

# 000 LEARNING HIERARCHICAL AND GEOMETRY-AWARE 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 LEARNING HIERARCHICAL AND GEOMETRY-AWARE GRAPH REPRESENTATIONS FOR TEXT-TO-CAD

Anonymous authors

Paper under double-blind review

## ABSTRACT

Text-to-CAD code generation is a long-horizon task, requiring the translation of textual instructions into a long sequence of interdependent operations. This process is exceptionally fragile, as minor early errors can propagate through the sequence and ultimately invalidate an entire complex assembly. Existing methods typically decode instructions directly into executable code (e.g., bpy) without an explicit representation of assembly hierarchy or geometric constraints. This flat decoding strategy vastly expands the search space, accumulating local errors and leading to cascading failures in contextual operations. We address this limitation by learning an intermediate representation: a hierarchical and geometry-aware graph. The graph represents an assembly-based decomposition, with multi-level nodes modeling the product’s parts and components, and edges defining the explicit geometric constraints between them. Rather than mapping text directly to code, our graph paradigm first predicts high-level structure and constraints, then conditions the sequencing of operations and code generation, thereby narrowing the search space and improving both geometric fidelity and constraint satisfaction. Furthermore, we introduce a structure-aware progressive curriculum learning mechanism to enhance the model’s ability to generate sophisticated decomposition graphs, allowing it to handle more complex assemblies. The mechanism constructs graded tasks via controlled edits to object structure, probes the model’s capability boundary, and synthesizes boundary examples for subsequent training rounds. We also introduce a 12K dataset annotated with instructions, geometric decomposition graphs, action sequences, and bpy code, together with metrics for node- and hierarchy-level graph accuracy and a measure of constraint satisfaction. Extensive experiments show that our approach outperforms existing methods in terms of both geometric fidelity and accurate fulfillment of geometric constraints.

## 1 INTRODUCTION

Computer-aided design (CAD) provides precise digital representations of three-dimensional objects and is indispensable across manufacturing, architecture, and product design (Zhang et al., 2024). In this context, the Text-to-CAD task aims to generate executable CAD programs directly from natural-language instructions to lower the barrier to professional design and accelerate prototyping (Khan et al., 2024b).

The Text-to-CAD task presents a long-horizon challenge, particularly when generating complex assemblies, requiring translating instructions into lengthy sequences of interdependent CAD operations. This process demands not only global structural consistency to reflect user intent in the final assembly, but also strict adherence to local geometric dependencies to ensure the correctness of each sequential step. Together, these requirements ensure that all operations coherently collaborate to form a functionally valid and intentionally aligned CAD model (Nachum et al., 2018). Most existing methods typically decode text directly into executable code via an end-to-end paradigm (Du et al., 2024). By flattening the design process into a linear

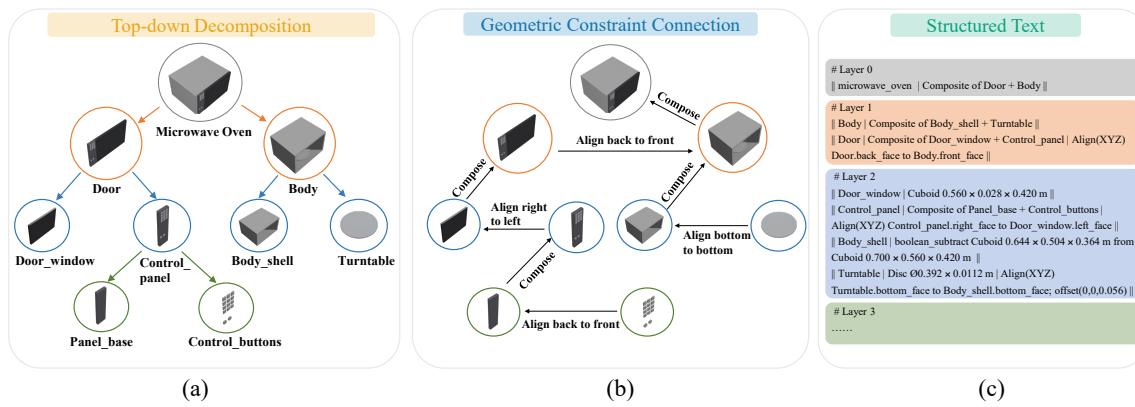


Figure 1: Geometric decomposition graph. (a) Top-down decomposition of a user instruction (microwave oven example). The process starts from the complete product and recursively factors it into parts by assembly relations until components can be realized with bpy operators, forming multi-level nodes. (b) Graph Connection. Edges between nodes define explicit geometric constraints that encode their spatial relations. (c) Structured textual representation that captures both the node hierarchy and the constraint links.

sequence, they lack an explicit representation of the target model’s assembly hierarchy and geometric constraints. This forces the decoder to navigate a vast search space where local errors can accumulate, often leading to failures on complex assemblies (Chen et al., 2018).

To address these limitations, we propose to learn a hierarchical, geometry-aware graph as an intermediate representation that makes assembly structure and constraints explicit, breaks the long-horizon generation into tractable stages, and provides structural guidance for constrained code generation. As shown in Figure 1, nodes represent parts and components in a multi-level hierarchy, while the edges encode explicit geometric constraints between them. We serialize the graph as structured text, which then conditions subsequent steps (Parr & Russell, 1997; Brockschmidt et al., 2018), effectively pruning the search space and improving both geometric fidelity and constraint satisfaction (Bunel et al., 2018; Balog et al., 2016). To translate the abstract graph into an executable program, Graph-CAD employs a three-stage inference process. It sequentially transforms a natural language instruction into a geometric decomposition graph, parses the graph into a sequence of CAD operations, and finally generates the executable bpy code. As shown in Table 1, this structured approach is effective even without task-specific fine-tuning. With few-shot prompting of general-purpose LLMs, it yields substantial gains over direct text-to-code baselines, with the largest improvements in Geometric Constraint Satisfaction (GCS).

As part count and constraint density increase, local errors tend to compound, making complex, highly constrained designs difficult to handle. To mitigate this effect, we introduce a structure-aware progressive curriculum learning mechanism that strengthens graph prediction for highly constrained assemblies. The mechanism operates iteratively by first creating graded task variants from seed examples, with difficulty ranging from simple attribute edits to complex categorical changes. The model’s current capability boundary is identified as the highest difficulty level it can reliably solve for each seed. Then, new training instances are synthesized at this boundary, validated by a multimodal judge, and added to the training set for the next round of supervised fine-tuning. Through this process, the model progressively learns to master more complex structures. In the absence of datasets that pair natural language instructions with graph-structured geometric decompositions, we curate a 12K dataset BlendGeo to support training. Each example includes a user instruction, a geometric decomposition graph serialized as structured text, its corresponding operation sequence, and executable Blender code (bpy). To assess model performance, we propose comprehensive

094

095  
096  
097  
Table 1: Performance comparison of two inference pipelines for general-purpose LLMs on CADBench. The  
table compares a end-to-end paradigm, which directly generates bpy code, with our three-stage Graph-CAD  
inference process. Both methods are prompted with two-shot examples to enhance task understanding.

| Models                       | CADBench-Sim  |               |               |               |                        |               | CADBench-Wild |               |               |               |               |                        |               |               |
|------------------------------|---------------|---------------|---------------|---------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------------|---------------|---------------|
|                              | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax}\downarrow$ | CLIP↑         | GCS↑          | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax}\downarrow$ | CLIP↑         | GCS↑          |
| GPT-5 (end-to-end)           | 0.7013        | <b>0.7347</b> | 0.4250        | 0.6203        | 2.8%                   | 0.6449        | 0.3846        | 0.6858        | 0.7091        | <b>0.5595</b> | 0.6515        | 5.5%                   | 0.6003        | 0.4017        |
| GPT-5 (Graph-CAD)            | <b>0.7342</b> | 0.7199        | <b>0.4451</b> | <b>0.6270</b> | 2.2%                   | <b>0.6535</b> | <b>0.6603</b> | <b>0.7677</b> | <b>0.7523</b> | 0.5377        | <b>0.6859</b> | 4.0%                   | <b>0.6318</b> | <b>0.5849</b> |
| Claude-opus-4-1 (end-to-end) | 0.7216        | 0.7368        | <b>0.5403</b> | 0.6662        | 7.4%                   | 0.6151        | 0.4932        | 0.6847        | 0.7218        | <b>0.5997</b> | 0.6687        | 14.5%                  | 0.5550        | 0.5062        |
| Claude-opus-4-1 (Graph-CAD)  | <b>0.7573</b> | <b>0.7394</b> | 0.5025        | <b>0.6664</b> | 6.4%                   | <b>0.6381</b> | <b>0.5705</b> | <b>0.7524</b> | <b>0.7301</b> | 0.5745        | <b>0.6857</b> | 8.5%                   | <b>0.6059</b> | <b>0.5518</b> |

103

104

105  
106  
evaluation metrics that measure graph fidelity at the node level and across the hierarchy, and we also report  
constraint satisfaction to quantify geometric validity.107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
Our contributions can be summarized as follows: (i) We propose to learn a graph-based intermediate representation for Text-to-CAD. This learned graph explicitly models the assembly hierarchy and geometric constraints of the target object, providing a strong structural prior that helps maintain global consistency and satisfy local dependencies in the CAD executable code generation process. To our knowledge, this is the first attempt to achieve this goal. (ii) We propose a structure-aware progressive curriculum learning mechanism that synthesizes graded variants to identify model’s capability boundary and expands it by training with additional filtered boundary cases, gradually advancing its performance on complex, highly constrained assemblies. (iii) We introduce a 12K dataset BlendGeo pairing user instructions with decomposition graphs, operation sequences, and bpy code. We also propose evaluation metrics for node-level and hierarchy-level graph accuracy to assess the quality of intermediate representations in any potential graph-mediated Text-to-CAD approach. (iv) We provide extensive experimental validation on public benchmarks. The results confirm that our graph-mediated paradigm significantly outperforms existing methods.

118

119

120  
2 RELATED WORK

121

122

**CAD Model Generation.** Translating diverse inputs, such as text, sketches, images, and point clouds, into executable CAD code enables accessible design automation and faster prototyping across industrial workflows (Wang et al., 2025a; Sanghi et al., 2023; Chen et al., 2025; Khan et al., 2024a). Among these modalities, natural language is especially attractive due to its expressiveness and low user overhead, facilitating efficient iteration and collaboration in CAD (Xie & Ju, 2025; Li et al., 2024; Wang et al., 2025b). Recent studies like Text2CAD (Khan et al., 2024b) and CADLLM (Liao et al., 2025) adopt transformer-based architectures to map text prompts directly to parametric programs, while BlenderLLM employs LLMs with self-improvement loops to refine command sequences (Du et al., 2024). Despite promising results on single-part objects, these methods typically cast Text-to-CAD as direct text-to-code generation without explicit modeling of assembly hierarchy or geometric constraints, which limits robustness on multi-part designs. Subsequent work explores better planning via chain-of-thought (CoT) (Guan et al., 2025) and integrates visual or execution feedback (Badagabettu et al., 2024; Alrashedy et al., 2024). Yet these are planner-level augmentations rather than structural models, and errors still accumulate on complex assemblies.

123

124

125

126

127

128

129

130

131

132

133

**Curriculum Learning.** Curriculum learning (CL) improves optimization and generalization by exposing models to easier examples before gradually introducing harder ones (Bengio et al., 2009). Early work also introduced self-paced learning, which automates easy-first selection based on model competence (Kumar et al., 2010). Surveys highlight two core components of CL: a difficulty estimator and a pacing schedule, and summarize its benefits across vision, language, and reinforcement learning domains (Wang et al., 2021; Soviany et al., 2022; Narvekar et al., 2020; Portelas et al., 2020). Recent advancements extend CL to generative modeling, including difficulty-aware denoising schedules for diffusion and preference-driven

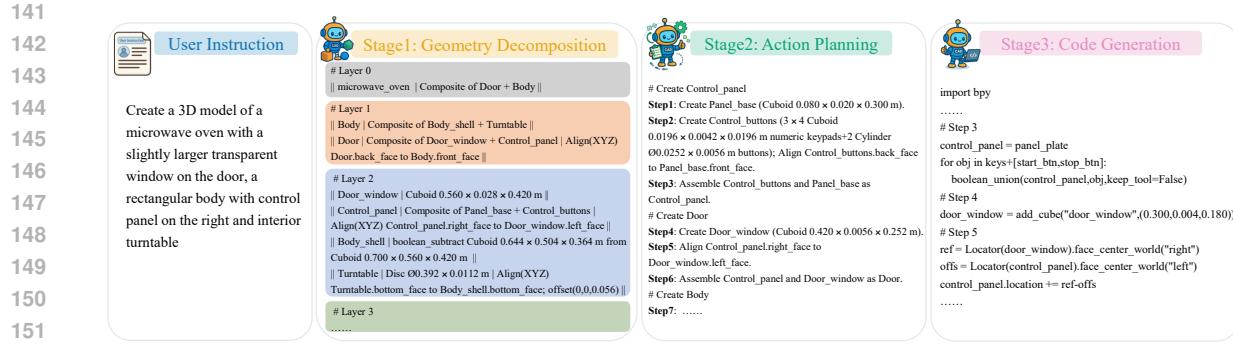


Figure 2: Overall framework of Graph-CAD. The framework comprises three sequential stages: Geometry Decomposition, Action Planning, and Code Generation. Each stage is independently driven by a dedicated Large Language Model (LLM)-based module.

curricula (Kim et al., 2024; Croitoru et al., 2025). Across these settings, three properties recur: explicit difficulty signals, paced exposure that stabilizes training, and targeted practice near the boundary where errors begin to appear (Wang et al., 2021; Soviany et al., 2022). These properties align closely with learning decomposition graphs for CAD assemblies, where increasing part count and constraint density elevate the risk of error accumulation. Building on CL, our approach employs graded structural variants and boundary-focused augmentation to stabilize training and improve reliability on complex, highly constrained designs.

### 3 METHODOLOGY

In this section we present Graph-CAD, a Text-to-CAD framework that addresses long-horizon challenges by preserving global assembly coherence while satisfying local geometric constraints during code generation. Our framework employs a three-stage generation process: it sequentially transforms natural language instructions into a geometric decomposition graph, a sequence of CAD operations, and bpy code. We additionally describe a human–AI annotation pipeline for training/evaluation data and a structure-aware progressive curriculum that improves robustness on complex assemblies.

#### 3.1 GRAPH-CAD FRAMEWORK

As illustrated in Figure 2, Graph-CAD transforms instructions into executable CAD code through a three-stage pipeline: Geometry Decomposition, Action Planning, and Code Generation. This modular design aims to produce CAD models with accurate structures and robust geometric constraints. Each stage is processed by a dedicated LLM-based module for its specific task. In Stage 1, the Geometry Decomposition Model converts the user-specified target CAD model into a geometric decomposition graph based on two primary principles: top-down decomposition and geometric constraint establishment. As depicted in Figure 1(a), we recursively disassemble the object by assembly relations until reaching atomic components realizable by primitive operators (e.g., bpy primitives). The resulting parts/subcomponents become nodes, and their spatial relations are encoded as edges representing geometric constraints (Figure 1(b)). Guided by these principles, the Geometry Decomposition Model then formats this graph into a structured textual description (Figure 1(c)), outlining all nodes and edges. Following this, in Stage 2, the Action Planning Model leverages the node features and geometric constraints from the generated decomposition graph to determine an optimal graph traversal order and construct the sequence of CAD operations. Finally, in Stage 3, the Code Generation Model translates the planned operations into executable bpy code.

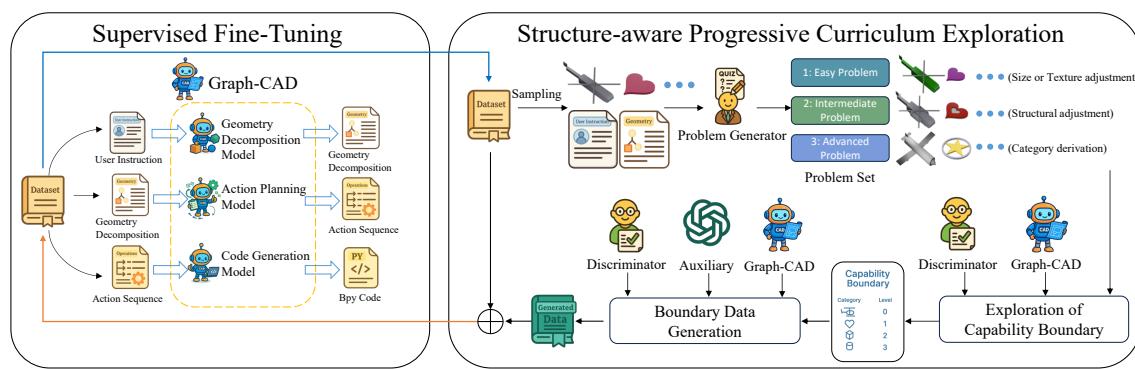


Figure 3: The SAPCL mechanism. This mechanism alternates between two core modules: SFT and SAPCE. The SFT module fine-tunes the three constituent models of the Graph-CAD using all training data. The SAPCE module, in turn, begins by sampling a subset of training instances and introduces a Problem Generator to synthesize three-level difficulty variants for each instance, forming a comprehensive problem set. Subsequently, a Exploration of Capability Boundary sub-module assesses the model’s performance on these variants to determine its current capability level. Based on these levels, a Boundary Data Generation sub-module uses the Graph-CAD and an auxiliary LLM to synthesize new data at the determined difficulty boundary. After validation, these new data are merged into the training set for the next round of SFT.

### 3.2 DATA ANNOTATION FOR GEOMETRIC DECOMPOSITION

To support the training and evaluation of our three-stage Graph-CAD framework, we meticulously constructed a BlendGeo dataset that contains 12K quadruplets of user instructions, geometric decomposition graphs, action sequences, and executable bpy code. Specifically, the user instructions spanning 1.4K object categories are extracted from the BlendNet (Du et al., 2024). The data was annotated using a collaborative human-AI pipeline. First, an LLM guided by structured prompts generates a preliminary quadruplet for each instruction. This output is then subjected to a rigorous validation process where a Vision-Language Model (VLM) assesses the visual-semantic alignment, after which professional industrial designers either confirm its correctness or perform comprehensive corrections to the graph, sequence, and code. The resulting high-quality samples form the BlendGeo dataset. Furthermore, to enable a rigorous evaluation of geometric decomposition graph accuracy and geometric constraint satisfaction, we applied this same annotation pipeline to the CADBench benchmark (Du et al., 2024). A detailed description of the data annotation pipeline is provided in Appendix C.1.

### 3.3 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

As the complexity of CAD models increases, the number of nodes and geometric constraints grows significantly. Under limited training samples, this inherent complexity hinders the model’s ability to generalize to CAD designs of greater variety and structural intricacy. To address this challenge, we propose a novel Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism. The core principle is to progressively enhance the model’s capabilities by first ascertaining its current performance boundary and subsequently generating targeted instances to strategically expand it.

