—achieves the highest accuracy of 54.0%.
 511 A mid-level variant that fuses global image features with pooled object-centric features yields
 512 intermediate performance, falling between the image-only and full-model results.

513 These findings show a clear gain from image-level to object-level to concept-level representations.
 514 Each stage incrementally mitigates hallucinations and enhances the alignment between visual repre-
 515 sentations and neural responses. This validates the necessity of all components and highlights how
 516 stabilized and semantically grounded features contribute to a high-fidelity brain-vision mapping.

517 **4 CONCLUSION**
 518

519 In this work, we identify and characterize the hallucination problem in CLIP’s visual embeddings and
 520 demonstrate its potential drawbacks for brain-vision applications. To address this issue, we introduce
 521 a lightweight yet effective de-hallucination framework that grounds global image embeddings through
 522 object- and concept-level refinements, explicitly reducing CLIP’s tendency to over-imagine objects.
 523 By integrating bottom-up visual evidence with top-down concept priors, our framework stabilizes
 524 object-level semantics in a way that mimics human visual processing, thereby enabling a more
 525 faithful and biologically plausible brain-vision mapping. The state-of-the-art performance in semantic
 526 selectivity tasks and the capability to drive stronger, category-specific neural activations in semantic
 527 voxel groups highlight the importance of correcting semantic hallucinations in vision-language models
 528 for neuroscience applications, and establish our framework as a principled step toward building a
 529 robust and high-quality brain-vision mapping.

530 In future work, we plan to extend our framework to a multi-subject setting, enabling the mapping
 531 to leverage larger datasets and learn a unified representation for brain-vision alignment across
 532 individuals. Beyond improving generalization, this extension will also allow us to examine inter-
 533 subject variability and uncover shared versus personalized neural representations. We also aim
 534 to expand our analysis to additional semantic voxel groups, providing a richer understanding of
 535 how diverse brain regions encode object categories. Collaborating closely with neuroscientists, we
 536 will further investigate how voxel-level activation patterns relate to semantic object representations.
 537 Through these interdisciplinary efforts, we aim to pave the way toward brain-based encoding and
 538 decoding models that are both more interpretable and more faithful to neuroscientific mechanisms.

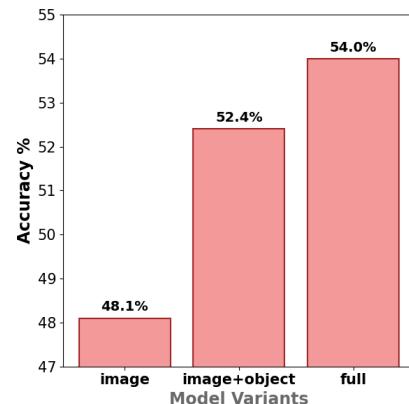


Figure 8: Ablation on features.

540 REFERENCES

541

542 Reza Abbasi, Ali Nazari, Aminreza Sefid, Mohammadali Banayeeanzade, Mohammad Hossein
543 Rohban, and Mahdieh Soleymani Baghshah. Analyzing clip’s performance limitations in multi-
544 object scenarios: A controlled high-resolution study. *arXiv e-prints*, pp. arXiv–2502, 2025.

545 Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
546 Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge
547 cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126, 2022.

548 Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, and Himabindu Lakkaraju. Interpreting
549 clip with sparse linear concept embeddings (splice). *Advances in Neural Information Processing
550 Systems*, 37:84298–84328, 2024.

551

552 Vasiliki Bougou, Michaël Vanhoyland, Alexander Bertrand, Wim Van Paesschen, Hans Op De Beeck,
553 Peter Janssen, and Tom Theys. Neuronal tuning and population representations of shape and
554 category in human visual cortex. *Nature Communications*, 15(1):4608, 2024.

555 Stefania Bracci, Nicky Daniels, and Hans Op de Beeck. Task context overrules object-and category-
556 related representational content in the human parietal cortex. *Cerebral cortex*, 27(1):310–321,
557 2017.

558

559 Diego García Cerdas, Christina Sartetaki, Magnus Petersen, Gemma Roig, Pascal Mettes, and
560 Iris Groen. Brainactiv: Identifying visuo-semantic properties driving cortical selectivity using
561 diffusion-based image manipulation. In *The Thirteenth International Conference on Learning
562 Representations*, 2025.

563

564 Xuwei Chen, Ziqiao Ma, Xuejun Zhang, Sihan Xu, Shengyi Qian, Jianing Yang, David Fouhey, and
565 Joyce Chai. Multi-object hallucination in vision language models. *Advances in Neural Information
566 Processing Systems*, 37:44393–44418, 2024.

567

568 Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the brain:
569 Conditional diffusion model with sparse masked modeling for vision decoding. In *Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22710–22720, 2023.

570

571 Colin Conwell, Jacob S Prince, George A Alvarez, and Talia Konkle. Large-scale benchmarking of
572 diverse artificial vision models in prediction of 7t human neuroimaging data. *BioRxiv*, 10(2022.03):
573 28–485868, 2022.

574

575 Colin Conwell, Jacob S Prince, Kendrick N Kay, George A Alvarez, and Talia Konkle. What can 1.8
576 billion regressions tell us about the pressures shaping high-level visual representation in brains and
577 machines? *BioRxiv*, pp. 2022–03, 2023.

578

579 Ailin Deng, Zhirui Chen, and Bryan Hooi. Seeing is believing: Mitigating hallucination in large
580 vision-language models via clip-guided decoding. In *ICLR 2024 Workshop on Reliable and
Responsible Foundation Models*, 2024.

581

582 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
583 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control
584 by visual information grounding. In *Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, pp. 14303–14312, 2024.

585

586 Matteo Ferrante, Tommaso Boccato, Stefano Bargione, and Nicola Toschi. Decoding eeg signals of
587 visual brain representations with a clip based knowledge distillation. In *ICLR 2024 Workshop on
Learning from Time Series For Health*, 2024.

588

589 Chaz Firestone. Performance vs. competence in human–machine comparisons. *Proceedings of the
590 National Academy of Sciences*, 117(43):26562–26571, 2020.

591

592 Zixuan Gong, Guangyin Bao, Qi Zhang, Zhongwei Wan, Duoqian Miao, Shoujin Wang, Lei Zhu,
593 Changwei Wang, Rongtao Xu, Liang Hu, et al. Neuroclips: Towards high-fidelity and smooth fmri-
594 to-video reconstruction. *Advances in Neural Information Processing Systems*, 37:51655–51683,
595 2024.

