
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

LEARNING HIERARCHICAL AND GEOMETRY-AWARE
GRAPH REPRESENTATIONS FOR TEXT-TO-CAD

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-CAD code generation is a long-horizon task, requiring the translation of textual
instructions into a long sequence of interdependent operations. This process is excep-
tionally fragile, as minor early errors can propagate through the sequence and ultimately
invalidate an entire complex assembly. Existing methods typically decode instructions
directly into executable code (e.g., bpy) without an explicit representation of assembly
hierarchy or geometric constraints. This flat decoding strategy vastly expands the search
space, accumulating local errors and leading to cascading failures in contextual opera-
tions. We address this limitation by learning an intermediate representation: a hierarchical
and geometry-aware graph. The graph represents an assembly-based decomposition, with
multi-level nodes modeling the product’s parts and components, and edges defining the
explicit geometric constraints between them. Rather than mapping text directly to code,
our graph paradigm first predicts high-level structure and constraints, then conditions the
sequencing of operations and code generation, thereby narrowing the search space and im-
proving both geometric fidelity and constraint satisfaction. Furthermore, we introduce a
structure-aware progressive curriculum learning mechanism to enhance the model’s ability
to generate sophisticated decomposition graphs, allowing it to handle more complex as-
semblies. The mechanism constructs graded tasks via controlled edits to object structure,
probes the model’s capability boundary, and synthesizes boundary examples for subse-
quent training rounds. We also introduce a 12K dataset annotated with instructions, geo-
metric decomposition graphs, action sequences, and bpy code, together with metrics for
node- and hierarchy-level graph accuracy and a measure of constraint satisfaction. Exten-
sive experiments show that our approach outperforms existing methods in terms of both
geometric fidelity and accurate fulfillment of geometric constraints.

1 INTRODUCTION

Computer-aided design (CAD) provides precise digital representations of three-dimensional objects and is
indispensable across manufacturing, architecture, and product design (Zhang et al., 2024). In this context, the
Text-to-CAD task aims to generate executable CAD programs directly from natural-language instructions to
lower the barrier to professional design and accelerate prototyping (Khan et al., 2024b).

The Text-to-CAD task presents a long-horizon challenge, particularly when generating complex assemblies,
requiring translating instructions into lengthy sequences of interdependent CAD operations. This process
demands not only global structural consistency to reflect user intent in the final assembly, but also strict
adherence to local geometric dependencies to ensure the correctness of each sequential step. Together, these
requirements ensure that all operations coherently collaborate to form a functionally valid and intentionally
aligned CAD model (Nachum et al., 2018). Most existing methods typically decode text directly into ex-
ecutable code via an end-to-end paradigm (Du et al., 2024). By flattening the design process into a linear

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

# Layer 0
|| microwave_oven  | Composite of Door + Body ||

# Layer 1
|| Body | Composite of Body_shell + Turntable ||
|| Door | Composite of Door_window + Control_panel | Align(XYZ) 
Door.back_face to Body.front_face ||

 # Layer 2
|| Door_window | Cuboid 0.560×0.028×0.420 m || 
|| Control_panel | Composite of Panel_base + Control_buttons | 
Align(XYZ) Control_panel.right_face to Door_window.left_face ||
|| Body_shell | boolean_subtract Cuboid 0.644×0.504×0.364 m from 
Cuboid 0.700×0.560×0.420 m  || 
|| Turntable | Disc Ø0.392×0.0112 m | Align(XYZ) 
Turntable.bottom_face to Body_shell.bottom_face; offset(0,0,0.056) ||

 # Layer 3
……

Structured TextTop-down Decomposition 

Microwave Oven

Door Body

Body_shell TurntableDoor_window Control_
panel

Control_buttonsPanel_base

(a)

Align back to front

Align right 
to left

Align back to front

Align bottom 
to bottom

Geometric Constraint Connection

(b) (c)

Figure 1: Geometric decomposition graph. (a) Top-down decomposition of a user instruction (microwave
oven example). The process starts from the complete product and recursively factors it into parts by assem-
bly relations until components can be realized with bpy operators, forming multi-level nodes. (b) Graph
Connection. Edges between nodes define explicit geometric constraints that encode their spatial relations.
(c) Structured textual representation that captures both the node hierarchy and the constraint links.

sequence, they lack an explicit representation of the target model’s assembly hierarchy and geometric con-
straints. This forces the decoder to navigate a vast search space where local errors can accumulate, often
leading to failures on complex assemblies (Chen et al., 2018).