As depicted in Figure 3, the SAPCL mechanism operates iteratively through two alternating modules: Supervised Fine-Tuning (SFT) and Structure-Aware Progressive Curriculum Exploration (SAPCE). Each iteration starts with the SFT module, which continues to train from the previous round using all training data, pro-

235  
 236  
 237  
 238  
 239  
 240  
 241  
 242  
 243  
 244  
 245  
 246  
 247  
 248  
 249  
 250  
 251  
 252  
 253  
 254  
 255  
 256  
 257  
 258  
 259  
 260  
 261  
 262  
 263  
 264  
 265  
 266  
 267  
 268  
 269  
 270  
 271  
 272  
 273  
 274  
 275  
 276  
 277  
 278  
 279  
 280  
 281

ducing an enhanced model that serves as a baseline for the subsequent exploration phase. The SAPCE module then probes and extends the model’s capabilities. It begins by sampling a subset of seed exemplars from the training data, prioritizing categories with fewer instances to ensure diversity. For each exemplar, a Problem Generator, implemented with a LLM (e.g., GPT-5), synthesizes a spectrum of task variations based on the original user instruction and geometric decomposition graph. These variants are categorized into three difficulty levels: **Easy**, involving simple modifications such as dimensions or textures; **Intermediate**, which alters local geometric structures; and **Advanced**, transitioning the object to a distinct yet structurally analogous or functionally related category. The fine-tuned model then attempts to solve these variants in ascending order of difficulty. A multimodal Discriminator automatically evaluates the correctness of the generated CAD outputs, identifying the highest difficulty level the model can reliably handle per exemplar. The aggregate results across all exemplars collectively define the model’s current capability boundary. Based on this boundary, a Boundary Data Generation process synthesizes new training instances at and slightly beyond the model’s current mastery level. For example, if the model succeeds at the Intermediate level, new data is generated for both the Intermediate and Advanced levels. An auxiliary LLM accelerates this process by using the original exemplar in a one-shot demonstration. Finally, these newly synthesized and validated instances are merged into the training set, forming an enriched dataset for the next SFT round. This iterative cycle enables a progressive expansion of the model’s ability to handle increasingly complex CAD designs. The complete SAPCL process is detailed in pseudocode in Appendix C.2.

## 4 EXPERIMENTS

### 4.1 EXPERIMENTAL SETUP

**Datasets.** We train the Graph-CAD model on our BlendGeo dataset. We split the dataset 90%/10% for training and validation, with the validation set used for hyperparameter tuning. For evaluation, we utilize the CADBench benchmark (Du et al., 2024), which includes CADBench-Sim (in-distribution instructions) and CADBench-Wild (out-of-distribution instructions) to fully assess model performance and generalization.

**Metrics.** We evaluate our method using metrics targeting three key aspects: visual quality, structural integrity, and intermediate graph fidelity. For visual quality and code executability, we adopt CADBench metrics including scores for attribute accuracy (Attr.), spatial relations (Spat.), instruction following (Inst.), and syntax error rate ( $E_{syntax}$ ). Attr., Spat. and Inst. score reported as the average of three independent evaluations from a VLM (e.g., GPT-5). The effectiveness of using a VLM as an evaluator is analyzed and validated in Appendix D.4. In addition, we report a CLIP-based text–image similarity score (CLIP) between the textual instruction and the multi-view renderings of the generated CAD models Chen et al. (2023). This metric serves as a widely used indicator of how well the generated geometry visually aligns with the input instruction, complementing our VLM-based and geometry-based metrics. To assess structural integrity, we introduce Geometric Constraint Satisfaction (GCS), a novel metric that measures whether parts in the final assembly satisfy predefined geometric relationships, such as contact, alignment, and relative orientation. Finally, to evaluate the correctness of our intermediate representation, we propose Node-Level Accuracy (NLA) and Hierarchy-Level Accuracy (HLA). NLA measures if the correct set of parts (nodes) was generated, while HLA measures if their hierarchical structure (edges) is correct. Detailed formulations for all metrics are provided in the Appendix C.4.

**Implementation Details.** We select Qwen3-8B (Yang et al., 2025) as the backbone for all three models within the Graph-CAD framework and employed the Low-Rank Adaptation (LoRA) method (Hu et al., 2022) with a rank of 64 for efficient fine-tuning. Our model is trained via iterative SAPCL rounds. Each round consists of two phases: a data synthesis phase (SAPCE) and a fine-tuning phase (SFT). In the SAPCE phase, we sample 1% of the training set as seed examples and generate 20 new data instances per seed, a process that takes approximately 30 hours. Subsequently, in the SFT phase, the model is fine-tuned on the

282

283 Table 2: Quantitative comparison of CAD code generation methods on CADBench. Results are reported  
 284 separately on the CADBench-Sim (in-distribution instructions) and CADBench-Wild (out-of-distribution  
 285 instructions) subsets to evaluate both in-domain performance and out-of-distribution generalization. Attr.,  
 286 Spat., and Inst. measure visual quality via VLM, and Avg. is the average of these three scores. CLIP  
 287 measures global text–shape semantic alignment, complementing the VLM-based visual metrics.  $E_{syntax}$   
 288 denotes the syntax error rate, and GCS measures geometric constraint satisfaction. Best results are in bold.

| Models                                      | CADCbench-Sim |               |               |               |                        | CADCbench-Wild |               |               |               |               |               |                        |               |               |
|---------------------------------------------|---------------|---------------|---------------|---------------|------------------------|----------------|---------------|---------------|---------------|---------------|---------------|------------------------|---------------|---------------|
|                                             | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax}\downarrow$ | CLIP↑          | GCS↑          | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax}\downarrow$ | CLIP↑         | GCS↑          |
| Specifically Text-to-CAD open-source models |               |               |               |               |                        |                |               |               |               |               |               |                        |               |               |
| BlenderLLM                                  | 0.6893        | 0.6953        | 0.3650        | 0.5832        | 2.4%                   | 0.6409         | 0.5513        | 0.6782        | 0.6363        | 0.4581        | 0.5909        | 5.3%                   | 0.6056        | 0.4983        |
| Text2CAD                                    | 0.3278        | 0.2084        | 0.0446        | 0.1936        | 6.6%                   | 0.5707         | -             | 0.4198        | 0.3082        | 0.1323        | 0.2868        | 14.0%                  | 0.5211        | -             |
| CADFusion                                   | 0.3566        | 0.2258        | 0.0674        | 0.2166        | 6.2%                   | 0.5578         | -             | 0.3822        | 0.3716        | 0.1496        | 0.3011        | 11.5%                  | 0.5278        | -             |
| General-purpose Large Language Models       |               |               |               |               |                        |                |               |               |               |               |               |                        |               |               |
| Qwen-Plus                                   | 0.3604        | 0.3777        | 0.2072        | 0.3151        | 48.4%                  | 0.3362         | 0.2379        | 0.2596        | 0.2722        | 0.1951        | 0.2423        | 61.0%                  | 0.2446        | 0.1305        |
| Llama-3.1-405b                              | 0.3302        | 0.3355        | 0.1537        | 0.2731        | 36.4%                  | 0.3943         | 0.3269        | 0.3331        | 0.3530        | 0.1943        | 0.2934        | 47.2%                  | 0.3242        | 0.2903        |
| Deepseek-r1                                 | 0.4124        | 0.4366        | 0.2179        | 0.3556        | 19.2%                  | 0.5011         | 0.5556        | 0.4814        | 0.5141        | 0.3735        | 0.4564        | 20.50%                 | 0.4858        | 0.4275        |
| Gemini-2.5-pro                              | 0.2173        | 0.2180        | 0.1565        | 0.1972        | 42.4%                  | 0.2050         | 0.4048        | 0.2002        | 0.1880        | 0.1667        | 0.1850        | 48.7%                  | 0.1750        | 0.2584        |
| GPT-5                                       | 0.7013        | 0.7347        | 0.4250        | 0.6203        | 2.8%                   | 0.6449         | 0.3846        | 0.6858        | 0.7091        | 0.5595        | 0.6515        | 5.5%                   | 0.6003        | 0.4017        |
| Claude-opus-4-1                             | 0.7216        | 0.7368        | 0.5403        | 0.6662        | 7.4%                   | 0.6151         | 0.4952        | 0.6847        | 0.7218        | 0.5997        | 0.6687        | 14.5%                  | 0.5550        | 0.5062        |
| Graph-CAD (Ours)                            |               |               |               |               |                        |                |               |               |               |               |               |                        |               |               |
| Graph-CAD (SFT)                             | 0.7295        | 0.7265        | 0.4733        | 0.6431        | 2.4%                   | 0.6544         | 0.7830        | 0.6944        | 0.7270        | 0.5861        | 0.6692        | 4.5%                   | 0.6358        | 0.8025        |
| Graph-CAD (SAPCL)                           | <b>0.7681</b> | <b>0.7423</b> | <b>0.5546</b> | <b>0.6883</b> | 2.0%                   | <b>0.6693</b>  | <b>0.9018</b> | <b>0.7695</b> | <b>0.7590</b> | <b>0.6057</b> | <b>0.7114</b> | 2.5%                   | <b>0.6577</b> | <b>0.8943</b> |
| SAPCL vs SFT                                | (5.29%↑)      | (2.17%↑)      | (17.18%↑)     | (7.03%↑)      |                        | (2.28%↑)       | (15.17%↑)     | (10.82%↑)     | (4.40%↑)      | (3.34%↑)      | (6.31%↑)      |                        | (3.44%↑)      | (11.44%↑)     |

297

298 newly augmented dataset for 7 epochs on two Nvidia A800-80GB GPUs, which takes approximately 3 days.  
 299 The entire SAPCL cycle is repeated for four iterations to progressively enhance the model’s capabilities.

300

301 **Baselines.** Our evaluation primarily considers two categories of baseline models. The first category in-  
 302 cludes open-source models specifically designed for the Text-to-CAD task (Khan et al., 2024b; Du et al.,  
 303 2024). For these baselines, we use the officially provided weights for evaluation. The second category com-  
 304 prises general-purpose LLMs that have acquired some CAD-related knowledge during their pre-training  
 305 phase (Yang et al., 2025; Dubey et al., 2024; Guo et al., 2025; Comanici et al., 2025; OpenAI, 2025; An-  
 306 thropic, 2025). And for GPT-5, Claude-opus-4.1, Gemini-2.5-Pro, DeepSeek-R1, and Qwen-Plus, we enable  
 307 their official reasoning or thinking modes during inference. To evaluate the effectiveness of the Graph-CAD  
 308 framework, we leverage these models to perform few-shot, three-stage inference, generating a geometric  
 309 decomposition graph and an action sequence as intermediate representations to guide the final bpy code  
 310 generation.

311

## 4.2 PERFORMANCE COMPARISON WITH EXISTING METHODS

312

313 **Quantitative Comparison Results.** We evaluated all methods on CADBench, with quantitative results  
 314 summarized in Table 2. Our Graph-CAD (SAPCL) model, trained with Structure-Aware Progressive Cur-  
 315 riculum Learning, achieves the best performance across all metrics. By learning to first generate a structured  
 316 geometric decomposition, our model generalizes more effectively to unseen and complex instructions than  
 317 all baseline methods. This strong OOD performance indicates that our model has learned a more robust and  
 318 generalizable approach to solving Text-to-CAD tasks.

319

320 In addition, as evidenced in Table 1, a key observation emerges when general-purpose LLMs (e.g., GPT-  
 321 5, Claude-opus-4-1) are guided through our three-stage inference process using two-shot examples: their  
 322 Geometric Constraint Satisfaction (GCS) scores improve substantially compared to direct end-to-end gen-  
 323 eration. This gain in structural correctness is achieved while maintaining comparable, and in some cases  
 324 better, performance on visual metrics like Attr. and Avg., underscoring the general utility of the Graph-CAD  
 325 framework. By employing an explicit geometric decomposition graph and an action sequence as interme-  
 326 diate representations, our framework provides a more reliable pathway for generating CAD models with valid  
 327 geometric constraints, a benefit that extends to general-purpose models in a few-shot setting. **Qualitative**  
 328 **Comparison Results.** Figure 4 presents a visual comparison of the outputs from our model and baselines  
 329 on the CADBench benchmark. Our Graph-CAD (SAPCL) model generates CAD models with higher visual  
 330 quality and more plausible geometric constraints, closely matching the user instructions. This highlights

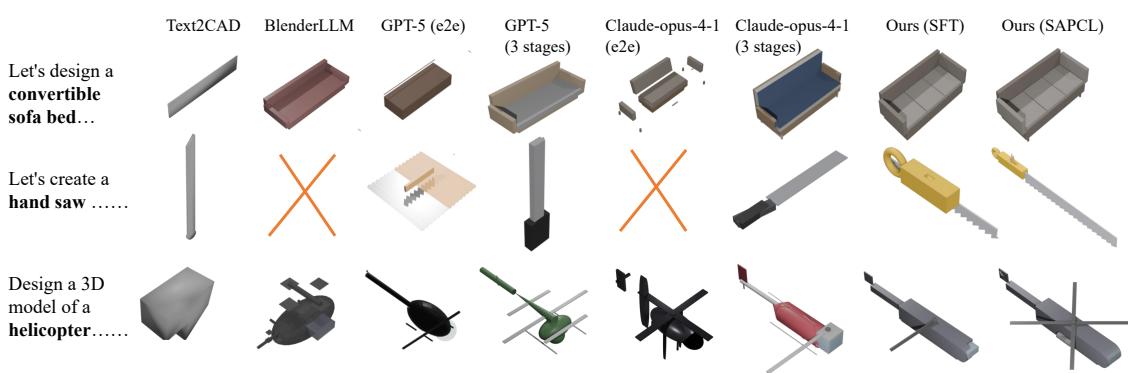


Figure 4: Qualitative results of Graph-CAD and baseline methods on the CADBench. Our method generates more geometrically plausible models that better align with user instructions compared to baseline methods.

the joint effectiveness of our Graph-CAD framework and the SAPCL mechanism. Further insight comes from comparing GPT-5 under end-to-end and three-stage settings: the latter always yields more orderly and geometrically coherent part arrangements. A similar improvement is observed with Claude-opus-4-1. These results collectively validate its robustness in producing well-structured CAD models.

### 4.3 ABLATION STUDIES

#### 4.3.1 THREE-STAGE PIPELINE OF GRAPH-CAD

To evaluate the effectiveness of the core stages in Graph-CAD, we conduct ablation studies under the SFT setting, as graph-free variants cannot undergo our SAPCL mechanism. The quantitative results are summarized in Table 3, and representative qualitative comparisons are shown in Figure 5. Overall, the full three-stage Graph-CAD (SFT) achieves the best performance across all metrics, especially in terms of GCS and code executability, while incurring only a moderate increase in inference time. In Figure 5, Graph-CAD (SFT) produces coherent, visually plausible assemblies that satisfy the instructions, whereas the ablated variants exhibit typical failure modes such as assembly errors, unreasonable shapes, or even invalid code. A detailed analysis of the inference time trade-off is provided in the Appendix B.

**Effect of the graph representations.** To explore the effect of the geometric graph, we compare the full Graph-CAD (SFT) model against the End-to-end baseline and the two-stage variant without graph decomposition (w/o Graph Decom.). The End-to-end baseline performs worst, which suggests that lacking structured intermediate representation hinders expressivity. While the (w/o Graph Decom.) variant provides modest gains, it still remains substantially lower than our full approach, highlighting that the graph representations are essential for capturing structural relationships and guiding coherent generation. For more quantitative and qualitative analysis on the graph representation, please refer to the Appendix D.8.

**Effect of the Action Planning.** To investigate the effect of the Action Planning stage, we compare the full model with a two-stage variant that removes action planning (w/o Action Planning). The result shows that it leads to a clear drop in performance, especially in (Inst.) and ( $E_{syntax}$ ), underscoring that explicitly planning the conversion from a non-linear graph to a sequential program is essential for producing executable code.

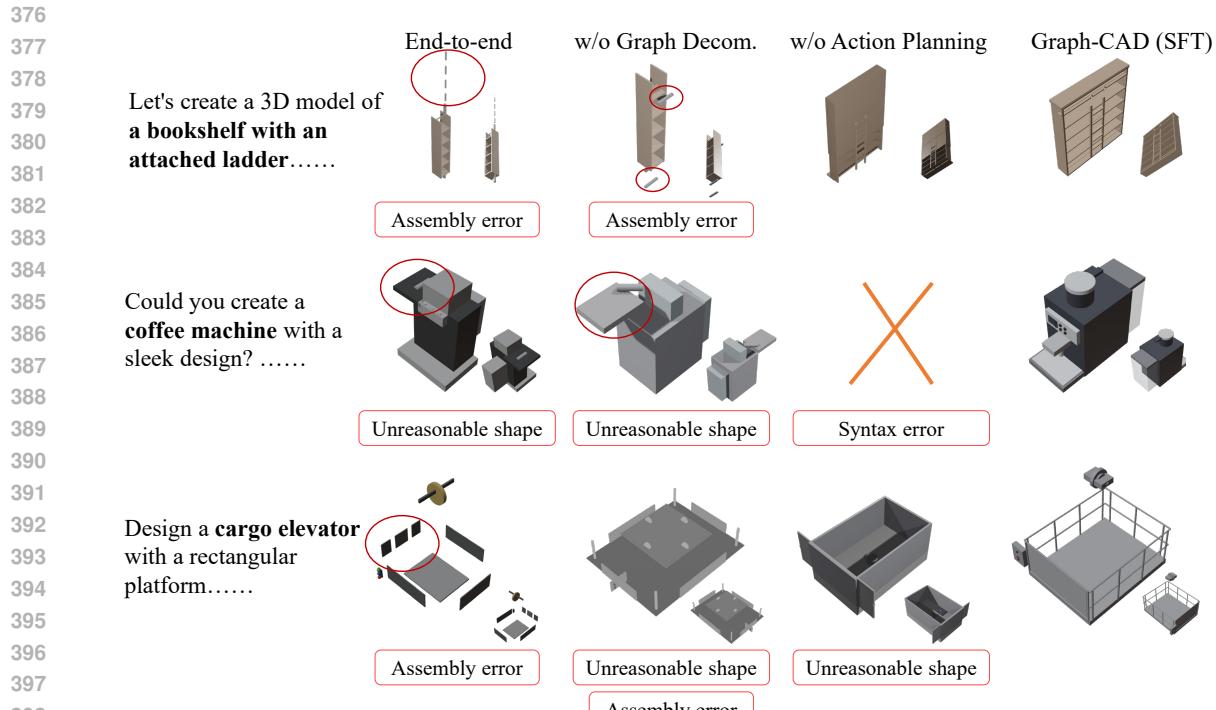


Figure 5: Qualitative comparison of ablated variants. For three CADBench prompts, we show results from the end-to-end baseline, w/o Graph Decom., w/o Action Planning, and the full Graph-CAD (SFT). Red marks indicate typical failures (assembly errors, unreasonable shapes, syntax errors), while Graph-CAD produces coherent assemblies that better follow the instructions.

#### 4.3.2 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

To evaluate the effect of the SAPCL mechanism, we conduct ablation studies under the full model setting and provide a set of evaluation protocols and metrics to assess graph-mediated CAD generation methods.

**Effect of different difficulty curriculum designs.** To explore the impact of different levels of difficulty, we compare our SAPCL mechanism with two baselines: one without curriculum learning (Only SFT) and another that expands the training set by randomly rephrasing instructions without difficulty grading (w/o Hierarchical Difficulty), following BlenderLLM’s self-improvement approach (Du et al., 2024). Under matched data volumes per iteration (Figure 6(f)), SAPCL consistently outperforms both baselines in overall accuracy on CADBench (Figure 6(a)). Detailed analysis using our proposed evaluation metrics: NLA, HLA, and GCS confirm greater gains in all structural aspects of the intermediate graph representations (Figure 6(b–d)). These metrics offer an intuitive way to assess geometric decomposition quality in any graph-mediated Text-to-CAD approach. Furthermore, as training advances, SAPCL enhances the model’s capacity to process complex instructions, indicated by a rising number and proportion of generated hard samples (Figure 6(e)).