594 Zijin Gu, Keith Wakefield Jamison, Meenakshi Khosla, Emily J Allen, Yihan Wu, Ghislain St-Yves,
 595 Thomas Naselaris, Kendrick Kay, Mert R Sabuncu, and Amy Kuceyeski. Neurogen: activation
 596 optimized image synthesis for discovery neuroscience. *NeuroImage*, 247:118812, 2022.

597

598 Zijin Gu, Keith Jamison, Amy Kuceyeski, and Mert R. Sabuncu. Decoding natural image stimuli
 599 from fmri data with a surface-based convolutional network. In Ipek Oguz, Jack Noble, Xiaoxiao
 600 Li, Martin Styner, Christian Baumgartner, Mirabela Rusu, Tobias Heinmann, Despina Kontos,
 601 Bennett Landman, and Benoit Dawant (eds.), *Medical Imaging with Deep Learning*, volume
 602 227 of *Proceedings of Machine Learning Research*, pp. 107–118. PMLR, 10–12 Jul 2024. URL
 603 <https://proceedings.mlr.press/v227/gu24a.html>.

604 Margaret M Henderson, John T Serences, and Nuttida Rungratsameetaweemana. Dynamic catego-
 605 rization rules alter representations in human visual cortex. *bioRxiv*, pp. 2023–09, 2025.

606

607 Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving sample quality of
 608 diffusion models using self-attention guidance. In *Proceedings of the IEEE/CVF International
 609 Conference on Computer Vision*, pp. 7462–7471, 2023.

610 Nidhi Jain, Aria Wang, Margaret M Henderson, Ruogu Lin, Jacob S Prince, Michael J Tarr, and Leila
 611 Wehbe. Selectivity for food in human ventral visual cortex. *Communications Biology*, 6(1):175,
 612 2023.

613

614 Chaoya Jiang, Hongrui Jia, Mengfan Dong, Wei Ye, Haiyang Xu, Ming Yan, Ji Zhang, and Shikun
 615 Zhang. Hal-eval: A universal and fine-grained hallucination evaluation framework for large vision
 616 language models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp.
 617 525–534, 2024.

618

619 Prannay Kaul, Zhizhong Li, Hao Yang, Yonatan Dukler, Ashwin Swaminathan, CJ Taylor, and
 620 Stefano Soatto. Throne: An object-based hallucination benchmark for the free-form generations of
 621 large vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 622 and Pattern Recognition*, pp. 27228–27238, 2024.

623

624 Dwight J Kravitz, Kadharbatcha S Saleem, Chris I Baker, Leslie G Ungerleider, and Mortimer
 625 Mishkin. The ventral visual pathway: an expanded neural framework for the processing of object
 626 quality. *Trends in cognitive sciences*, 17(1):26–49, 2013.

627

628 Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, and Quanying Liu. Visual decoding and recon-
 629 struction via eeg embeddings with guided diffusion. In *Proceedings of the 38th International
 630 Conference on Neural Information Processing Systems*, pp. 102822–102864, 2024.

631

632 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 633 object hallucination in large vision-language models. In *Proceedings of the 2023 Conference on
 634 Empirical Methods in Natural Language Processing*, pp. 292–305, 2023.

635

636 Sikun Lin, Thomas Sprague, and Ambuj K Singh. Mind reader: Reconstructing complex images
 637 from brain activities. *Advances in Neural Information Processing Systems*, 35:29624–29636, 2022.

638

639 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 640 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 641 conference on computer vision*, pp. 740–755. Springer, 2014.

642

643 Yufang Liu, Tao Ji, Changzhi Sun, Yuanbin Wu, and Aimin Zhou. Investigating and mitigating object
 644 hallucinations in pretrained vision-language (clip) models. In *Proceedings of the 2024 Conference
 645 on Empirical Methods in Natural Language Processing*, pp. 18288–18301, 2024.

646

647 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 648 solver for guided sampling of diffusion probabilistic models. *Machine Intelligence Research*, pp.
 649 1–22, 2025.

650

651 Andrew Luo, Maggie Henderson, Leila Wehbe, and Michael Tarr. Brain diffusion for visual explo-
 652 ration: Cortical discovery using large scale generative models. *Advances in Neural Information
 653 Processing Systems*, 36:75740–75781, 2023a.

648 Andrew F Luo, Margaret M Henderson, Michael J Tarr, and Leila Wehbe. Brainscuba: Fine-grained
 649 natural language captions of visual cortex selectivity. *arXiv preprint arXiv:2310.04420*, 2023b.
 650

651 Andrew F Luo, Jacob Yeung, Rushikesh Zawar, Shaurya Dewan, Margaret M Henderson, Leila
 652 Wehbe, and Michael J Tarr. Brain mapping with dense features: Grounding cortical semantic
 653 selectivity in natural images with vision transformers. *arXiv preprint arXiv:2410.05266*, 2024.

654 Yongqiang Ma, Yulong Liu, Liangjun Chen, Guibo Zhu, Badong Chen, and Nanning Zheng. Brainclip:
 655 Brain representation via clip for generic natural visual stimulus decoding. *IEEE Transactions on
 656 Medical Imaging*, 2025.

657 Joanna Materzyńska, Antonio Torralba, and David Bau. Disentangling visual and written concepts in
 658 clip. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 659 pp. 16410–16419, 2022.

660 Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F Chang, Andreas S Tolias, and
 661 Alexander Mathis. Decoding the brain: From neural representations to mechanistic models. *Cell*,
 662 187(21):5814–5832, 2024.

663 Paul M Matthews and Peter Jezzard. Functional magnetic resonance imaging. *Journal of Neurology,
 664 Neurosurgery & Psychiatry*, 75(1):6–12, 2004.

665 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Clip-dpo: Vision-language
 666 models as a source of preference for fixing hallucinations in lvlms. In *European Conference on
 667 Computer Vision*, pp. 395–413. Springer, 2024.

668 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 669 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 670 models from natural language supervision. In *International conference on machine learning*, pp.
 671 8748–8763. PMLR, 2021.

672 N Apurva Ratan Murty, Pouya Bashivan, Alex Abate, James J DiCarlo, and Nancy Kanwisher. Com-
 673 putational models of category-selective brain regions enable high-throughput tests of selectivity.
 674 *Nature communications*, 12(1):5540, 2021.