To address these limitations, we propose to learn a hierarchical, geometry-aware graph as an intermediate
representation that makes assembly structure and constraints explicit, breaks the long-horizon generation
into tractable stages, and provides structural guidance for constrained code generation. As shown in Figure
1, nodes represent parts and components in a multi-level hierarchy, while the edges encode explicit geometric
constraints between them. We serialize the graph as structured text, which then conditions subsequent
steps (Parr & Russell, 1997; Brockschmidt et al., 2018), effectively pruning the search space and improving
both geometric fidelity and constraint satisfaction (Bunel et al., 2018; Balog et al., 2016). To translate
the abstract graph into an executable program, Graph-CAD employs a three-stage inference process. It
sequentially transforms a natural language instruction into a geometric decomposition graph, parses the
graph into a sequence of CAD operations, and finally generates the executable bpy code. As shown in Table
1, this structured approach is effective even without task-specific fine-tuning. With few-shot prompting
of general-purpose LLMs, it yields substantial gains over direct text-to-code baselines, with the largest
improvements in Geometric Constraint Satisfaction (GCS).

As part count and constraint density increase, local errors tend to compound, making complex, highly con-
strained designs difficult to handle. To mitigate this effect, we introduce a structure-aware progressive cur-
riculum learning mechanism that strengthens graph prediction for highly constrained assemblies. The mech-
anism operates iteratively by first creating graded task variants from seed examples, with difficulty ranging
from simple attribute edits to complex categorical changes. The model’s current capability boundary is
identified as the highest difficulty level it can reliably solve for each seed. Then, new training instances
are synthesized at this boundary, validated by a multimodal judge, and added to the training set for the
next round of supervised fine-tuning. Through this process, the model progressively learns to master more
complex structures. In the absence of datasets that pair natural language instructions with graph-structured
geometric decompositions, we curate a 12K dataset BlendGeo to support training. Each example includes a
user instruction, a geometric decomposition graph serialized as structured text, its corresponding operation
sequence, and executable Blender code (bpy). To assess model performance, we propose comprehensive

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of two inference pipelines for general-purpose LLMs on CADBench. The
table compares a end-to-end paradigm, which directly generates bpy code, with our three-stage Graph-CAD
inference process. Both methods are prompted with two-shot examples to enhance task understanding.

Models
CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑

GPT-5 (end-to-end) 0.7013 0.7347 0.4250 0.6203 2.8% 0.6449 0.3846 0.6858 0.7091 0.5595 0.6515 5.5% 0.6003 0.4017

GPT-5 (Graph-CAD) 0.7342 0.7199 0.4451 0.6270 2.2% 0.6535 0.6603 0.7677 0.7523 0.5377 0.6859 4.0% 0.6318 0.5849
Claude-opus-4-1 (end-to-end) 0.7216 0.7368 0.5403 0.6662 7.4% 0.6151 0.4932 0.6847 0.7218 0.5997 0.6687 14.5% 0.5550 0.5062

Claude-opus-4-1 (Graph-CAD) 0.7573 0.7394 0.5025 0.6664 6.4% 0.6381 0.5705 0.7524 0.7301 0.5745 0.6857 8.5% 0.6059 0.5518

evaluation metrics that measure graph fidelity at the node level and across the hierarchy, and we also report
constraint satisfaction to quantify geometric validity.

Our contributions can be summarized as follows: (i) We propose to learn a graph-based intermediate rep-
resentation for Text-to-CAD. This learned graph explicitly models the assembly hierarchy and geometric
constraints of the target object, providing a strong structural prior that helps maintain global consistency and
satisfy local dependencies in the CAD executable code generation process. To our knowledge, this is the
first attempt to achieve this goal. (ii) We propose a structure-aware progressive curriculum learning mech-
anism that synthesizes graded variants to identify model’s capability boundary and expands it by training
with additional filtered boundary cases, gradually advancing its performance on complex, highly constrained
assemblies. (iii) We introduce a 12K dataset BlendGeo pairing user instructions with decomposition graphs,
operation sequences, and bpy code. We also propose evaluation metrics for node-level and hierarchy-level
graph accuracy to assess the quality of intermediate representations in any potential graph-mediated Text-
to-CAD approach. (iv) We provide extensive experimental validation on public benchmarks. The results
confirm that our graph-mediated paradigm significantly outperforms existing methods.