**Effect of the Auxiliary model.** We analyze the effectiveness of the auxiliary model in capability boundary exploration by comparing our full method against a variant that omits this component. As shown in Figure

423

424 Table 3: Ablation study of our pipeline components, evaluated on the CADBench using the SFT setting. We  
 425 compare our three-stage pipeline against an End-to-end baseline. To isolate the impact of each intermediate  
 426 representation, we also evaluate two two-stage variants: w/o Graph Decom., which omits the graph by  
 427 generating an action sequence directly from the instruction; and w/o Action Planning, which omits the  
 428 action sequence by generating code directly from the graph. CLIP measures global text–shape semantic  
 429 alignment, and Time reports the average inference time per sample. Best results are in bold.

| Training pipeline   | CADBench-Sim  |               |               |               |                         |               | CADBench-Wild |               |               |               |               |                         | Time (s)↓     |               |         |
|---------------------|---------------|---------------|---------------|---------------|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------------------|---------------|---------------|---------|
|                     | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax} \downarrow$ | CLIP↑         | GCS↑          | Attr.↑        | Spat.↑        | Inst.↑        | Avg.↑         | $E_{syntax} \downarrow$ | CLIP↑         | GCS↑          |         |
| End-to-end          | 0.6701        | 0.6542        | 0.3477        | 0.5573        | 5.8%                    | 0.6381        | 0.6923        | 0.6785        | 0.6643        | 0.4268        | 0.5899        | 8.0%                    | 0.6087        | 0.7012        | 64.861  |
| w/o Graph Decom.    | 0.6942        | 0.6995        | 0.4561        | 0.6166        | 5.0%                    | 0.6424        | 0.7268        | 0.6730        | 0.7123        | 0.5018        | 0.6290        | 6.5%                    | 0.6164        | 0.7207        | 79.516  |
| w/o Action Planning | 0.6791        | 0.6825        | 0.4006        | 0.5874        | 6.4%                    | 0.6405        | 0.7545        | 0.6735        | 0.6849        | 0.4502        | 0.6029        | 11.0%                   | 0.6127        | 0.7451        | 91.830  |
| Graph-CAD (SFT)     | <b>0.7295</b> | <b>0.7265</b> | <b>0.4733</b> | <b>0.6431</b> | 2.2%                    | <b>0.6544</b> | <b>0.7830</b> | <b>0.6944</b> | <b>0.7270</b> | <b>0.5861</b> | <b>0.6692</b> | 4.5%                    | <b>0.6358</b> | <b>0.8025</b> | 104.755 |

434

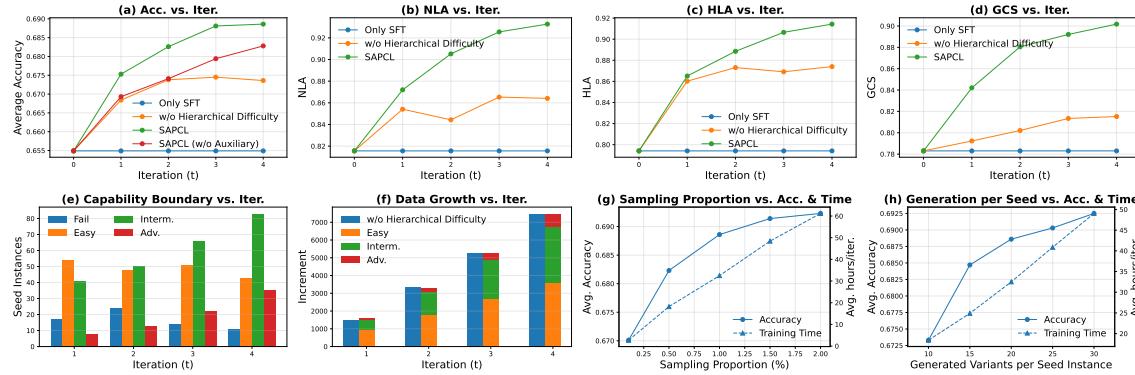


Figure 6: Detailed visualization analysis of the SAPCL mechanism.

447

448

449 6(a), the variant without the auxiliary model (w/o Auxiliary) achieves lower overall accuracy and exhibits a  
 450 slower improvement rate across training iterations, confirming its importance in efficient model progression.

452

453 **Effect of hyperparameters in SAPCL.** We examine two key hyperparameters in SAPCL: the sampling  
 454 proportion for Exploration of Capability Boundary module and the number of new instances generated  
 455 per seed in the Boundary Data Generation module. As shown in Figure 6(g) and (h), increasing either  
 456 hyperparameter improves final performance but linearly increases training time. To balance effectiveness and  
 457 efficiency, we set the sampling proportion to 1% and generated 20 instances per seed in all main experiments.

458

## 5 CONCLUSION

460

461 We propose learning a graph-based intermediate representation that explicitly models assembly hierarchy  
 462 and geometric constraints. This representation acts as a structural prior, narrowing the search space to im-  
 463 prove both geometric fidelity and constraint satisfaction. We further introduce a structure-aware progressive  
 464 curriculum learning to boost the model’s robustness on complex assemblies by identifying its capability  
 465 boundary and augmenting training with new, filtered examples at this boundary. To support this research, we  
 466 provide the BlendGeo dataset with 12K examples and novel metrics for evaluating the fidelity of the interme-  
 467 diate graph representation. Experiments on public benchmark CADBench demonstrate that our graph-based  
 468 approach and curriculum strategy significantly outperform existing methods.

469

470 **6 ETHICS STATEMENT**  
471472 The research presented in this paper focuses on the generation of Computer-Aided Design (CAD) models,  
473 a highly specialized domain. The inherent nature of this task minimizes the risk of misuse, as the devel-  
474 oped methods are intended to primarily benefit professional design and engineering workflows. Our dataset,  
475 BlendGeo, is derived from publicly available academic benchmarks, and we intend to release it responsibly  
476 to foster reproducible research and further innovation in the field. This work involved human participation in  
477 two capacities: professional industrial designers for the validation and correction of our annotated dataset,  
478 and experienced volunteers for our final user study. All participation was voluntary. For the user study,  
479 we obtained informed consent from all participants before they began the evaluation. We conducted all  
480 human-involved activities in accordance with established ethical guidelines, ensuring that participants were  
481 treated fairly, respectfully, and safely throughout the process. To protect their privacy, no personally iden-  
482 tifiable information was collected from any participant. The data gathered from these activities, including  
483 the designers' corrections and the volunteers' evaluation scores, were used solely for the research purpose  
484 of developing and validating CAD generation techniques.  
485486 **7 REPRODUCIBILITY STATEMENT**  
487488 We have made every effort to ensure the reproducibility of our research. Our Graph-CAD framework is  
489 detailed in Section 3, and the core Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism  
490 is formalized with pseudocode in Appendix C.2. All implementation details, including model architecture  
491 and training hyperparameters for both the SFT and SAPCL phases, are provided in the Experimental Setup  
492 (Section 4.1). The annotation pipeline for our BlendGeo dataset is described in Appendix C.1, and all  
493 prompts used for data generation and evaluation are listed in Appendix E. The precise formulations for  
494 our proposed evaluation metrics (GCS, NLA, HLA) are also detailed in the Appendix C.4. To facilitate  
495 direct replication and further research, we will release our source code, the BlendGeo dataset, and model  
496 checkpoints upon publication, contributing to the open-source community.  
497498 **REFERENCES**  
499500 

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and Matthew Gom-  
501 bolay. Generating cad code with vision-language models for 3d designs. *arXiv preprint arXiv:2410.05340*,  
502 2024.

503 Anthropic. Claude opus 4.1. <https://www.anthropic.com/news/claude-opus-4-1>, 2025. Official an-  
504 nouncement and model overview.

505 Akshay Badagabettu, Sai Sravan Yarlagadda, and Amir Barati Farimani. Query2cad: Generating cad models  
506 using natural language queries. *arXiv preprint arXiv:2406.00144*, 2024.

507 Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:  
508 Learning to write programs. *arXiv preprint arXiv:1611.01989*, 2016.

509 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceed-  
510 ings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

511 Shijie Bian, Daniele Grandi, Kaveh Hassani, Elliot Sadler, Bodia Borjin, Axel Fernandes, Andrew Wang,  
512 Thomas Lu, Richard Otis, Nhut Ho, et al. Material prediction for design automation using graph rep-  
513 resentation learning. In *International Design Engineering Technical Conferences and Computers and  
514 Information in Engineering Conference*, volume 86229, pp. V03AT03A001. American Society of Me-  
515 chanical Engineers, 2022.  
516

517 Shijie Bian, Daniele Grandi, Tianyang Liu, Pradeep Kumar Jayaraman, Karl Willis, Elliot Sadler, Bodie  
 518 Borjin, Thomas Lu, Richard Otis, Nhut Ho, et al. Hg-cad: hierarchical graph learning for material  
 519 prediction and recommendation in computer-aided design. *Journal of Computing and Information Science*  
 520 in Engineering, 24(1):011007, 2024.

521 Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative code  
 522 modeling with graphs. *arXiv preprint arXiv:1805.08490*, 2018.

524 Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging grammar  
 525 and reinforcement learning for neural program synthesis. *arXiv preprint arXiv:1805.04276*, 2018.

526 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.  
 527 Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv preprint*  
 528 *arXiv:2401.10774*, 2024.

530 Cheng Chen, Jiacheng Wei, Tianrun Chen, Chi Zhang, Xiaofeng Yang, Shangzhan Zhang, Bingchen Yang,  
 531 Chuan-Sheng Foo, Guosheng Lin, Qixing Huang, et al. Cadcrafter: Generating computer-aided design  
 532 models from unconstrained images. In *Proceedings of the Computer Vision and Pattern Recognition*  
 533 *Conference*, pp. 11073–11082, 2025.

534 Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser: Diffusion  
 535 models as text painters. *Advances in Neural Information Processing Systems*, 36:9353–9387, 2023.

536 Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In *International*  
 537 *Conference on Learning Representations*, 2018.

539 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,  
 540 Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-  
 541 vanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint*  
 542 *arXiv:2507.06261*, 2025.

543 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, Nicu Sebe, and Mubarak Shah. Curriculum  
 544 direct preference optimization for diffusion and consistency models. In *Proceedings of the Computer*  
 545 *Vision and Pattern Recognition Conference*, pp. 2824–2834, 2025.

546 Yuhao Du, Shunian Chen, Wenbo Zan, Peizhao Li, Mingxuan Wang, Dingjie Song, Bo Li, Yan Hu,  
 547 and Benyou Wang. Blenderllm: Training large language models for computer-aided design with self-  
 548 improvement. *arXiv preprint arXiv:2412.14203*, 2024.

550 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,  
 551 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*,  
 552 pp. arXiv–2407, 2024.

553 Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, Dong Xu, and Qian Yu. Cad-coder: Text-to-cad  
 554 generation with chain-of-thought and geometric reward. *arXiv preprint arXiv:2505.19713*, 2025.

556 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,  
 557 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement  
 558 learning. *arXiv preprint arXiv:2501.12948*, 2025.

559 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv preprint*  
 560 *arXiv:1503.02531*, 2015.

562 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu  
 563 Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

564 Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamil  
 565 Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance guided  
 566 attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 567 4713–4722, 2024a.

568 Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muhammad Zeshan  
 569 Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level text prompts. *Advances*  
 570 *in Neural Information Processing Systems*, 37:7552–7579, 2024b.

572 Jin-Young Kim, Hyojun Go, Soonwoo Kwon, and Hyun-Gyo Kim. Denoising task difficulty-based cur-  
 573 riculum for training diffusion models. *arXiv preprint arXiv:2403.10348*, 2024.

575 M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. *Advances*  
 576 *in neural information processing systems*, 23, 2010.

577 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-  
 578 lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with  
 579 pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626,  
 580 2023.

582 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-  
 583 ing. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

584 Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for text to 3d  
 585 parametric computer-aided design generative modeling. In *Proceedings of the 32nd ACM International*  
 586 *Conference on Multimedia*, pp. 8461–8470, 2024.

588 Jianxing Liao, Junyan Xu, Yatao Sun, Maowen Tang, Sicheng He, Jingxian Liao, Shui Yu, Yun Li, and  
 589 Hongguan Xiao. Automated cad modeling sequence generation from text descriptions via transformer-  
 590 based large language models. *arXiv preprint arXiv:2505.19490*, 2025.

591 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-  
 592 task learning. *Advances in Neural Information Processing Systems*, 34:18878–18890, 2021.

594 Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-  
 595 ment learning. *Advances in neural information processing systems*, 31, 2018.

597 Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone. Curriculum  
 598 learning for reinforcement learning domains: A framework and survey. *Journal of Machine Learning*  
 599 *Research*, 21(181):1–50, 2020.

600 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>, 2025. Official system  
 601 card describing GPT-5 architecture, routing, and safety evaluations.

603 Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. *Advances in neural*  
 604 *information processing systems*, 10, 1997.

605 Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic curricu-  
 606 lum learning for deep rl: A short survey. *arXiv preprint arXiv:2003.04664*, 2020.

608 Aditya Sanghi, Pradeep Kumar Jayaraman, Arianna Rampini, Joseph Lambourne, Hooman Shayani, Evan  
 609 Atherton, and Saeid Asgari Taghanaki. Sketch-a-shape: Zero-shot sketch-to-3d shape generation. *arXiv*  
 610 *preprint arXiv:2307.03869*, 2023.

611 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. *International Journal of Computer Vision*, 130(6):1526–1565, 2022.

612

613

614 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive  
615 models. *Advances in Neural Information Processing Systems*, 31, 2018.

616

617 Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual feed-  
618 back in large language models. *arXiv preprint arXiv:2501.19054*, 2025a.

619

620 Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthe-  
621 sising cad construction sequence with spatial reasoning-enhanced multimodal llms. In *Proceedings of the  
622 AAAI Conference on Artificial Intelligence*, volume 39, pp. 7880–7888, 2025b.

623

624 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. *IEEE transactions on pattern  
625 analysis and machine intelligence*, 44(9):4555–4576, 2021.

626

627 Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided  
628 design models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 6772–  
629 6782, 2021.

630

631 Haoyang Xie and Feng Ju. Text-to-cadquery: A new paradigm for cad generation with scalable large model  
632 capabilities. *arXiv preprint arXiv:2505.06507*, 2025.

633

634 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,  
635 Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

636

637 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient  
638 surgery for multi-task learning. *Advances in neural information processing systems*, 33:5824–5836, 2020.

639

640 Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and versatile  
641 controllable cad generation with fine-tuned large language models. *arXiv preprint arXiv:2411.05823*,  
642 2024.

643

644 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and Yongqiang Ma.  
645 Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual  
646 Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok,  
647 Thailand, 2024. Association for Computational Linguistics. URL <http://arxiv.org/abs/2403.13372>.

648

## 649 APPENDIX

650 Considering the space limitation of the main paper, we provide more results and discussion in this appendix,  
651 which is organized as follows:

- 652 • **Section A: Use of Large Language Models**
- 653 • **Section B: Limitations**
- 654 • **Section C: Additional Methodology Details**
  - 655 – Sec. C.1: Data Annotation For Geometric Decomposition
  - 656 – Sec. C.2: Structure-Aware Progressive Curriculum Learning
  - 657 – Sec. C.3: More Implementation Details of SFT
  - Sec. C.4: More Details of Metrics

---

658           – Sec. C.5: Analysis of Parameter Efficiency  
 659           – Sec. C.6: Graph Representations in CAD and Relation to This Work  
 660

- **Section D: Additional Results**
  - Sec. D.1: Human Evaluation
  - Sec. D.2: Additional Qualitative Results
  - Sec. D.3: Visualization of Progressive Improvement with SAPCL
  - Sec. D.4: Validation of VLM-based Evaluation
  - Sec. D.5: Impact of Few-Shot Examples on General LLMs
  - Sec. D.6: Effect of Different Base Models
  - Sec. D.7: Comparison with Sketch-and-Extrude Methods
  - Sec. D.8: Effect of Graph Representation under Varying Object Complexity
  - Sec. D.9: Captioning Cost and Comparison with Open-Source LVLMs
  - Sec. D.10: Comparison with a Unified Single Model
  - Sec. D.11: Annotation Accuracy and Typical Failure Cases

661

- **Section E: The Prompts Used in the Experiment**
  - Sec. E.1: Prompt for the VLM Evaluator
  - Sec. E.2: Prompt for the Problem Generator
  - Sec. E.3: Prompt for Geometry Decomposition
  - Sec. E.4: Prompt for Action Planning
  - Sec. E.5: Prompt for Code Generation

662

- **Section F: Illustrative Data Example**

663

## A USE OF LARGE LANGUAGE MODELS

684

685   In the preparation of this manuscript, we utilized a large language model (LLM), specifically GPT-5 (Open-  
 686   nAI, 2025), as a writing assistant. The role of the LLM was strictly limited to language enhancement  
 687   and did not extend to any aspect of the research ideation or scientific methodology. Our process involved  
 688   providing the LLM with drafts, specific sentences, or high-level concepts already formulated by the au-  
 689   thors. We then used the model’s outputs to refine sentence structure, improve clarity and fluency, and ensure  
 690   grammatical correctness in the final English text. It is important to state explicitly that all core scientific  
 691   contributions—including the formulation of the graph-structured geometric decomposition, the design of  
 692   the structure-aware progressive curriculum learning mechanism, the experimental design, and the analysis  
 693   and interpretation of results—are solely the work of the human authors. The LLM was not used to generate  
 694   scientific claims, hypotheses, or conclusions. In accordance with ICLR policy, the authors have meticulously  
 695   reviewed, edited, and validated all content in this paper. We take full responsibility for the final manuscript,  
 696   including its scientific accuracy and integrity.

## B LIMITATIONS

697   **Inference Time.** Our three stage inference sequentially predicts a structure graph, an action plan, and  
 700   executable code. This increases the number of generated tokens and leads to an average inference time  
 701   of about 1.7 minutes per sample, which is longer than the subminute times reported for models such as  
 702   BlenderLLM (Du et al., 2024). The detailed average inference time on CADBench is reported in Table 4.  
 703   In the context of CAD authoring this latency is small relative to a typical design iteration and is offset by  
 704   higher geometric fidelity and better constraint satisfaction, which reduce downstream edits and additional

705  
 706 Table 4: Inference time breakdown of different pipeline variants. Stage1, Stage2, and Stage3 correspond to  
 707 the three components of our Graph-CAD inference pipeline. Total time is the sum of the stages used by each  
 708 method.

| 709 Training pipeline   | 710 Stage1 (s) | 711 Stage2 (s) | 712 Stage3 (s) | 713 Total (s) |
|-------------------------|----------------|----------------|----------------|---------------|
| 710 End-to-end          | 711 –          | 712 –          | 713 –          | 714 64.861    |
| 711 w/o Graph Decom.    | 712 –          | 713 12.603     | 714 66.913     | 715 79.516    |
| 712 w/o Action Planning | 713 25.549     | 714 –          | 715 66.281     | 716 91.830    |
| 713 Graph-CAD (SFT)     | 714 24.345     | 715 15.141     | 716 65.269     | 717 104.755   |

718 regeneration. In practice, the overall time to a usable model is often lower than when a faster method  
 719 produces an output that requires extensive manual correction. We did not target latency optimization in  
 720 this work, and complementary techniques can further reduce runtime without changing the core approach,  
 721 including efficient management of key and value cache to support larger batch sizes (Kwon et al., 2023),  
 722 speculative or blockwise parallel decoding that proposes and verifies multiple tokens per step (Leviathan  
 723 et al., 2023; Stern et al., 2018; Cai et al., 2024), and knowledge distillation to compact backbones (Hinton  
 724 et al., 2015).

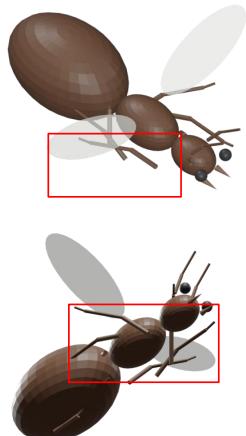
725 **Failure Cases and Model Scalability.** As shown in Figure 7, our method can struggle to generate assemblies  
 726 with extremely complex geometric structures. This limitation primarily stems from two factors: the inherent  
 727 capabilities of the current LLM backbones and the scarcity of publicly available training data for such  
 728 highly sophisticated designs. We posit that this is not a fundamental flaw in our graph-based approach but  
 729 rather a reflection of the current resources available. The framework itself is designed to be scalable. As  
 730 more powerful base models are developed and more diverse, complex CAD datasets become available, we  
 731 anticipate that the performance of our framework on these challenging cases will naturally improve. Future  
 732 work will focus on exploring these scaling properties and curating more complex datasets to further push  
 733 the boundaries of automated CAD generation.