675 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 676 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 677 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

678 Philipp Schmidt, Martin N Hebart, Alexandra C Schmid, and Roland W Fleming. Core dimensions
 679 of human material perception. *Proceedings of the National Academy of Sciences*, 122(10):
 680 e2417202122, 2025.

681 Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
 682 Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
 683 mind’s eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural
 684 Information Processing Systems*, 36, 2024a.

685 Paul Steven Scotti, Mihir Tripathy, Cesar Torrico, Reese Kneeland, Tong Chen, Ashutosh Narang,
 686 Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman, et al. Mindeye2:
 687 Shared-subject models enable fmri-to-image with 1 hour of data. In *Forty-first International
 688 Conference on Machine Learning*, 2024b.

689 Anthony Stigliani, Kevin S Weiner, and Kalanit Grill-Spector. Temporal processing capacity in
 690 high-level visual cortex is domain specific. *Journal of Neuroscience*, 35(36):12412–12424, 2015.

691 Yu Takagi and Shinji Nishimoto. High-resolution image reconstruction with latent diffusion models
 692 from human brain activity. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 693 Pattern Recognition*, pp. 14453–14463, 2023.

694 Aria Y Wang, Ruogu Lin, Michael J Tarr, and Leila Wehbe. Joint interpretation of representations
 695 in neural network and the brain. In *How Can Findings About The Brain Improve AI Systems?
 696 Workshop at ICLR 2021*, 2021.

702 Aria Y Wang, Kendrick Kay, Thomas Naselaris, Michael J Tarr, and Leila Wehbe. Better models of
703 human high-level visual cortex emerge from natural language supervision with a large and diverse
704 dataset. *Nature Machine Intelligence*, 5(12):1415–1426, 2023.

705

706 Shizun Wang, Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Mindbridge: A cross-subject
707 brain decoding framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
708 *Pattern Recognition*, pp. 11333–11342, 2024.

709 Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Understanding and mitigating hallucination in large
710 vision-language models via modular attribution and intervention. In *The Thirteenth International*
711 *Conference on Learning Representations*, 2025.

712

713 Jacob Yeung, Andrew F Luo, Gabriel Sarch, Margaret M Henderson, Deva Ramanan, and Michael J
714 Tarr. Reanimating images using neural representations of dynamic stimuli. In *Proceedings of the*
715 *Computer Vision and Pattern Recognition Conference*, pp. 5331–5343, 2025.

716 Zixiang Yin, Jiarui Li, and Zhengming Ding. *i* mind: Insightful multi-subject invariant neural
717 decoding. *arXiv preprint arXiv:2509.17313*, 2025.

718 Jinrui Zhang, Teng Wang, Haigang Zhang, Ping Lu, and Feng Zheng. Reflective instruction tuning:
719 Mitigating hallucinations in large vision-language models. In *European Conference on Computer*
720 *Vision*, pp. 196–213. Springer, 2024.

721

722 Qiongyi Zhou, Changde Du, Shengpei Wang, and Huiguang He. Clip-mused: Clip-guided multi-
723 subject visual neural information semantic decoding. In *The Twelfth International Conference on*
724 *Learning Representations*, 2024.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 RELATED WORK**
759760 **A.1.1 HALLUCINATION IN VISION LANGUAGE MODELS**
761762 Recent research has extensively investigated object hallucination in vision-language models (VLMs).
763 Deng et al. (2024) propose CLIP-Guided Decoding (CGD), a training-free method that leverages
764 CLIP’s image-text similarity to select visually grounded sentences during decoding, thereby reducing
765 hallucination. CLIP-DPO (Ouali et al., 2024), which incorporates CLIPScore as a reward within the
766 Direct Preference Optimization framework, grounding generation more closely to visual evidence.
767768 A foundational contribution comes from Li et al. (2023), who systematically study hallucination in
769 LVLMs and establish POPE (Popular Object Prompted Evaluation), a benchmark now widely used for
770 quantifying hallucination severity. Expanding on this, Chen et al. (2024) show that hallucinations are
771 amplified when VLMs must handle multiple objects, as models tend to rely on spurious correlations.
772 Similarly, Favero et al. (2024) introduces M3ID, an instruction-tuning method that explicitly grounds
773 responses in visual input, reducing dependence on language priors.
774775 Other works target architectural and data-level interventions. Yang et al. (2025) identify specific
776 “hallucination heads” within the attention mechanism and propose lightweight interventions, both
777 training-free and fine-tuned, to mitigate them. Zhang et al. (2024) take a data-centric view, augmenting
778 instruction-tuning corpora with reflective pairs that contrast grounded versus hallucinated outputs.
779 Meanwhile, Jiang et al. (2024) propose a comprehensive, multi-dimensional framework to evaluate
780 hallucinations across object, attribute, and relational levels. Finally, Kaul et al. (2024) introduce
781 THRONE, a benchmark focused on free-form generation that evaluates grounding beyond standard
782 VQA tasks.
783784 Previously proposed methods for addressing hallucination in VLMs typically rely on CLIP’s im-
785 age-text similarity scores to suppress spurious concepts. However, our analysis reveals that CLIP’s
786 vision encoder alone exhibits hallucination, independent of the text encoder. The work most closely
787 related to ours is Liu et al. (2024), which shows that standard CLIP models often rank halluci-
788 nated captions—descriptions of objects absent from the image—higher than correct ones. On their
789 benchmark, CLIP selects the correct caption in only 19% of cases, indicating that hallucination
790 originates primarily from the visual embedding rather than cross-modal alignment. Their approach
791 uses counterfactual data augmentation and fine-tuning to explicitly reduce hallucinations. While
792 consistent with our observation of visual hallucination, their goal differs fundamentally. They aim to
793 train a more hallucination-resistant CLIP, whereas we focus on a training-free procedure to mitigate
794 hallucinated visual content specifically for constructing brain–vision mappings. This strategy allows
795 easy generalization to other vision models. In short, our work tackles a distinct problem—**how**
796 **CLIP’s hallucination affects neural encoding**—and proposes a solution tailored to this setting,
797 rather than general VLM improvement.
798799 **A.1.2 CLIP IN BRAIN-VISION TASKS**
800801 Decoding visual information from neural activity is fundamentally a multimodal problem, requiring
802 the integration of at least two modalities: visual inputs and neural recordings (e.g., fMRI). Existing
803 methods for aligning these modalities generally fall into two categories, distinguished by the
804 projection direction between visual and neural representational spaces.
805806 The first line of work maps neural signals into a pre-trained latent visual space. For example, Scotti
807 et al. (2024a) encodes flattened 3D cortical activity patterns into the embedding space of CLIP. Along
808 similar lines, Takagi & Nishimoto (2023) predicts latent representations of viewed images from
809 fMRI signals in the early visual cortex. More recent approaches Wang et al. (2024); Chen et al.
810 (2023); Lin et al. (2022); Scotti et al. (2024b) leverage pre-trained generative models—including GANs
811 (Ratan Murty et al., 2021) and diffusion models(Ferrante et al., 2024)—for reconstruction tasks. These
812 methods benefit from large-scale visual training data and avoid the need to re-train computationally
813 demanding generative architectures, which is impractical given the limited availability of paired
814 neural-visual datasets.
815

The second line of work reverses this direction by projecting visual features into the neural space. This strategy is particularly useful for constructing synthetic stimuli that selectively activate targeted brain regions, thereby offering insights into feature preferences across cortical areas. Representative studies include Luo et al. (2023a;b); Gu et al. (2022), which examine neural response patterns elicited by feature-driven synthetic stimuli. More recent efforts have further extended this paradigm. For example, Gong et al. (2024) leverages CLIP’s semantic space to map continuous fMRI signals onto video keyframes, enabling temporally coherent neural-to-video decoding. Similarly, BrainNRDS (Yeung et al., 2025) decodes visual motion information directly from fMRI activity and uses it to animate static images. In addition, BrainSail (Luo et al., 2024) introduces a fine-grained framework for characterizing how diverse semantic concepts in naturalistic scenes are represented across the human visual cortex.

A.2 DETAILED ZERO-SHOT CLASSIFICATION WITH DIFFERENT LEVELS OF FEATURES

In Table 2 below, letters I, O, and C stands for Image, Object, and Concepts respectively. The classification procedure is the same as Section 3.3 in the main paper.

Table 2: Zero-shot category classification accuracy across subjects and voxel groups with different levels of features.

Subject	Features	Faces	Places	Bodies	Words	Food	Mean
subj01	I	61.5	91.8	36.6	34.0	33.0	51.4
	I+O	69.3	93.2	41.8	31.3	36.9	54.5
	I+O+C	66.7	92.2	42.8	38.5	37.7	55.6
subj02	I	50.7	92.6	44.4	44.4	29.4	52.3
	I+O	64.0	95.1	50.4	45.1	34.9	57.9
	I+O+C	64.5	95.9	49.8	49.6	36.5	59.3
subj03	I	57.9	90.9	39.8	31.1	21.5	48.2
	I+O	61.9	89.1	42.7	37.4	22.6	50.7
	I+O+C	67.1	90.9	49.0	47.8	18.8	54.7
subj04	I	56.5	94.2	42.5	20.8	27.9	48.4
	I+O	65.1	96.2	48.6	23.0	31.5	52.9
	I+O+C	64.9	93.5	49.7	31.8	31.3	54.2
subj05	I	52.9	92.5	62.4	37.6	27.8	54.6
	I+O	64.0	94.1	60.4	41.6	34.3	58.9
	I+O+C	62.3	93.8	68.4	51.4	40.7	63.3
subj06	I	45.4	86.5	39.5	33.4	22.2	45.4
	I+O	55.1	91.0	39.4	42.7	23.4	50.3
	I+O+C	57.6	86.6	43.5	48.1	28.8	52.9
subj07	I	47.2	92.5	41.1	19.8	26.7	45.5
	I+O	58.2	93.1	49.9	27.1	28.5	51.4
	I+O+C	62.5	92.6	46.1	25.4	27.8	50.9
subj08	I	46.0	82.2	30.3	16.6	17.8	38.6
	I+O	52.5	83.9	32.0	22.0	24.2	42.9
	I+O+C	46.3	84.4	31.9	19.0	24.2	41.2
average	I	52.3	90.4	42.1	29.7	25.8	48.1
	I+O	61.3	92.0	45.7	33.8	29.6	52.4
	I+O+C	61.5	<u>91.2</u>	47.7	39.0	30.7	<u>54.0</u>

A.3 DETAILED REPRESENTATIONAL SIMILARITY ANALYSIS FOR ALL SUBJECTS

In Table 3, the letters I, O, and C denote Image, Object, and Concept, respectively. We evaluate our representational semantics against CLIP’s text embeddings in an information retrieval task. The

864 evaluation employs top-10 metrics: Recall, mean Average Precision (mAP), Area Under the ROC
865 Curve (AUC), and Normalized Discounted Cumulative Gain (nDCG). The combined image and
866 object representations achieve the best performance, validating our design of incorporating segmented
867 objects to generate object-level fine-grained features. Conversely, the full model incorporating image,
868 object, and concept features performs suboptimally. This result is expected and reasonable, as
869 our concept-enriched features are derived from a different objective: they are generated through a
870 cross-attention mechanism between object features and a concept bank, regressed to predict voxel
871 activations. Consequently, these concept features are optimized for brain mapping and are inherently
872 divergent from the semantic space of CLIP’s text embeddings by a learnable value embedding matrix,
873 which is the benchmark for this retrieval task.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
919
920
921
922

Table 3: Detailed representational similarity analysis.