## 734 C ADDITIONAL METHODOLOGY DETAILS

### 735 C.1 DATA ANNOTATION FOR GEOMETRIC DECOMPOSITION

736 To support the training and evaluation of our three-stage Graph-CAD framework, we meticulously con-  
 737 structed a BlendGeo dataset that contains 12K quadruplets of user instructions, geometric decomposi-  
 738 tion graphs, action sequences, and executable bpy code. The overall data construction pipeline is illus-  
 739 trated in Figure 8. In the Data Generation stage, we designed three distinct prompt sets, one for each stage of the  
 740 Graph-CAD framework, to guide LLM-based data generation. Specifically, the Geometry Decomposition  
 741 Prompt formalizes the principles of top-down geometric decomposition, rules for establishing geometric  
 742 constraints between nodes, and structural specifications for the output text format. The Action Planning  
 743 Prompt specifies how to convert a geometric decomposition graph into a CAD operation sequence, while  
 744 the Code Generation Prompt defines translation rules from actions to bpy code, along with standard func-  
 745 tion definitions. Subsequently, we extracted 12K user instructions spanning 1.4K object categories from the  
 746 BlendNet (Du et al., 2024). Using an LLM (e.g., GPT-5), we applied stage-specific prompts to perform the  
 747 three-stage conversions, thereby generating preliminary quadruplets.

748 In the Data Validation stage, we employed a dual human–AI verification pipeline to ensure high-quality  
 749 generated data. The generated bpy code for each instance was executed in Blender, producing four dis-  
 750 tinct multi-view rendered images. A Vision-Language Model (VLM) (e.g., GPT-5) then evaluated whether  
 751 these renderings semantically matched the original user instructions. The samples approved by the VLM

752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771So I have been trying to model an **ant queen**,  
can you help me to make this 3D model?

(a)

Help me please, create a **bike** with a round grap.

(b)

772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798

Figure 7: Examples of Failure Cases on Highly Complex Geometries. This figure illustrates current limitations of our method when tasked with generating objects with extremely intricate structures. (a) An “ant queen” model, which requires complex, organic curves and a high part count. (b) A “bicycle” model, which involves a large number of parts with precise mechanical and transmission-related constraints. In both cases, while the model attempts to capture the overall form, it struggles with the fine-grained geometric details and the complex inter-part relationships, leading to structural errors. These failures highlight the need for more powerful base models and more diverse, complex training data.

were further validated by professional industrial designers to guarantee absolute accuracy. Those samples that failed the VLM evaluation were comprehensively corrected by designers, who synchronously rectified the geometric decomposition graph, action sequence, and bpy code. Ultimately, these rigorously validated samples, originating from the BlendNet instructions, form the BlendGeo dataset. Furthermore, to enable a rigorous evaluation of geometric decomposition graph accuracy and geometric constraint satisfaction, we applied this same annotation pipeline to the CADBench benchmark (Du et al., 2024).

## 790 C.2 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

792 To provide a detailed, step-by-step specification of our training strategy, we present the pseudocode for the  
 793 Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism in Algorithm 1. The algorithm for-  
 794 malizes the iterative process described in the main text, which alternates between Supervised Fine-Tuning  
 795 (SFT) and Structure-Aware Progressive Curriculum Exploration (SAPCE). It provides a concrete imple-  
 796 mentation for the key procedures within the SAPCE module, including the sampling of seed exemplars,  
 797 the generation of graded problem variants, the identification of the model’s capability boundary using a  
 798 Discriminator, and the synthesis of new data at this frontier.

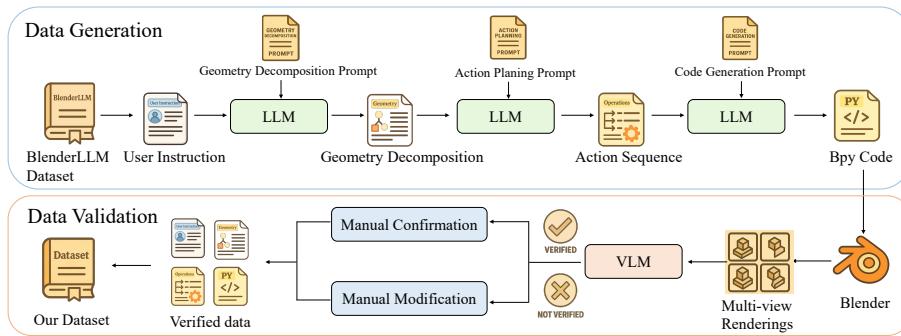


Figure 8: Data annotation pipeline. Our annotation process begins with user instructions sourced from the BlenderLLM dataset. It proceeds through a three-stage generation workflow, where distinct prompts guide a LLM to sequentially produce geometric decomposition graphs, action sequences, and executable bpy code. Subsequently, a VLM evaluates whether the multi-view renderings generated from the bpy code align with the original instructions. Finally, industrial designers perform a second round of verification, reviewing the VLM’s judgments, confirming correct samples, and refining erroneous ones. The validated quadruplets are then integrated into our dataset.

### C.3 MORE IMPLEMENTATION DETAILS OF SFT

We selected Qwen3-8B (Yang et al., 2025) as the backbone for all three models within the Graph-CAD framework, utilizing a maximum token length of 8192. For efficient fine-tuning, we employed the Low-Rank Adaptation (LoRA) method (Hu et al., 2022) within the LLamaFactory training framework (Zheng et al., 2024), using hyperparameters  $rank = 64$ . Each model was trained on two Nvidia A800-80GB GPUs. We set the batch size to 2, with a gradient accumulation steps of 8, and a learning rate of  $1.0 \times 10^{-4}$ . Training proceeded for 7 epochs, taking approximately 3 days. The model weights that achieved the lowest validation loss were selected as the optimal weights.

### C.4 MORE DETAILS OF METRICS

**CADBench metrics.** We adopt the CADBench metrics introduced in BlenderLLM (Du et al., 2024) for open-ended CAD generation from text. The benchmark decomposes evaluation into three complementary dimensions tailored to CAD renderings: Attr. (object-attribute accuracy), Spat. (spatial-relation accuracy), and Inst. (instruction-following accuracy). Concretely, each test prompt is paired with a set of human-verified criteria covering fine-grained sub-dimensions (e.g., color/material/size for attributes; relative placement, contact, alignment and symmetry for spatial relations; and faithfulness to user-specified operations for instruction following). For every criterion, a binary score is produced by an MLLM-as-judge, using both the multi-view renders (four views per object) and, where appropriate, the generated script itself (script-based checks are used for objective properties that are hard to judge visually). Sub-dimension scores are averaged into a dimension score, and the Avg. column reports the uniform average over the three dimensions, yielding an overall fidelity measure. In addition, we report the syntax error rate  $E_{syntax}$ , defined as the proportion of generated scripts that fail to execute to a valid rendering, which captures robustness and executability of the outputs. For completeness, CADBench is instantiated on two test suites—CADBench-Sim (synthetic) and CADBench-Wild (real, out-of-distribution forum questions)—and scores are computed separately on each. This protocol yields multi-dimensional, execution-grounded assessments that align well with human judgments while remaining scalable and reproducible.

846 **Geometric Constraint Satisfaction (GCS).** Beyond visual fidelity, we developed a novel metric to evaluate  
 847 the structural integrity of the generated models, which we term Geometric Constraint Satisfaction (GCS).  
 848 This metric assesses whether a CAD model’s structure satisfies common geometric constraints (e.g., a table-  
 849 top must be above and in contact with the top surface of its legs). For this purpose, we manually annotated  
 850 approximately 500 geometric constraint ground truths across 280 samples from the CADBench test set that  
 851 feature common geometric relationships. During evaluation, we first extract the name and geometric pa-  
 852 rameters (e.g., bounding box, position, rotation) of each CAD part within Blender. An LLM is then used to  
 853 map these part names to the corresponding names in our evaluation standards (e.g., a table surface might be  
 854 named ‘table\_top,’ ‘table\_base,’ or ‘base’). Finally, numerical computations determine if these mapped parts  
 855 satisfy the specified geometric constraints, yielding a score of 0 or 1 for each constraint. For every sample,  
 856 an average score is computed across all its geometric constraints to represent its GCS score. The final GCS  
 857 metric for the model is the average of these scores across all evaluated samples.  
 858

858 **Node-Level Accuracy (NLA) and Hierarchy-Level Accuracy (HLA).** To assess the correctness of gener-  
 859 ated geometric decomposition graphs, we introduce two dedicated metrics: NLA and HLA. NLA evaluates  
 860 whether the system identifies the correct set of parts under a one-to-one correspondence with ground truth.  
 861 Concretely, we first build an L1-based cost matrix per class (size, position, orientation, and optional at-  
 862 tributes; see Algorithm 2), then apply LLM-guided aliasing to canonically rename predicted nodes to the  
 863 ground-truth namespace and perform class-wise Hungarian assignment (Algorithm 3). We report the mean  
 864 L1 assignment cost across all matched pairs as the NLA score (lower is better).  
 865

865 HLA, in contrast, evaluates the structural integrity of the graph by examining the parent–child relationships.  
 866 This metric combines two critical checks: first, whether the predicted edges (representing relationships)  
 867 between nodes are correct (Algorithm 4); and second, whether each part appears at the correct depth in the  
 868 hierarchy, followed by a weighted aggregation into the final score (Algorithm 5).  
 869

869 This metric combines two critical checks: first, whether the predicted edges (representing relationships)  
 870 between nodes are correct, and second, whether each part appears at the correct depth in the hierarchy. In  
 871 summary, while NLA assesses if the model predicted the right pieces, HLA assesses if it arranged those  
 872 pieces correctly.  
 873  
 874

## 875 C.5 ANALYSIS OF PARAMETER EFFICIENCY

876 A potential consideration regarding our three-stage framework is the total parameter count, as it utilizes three  
 877 separate models. One might hypothesize that the performance gains are a consequence of an increased num-  
 878 ber of trainable parameters compared to a single end-to-end model. However, a closer analysis of our training  
 879 methodology suggests this is not the case.. We employ the Low-Rank Adaptation (LoRA) method (Hu et al.,  
 880 2022) for efficient fine-tuning. With a rank of 64, the number of trainable parameters for each of our three  
 881 models is approximately 174.6 million. This constitutes only 2.13% of the total parameters of the Qwen3-8B  
 882 backbone (Yang et al., 2025). The total number of trainable parameters across all three models is therefore  
 883 approximately 524 million, which is still a small fraction of the base model’s total size and is comparable to  
 884 or less than what a full fine-tuning of a single, smaller model might require. This high degree of parameter  
 885 efficiency indicates that our framework’s success is not attributable to a massive update of the base model’s  
 886 weights. Instead, our approach effectively leverages the vast, pre-existing knowledge embedded within the  
 887 LLM. The performance improvements are derived from teaching the model to apply this knowledge within  
 888 our structured, multi-stage problem-solving paradigm. Therefore, we attribute the observed gains primarily  
 889 to the architectural and data-centric contributions of our work—namely, the decoupling of the problem via  
 890 the three-stage pipeline and the power of the graph-structured intermediate representation—rather than to an  
 891 increase in the scale of trainable parameters.  
 892

893  
 894 Table 5: Quantitative results of the human evaluation. The table shows user preference scores for CAD  
 895 models generated by different methods. App. indicates the preference rate based on visual appearance and  
 896 alignment with the user’s instruction. GP indicates the preference rate based on the geometric plausibility of  
 897 the final assembly.

|      | BlenderLLM | GPT-5 (e2e) | GPT-5 (3 stages) | Claude-opus-4-1 (e2e) | Claude-opus-4-1 (3 stages) | Ours (SFT) | Ours (SAPCL)   |
|------|------------|-------------|------------------|-----------------------|----------------------------|------------|----------------|
| App. | 2.3 %      | 2.7 %       | 8.4 %            | 4 %                   | 9.65 %                     | 10.05 %    | <b>62.9 %</b>  |
| GP.  | 3.8 %      | 0.4 %       | 5.2 %            | 0.55 %                | 6.5 %                      | 16.3 %     | <b>67.25 %</b> |

## 901 902 C.6 GRAPH REPRESENTATIONS IN CAD AND RELATION TO THIS WORK

903 A few works have introduced assembly graphs into CAD, typically by constructing a part–part graph on  
 904 top of an existing CAD model and using it for predictive tasks such as material prediction or recommendation  
 905 (Bian et al., 2024; 2022). Compared to these assembly graphs, our hierarchical, geometry-aware graph  
 906 differs in two key aspects: its source and its role in the overall pipeline.

907 First, the source of the graph is different. In prior work, the assembly graph is a descriptive structure con-  
 908 structed from pre-defined, human-specified relationships within an existing CAD file, and thus re-expresses  
 909 information that is already present in a fully specified design. This setting is fundamentally different from  
 910 Text-to-CAD, where no CAD model or assembly structure is available at inference time. In Graph-CAD,  
 911 the hierarchical, geometry-aware graph is a learned intermediate representation that is predicted directly  
 912 from natural-language instructions, before any geometry exists. It is specifically designed to bridge the gap  
 913 between ambiguous text and structured CAD programs under this generative setting.

914 Second, the role of the graph is different. In previous work, the assembly graph serves as an analytical input  
 915 to a predictive model (for example, a GNN) that reasons about a fixed assembly. In Graph-CAD, the graph  
 916 acts as a prescriptive blueprint or structural prior that guides generation: nodes define the assembly hierarchy  
 917 and part attributes, and edges represent actionable geometric constraints that the subsequent action-planning  
 918 and CAD code generation stages must satisfy. The graph is thus a causal intermediate that tells the model  
 919 how to build the assembly, rather than a passive descriptor of an existing design.

920 To the best of our knowledge, this is the first work that learns a hierarchical, geometry-aware assembly graph  
 921 from text and uses it as a central generative constraint for CAD code generation in the Text-to-CAD setting.  
 922 Our experiments show that this graph-guided formulation yields clear improvements in geometric fidelity,  
 923 constraint satisfaction, and code executability over strong end-to-end LLM baselines, supporting both the  
 924 novelty and the effectiveness of the proposed representation.

## 925 D ADDITIONAL RESULTS

### 926 D.1 HUMAN EVALUATION

927 To evaluate user preference for our method compared to the baselines, we conducted a user study. We  
 928 recruited 40 volunteers, all with prior experience in CAD design, to participate in a questionnaire-based  
 929 evaluation. Each participant was presented with 50 randomly selected examples from our test set. The  
 930 evaluation for each example was based on two criteria: how well the geometric appearance matches the  
 931 user instruction (Appearance, App), and whether the model satisfies common-sense geometric constraints  
 932 (Geometric Plausibility, GP). The aggregated results of this study are summarized in Table 5, indicating  
 933 that our method, Graph-CAD (SAPCL), achieves the highest user-rated quality for both appearance and  
 934 geometric plausibility.

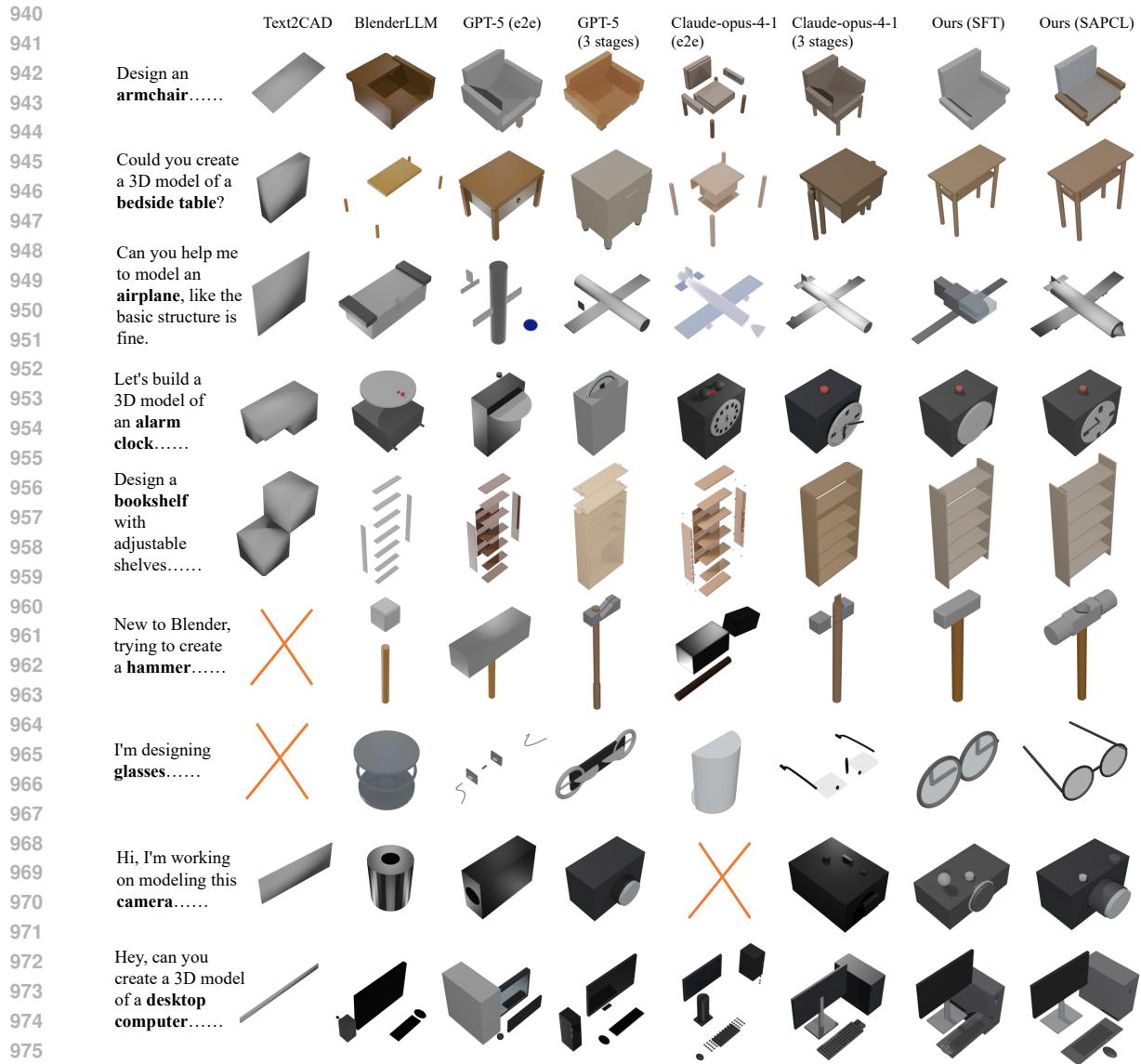


Figure 9: Additional Qualitative Comparison with Baselines. This figure presents more qualitative examples comparing our method, Graph-CAD, with baseline approaches on challenging prompts from the CADBench benchmark.