Subject	ID	Image	Object	Concept	Recall	mAP	AUC	nDCG
subj01	Full	✓	✓	✓	.673	.621	.794	.717
	1	✓			.735	.696	.828	.779
	2		✓		.796	.712	.788	.708
	3	✓	✓		.822	.765	.836	.783
	4		✓	✓	.115	.077	.164	.108
subj02	Full	✓	✓	✓	.543	.544	.832	.736
	1	✓			.735	.696	.828	.779
	2		✓		.796	.712	.788	.708
	3	✓	✓		.822	.765	.836	.783
	4		✓	✓	.097	.055	.124	.064
subj03	Full	✓	✓	✓	.536	.553	.854	.777
	1	✓			.731	.695	.831	.782
	2		✓		.796	.713	.791	.712
	3	✓	✓		.822	.766	.835	.785
	4		✓	✓	.063	.042	.080	.050
subj04	Full	✓	✓	✓	.515	.484	.771	.654
	1	✓			.730	.695	.831	.782
	2		✓		.795	.713	.791	.712
	3	✓	✓		.822	.766	.836	.786
	4		✓	✓	.064	.042	.100	.061
subj05	Full	✓	✓	✓	.633	.581	.772	.684
	1	✓			.735	.696	.828	.779
	2		✓		.796	.712	.788	.708
	3	✓	✓		.822	.765	.836	.783
	4		✓	✓	.074	.040	.078	.042
subj06	Full	✓	✓	✓	.628	.607	.805	.748
	1	✓			.731	.695	.831	.782
	2		✓		.796	.713	.791	.712
	3	✓	✓		.822	.766	.835	.785
	4		✓	✓	.083	.049	.111	.062
subj07	Full	✓	✓	✓	.588	.592	.847	.781
	1	✓			.735	.696	.828	.779
	2		✓		.796	.712	.788	.708
	3	✓	✓		.822	.765	.836	.783
	4		✓	✓	.078	.047	.092	.061
subj08	Full	✓	✓	✓	.544	.500	.760	.645
	1	✓			.730	.695	.831	.782
	2		✓		.795	.713	.791	.712
	3	✓	✓		.822	.766	.836	.786
	4		✓	✓	.092	.066	.152	.099
average	Full	✓	✓	✓	.583	.560	.804	.718
	1	✓			.733	.695	.830	.780
	2		✓		.796	.713	.789	.710
	3	✓	✓		.822	.765	.836	.784
	4		✓	✓	.083	.052	.113	.068

964
965
966
967
968
969
970
971

972
973 A.4 HYPERPARAMETER TUNING974
975 Table 4: Ablation studies on prompts, heads, and fusion hyperparameters
976

ID	λ	Concept Prompt	Head(s)	Accuracy (%)
Full	0.5	a centered cropped photo of [object]	1	42.8
1	0.25			41.9
2	0.75			44.3
3	1.00			36.6
4		a photo of [object]		45.3
5		an isolated [object]		46.7
6		a detailed view of [object]		50.5
7			2	43.5
8			4	44.8
9			6	36.3
10			8	35.0

989
990 To better understand the contributions of each design component in our framework, we conducted
991 targeted ablation studies on three key hyperparameters for subj01 on the **bodies** category. The results
992 are summarized in Table 4, where blank cells denote settings identical to those used in the full model.

993 For **representational fusion**, we reformulate equation 8 as

$$994 \quad \mathbf{z} = \lambda \mathbf{z}_{\text{img}} + (1 - \lambda) \mathbf{z}_{\text{obj}} \in \mathbb{R}^d, \quad (11)$$

995 where λ controls the balance between image-level and object-level features. Varying λ shows that
996 omitting object information leads to a substantial drop in performance to 36.6%, while intermediate
997 fusion strengths remain stable. A slightly higher weight λ of 0.75 yields the best performance.

998
999 We next ablated the **concept-bank** construction by testing alternative prompt templates. While the
1000 default prompt, “a centered cropped photo of [object],” provides a strong baseline (42.8%), more
1001 descriptive prompts can yield stronger category-specific alignment. In particular, “a detailed view of
1002 [object]” produces a more effective concept bank for this case, increasing accuracy to 50.5%.

1003
1004 Finally, we assessed the number of **attention heads** in the cross-attention module. A single head—our
1005 default choice—proves sufficient, and modest increases offer slight improvements (e.g., 4 heads at
1006 44.8%). However, performance degrades considerably as the module becomes overly parameterized,
1007 with accuracy dropping sharply beyond 6 heads.

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027

A.5 FEATURE VISUALIZATION

1028
1029
1030
1031
1032

In Figure 9, we project high-dimensional visual features in shared CLIP space into a 2D plane using UMAP to reveal their semantic relationships. For each test image containing a person, two points are plotted: the original CLIP visual feature (red) and the de-hallucinated feature produced by our framework (green), with a gray line connecting them to trace the feature trajectory. The key reference point is the projected location of the text embedding for the prompt “a photo of a person.”

1033
1034
1035
1036
1037
1038
1039
1040

From this visualization, we can draw two primary observations. First, there is a consistent and significant separation between the cluster of original CLIP visual embeddings and the target text concept embedding, indicating a semantic image-text gap. In addition, the connecting lines show a clear and directional convergence that the de-hallucinated features (green) systematically shift from their original CLIP positions (red) toward the concept centroid. This collective movement is not random. It demonstrates that our framework successfully directs the feature representation to reduce spurious correlations and enrich its semantic alignment specifically with the “person” concept, effectively mitigating the representation gap observed in the baseline model.

Figure 9: Features Visualization for images contain *person*.1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A.6 VISUAL COMPARISON OF ORIGINAL VS. DE-HALLUCINATED CLIP

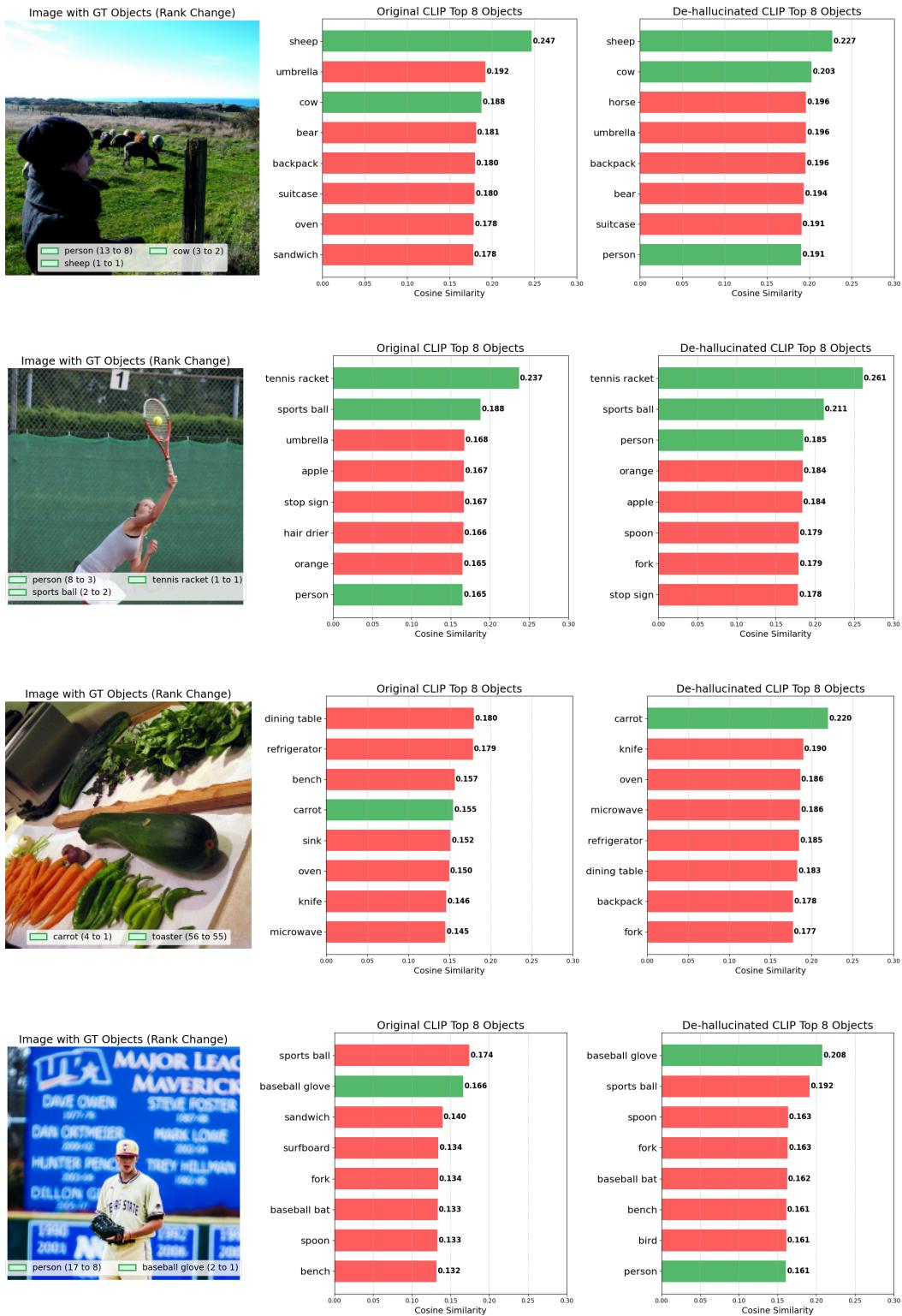


Figure 10: Ranking and Similarity Changes 1-4