## D.2 ADDITIONAL QUALITATIVE RESULTS

For a more extensive qualitative comparison, we provide additional side-by-side results against baseline methods in the appendix (Figure 9). These examples further illustrate common failure modes in baseline outputs, such as generating misaligned parts, violating geometric constraints, or failing to capture complex

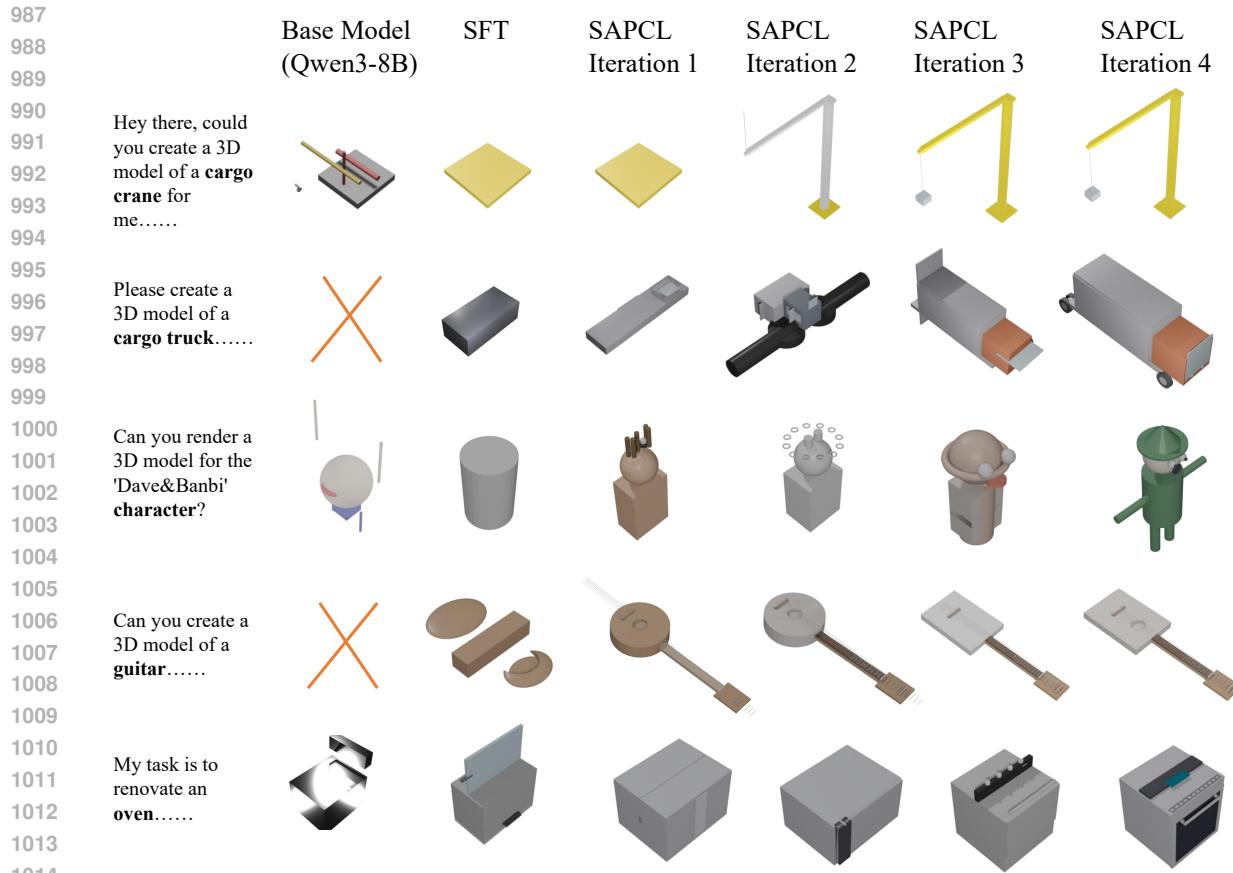


Figure 10: Visualization of Progressive Improvement with SAPCL. This figure illustrates the evolution of the model’s generative capabilities on a single, challenging user instruction across different stages of training.

assembly structures. In contrast, these results consistently show that our method, Graph-CAD, produces more geometrically plausible and structurally coherent assemblies that better align with the user instructions, underscoring the robustness of our approach.

### D.3 VISUALIZATION OF PROGRESSIVE IMPROVEMENT WITH SAPCL

To provide an intuitive understanding of how our Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism improves model performance, this section visualizes the evolution of the model’s generative capabilities. In the Figure 10, we present a side-by-side comparison of outputs generated for the same challenging user instruction at different stages of our training pipeline. This comparison begins with the base pre-trained model, followed by the model after the initial Supervised Fine-Tuning (SFT) phase, and finally, the outputs after four successive iterations of SAPCL. This sequence is designed to qualitatively demonstrate the progressive refinement of the model’s ability to handle complex assembly structures and satisfy geometric constraints.

1034 D.4 VALIDATION OF VLM-BASED EVALUATION  
1035

1036 In our methodology, we employ GPT-5 (OpenAI, 2025) as our Vision-Language Model (VLM). The VLM  
1037 serves two critical functions: first, as an automated filter for preliminary data screening during our annotation  
1038 pipeline, and second, as the “Discriminator” that assesses the quality of newly synthesized examples during  
1039 the curriculum learning phase. To ensure that the VLM’s judgments are a reliable proxy for human assess-  
1040 ment in these roles, we conducted a cross-validation study. We compared the VLM’s automated judgments  
1041 against those provided by our professional industrial designers on a representative subset of the generated  
1042 samples. The results of this comparison are presented in a confusion matrix in Table 6. We observed a high  
1043 degree of consistency between the two assessments. The VLM and the human experts were in agreement on  
1044 93.37% of the evaluated cases. This figure is composed of a 30.84% consistency on “Pass” judgments and a  
1045 62.53% consistency on “Fail” judgments. Conversely, the assessments differed in only 6.63% of cases. This  
1046 strong correlation demonstrates that the VLM serves as a reliable and scalable proxy for human judgment  
1047 for this specific task. Therefore, we consider its use for large-scale, automated evaluation throughout our  
1048 experiments to be well-justified.

1049 To further validate the use of our VLM-based evaluation protocol, we conducted a human evaluation on a  
1050 30% subset of samples randomly drawn from both CADBench-Sim and CADBench-Wild. We recruited 10  
1051 volunteers with professional design experience and asked them to score the generated models according to  
1052 the official CADBench scoring guidelines. This protocol was designed to directly align with the prompt and  
1053 criteria provided to the VLM. The results of this human evaluation are presented in Table 7. A direct com-  
1054 parison reveals a strong correlation between the human scores and our main VLM-based results from Table  
1055 1 and 2. Crucially, the relative performance ranking of all evaluated models remains consistent between the  
1056 two methods, supporting the use of the VLM as a reliable proxy for human judgment in our experiments

1057  
1058 Table 6: Cross Validation with GPT-5.  
1059

| VLM  | Human | Pass   | Fail  |
|------|-------|--------|-------|
|      | Pass  | 30.84% | 3.64% |
| Fail | 2.99% | 62.53% |       |

1063  
1064 D.5 IMPACT OF FEW-SHOT EXAMPLES ON GENERAL LLMs  
1065

1066 To further analyze the behavior of our three-stage inference paradigm on general-purpose LLMs, we con-  
1067 ducted a study on the impact of varying the number of few-shot examples from zero to three. For these  
1068 few-shot prompts, we selected examples with a similar level of complexity to the test instances to ensure  
1069 a fair comparison. The results are detailed in Table 8. In the zero-shot setting, both the end-to-end and  
1070 our three-stage paradigms struggle, exhibiting high code error rates. The three-stage approach performs  
1071 particularly poorly in this scenario. This is expected, as the model has no prior exposure to our specific  
1072 graph-structured representation and cannot reliably generate it without guidance. However, with the intro-  
1073 duction of just one to three few-shot examples, a clear trend emerges. The three-stage inference process  
1074 consistently outperforms the end-to-end approach, with the most substantial improvements observed in the  
1075 Geometric Constraint Satisfaction (GCS) metric. This demonstrates that once the model understands the  
1076 target format, the structured pipeline is a more effective method for generating geometrically sound models.  
1077 We also note that increasing the number of examples from two to three provides only a marginal perfor-  
1078 mance gain. Furthermore, even with three-shot prompting, the performance of the general-purpose LLM  
1079 remains below that of our specialized, fine-tuned Graph-CAD (SAPCL) model, highlighting the benefits of  
1080 task-specific training and our curriculum learning strategy.

1081  
1082 Table 7: Human Evaluation Scores on a 30% Subset of CADBench. The table shows the average scores  
1083 assigned by 10 human evaluators. The performance ranking of the models is consistent with the VLM-based  
1084 results in Table 1 and 2, supporting the reliability of our automated evaluation.

| Models                       | CADCbench-Sim (human) |                  |                  |                 | CADCbench-Wild (human) |                  |                  |                 |
|------------------------------|-----------------------|------------------|------------------|-----------------|------------------------|------------------|------------------|-----------------|
|                              | Attr. $\uparrow$      | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | Attr. $\uparrow$       | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ |
| BlenderLLM                   | 0.6914                | 0.6862           | 0.3759           | 0.5845          | 0.6722                 | 0.6509           | 0.4651           | 0.5914          |
| GPT-5 (end-to-end)           | 0.7146                | 0.7281           | 0.4507           | 0.6311          | 0.6894                 | 0.7107           | 0.5902           | 0.6634          |
| GPT-5 (Graph-CAD)            | 0.7351                | 0.7237           | 0.4398           | 0.6328          | 0.7682                 | 0.7475           | 0.5460           | 0.6872          |
| Claude-opus-4-1 (end-to-end) | 0.7185                | 0.7298           | 0.5460           | 0.4458          | 0.6923                 | 0.7285           | 0.6072           | 0.6760          |
| Claude-opus-4-1 (Graph-CAD)  | 0.7521                | 0.7434           | 0.4962           | 0.6639          | 0.7462                 | 0.7356           | 0.6907           | 0.7242          |
| Ours (SFT)                   | 0.7308                | 0.7326           | 0.4753           | 0.6462          | 0.7045                 | 0.7268           | 0.5971           | 0.6761          |
| Ours (SAPCL)                 | <b>0.7693</b>         | <b>0.7509</b>    | <b>0.5482</b>    | <b>0.6894</b>   | <b>0.7746</b>          | <b>0.7607</b>    | <b>0.6139</b>    | <b>0.7164</b>   |

1093  
1094 Table 8: Impact of Few-Shot Examples on the Performance of General-Purpose LLMs. The table compares  
1095 the direct End-to-end paradigm against our Three-stage Graph-CAD inference as the number of few-shot  
1096 examples is varied from zero to three. This analysis is conducted on the CADBench benchmark to evaluate  
1097 how each paradigm benefits from in-context learning.

| Models                                      | CADCbench-Sim    |                  |                  |                 |                        |                | CADCbench-Wild   |                  |                  |                 |                        |                |
|---------------------------------------------|------------------|------------------|------------------|-----------------|------------------------|----------------|------------------|------------------|------------------|-----------------|------------------------|----------------|
|                                             | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | GCS $\uparrow$ | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | GCS $\uparrow$ |
| GPT-5 (end-to-end inference with zero-shot) | 0.5632           | 0.5896           | 0.3764           | 0.5097          | 20.8%                  | 0.2467         | 0.5338           | 0.5610           | 0.3295           | 0.4748          | 18.0%                  | 0.2522         |
| GPT-5 (Graph-CAD inference with zero-shot)  | 0.2465           | 0.2447           | 0.1720           | 0.2211          | 31.6%                  | 0.2663         | 0.2582           | 0.2733           | 0.2045           | 0.2453          | 37.5%                  | 0.2038         |
| GPT-5 (end-to-end inference with 1-shot)    | 0.6482           | 0.6895           | 0.3867           | 0.5745          | 7.0%                   | 0.2971         | 0.6713           | 0.6519           | 0.4475           | 0.5902          | 11.5%                  | 0.3294         |
| GPT-5 (Graph-CAD inference with 1-shot)     | 0.6715           | 0.6620           | 0.4108           | 0.5814          | 8.4%                   | 0.5984         | 0.6526           | 0.6935           | 0.4621           | 0.6027          | 12.5%                  | 0.5211         |
| GPT-5 (end-to-end inference with 2-shot)    | 0.7013           | 0.7347           | 0.4250           | 0.6203          | 2.8%                   | 0.3846         | 0.6858           | 0.7091           | 0.5595           | 0.6515          | 5.5%                   | 0.4017         |
| GPT-5 (Graph-CAD inference with 2-shot)     | 0.7342           | 0.7199           | 0.4451           | 0.6270          | 2.2%                   | 0.6603         | 0.7677           | 0.7523           | 0.5377           | 0.6859          | 4.0%                   | 0.5849         |
| GPT-5 (end-to-end inference with 3-shot)    | 0.7039           | 0.7325           | 0.4268           | 0.6211          | 3.2%                   | 0.3961         | 0.6869           | 0.6903           | 0.5408           | 0.6393          | 4.5%                   | 0.4235         |
| GPT-5 (Graph-CAD inference with 3-shot)     | 0.7351           | 0.7007           | 0.4369           | 0.6242          | 2.8%                   | 0.6431         | 0.7624           | 0.7438           | 0.5193           | 0.6752          | 6.0%                   | 0.5971         |
| Graph-CAD (SFT)                             | 0.7295           | 0.7265           | 0.4733           | 0.6431          | 2.4%                   | 0.7830         | 0.6944           | 0.7270           | 0.5861           | 0.6692          | 4.5%                   | 0.8025         |
| Graph-CAD (SAPCL)                           | 0.7681           | 0.7423           | 0.5546           | 0.6883          | 2.0%                   | 0.9018         | 0.7695           | 0.7590           | 0.6057           | 0.7114          | 2.5%                   | 0.8943         |

## 1110 D.6 EFFECT OF DIFFERENT BASE MODELS

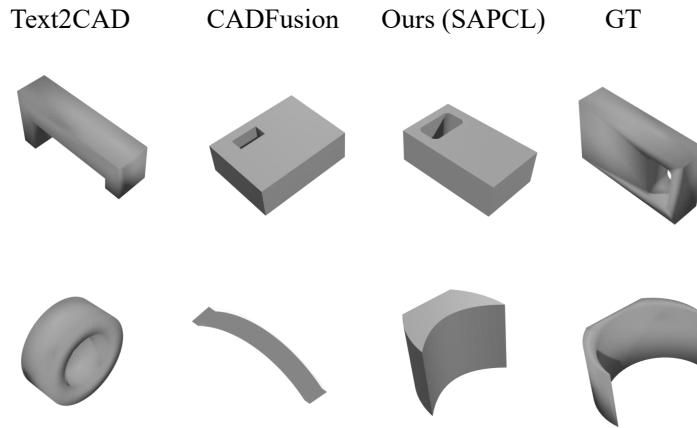
1111 To assess the impact of the underlying LLM backbone on our framework’s performance, we conducted an  
1112 additional experiment by substituting the Qwen3-8B model (Yang et al., 2025) with Llama3-8B (Dubey  
1113 et al., 2024). We repeated the full training and evaluation process using this alternative backbone. The  
1114 results, presented in Table 9, indicate that the choice between these two base models has a minimal effect  
1115 on the final performance. The Llama3-8B-based model achieves results that are highly comparable to those  
1116 of the Qwen3-8B-based model across all evaluation metrics. This finding suggests that the performance  
1117 gains demonstrated in our main experiments are not specific to a single model architecture. Instead, they  
1118 are primarily attributable to our proposed Graph-CAD framework and the SAPCL training strategy, which  
1119 provide a robust and model-agnostic approach to improving Text-to-CAD generation.

## 1121 D.7 COMPARISON WITH SKETCH-AND-EXTRUDE METHODS

1122 A prominent paradigm in Text-to-CAD generation involves modeling objects through a series of sketch-  
1123 and-extrude (SEM) operations, as seen in methods like Text2CAD and CADFusion (Khan et al., 2024b;  
1124 Wang et al., 2025a). These approaches are highly effective for generating single-part objects where a 2D  
1125 sketch can be logically extruded into a 3D form. However, they are often less suited for creating complex,  
1126 multi-part assemblies, as their underlying structure does not explicitly model the hierarchical relationships

1128  
 1129 Table 9: Performance Comparison of Different LLM Backbones on CADBench. The table shows the results  
 1130 of our full Graph-CAD framework when built upon two different 8B-parameter base models: Qwen3-8B  
 1131 and Llama3-8B. The highly comparable performance across all metrics indicates that our approach is robust  
 1132 to the choice of the underlying LLM.

| Models            | CADCbench-Sim    |                  |                  |                 |                        |                | CADCbench-Wild   |                  |                  |                 |                        |                |
|-------------------|------------------|------------------|------------------|-----------------|------------------------|----------------|------------------|------------------|------------------|-----------------|------------------------|----------------|
|                   | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | GCS $\uparrow$ | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | GCS $\uparrow$ |
| Qwen3-8B (SFT)    | 0.7295           | 0.7265           | 0.4733           | 0.6431          | 2.4%                   | 0.7830         | 0.6944           | 0.7270           | 0.5861           | 0.6692          | 4.5%                   | 0.8025         |
| Llama3-8B (SFT)   | 0.7146           | 0.7080           | 0.4941           | 0.6389          | 3.2%                   | 0.7732         | 0.6894           | 0.7107           | 0.5902           | 0.6634          | 5.5%                   | 0.8126         |
| Qwen3-8B (SAPCL)  | 0.7681           | 0.7423           | 0.5546           | 0.6883          | 2.0%                   | 0.9018         | 0.7695           | 0.7590           | 0.6057           | 0.7114          | 2.5%                   | 0.8943         |
| Llama3-8B (SAPCL) | 0.7693           | 0.7356           | 0.5248           | 0.6765          | 2.6%                   | 0.9142         | 0.7639           | 0.7651           | 0.5812           | 0.7034          | 3.0%                   | 0.8817         |



1154 Figure 11: Qualitative Comparison with Sketch-and-Extrude Methods on the DeepCAD Dataset. This figure  
 1155 compares outputs from our Graph-CAD method with a representative sketch-and-extrude (SEM) baseline  
 1156 on the DeepCAD test set.

1157  
 1158 and geometric constraints that govern how multiple parts connect and interact. The DeepCAD dataset (Wu  
 1159 et al., 2021) is a common benchmark used to evaluate these SEM-based methods. Although our Graph-  
 1160 CAD framework is not fundamentally a sketch-and-extrude system, we evaluated its performance on the  
 1161 DeepCAD test set to provide a direct point of comparison. As illustrated in Figure 11, our method achieves  
 1162 competitive performance, effectively generating both single-part and multi-part objects. This suggests that  
 1163 our graph-based representation offers a more general and flexible approach to CAD generation that is not  
 1164 limited to a single modeling paradigm.

#### 1166 D.8 EFFECT OF GRAPH REPRESENTATION UNDER VARYING OBJECT COMPLEXITY

1167 To further analyze when the proposed graph representation becomes critical, we conduct an additional study  
 1168 on CADBench Du et al. (2024) by varying the complexity of target objects. We quantify complexity using  
 1169 the Unique Part Count, i.e., the number of distinct parts in the assembly excluding repeated instances created  
 1170 via loops. We compare the Graph-CAD (SFT) model in Table 3 with an ablated variant that removes the  
 1171 intermediate graph representation and directly predicts CAD code from text.

1172 Figure 12 reports the evaluation metrics Attr, Spat, Inst, Avg, and GCS as a function of the Unique Part  
 1173 Count. For simple objects with about 5 unique parts, both variants achieve very similar scores across all

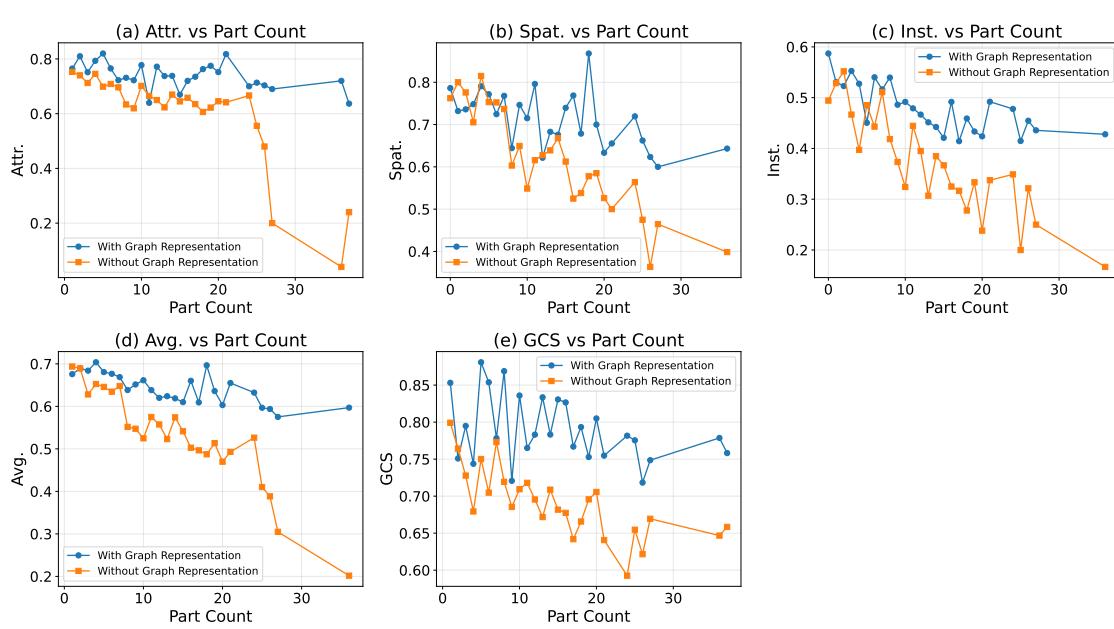


Figure 12: Object-level metrics as a function of the Unique Part Count on CADBench. We report (a) Object Attributes (Attr), (b) Spatial Understanding and Structure (Spat), (c) Instruction Execution (Inst), (d) Overall Average (Avg), and (e) Geometric Constraint Satisfaction (GCS). Blue curves correspond to Graph-CAD with the intermediate graph representation; orange curves correspond to the ablated model without graph representation.

metrics. As the Unique Part Count increases, however, the gap between the two models widens steadily. Around 10–15 parts, the graph-based model begins to exhibit a clear advantage, particularly on instruction execution (Inst). Beyond 20 parts, the model without graph representation degrades sharply across all metrics, whereas the graph-based model degrades much more gracefully and maintains substantially higher scores, especially on Geo and the overall Avg metric. These results suggest that the graph representation provides little benefit for very simple assemblies but becomes increasingly important as object complexity grows, and is effectively essential for reliable Text-to-CAD generation once the number of unique parts exceeds roughly 15–20.