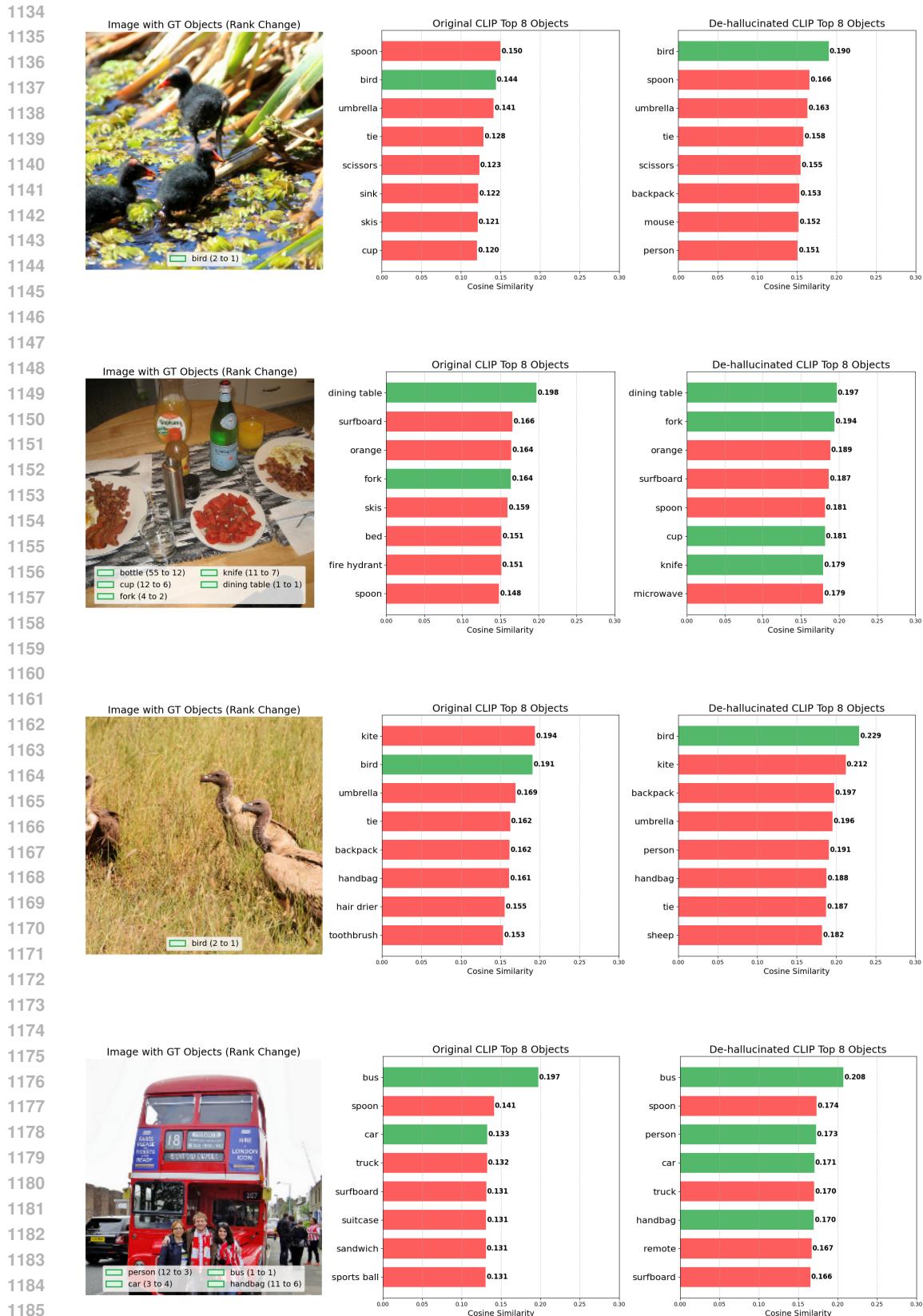
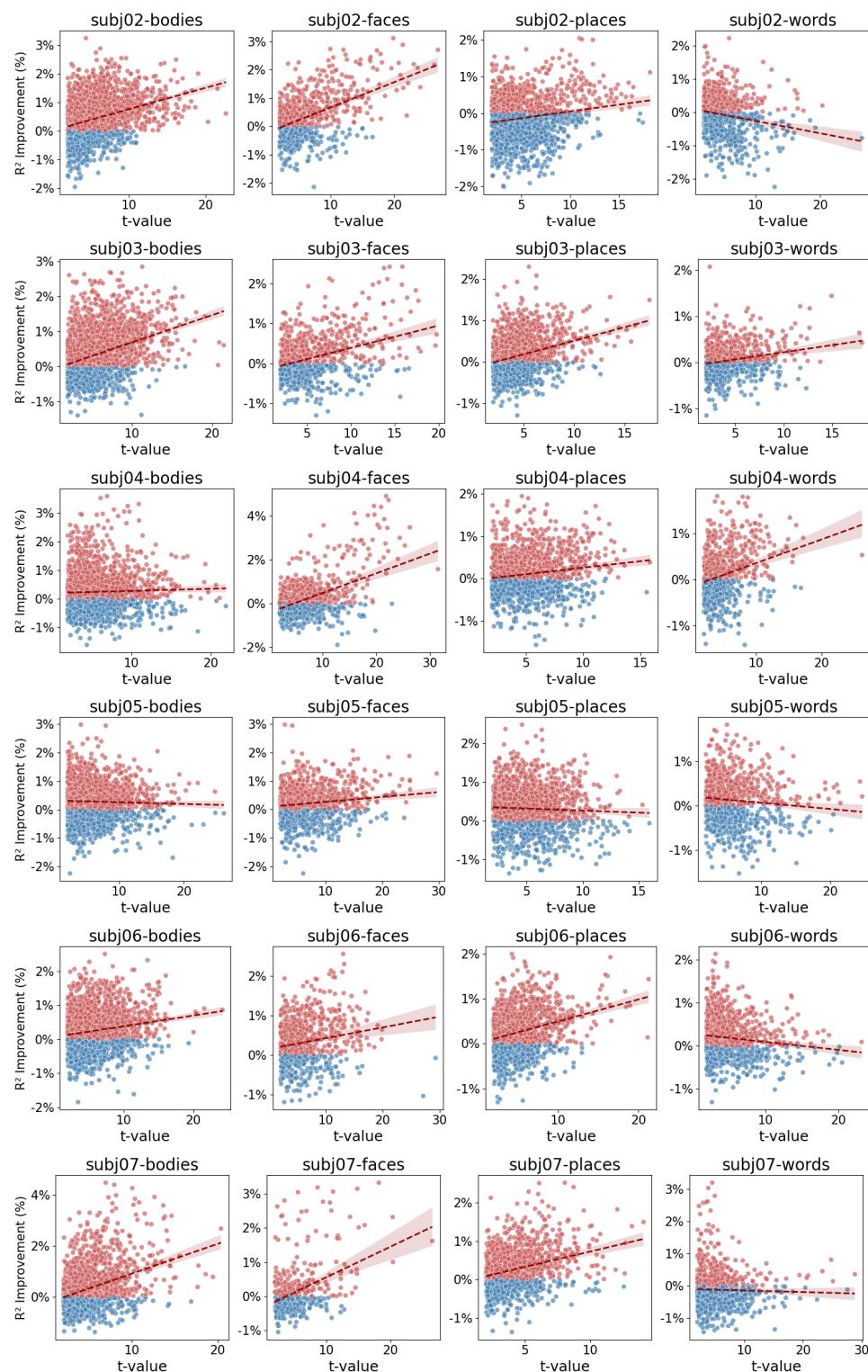