Figure 13 provides qualitative examples at different complexity levels. The columns correspond to objects with 5, 10, 15, 20, 25, and 35 unique parts. For each object, we show the result of the model with graph representation (top row) and the ablated model without graph representation (bottom row). For low part counts (e.g., the pen with lid), both methods produce similar and reasonable shapes. As the assemblies become more complex (printer, cargo ship, living room), the non-graph model frequently exhibits unreasonable shapes and assembly errors, such as floating or intersecting parts, missing supports, and misaligned subcomponents (highlighted by red circles). In contrast, the graph-based model is able to organize many parts into coherent, well-aligned assemblies that better satisfy the intended geometric and functional relations. These qualitative observations are fully consistent with the quantitative trends in Figure 12 and further support the claim that the graph representation is crucial for handling medium- to high-complexity CAD assemblies.

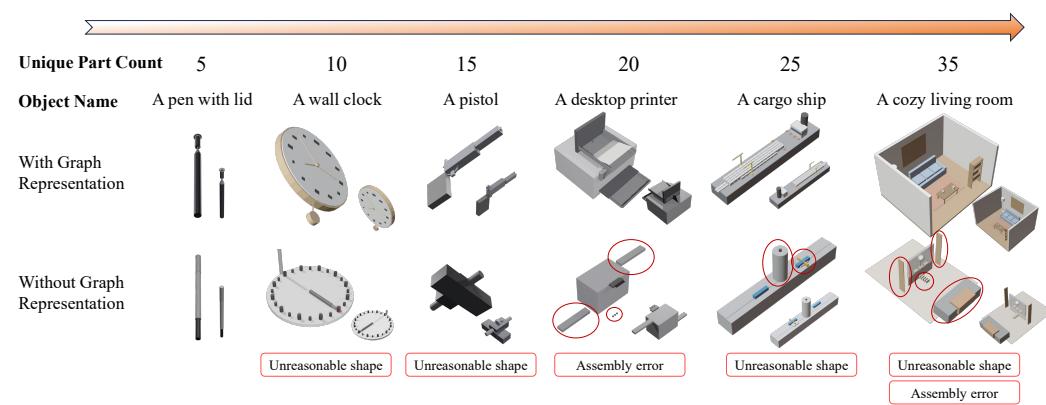


Figure 13: Columns show objects with 5, 10, 15, 20, 25, and 35 unique parts. For each object, the top row shows results generated with the graph representation, and the bottom row shows results from the ablated model without graph representation. Red circles highlight typical failure modes of the non-graph model, including unreasonable shapes and assembly errors (e.g., floating or intersecting parts, missing supports).

#### D.9 CAPTIONING COST AND COMPARISON WITH OPEN-SOURCE LVLMs

**Captioning and evaluation cost.** We report here the monetary cost of using GPT-5 for generating instruction–graph–action–code quadruplets in BlendGeo and computing the Attr/Spat/Inst metrics in CAD-Bench. All costs are computed according to the official GPT-5 API pricing at the time of our experiments, namely US\$1.25 per 1M input tokens and US\$10.00 per 1M output tokens.

For the evaluation metrics (Attr, Spat, Inst), each successfully generated CAD sample requires on average 5,513 input tokens and 44 output tokens for the GPT-5 evaluator. Under the above pricing, this corresponds to an average cost of approximately US\$0.0073 per evaluated sample. For data annotation in BlendGeo, we use GPT-5 in three stages. In the first stage, the average usage is 4,011 input tokens and 704 output tokens, which translates to an average cost of about US\$0.0121 per sample. In the second stage, the average usage is 4,598 input tokens and 708 output tokens, with an average cost of about US\$0.0128 per sample. In the third stage, the average usage is 9,014 input tokens and 3,008 output tokens, yielding an average cost of about US\$0.0413 per sample. Summing over the three stages, the mean annotation cost per fully annotated sample is therefore roughly US\$0.0662.

The annotated BlendGeo dataset contains 12,059 samples. Using the per-sample estimate above, this corresponds to a total annotation cost of approximately US\$800. The CADBench benchmark used for evaluation comprises 700 samples, so the total evaluation cost is about US\$5.1. In aggregate, the GPT-5 usage for dataset annotation and benchmark evaluation is therefore on the order of US\$805, which we consider a reasonable cost for constructing and evaluating a dataset of this scale. We hope this makes the trade-off between annotation quality and monetary cost transparent for future work.

**On the use of open-source LLMs/VLMs.** We also analyze the role of open-source LLMs and VLMs in our pipeline and explain why we do not adopt them as the primary annotators and evaluators at the current stage.

On the generation side, the main paper includes strong open-source reasoning LLMs as Text-to-CAD generators in Table 2, including DeepSeek-R1 and Qwen-Plus (Qwen3-Plus). Under identical task settings and prompts, these models exhibit substantially higher syntax error rates and markedly lower visual metrics

1269  
1270 Table 10: Cross Validation with Qwen-VL.  
1271  
1272  
1273  
1274

| VLM | Human | Pass   | Fail   |
|-----|-------|--------|--------|
|     | Pass  | 28.54% | 4.07%  |
|     | Fail  | 12.86% | 54.53% |

1275  
1276 Table 11: Performance comparison of the three-stage pipeline (Graph-CAD (SFT)) versus a unified multi-  
1277 task single-model baseline on CADBench.  
1278

| Method               | CADCbench-Sim    |                  |                  |                 |                        |                 |                | CADCbench-Wild   |                  |                  |                 |                        |                 |                |
|----------------------|------------------|------------------|------------------|-----------------|------------------------|-----------------|----------------|------------------|------------------|------------------|-----------------|------------------------|-----------------|----------------|
|                      | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | CLIP $\uparrow$ | GCS $\uparrow$ | Attr. $\uparrow$ | Spat. $\uparrow$ | Inst. $\uparrow$ | Avg. $\uparrow$ | $E_{syntax}\downarrow$ | CLIP $\uparrow$ | GCS $\uparrow$ |
| Unified single model | 0.7035           | 0.6951           | 0.4472           | 0.6153          | 5.6%                   | 0.6371          | 0.7049         | 0.6840           | 0.6924           | 0.5386           | 0.6383          | 11.5%                  | 0.6182          | 0.7544         |
| Graph-CAD (SFT)      | <b>0.7295</b>    | <b>0.7265</b>    | <b>0.4733</b>    | <b>0.6431</b>   | <b>2.2%</b>            | <b>0.6544</b>   | <b>0.7830</b>  | <b>0.6944</b>    | <b>0.7270</b>    | <b>0.5861</b>    | <b>0.6692</b>   | <b>4.5%</b>            | <b>0.6358</b>   | <b>0.8025</b>  |

1282  
1283 (Attr, Spat, Inst, Avg) than closed-source models such as GPT-5 and Claude-opus-4-1. This performance  
1284 gap indicates that current open-source LLMs still struggle to produce reliable, executable CAD code at the  
1285 level required for large-scale automatic data annotation. Using them as the main engines for generating  
1286 instruction–graph–action–code quadruplets would likely introduce a significant amount of noise into the  
1287 dataset and weaken the supervision signal for downstream models.  
12881289 On the evaluation side, we reports an experiment that directly compares GPT-5 and Qwen-VL as automatic  
1290 judges under the same evaluation protocol as Table 10. For a representative subset of generated samples, we  
1291 compare each VLM’s binary Pass/Fail decisions against the judgments of professional industrial designers.  
1292 GPT-5 reaches an agreement rate of 93.37% with human experts, whereas Qwen-VL attains 83.07% under  
1293 exactly the same setup. This sizable difference in human agreement suggests that GPT-5 provides a more  
1294 reliable and stable evaluation signal than Qwen-VL in our setting. Considering that a full evaluation pass  
1295 over the 700-sample CADBench benchmark costs only about US\$5 with GPT-5, the monetary savings from  
1296 switching to an open-source evaluator would be marginal relative to the loss in reliability.  
1297

## 1298 D.10 COMPARISON WITH A UNIFIED SINGLE MODEL

1299 To further understand the effect of our modular three-stage design, we additionally consider a unified variant  
1300 in which a single Qwen-based model is fine-tuned on the union of all training data from the three stages.  
1301 Concretely, we simply mix all graph-prediction, action-planning, and code-generation examples into a single  
1302 training corpus and fine-tune one model on this pooled dataset. At inference time, this unified model is  
1303 invoked three times, using the same stage-specific prompts as in our main pipeline, to sequentially produce  
1304 the decomposition graph, action sequence, and CAD code.  
13051306 Quantitative results for this unified model are reported in Table 11. Across CADBench metrics, the unified  
1307 model performs consistently worse than our three-model pipeline, with lower scores in Attr, Spat, Inst, Avg,  
1308 and GCS, as well as a higher syntax error rate. The degradation is particularly pronounced on more challeng-  
1309 ing prompts, where assemblies involve many parts and dense geometric constraints. Qualitative examples  
1310 in Figure 14 show that, in such complex cases, the unified model more frequently generates structurally  
1311 flawed or geometrically inconsistent designs, including missing or floating parts, misaligned subassemblies,  
1312 and incomplete geometry, whereas the modular Graph-CAD pipeline still produces coherent and visually  
1313 plausible assemblies.1314 We attribute this gap to negative transfer between heterogeneous objectives that share a single set of pa-  
1315 rameters. The three sub-tasks differ substantially in input–output structure and difficulty: local action  
prediction and simple graphs are relatively short-horizon, whereas CAD code generation for complex as-

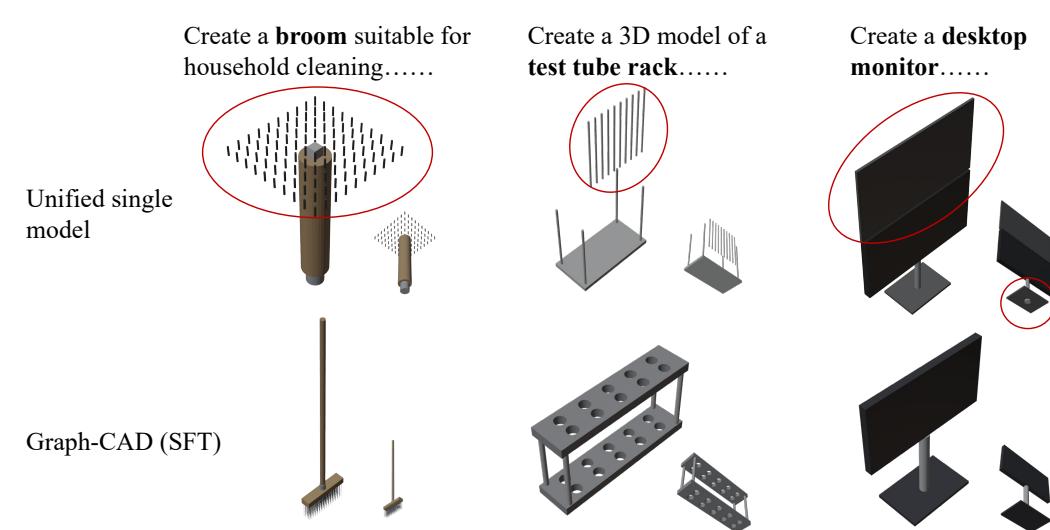


Figure 14: Qualitative comparison between the three-stage pipeline (Graph-CAD (SFT)) and the unified single-model baseline on CADBench prompts. The unified model more frequently produces structurally flawed or incomplete assemblies (e.g., floating or missing parts, misaligned components), whereas the three-stage Graph-CAD generates coherent, geometrically consistent designs that better satisfy the textual instructions.

semblies requires long-range reasoning about constraints and part interactions. When all objectives are optimized together in a single model without explicit mechanisms to balance them, gradients from easier or shorter-horizon examples can dominate the updates and interfere with learning robust long-horizon constraint reasoning. This phenomenon is consistent with observations on gradient conflict and task interference in multi-task learning (Yu et al., 2020; Liu et al., 2021).

These findings support our choice of a modular three-stage architecture, where each stage is specialized for its own structured prediction problem while communicating through explicit intermediate representations (graph and action sequence). More advanced unified designs, such as parameter-efficient multi-task adapters or explicitly modular multi-task architectures, remain interesting directions for future work, but a naïve single-model baseline does not match the performance of our three-stage Graph-CAD pipeline.

#### 1351 D.11 ANNOTATION ACCURACY AND TYPICAL FAILURE CASES

To assess the quality of the automated data generation pipeline, we conduct a post-hoc audit of all automatically generated quadruplets in the annotated BlendGeo dataset (instruction, decomposition graph, action sequence, CAD code). Each sample is reviewed by expert annotators and assigned to one of three categories: (i) correct and directly usable without modification, (ii) usable after minor corrections (e.g., small fixes to part names or local geometry), or (iii) requiring a complete manual redesign by human annotators. Table 12 reports the proportions of samples falling into each category over the entire annotated set, providing a global quantitative measure of the raw accuracy of the LLM/VLM-based pipeline and the extent of human intervention needed.

Overall, we observe that a substantial fraction of automatically generated samples are either accepted as-is or only require light edits before inclusion, while a smaller portion must be redesigned from scratch.

This indicates that the automated pipeline already produces reasonably high-quality supervision at scale, with human annotators mainly acting as a quality filter and a corrective layer for difficult cases rather than rewriting the majority of data.

To better understand the remaining failure modes, we also collect representative examples of both high-quality and problematic annotations. Figure 15 shows typical instances of (a) automatically generated data that passes human validation unchanged and (b) samples that are corrected or replaced during manual validation, along with brief explanations of the underlying issues. From these examples and annotator feedback, two dominant error patterns emerge.

First, there are geometric placement errors, where the set of parts and their rough identities are correct, but the spatial configuration is flawed. Typical symptoms include floating or intersecting components, misaligned subassemblies, or incorrect relative positioning between functional parts (e.g., support structures that do not actually touch the objects they are meant to hold). Second, there are failures on highly complex geometries, where the model struggles to produce a visually reasonable CAD model for objects with intricate shapes or dense local details, even when the high-level structure is roughly correct. In such cases, the generated geometry often appears over-simplified, distorted, or missing key fine-scale features, and human redesign is required to obtain usable supervision.

Table 12: Annotation outcomes for the automatically generated BlendGeo samples. All numbers are percentages over the full dataset. GPT-5 “auto pass” denotes samples initially judged correct by GPT-5 before human review; the remaining rows summarize the final human assessment outcomes.

| Outcome                                | Proportion (%) |
|----------------------------------------|----------------|
| GPT-5 auto pass (before human review)  | 72.56          |
| Human-accepted without modification    | 69.51          |
| Human-accepted after minor corrections | 26.45          |
| Requiring complete manual redesign     | 4.04           |

## E THE PROMPTS USED IN THE EXPERIMENT

This section provides an overview of the key prompts used throughout our methodology, including those for data annotation, curriculum learning, and evaluation. For clarity and brevity, the prompts presented here are simplified templates designed to illustrate their core logic and structure. The full prompts used in our experiments may include additional formatting or more complex few-shot examples not shown here.

## E.1 PROMPT FOR THE VLM EVALUATOR

## Role

- A rigorous 3D model evaluation expert

## Task

- Judge **only** from the **images** and the **criteria for one single parameter**.
- Return **exactly one** JSON object with two keys:
  - `{param}`: a list of 0/1 with the same length as the criteria
  - `reasons`: a list of one-sentence explanations aligned to each 0/1

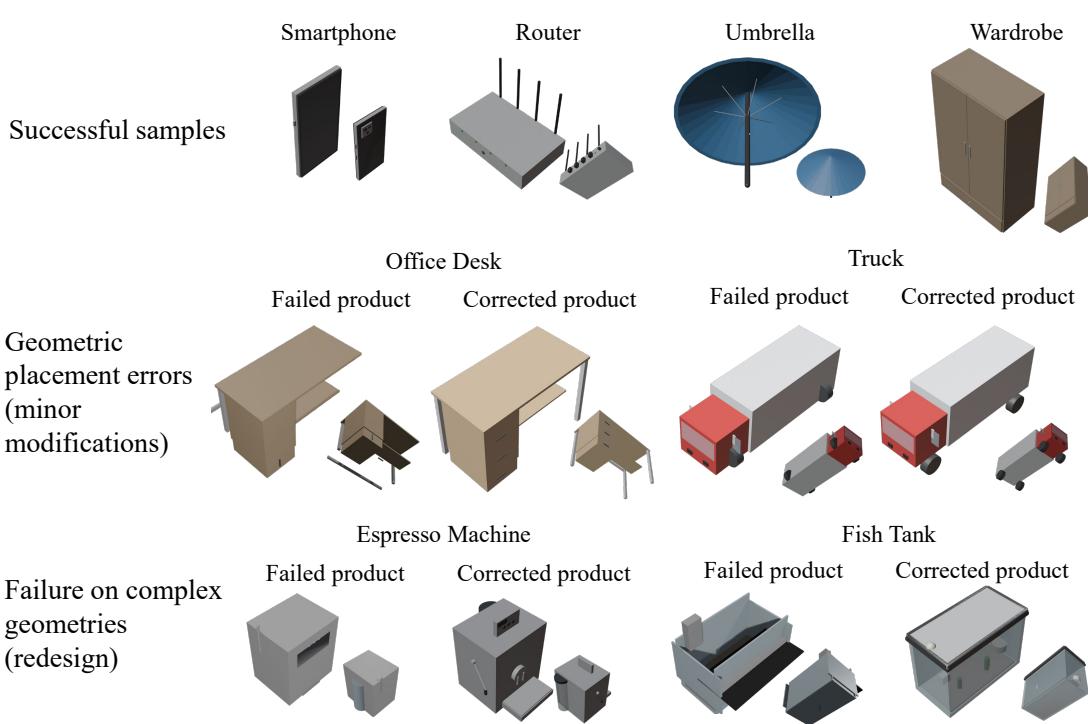


Figure 15: Representative examples of automated annotations and human corrections. Top row: samples that are directly accepted without modification. Middle row: geometric placement errors that are fixed by minor edits. Bottom row: failures on complex geometries that require complete redesign.

#### Output Rules

1. Output **JSON only** (no extra text, no code fences).
2. Allowed keys: `{param}` and `reasons` only (no extra/missing keys).
3. Both lists must match the number and **order** of criteria.
4. Score 1 if the requirement is met or reasonably satisfied, else 0.
5. Each reason must be short, factual, and tied to visible evidence.

#### Do Not Penalize

- Primitive simplifications (e.g., boxy panels, cylindrical handles), generally low detail
- Minor camera clipping/aliasing

#### Criteria With Absolute Units (inch/cm/mm)

- **Do not** check absolute values; evaluate **relative proportions** only.
- Example: if depth is clearly smaller than diameter, **PASS**; if comparable or larger, **FAIL**.
- If uncertain or views are ambiguous, **default to PASS (1)**.

```

1457 Context (placeholders)
1458
1459     • Project Name: {project_name}
1460     • Type: {project_type}
1461     • Instruction: {project_instruction}
1462     • Dimension: {dimension}
1463     • Parameter: {param}
1464
1465 Return Skeleton (replace 0 with 0/1; replace empty strings with one-sentence reasons)
1466
1467 {
1468     "<param>": [0, 0, ...],
1469     "reasons": ["...", "...", ...]
1470 }
1471
1472 Criteria Input (use exact order)
1473
1474 [
1475     "requirement_1",
1476     "requirement_2",
1477     ...
1478 ]
1479
1480 E.2 PROMPT FOR THE PROBLEM GENERATOR
1481
1482 Role
1483
1484     • A CAD course question generator that creates one derived design question from a given MOTHER
1485     ITEM.
1486
1487 Input (MOTHER ITEM)
1488
1489     • category: original item category
1490     • mother_id: unique ID
1491     • mother_user_prompt: user's natural-language description
1492     • mother_geometry_graph: text graph (for understanding only; do not copy into output)
1493
1494 Generation Controls
1495
1496     • level  $\in \{1, 2, 3\}$ 
1497     • delta_strength  $\in \{1, 2, 3\}$  (higher = more/larger changes within the level)
1498     • max_changes: soft cap on number of edits
1499     • allowed_ops: allowed change types for this level
1500     • size_range: permitted range if size_scale is used
1501
1502 Task
1503
1504     • Produce exactly one derived design question.

```

1504     • Return **JSON only** following the exact schema below.  
 1505

1506     Requirement Paragraph (natural language)

1507  
 1508     • Write an **absolute** requirement paragraph: directly describe the new geometry's characteristics.  
 1509     • **Do not** write relative language (no comparisons to the theme/MOTHER ITEM).

1510     Forbidden Topics

1511  
 1512     • Assembly order  
 1513     • Tolerances

1514     Difficulty Levels

1515  
 1516  
 1517     • **Level 1:** Same category; only appearance-opacity/size tweaks; **no** structural/topology changes.  
 1518     • **Level 2:** Same category; structural edits (layers, part shapes, arrays, holes, etc.); may add small  
 1519        subordinate parts.  
 1520     • **Level 3:** A related **new category** (similar function/form); state key dimensions/parts/layout explic-  
 1521        itly.

1522     Output Rules

1523  
 1524     1. **Return JSON only.** No extra text, comments, or code fences.  
 1525     2. Use the **exact** keys and structure shown in the schema.  
 1526     3. Ensure level and delta\_strength match the Generation Controls.  
 1527     4. change\_ops items must align with allowed\_ops; keep count within max\_changes (soft cap).

1528     Output Schema (exact)

1529  
 1530  
 1531     {  
 1532        "derived": {  
 1533        "category": "<string>",  
 1534        "user\_prompt": "<one paragraph natural language>",  
 1535        "level": 1,  
 1536        "delta\_strength": 2,  
 1537        "change\_ops": [  
 1538            { "type": "...", "target": "...",  
 1539            "from": "...", "to": "...", "scale": 1.2 }  
 1540          ],  
 1541          "parents": ["<mother\_id>"],  
 1542          "rationale": "<<=20 chars>"  
 1543        }  
 1544     }

1545     User Prompt Template

1546  
 1547     MOTHER ITEM  
 1548     - category: {category}  
 1549     - mother\_id: {mid}

```

1551 - mother_user_prompt: {user_prompt}
1552 - mother_geometry_graph
1553 (for understanding only; do NOT copy into output):
1554 {graph}
1555
1556 GENERATION CONTROL
1557 - level: {level} # 1/2/3
1558 - delta_strength: {ds} # 1/2/3
1559 - max_changes (soft cap): {max_changes}
1560 - allowed change types for this level: {allowed_ops}
1561 - size scale range if size_scale is used: {size_range}
1562
1563 Generate exactly ONE derived design question.
1564 Return ONLY the JSON object with the schema defined by
1565 the system prompt.
1566
1567 E.3 PROMPT FOR GEOMETRY DECOMPOSITION
1568
1569 Role & Outputs
1570
1571 1. Emit exactly two blocks in order: (1) MATERIAL LIBRARY, (2) Decomposition Graph .
1572 2. Output only these two blocks (no extra text).
1573
1574 Units
1575
1576
1577 Decomposition & Graph Rules
1578
1579
1580
1581
1582 Block Formats
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

```

- All linear dimensions in **metres (m)**.

Decomposition & Graph Rules

- Recursively decompose until leaves are single primitives or basic boolean/auto\_connect.
- Record build order **only** on parent: assembly\_order=[group1], [group2], ...
- **No cycles**: do not form loops with parent/after/depends\_on.

Block Formats

- MATERIAL LIBRARY

```
-- MATERIAL LIBRARY --
mat_name | diffuse_color=(R,G,B,A)
#END_MATERIALS
```

- Decomposition GRAPH

```
# ----- BEGIN_GRAPH -----
Lk: id=<id> | parent=<parent_or_--> | type=<type>
    | size=<.../AUTO>
    | align=<.../> | pos=<offset()/polar()/-> | connect=<.../>
    | orientation=<directive/->
    | mat=<snake_case_or_--> | create_method=
        <primitive/boolean_subtract/...>
    | assembly_order=<groups_or_--> | constraint=<text_or_-->
    | after=<siblings_or_--> | depends_on=<ids_or_-->
```

```

1598     | tool_id=<.../-> | target_id=<.../->
1599     # ----- END_GRAPH -----
1600
1601 Layering & Presentation
1602
1603     • Use headings: Layer 0 – Root, Layer 1 – Primary Structure, ...
1604     • Table per layer: | ID | Description | Key attributes / placement | (include
1605       create_method).
1606
1607 Placement (Minimal)
1608
1609     • Align-first: define which feature touches which feature.
1610     Align(<axes>) <this>.<this_feature> to <target>
1611     <axes> in {X, Y, Z}
1612     <target> in {B.<feature> | B[*].<feature> | B[k].<feature> | 
1613       Avg(T1, T2, ...)}
1614
1615     • Then offset(dx, dy, dz) in local frame; optional pos=polar( $\theta$ ; dr= $\Delta r$ ).
1616     • Connect two attachment features:
1617       connect = <A>.<featureA> + <B>.<featureB>
1618
1619 Patterning
1620
1621     • Use one template node + pattern= only:
1622       pattern=grid(rows:R, cols:C, x_spacing:dx, y_spacing:dy,
1623         start_offset:(x0, y0))
1624       pattern=polar(count:N, radius:r, start_angle:theta,
1625         angle_step:delta_theta)
1626
1627 Shape & Description
1628
1629     • Leaf: start with primitive + size (m). If extrude_from_sketch, put sketch essentials in
1630       constraint.
1631     • Non-leaf: “Composite of <children>; brief assembly phrase”.
1632
1633 Dimensions
1634
1635     1. Convert given units to metres.
1636     2. If partial/none: infer reasonable metre values.
1637
1638 Orientation & Rotation
1639
1640     • Primitives born in native pose (local +Z up). orientation= remaps local +Z:
1641       orientation = axis:+X / +Y / -Z
1642       orientation = axis:radial_from <obj> | axis:tangent_to <obj>
1643       orientation = +X_face:normal_to <obj> | +Z_face:align
1644       <other>.+Z_face
1645       orientation = normal:<target_obj>
1646
1647     • Optional rotation= after orientation (free-angle tilt/spin).

```

1645 No Shorthand

1646

- No `repeat=` or similar; only `pattern=` allowed. Each non-pattern node on its own line.

1647

1648 Deliverables (Order Strict)

1649

1650 1. MATERIAL LIBRARY

1651 2. Decomposition Graph

1652

1653

1654 E.4 PROMPT FOR ACTION PLANNING

1655

1656 Role & I/O

1657

- System role: CAD Action build-script generator; output strictly in the specified format.

1658

- **Input (each run):** MATERIAL LIBRARY block + multi-layer knowledge graph (FORMAT v4; includes `orientation=` and `offset(dx,dy,dz)` in metres; **no `repeat=` shorthand**).

1659

1660

- **Output (each run):** one plain-text Action script with **exactly three** top-level blocks (BLOCK 0/1/2).

1661

1662

1663 Units

1664

- All linear dimensions are in **metres (m)**.

1665

1666 BLOCK 0 — Scene Reset & Units (always first)

1667

1668 1. Delete all existing objects (clean scene).

1669 2. Set length unit to **metres**.

1670

1671 BLOCK 1 — Materials

1672

- For each material: Define `material <mat_name>; diffuse_color = (R,G,B,A)`.

1673

1674 BLOCK 2 — Stage-by-Stage Operations

1675

- Follow each parent's `assembly_order`, group by group.
- Insert a heading per group: --- SECTION `<n>` { `<summary>` ---

1676

1677

1678

1679 Command Rules (STRICT)

1680

1. Name every new object in its creation sentence.
2. **Orientation before placement** — use the exact sequence for each node:
  - (a) Create primitive and name it `<id>`.
  - (b) Rotate `<id>` so local +Z satisfies `orientation=`.
  - (c) Anchor/Align `<id>` to reference features.
  - (d) Then apply `offset/polar/connect`.
3. **Iterative patterns** (when `pattern=` is present): emit a natural-language loop for grid or polar arrays.
4. After core steps, write additional single-line actions as needed: Boolean-union/subtract, Bevel, Auto-connect, Snap/Align, Validate.

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692     5. If a parent specifies a guideline: quote, validate, end with “Assembly guideline satisfied.”  
 1693     6. Close each section with “Stage <n> complete.” End with “All stages complete.”

1695     Placement & Assembly

1696

- Prefer assembly placement; use independent world pos/orientation only when necessary.
- **Align** before final placement:

1700     Align(<axes>) <this>.<feature> to <target>  
 1701     <axes> in {X,Y,Z}; <target> in {B.<feature> | B[\*].<feature> |  
 1702     B[k].<feature> | Avg(...)}

- Then offset(dx,dy,dz) in aligned frame;  
 optional pos=polar( $\theta$ ; dr= $\Delta r$ ) or  
 pos=spherical( $\theta, \Phi$ ; dr= $\Delta r$ ).
- **Connect:** connect = <A>.<featureA> + <B>.<featureB>.
- Optional rotation= after orientation= (free-angle tilt/spin).
- Absolute world XYZ is forbidden unless already present in the graph.

1710     Sizing-Only Anchors (if create\_method=group and size  $\neq$  AUTO)

- Create an invisible **Empty** helper named exactly as the node ID; match its origin/orientation/size to the node; use it as anchor for children.

1715     Output Policy

- Return **only** the script text (no markdown, no extra tokens).

1718     Sentence Templates

- Material: Define material <mat\_name>; diffuse\_color = (R,G,B,A).
- Section heading: --- SECTION <n> { <summary> ---
- Command verbs: Create / Rotate / Align / Anchor / Offset / Polar / Connect / Boolean-subtract / Bevel / Snap / Validate

1725     E.5 PROMPT FOR CODE GENERATION

1727     Role & I/O

- System role: **Blender-Python code generator**.
- **Input (each run):** BLOCK 0 (Scene Reset & Units), BLOCK 1 (Materials), BLOCK 2 (Stage Sections as action sentences: verbs, sizes, anchors, offset(dx,dy,dz), orientation hints).
- **Output (each run):** one self-contained Python script that recreates the model in Blender 3.x.

1734     Output Policy

- Return **only valid Python** (no Markdown, no prose).

1735     Units

1739     • All linear dimensions are in **metres (m)**.

1740

1741     Script Skeleton (fixed order)

1742

- 1743     1. Helper functions: make\_material,boolean\_subtract, boolean\_union, add\_bevel, orient\_helpers.
- 1744     2. Materials from BLOCK 1.
- 1745     3. Geometry by sections from BLOCK 2.

1746

1747     Sentence → Action (minimal mapping)

1748

- 1749     • Create primitive (cyl/disc/cube/cone/sphere/hemisphere) → add primitive, **orient**, place.
- 1750     • Bevel/Chamfer → add\_bevel(target, radius, segments).
- 1751     • Boolean-subtract/union → boolean\_subtract / boolean\_union.
- 1752     • Cut/hole/drill/slot → build cutter + Boolean.
- 1753     • Automatically connect / Connect A.f + B.f → connect points (auto length).
- 1754     • Snap/Align / orientation=feature:directive / “Rotate so its ...” → use orient\_helpers.\*.

1755

1756     Per-Object Step Order (STRICT)

1757

- 1758     1. **Create** primitive (or cutter) & name it by action ID.
- 1759     2. **Orient** (local +Z per orientation=).
- 1760     3. **Anchor/Align** to reference features (feature names must be explicit; if only reference ID is given, default to centre-to-centre).
- 1761     4. **Place** with offset(dx,dy,dz) or pos=polar( $\theta$ ; dr=Δr) or connect A.f + B.f.

1762

1763     Placement & Alignment (concise)

1764

- 1765     • Prefer anchor-relative placement; use global world pos/orientation only when necessary.
- 1766     • Emit one alignment block per Align(<axes>) . . . to . . . , in textual order; move only along listed axes; keep a separate # align block followed by a separate # offset block.
- 1767     • **Polar** uses reference local +Z; **Offset** is in reference local axes.
- 1768     • Absolute world XYZ only if present in the graph.

1769

1770     Loops

1771

- 1772     • If action sentences describe repetition/pattern, generate a real Python for-loop; compute offsets inside the loop.

1773

1774     Naming

1775

- 1776     • Every created object uses the action ID; auto-generated cutters append \_cutter.

1777

1778     F ILLUSTRATIVE DATA EXAMPLE

1779

1780     To provide a concrete illustration of our data structure, this section presents a complete annotated quadruplet from the BlendGeo dataset. The example demonstrates how a simple user instruction is translated

1786 into our structured intermediate representations—the geometric decomposition graph and the action se-  
 1787 quence—before being realized as executable code. We use the example of a simple four-legged table.  
 1788

1789 **User Instruction**

1790 Let's design a dining table. The tabletop should be rectangular and large enough to seat six people comfort-  
 1791 ably. The legs should be simple and positioned at the four corners.  
 1792

1793 **Decomposition Graph**

```
1794 -- MATERIAL LIBRARY --
1795 table_wood      | diffuse_color=(0.60,0.40,0.25,1)
1796 wood_dark       | diffuse_color=(0.35,0.20,0.10,1)
1797 #END_MATERIALS
1798 # ----- BEGIN_GRAPH -----
1799 ### Layer 0 Root
2000 | ID          | Description      | Key attributes / placement|
2001 |-----|-----|-----|
2002 | dining_table | Composite of tabletop + four legs           | anchor=-; pos=-;
2003 orientation=-; mat=-; create_method=group;
2004 assembly_order=[[tabletop], [leg_f1, leg_fr, leg_bl, leg_br]] |
2005 ---
2006 ### Layer 1 Table Components
2007 | ID          | Description      | Key attributes / placement      |
2008 |-----|-----|-----|
2009 | tabletop    | Rectangular tabletop 2.0×1.0×0.04 m |
2010 pos=(0,0,0.75); orientation=axis:+Z;
2011 mat=table_wood; create_method=primitive           |
2012 | leg_f1      | Leg (front-left) 0.08×0.08×0.72 m   |
2013 Align leg_f1.top_face to tabletop.bottom_face;
2014 offset(-0.96, 0.46, 0); mat=wood_dark; create_method=primitive |
2015 | leg_fr      | Leg (front-right) 0.08×0.08×0.72 m  |
2016 Align leg_fr.top_face to tabletop.bottom_face;
2017 offset(0.96, 0.46, 0); mat=wood_dark; create_method=primitive |
2018 | leg_bl      | Leg (back-left) 0.08×0.08×0.72 m   |
2019 Align leg_bl.top_face to tabletop.bottom_face;
2020 offset(-0.96, -0.46, 0); mat=wood_dark; create_method=primitive |
2021 | leg_br      | Leg (back-right) 0.08×0.08×0.72 m  |
2022 Align leg_br.top_face to tabletop.bottom_face;
2023 offset(0.96, -0.46, 0); mat=wood_dark; create_method=primitive |
2024 #
2025 # ----- END_GRAPH -----
```

1825 **Action Sequence**

1826
 1827 BLOCK 0 { Scene Reset & Units
 1828
 1829 Delete every existing object to start from a clean scene.
 1830 Set the length unit to \*\*metres\*\*.
 1831
 1832 ---

```

1833
1834 BLOCK 1 { Materials
1835
1836 Define material table_wood; diffuse_color = (0.60, 0.40, 0.25, 1).
1837 Define material wood_dark; diffuse_color = (0.35, 0.20, 0.10, 1).
1838
1839 ---
1840
1841 BLOCK 2 { Stage-by-Stage Operations
1842
1843 --- SECTION 1 { Create tabletop ---
1844 Create primitive cuboid with size 2.0×1.0×0.04 m and name it tabletop.
1845 Rotate tabletop so its axis aligns +Z (world).
1846 Anchor tabletop to world.origin.
1847 Then move by offset(0, 0, 0.75).
1848 Assign material table_wood to tabletop.
1849 Stage 1 complete.
1850
1851 --- SECTION 2 { Attach four table legs ---
1852 Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_fl.
1853 Rotate leg_fl so its axis aligns +Z (world).
1854 Align leg_fl.top_face to tabletop.bottom_face.
1855 Then move by offset(-0.96, 0.46, 0).
1856 Assign material wood_dark to leg_fl.
1857
1858 Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_fr.
1859 Rotate leg_fr so its axis aligns +Z (world).
1860 Align leg_fr.top_face to tabletop.bottom_face.
1861 Then move by offset(0.96, 0.46, 0).
1862 Assign material wood_dark to leg_fr.
1863
1864 Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_bl.
1865 Rotate leg_bl so its axis aligns +Z (world).
1866 Align leg_bl.top_face to tabletop.bottom_face.
1867 Then move by offset(-0.96, -0.46, 0).
1868 Assign material wood_dark to leg_bl.
1869
1870 Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_br.
1871 Rotate leg_br so its axis aligns +Z (world).
1872 Align leg_br.top_face to tabletop.bottom_face.
1873 Then move by offset(0.96, -0.46, 0).
1874 Assign material wood_dark to leg_br.
1875 Stage 2 complete.
1876
1877 --- SECTION 3 { Complete dining table assembly ---
1878 Validate that all legs are securely attached to the tabletop at their designated corners.
1879 Assembly guideline satisfied.
1880 Stage 3 complete.
1881
1882 All stages complete.
1883

```

```

1880 Bpy Code
1881
1882
1883 import bpy
1884 import math
1885 from mathutils import Vector, Matrix
1886 import mathutils as mu
1887 #
1888 # Helper Functions
1889 #
1890
1891 def make_material(name, rgba):
1892     mat = bpy.data.materials.new(name)
1893     mat.diffuse_color = rgba
1894     return mat
1895
1896 def add_cube(obj_name, size_xyz_m):
1897     bpy.ops.mesh.primitive_cube_add(size=1)
1898     obj = bpy.context.active_object
1899     obj.name = obj_name
1900     obj.scale = (size_xyz_m[0], size_xyz_m[1], size_xyz_m[2])
1901     bpy.ops.object.transform_apply(scale=True)
1902     return obj
1903
1904 def align_axis_to_vector(obj, local_axis, target_vec):
1905     axis_vec = {'X':Vector((1,0,0)), 'Y':Vector((0,1,0)),
1906     'Z':Vector((0,0,1))}[local_axis]
1907     tgt_vec = Vector(target_vec).normalized()
1908     angle = axis_vec.angle(tgt_vec)
1909
1910     if angle < 1e-6:
1911         return
1912     elif abs(angle - math.pi) < 1e-6:
1913         if abs(axis_vec.x) < 0.99:
1914             rot_axis = Vector((1,0,0)).cross(axis_vec).normalized()
1915         else:
1916             rot_axis = Vector((0,1,0)).cross(axis_vec).normalized()
1917     else:
1918         rot_axis = axis_vec.cross(tgt_vec).normalized()
1919
1920     rot_matrix = Matrix.Rotation(angle, 4, rot_axis)
1921     obj.matrix_world = rot_matrix @ obj.matrix_world
1922
1923 _FACE = {'left': ('X', 'min'), 'right': ('X', 'max'),
1924           'back': ('Y', 'min'), 'front': ('Y', 'max'),
1925           'bottom': ('Z', 'min'), 'top': ('Z', 'max')}
1926
1927 class Locator:

```

```

1927     def __init__(self, obj: bpy.types.Object):
1928         self.obj = obj
1929         self._make_bbbox()
1930
1931     def _make_bbbox(self):
1932         if self.obj.type in {'MESH', 'CURVE', 'SURFACE', 'META', 'FONT'}:
1933             dg = bpy.context.evaluated_depsgraph_get()
1934             eval_me = self.obj.evaluated_get(dg).to_mesh()
1935             xs = [v.co.x for v in eval_me.vertices]
1936             ys = [v.co.y for v in eval_me.vertices]
1937             zs = [v.co.z for v in eval_me.vertices]
1938             self.obj.evaluated_get(dg).to_mesh_clear()
1939             if xs:
1940                 self.bb = {
1941                     'minX': min(xs), 'maxX': max(xs),
1942                     'minY': min(ys), 'maxY': max(ys),
1943                     'minZ': min(zs), 'maxZ': max(zs),
1944                 }
1945             return
1946         dim = getattr(self.obj, "dimensions", Vector((0,0,0)))
1947         hx, hy, hz = dim.x*0.5, dim.y*0.5, dim.z*0.5
1948         self.bb = {
1949             'minX': -hx, 'maxX': hx,
1950             'minY': -hy, 'maxY': hy,
1951             'minZ': -hz, 'maxZ': hz,
1952         }
1953
1954     def face_center_world(self, face_key: str):
1955         key = face_key.lower()
1956         if key == 'center':
1957             return self.center_world()
1958         axis, ext = _FACEE[key]
1959         val = self.bb[f"{ext}{axis}"]
1960         if axis == 'X':
1961             p_local = mu.Vector((val,
1962                 (self.bb['minY']+self.bb['maxY'])*0.5, (self.bb['minZ']+self.bb['maxZ'])*0.5))
1963         elif axis == 'Y':
1964             p_local = mu.Vector(((self.bb['minX']+self.bb['maxX'])*0.5, val,
1965                 (self.bb['minZ']+self.bb['maxZ'])*0.5))
1966         else:
1967             p_local = mu.Vector(((self.bb['minX']+self.bb['maxX'])*0.5,
1968                 (self.bb['minY']+self.bb['maxY'])*0.5, val))
1969         return self.obj.matrix_world @ p_local
1970
1971     #
1972     # Scene Reset & Units
1973     #
1974     bpy.ops.object.select_all(action='SELECT')
1975     bpy.ops.object.delete()
1976

```

```

1974 bpy.context.scene.unit_settings.system = 'METRIC'
1975 bpy.context.scene.unit_settings.scale_length = 1
1976
1977 #
1978 # Materials
1979 #
1980
1981 mat_table_wood = make_material("table_wood", (0.60, 0.40, 0.25, 1))
1982 mat_wood_dark = make_material("wood_dark", (0.35, 0.20, 0.10, 1))
1983
1984 # SECTION 1 { Create tabletop
1985 #
1986
1987 tabletop = add_cube("tabletop", (2.0, 1.0, 0.04))
1988 align_axis_to_vector(tabletop, 'Z', (0, 0, 1))
1989 tabletop.location = Vector((0, 0, 0.75))
1990 tabletop.data.materials.append(mat_table_wood)
1991
1992 #
1993 # SECTION 2 { Attach four table legs
1994 #
1995
1996 # leg_fl
1997 leg_fl = add_cube("leg_fl", (0.08, 0.08, 0.72))
1998 align_axis_to_vector(leg_fl, 'Z', (0, 0, 1))
1999 ref = Locator(tabletop).face_center_world("bottom")
2000 offs = Locator(leg_fl).face_center_world("top")
2001 delta = ref - offs
2002 leg_fl.location += delta
2003 leg_fl.location += Vector((-0.96, 0.46, 0))
2004 leg_fl.data.materials.append(mat_wood_dark)
2005
2006 # leg_fr
2007 leg_fr = add_cube("leg_fr", (0.08, 0.08, 0.72))
2008 align_axis_to_vector(leg_fr, 'Z', (0, 0, 1))
2009 ref = Locator(tabletop).face_center_world("bottom")
2010 offs = Locator(leg_fr).face_center_world("top")
2011 delta = ref - offs
2012 leg_fr.location += delta
2013 leg_fr.location += Vector((0.96, 0.46, 0))
2014 leg_fr.data.materials.append(mat_wood_dark)
2015
2016 # leg_bl
2017 leg_bl = add_cube("leg_bl", (0.08, 0.08, 0.72))
2018 align_axis_to_vector(leg_bl, 'Z', (0, 0, 1))
2019 ref = Locator(tabletop).face_center_world("bottom")
2020 offs = Locator(leg_bl).face_center_world("top")
2021 delta = ref - offs
2022 leg_bl.location += delta

```

```
2021 leg.bl.location += Vector((-0.96, -0.46, 0))
2022 leg.bl.data.materials.append(mat_wood_dark)
2023
2024 # leg_br
2025 leg_br = add_cube("leg_br", (0.08, 0.08, 0.72))
2026 align_axis_to_vector(leg_br, 'Z', (0, 0, 1))
2027 ref = Locator(tabletop).face_center_world("bottom")
2028 offs = Locator(leg_br).face_center_world("top")
2029 delta = ref - offs
2030 leg_br.location += delta
2031 leg_br.location += Vector((0.96, -0.46, 0))
2032 leg_br.data.materials.append(mat_wood_dark)
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
```

---

2068  
2069 **Algorithm 1:** Structure-Aware Progressive Curriculum Learning (SFT + SAPCE)  
2070 **Input:** Initial training dataset  $D_1$ , base model  $M_0$ , sampling proportion  $\alpha$ , threshold  $\tau$ , #variants per  
2071 level  $K$   
2072 **Output:** Final model  $M_{final}$   
2073  $t \leftarrow 1; D_t \leftarrow D_1; M_{final} \leftarrow M_0;$   
2074 **while** not converged **do**  
2075     // Stage A: Supervised Fine-Tuning (SFT)  
2076      $M_t \leftarrow SFT(M_{t-1}, D_t);$   
2077     // Stage B: SAPCE (Capability Exploration)  
2078      $I \leftarrow CategoryAwareSample(D_t, \alpha); L \leftarrow \emptyset;$   
2079     **foreach**  $I_i \in I$  **do**  
2080         Generate  $K$  variants  $P_i[1..3] \leftarrow PG(I_i, K);$   
2081          $L_i \leftarrow 0;$   
2082         **for**  $\ell = 1$  to  $3$  **do**  
2083              $correct \leftarrow 0; total \leftarrow K;$   
2084             **foreach**  $p \in P_i[\ell]$  **do**  
2085                  $out \leftarrow Solve(M_t, I_i, p); ok \leftarrow Disc(out, p);$   
2086                 **if**  $ok == Match$  **then**  
2087                      $correct \leftarrow correct + 1;$   
2088              $acc \leftarrow correct/total;$   
2089             **if**  $acc \geq \tau$  **then**  
2090                  $L_i \leftarrow \ell;$   
2091             **else**  
2092                  $\text{break};$  // Stop exploration for  $I_i$   
2093          $L \leftarrow L \cup \{(I_i, L_i)\};$   
2094     // Data Generation at Capability Boundary  
2095      $S_{new} \leftarrow \emptyset;$   
2096     **foreach**  $(I_i, L_i) \in L$  **do**  
2097          $targets \leftarrow \emptyset;$   
2098         **if**  $L_i \geq 1$  **then**  
2099              $targets \leftarrow targets \cup \{L_i\}$   
2100         **if**  $L_i < 3$  **then**  
2101              $targets \leftarrow targets \cup \{L_i + 1\}$   
2102         **foreach**  $\ell \in targets$  **do**  
2103              $S \leftarrow CoGen(I_i, \ell);$   
2104              $S_{valid} \leftarrow \{s \in S \mid Disc(s.output, s.prompt) == Match\};$   
2105              $S_{new} \leftarrow S_{new} \cup S_{valid};$   
2106     // Merge & Iterate  
2107      $D_{t+1} \leftarrow D_t \cup S_{new};$   
2108     **if**  $StopCondition(L, S_{new}, t)$  **then**  
2109          $M_{final} \leftarrow M_t;$   
2110          $\text{break};$   
2111          $t \leftarrow t + 1;$   
2112          $M_{t-1} \leftarrow M_t; D_t \leftarrow D_{t+1};$   
2113     **return**  $M_{final};$   


---

2115  
2116  
2117  
2118  
2119  
2120

---

**Algorithm 2:** Per-class cost matrix construction for node alignment (L1-based components).

---

2121 **Input** : Pred nodes of a class  $P_c = \{p_i\}$ ; GT nodes of the class  $G_c = \{g_j\}$ ;  
 2122    Global GT scale  $S_{\max} = \max_{g \in G} \max(\text{SizeVec}(g))$ ;  
 2123    weights  $(w_s, w_p, w_o, w_a)$  and attribute penalty  $\gamma$   
 2124 **Output:** Cost matrix  $C \in \mathbb{R}^{|P_c| \times |G_c|}$   
 2125  
 2126 **Function**  $\text{SizeVec}(n)$ :  
 2127    **if**  $n$  has box size  $(l_x, l_y, l_z)$  **then**  
 2128      **return**  $(l_x, l_y, l_z)$   
 2129    **else if**  $n$  has cylinder size  $(d, h)$  **then**  
 2130      **return**  $(d, d, h)$   
 2131    **else**  
 2132      **return**  $(0, 0, 0)$   
 2133    **end**  
 2134 **Function**  $\text{OriVec}(\text{ori})$ :  
 2135    Map  $\{+X, -X, +Y, -Y, +Z, -Z\}$  to unit vectors; default to  $+Z$   
 2136    **return** mapped unit vector  
 2137 **Function**  $\text{BuildCostMatrix}(P_c, G_c, S_{\max}, w_s, w_p, w_o, w_a, \gamma)$ :  
 2138    Initialize  $C$  as a  $|P_c| \times |G_c|$  zero matrix  
 2139    **for**  $i \leftarrow 1$  **to**  $|P_c|$  **do**  
 2140       $p \leftarrow p_i$   
 2141       $\mathbf{p}_s \leftarrow \text{SizeVec}(p)/S_{\max}$   
 2142       $\mathbf{p}_x \leftarrow p.\text{pose}.pos$   
 2143       $\mathbf{p}_o \leftarrow \text{OriVec}(p.\text{pose}.ori \text{ or } +Z)$   
 2144      **for**  $j \leftarrow 1$  **to**  $|G_c|$  **do**  
 2145         $g \leftarrow g_j$   
 2146         $\mathbf{g}_s \leftarrow \text{SizeVec}(g)/S_{\max}$   
 2147         $\mathbf{g}_x \leftarrow g.\text{pose}.pos$   
 2148         $\mathbf{g}_o \leftarrow \text{OriVec}(g.\text{pose}.ori \text{ or } +Z)$   
 2149         $c_{\text{size}} \leftarrow \|\mathbf{p}_s - \mathbf{g}_s\|_1$   
 2150         $c_{\text{pos}} \leftarrow \|\mathbf{p}_x - \mathbf{g}_x\|_1 / \max(1, S_{\max})$   
 2151         $c_{\text{ori}} \leftarrow \text{AngDeg}(\mathbf{p}_o, \mathbf{g}_o)/180$   
 2152         $c_{\text{attr}} \leftarrow \begin{cases} 0, & \text{if materials are equal or missing} \\ \gamma, & \text{otherwise} \end{cases}$   
 2153         $C[i, j] \leftarrow w_s c_{\text{size}} + w_p c_{\text{pos}} + w_o c_{\text{ori}} + w_a c_{\text{attr}}$   
 2154      **end**  
 2155    **end**  
 2156    **return**  $C$   
 2157  
 2158  
 2159  
 2160  
 2161

---

---

2162  
 2163  
 2164  
 2165  
 2166  
 2167  
 2168  
 2169  
 2170  
 2171

---

2172 **Algorithm 3:** Node-Level Alignment (NLA) with LLM-guided aliasing, class-wise Hungarian match-  
 2173 ing, and L1 aggregation.

---

2174 **Input** : GT graph text  $T_G$ , Pred graph text  $T_P$ ; weights  $(w_s, w_p, w_o, w_a)$ ; attribute penalty  $\gamma$   
 2175 **Output**: NLA score (lower is better) and matched pairs  $\mathcal{P}$

2176  $G \leftarrow \text{ParseGraph}(T_G)$ ;  $P \leftarrow \text{ParseGraph}(T_P)$   
 2177 Compute global  $S_{\max} = \max_{g \in G.\text{nodes}} \max(\text{SizeVec}(g))$   
 2178  $M \leftarrow \text{LLM\_AliasMapping}(G, P)$  // one-to-one mapping: pred\_id  $\mapsto$  gt\_id  
 2179  $P \leftarrow \text{RenamePredWithMapping}(P, G, M, \text{also\_set\_class=true})$  // sync IDs in  
 2180 nodes/edges/constraints  
 2181  
 2182 TotalCost  $\leftarrow 0$ ; TotalPairs  $\leftarrow 0$ ;  $\mathcal{P} \leftarrow \emptyset$   
 2183  $\mathcal{C} \leftarrow$  union of classes in  $G$  and  $P$   
 2184 **foreach**  $c \in \mathcal{C}$  **do**  
 2185      $P_c \leftarrow \{p \in P.\text{nodes} \mid p.\text{cls} = c\}$   
 2186      $G_c \leftarrow \{g \in G.\text{nodes} \mid g.\text{cls} = c\}$   
 2187     **if**  $|P_c| = 0$  **or**  $|G_c| = 0$  **then**  
 2188         **continue**  
 2189     **end**  
 2190      $C \leftarrow \text{BuildCostMatrix}(P_c, G_c, S_{\max}, w_s, w_p, w_o, w_a, \gamma)$   
 2191      $(\mathbf{r}, \mathbf{t}) \leftarrow \text{Hungarian}(C)$  // row/col indices of optimal assignment  
 2192     **for**  $k \leftarrow 1$  **to**  $|\mathbf{r}|$  **do**  
 2193         TotalCost  $\leftarrow$  TotalCost  $+ C[\mathbf{r}[k], \mathbf{t}[k]]$   
 2194         TotalPairs  $\leftarrow$  TotalPairs  $+ 1$   
 2195          $\mathcal{P} \leftarrow \mathcal{P} \cup \{(P_c[\mathbf{r}[k]].\text{id}, G_c[\mathbf{t}[k]].\text{id})\}$   
 2196     **end**  
 2197     NLA  $\leftarrow \text{TotalCost} / \max(1, \text{TotalPairs})$  // mean L1-based assignment cost  
 2198     **return** (NLA,  $\mathcal{P}$ )

---

2199  
 2200  
 2201  
 2202  
 2203  
 2204  
 2205  
 2206  
 2207  
 2208

---

2209  
 2210  
 2211  
 2212  
 2213  
 2214

---

2215 **Algorithm 4:** Depth computation and edge consistency for HLA.

---

2216 **Input :** Graph  $X = (V_X, E_X)$ ; Node mapping  $\mathcal{M}$   
 2217 **Output:** Depth map  $d_X$ , EdgeF1 score

2218 **Function** ComputeDepths( $X = (V_X, E_X)$ ):  
 2219      $C \leftarrow \{c \mid (u, c) \in E_X\}; R \leftarrow \{v \in V_X \mid v \notin C\}$   
 2220     **if**  $R = \emptyset$  **then**  
 2221          $R \leftarrow \{v \in V_X \mid \text{layer}(v) = 0\}$  or  $V_X$   
 2222     **end**  
 2223     Initialize depth map  $d$  with  $d(r) = 0$  for all  $r \in R$ ; queue  $Q \leftarrow R$   
 2224     **while**  $Q$  not empty **do**  
 2225          $u \leftarrow \text{pop}(Q)$   
 2226         **foreach**  $(u, v) \in E_X$  **do**  
 2227             **if**  $v \notin d$  **then**  
 2228                  $d(v) = d(u) + 1$ ; push  $v$   
 2229             **end**  
 2230         **end**  
 2231         **foreach**  $v \in V_X$  **do**  
 2232             **if**  $v \notin d$  **then**  
 2233                  $d(v) = 0$   
 2234             **end**  
 2235         **end**  
 2236         **return**  $d$

2237     **Function** EdgeF1( $E_P, E_G, \mathcal{M}$ ):  
 2238          $hits \leftarrow 0; n_P = |E_P|; n_G = |E_G|$   
 2239         **foreach**  $(p_{par}, p_{ch}) \in E_P$  **do**  
 2240             **if**  $p_{par}, p_{ch} \in \mathcal{M}$  **then**  
 2241                  $g_{par} \leftarrow \mathcal{M}[p_{par}]; g_{ch} \leftarrow \mathcal{M}[p_{ch}]$   
 2242                 **if**  $(g_{par}, g_{ch}) \in E_G$  **then**  
 2243                      $hits \leftarrow hits + 1$   
 2244                 **end**  
 2245             **end**  
 2246         **end**  
 2247          $Prec \leftarrow hits/n_P$  if  $n_P > 0$  else 0  
 2248          $Rec \leftarrow hits/n_G$  if  $n_G > 0$  else 0  
 2249          $EdgeF1 \leftarrow 2 \cdot Prec \cdot Rec / (Prec + Rec)$  if  $Prec + Rec > 0$  else 0  
 2250         **return**  $EdgeF1$

---

2251  
 2252  
 2253  
 2254  
 2255

2256  
 2257  
 2258  
 2259  
 2260  
 2261  
 2262  
 2263  
 2264  
 2265  
 2266  
 2267  
 2268  
 2269

---

2270 **Algorithm 5:** Depth consistency and final aggregation for HLA.

2271 **Input :** GT graph  $G$ , Pred graph  $P$ , Node mapping  $\mathcal{M}$ , mixing weight  $\alpha$   
 2272 **Output:** HLA score, EdgeF1, DepthScore

2273 **Function** DepthConsistency( $d_P, d_G, \mathcal{M}$ ):

```

2274    $S \leftarrow \emptyset$ 
2275   foreach  $p \in V_P$  do
2276     if  $p \in \mathcal{M}$  then
2277        $g \leftarrow \mathcal{M}[p]$ ;  $\Delta \leftarrow |d_P[p] - d_G[g]|$ 
2278       append  $\exp(-\Delta)$  to  $S$ 
2279     end
2280   end
2281   return mean( $S$ ) if  $|S| > 0$  else 0
  
```

2282 **Function** HierarchyLevelAccuracy( $G, P, \mathcal{M}, \alpha$ ):

```

2283    $d_G \leftarrow \text{ComputeDepths}(G)$ ;  $d_P \leftarrow \text{ComputeDepths}(P)$ 
2284    $\text{EdgeF1} \leftarrow \text{EdgeF1}(E_P, E_G, \mathcal{M})$ 
2285    $\text{DepthScore} \leftarrow \text{DepthConsistency}(d_P, d_G, \mathcal{M})$ 
2286    $\text{HLA} \leftarrow \alpha \cdot \text{EdgeF1} + (1 - \alpha) \cdot \text{DepthScore}$ 
2287   return ( $\text{HLA}, \text{EdgeF1}, \text{DepthScore}$ )
  
```

---

2288  
 2289  
 2290  
 2291  
 2292  
 2293  
 2294  
 2295  
 2296  
 2297  
 2298  
 2299  
 2300  
 2301  
 2302