Figure 11: Ranking and Similarity Changes 5-8

Figure 12: Ranking and Similarity Changes 9-12

1242 A.7 MORE RESULTS ON VOXEL-WISE IMPROVEMENT
12431293 Figure 13: Voxel-wise R^2 improvement versus semantic selectivity across representative ROIs.
1294
1295

1296 A.8 MORE RESULTS ON MEAN NEURAL ACTIVATION

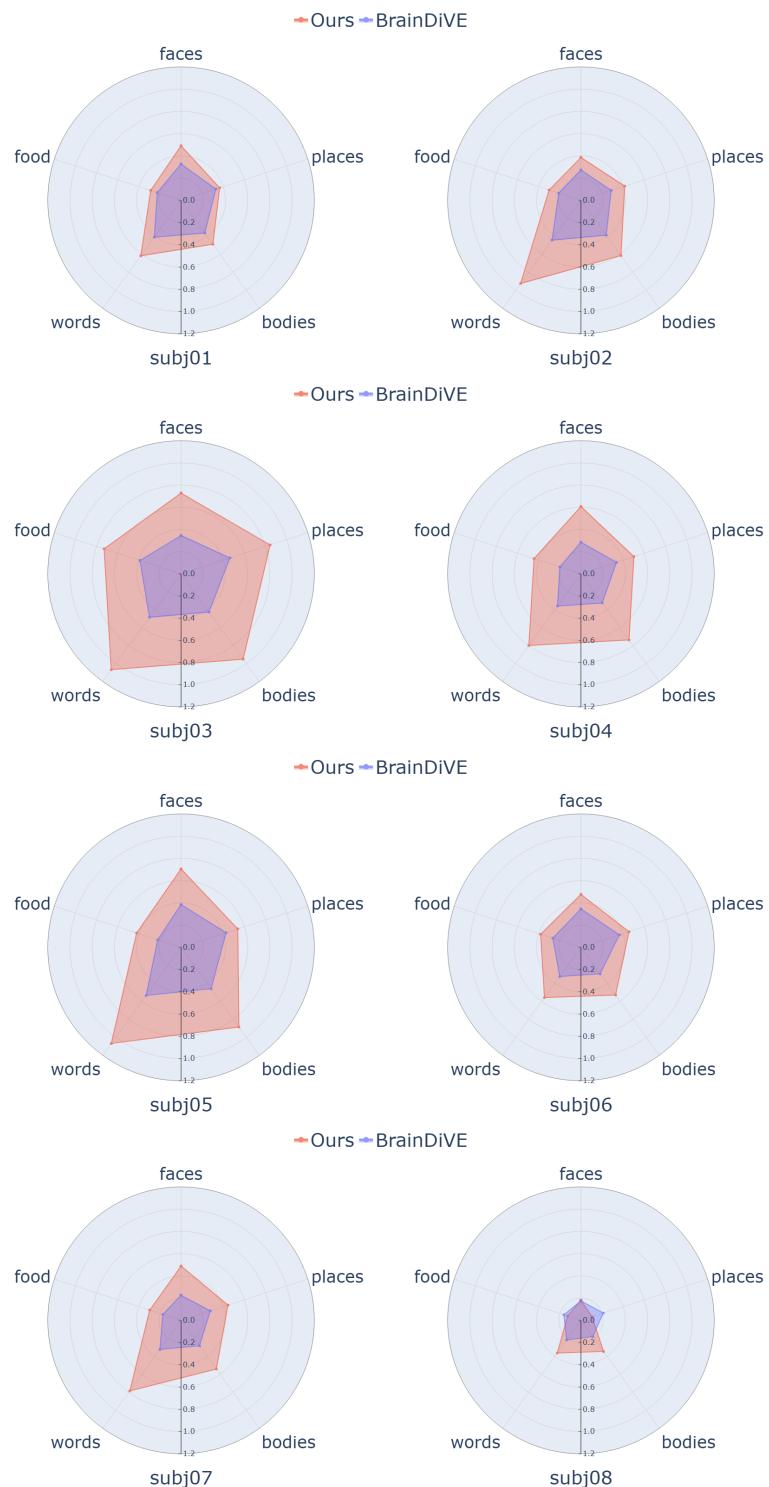
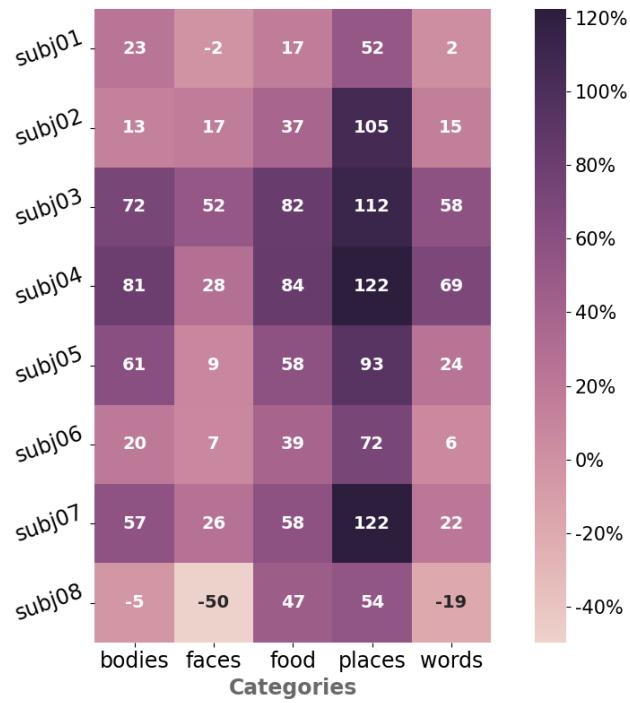


Figure 14: Neural activation alignment across semantic voxel groups.

1350 A.9 MORE RESULTS ON CROSS VALIDATION
13511375 Figure 15: Delta heatmap shows the relative gain in predicted voxel activations (ours-baseline) /
1376 baseline when feeding the same generated images.
13771378
1379 A.10 PROMPTS FOR CLIP ZERO-SHOT CLASSIFICATION
13801381 This subsection details the text prompts, which are identical to those used in Luo et al. (2023a), for
1382 the zero-shot classification tasks reported in Table 1 and Appendix Table 2:

- 1383 • bodies class = [“A photo of a torso”, “A photo of torsos”, “A photo of limbs”, “A photo of
1384 bodies”, “A photo of a person”, “A photo of people”]
- 1385 • faces class = [“A face facing the camera”, “A photo of a face”, “A photo of a human face”,
1386 “A photo of faces”, “A photo of a person’s face”, “A person looking at the camera”, “People
1387 looking at the camera”, “A portrait of a person”, “A portrait photo”]
- 1388 • food class = [“A photo of food”]
- 1389 • places class = [“A photo of a bedroom”, “A photo of an office”, “A photo of a hallway”, “A
1390 photo of a doorway”, “A photo of interior design”, “A photo of a building”, “A photo of
1391 a house”, “A photo of nature”, “A photo of landscape”, “A landscape photo”, “A photo of
1392 trees”, “A photo of grass”]
- 1393 • words class = [“A photo of words”, “A photo of glyphs”, “A photo of a glyph”, “A photo of
1394 text”, “A photo of numbers”, “A photo of a letter”, “A photo of letters”, “A photo of writing”,
1395 “A photo of text on an object”]

1396
1397 Classification is performed by computing the cosine similarity between the CLIP latent of a generated
1398 image and the CLIP latents of the text prompts for each category. The image is assigned to the
1399 category whose prompt yields the highest similarity score.
14001401 A.11 REPRODUCIBILITY STATEMENT
14021403 A complete public repository containing the full source code, trained model weights, and scripts to
replicate all experiments will be released upon acceptance of this paper.

1404 A.12 USE OF LARGE LANGUAGE MODELS
14051406 This research utilized large language models (LLMs), specifically OpenAI’s ChatGPT, in a limited
1407 and assistive capacity to improve efficiency in specific, non-substantive tasks. The models were used
1408 as tools under strict author supervision, and all final outputs remained under authorial control.

1409

1410 **Code Development and Debugging Assistance** LLMs served as a coding assistant to accelerate
1411 development workflow. This involved:

1412

1413

- Clarifying syntax and usage examples for libraries such as PyTorch and Matplotlib.
- Proposing high-level debugging strategies for common errors.
- Generating good code structures, which were then extensively modified and integrated by
1416 the authors.

1417

1418 All code-related suggestions were treated as unverified proposals. They were rigorously reviewed,
1419 tested, and validated by the authors to ensure correctness and appropriateness before incorporation
1420 into the codebase.

1421

1422 **Visualization** To develop the visualizations for this paper, we used ChatGPT for stylistic and
1423 organizational guidance. Furthermore, we asked it to generate an initial concept image, which served
1424 as the foundation for our final framework diagram.

1425

1426 **Manuscript Preparation and Polishing** In the writing phase, LLMs were used exclusively for
1427 post-draft refinement. Their application was strictly limited to:

1428

1429

- Polishing the grammatical fluency, clarity, and conciseness of fully author-written sentences.
- Formatting tabular data from raw results into LaTeX code.

1430

1431 Crucially, no conceptual content, analysis, or original text was generated by the LLMs. All suggestions
1432 were critically evaluated and manually edited by the authors to ensure they accurately reflected the
1433 intended meaning and adhered to the academic tone of the paper.

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457