2 RELATED WORK

CAD Model Generation. Translating diverse inputs, such as text, sketches, images, and point clouds,
into executable CAD code enables accessible design automation and faster prototyping across industrial
workflows (Wang et al., 2025a; Sanghi et al., 2023; Chen et al., 2025; Khan et al., 2024a). Among these
modalities, natural language is especially attractive due to its expressiveness and low user overhead, facilitat-
ing efficient iteration and collaboration in CAD (Xie & Ju, 2025; Li et al., 2024; Wang et al., 2025b). Recent
studies like Text2CAD (Khan et al., 2024b) and CADLLM (Liao et al., 2025) adopt transformer-based ar-
chitectures to map text prompts directly to parametric programs, while BlenderLLM employs LLMs with
self-improvement loops to refine command sequences (Du et al., 2024). Despite promising results on single-
part objects, these methods typically cast Text-to-CAD as direct text-to-code generation without explicit
modeling of assembly hierarchy or geometric constraints, which limits robustness on multi-part designs.
Subsequent work explores better planning via chain-of-thought (CoT) (Guan et al., 2025) and integrates
visual or execution feedback (Badagabettu et al., 2024; Alrashedy et al., 2024). Yet these are planner-level
augmentations rather than structural models, and errors still accumulate on complex assemblies.

Curriculum Learning. Curriculum learning (CL) improves optimization and generalization by exposing
models to easier examples before gradually introducing harder ones (Bengio et al., 2009). Early work also
introduced self-paced learning, which automates easy-first selection based on model competence (Kumar
et al., 2010). Surveys highlight two core components of CL: a difficulty estimator and a pacing sched-
ule, and summarize its benefits across vision, language, and reinforcement learning domains (Wang et al.,
2021; Soviany et al., 2022; Narvekar et al., 2020; Portelas et al., 2020). Recent advancements extend CL
to generative modeling, including difficulty-aware denoising schedules for diffusion and preference-driven

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Stage3: Code Generation

import bpy

……

# Step 3

control_panel = panel_plate

for obj in keys+[start_btn,stop_btn]:

    boolean_union(control_panel,obj,keep_tool=False)

# Step 4

door_window = add_cube("door_window",(0.300,0.004,0.180))

# Step 5

ref = Locator(door_window).face_center_world("right")

offs = Locator(control_panel).face_center_world("left")

control_panel.location += ref-offs

……

User Instruction

Create a 3D model of a 

microwave oven with a 

slightly larger transparent 

window on the door, a 

rectangular body with control 

panel on the right and interior 

turntable

Stage1: Geometry Decomposition

# Layer 0

|| microwave_oven  | Composite of Door + Body ||

# Layer 1

|| Body | Composite of Body_shell + Turntable ||

|| Door | Composite of Door_window + Control_panel | Align(XYZ) 

Door.back_face to Body.front_face ||

 # Layer 2

|| Door_window | Cuboid 0.560×0.028×0.420 m || 

|| Control_panel | Composite of Panel_base + Control_buttons | 

Align(XYZ) Control_panel.right_face to Door_window.left_face ||

|| Body_shell | boolean_subtract Cuboid 0.644×0.504×0.364 m from 

Cuboid 0.700×0.560×0.420 m  || 

|| Turntable | Disc Ø0.392×0.0112 m | Align(XYZ) 

Turntable.bottom_face to Body_shell.bottom_face; offset(0,0,0.056) ||

 # Layer 3

……

Stage2: Action Planning

# Create Control_panel

Step1: Create Panel_base (Cuboid 0.080×0.020×0.300 m).

Step2: Create Control_buttons (3×4 Cuboid 

0.0196×0.0042×0.0196 m numeric keypads+2 Cylinder 

Ø0.0252×0.0056 m buttons); Align Control_buttons.back_face 

to Panel_base.front_face.

Step3: Assemble Control_buttons and Panel_base as 

Control_panel.

# Create Door

Step4: Create Door_window (Cuboid 0.420×0.0056×0.252 m).

Step5: Align Control_panel.right_face to 

Door_window.left_face.

Step6: Assemble Control_panel and Door_window as Door.

# Create Body

Step7:  ……

Figure 2: Overall framework of Graph-CAD. The framework comprises three sequential stages: Geometry
Decomposition, Action Planning, and Code Generation. Each stage is independently driven by a dedicated
Large Language Model (LLM)-based module.

curricula (Kim et al., 2024; Croitoru et al., 2025). Across these settings, three properties recur: explicit dif-
ficulty signals, paced exposure that stabilizes training, and targeted practice near the boundary where errors
begin to appear (Wang et al., 2021; Soviany et al., 2022). These properties align closely with learning decom-
position graphs for CAD assemblies, where increasing part count and constraint density elevate the risk of
error accumulation. Building on CL, our approach employs graded structural variants and boundary-focused
augmentation to stabilize training and improve reliability on complex, highly constrained designs.

3 METHODOLOGY

In this section we present Graph-CAD, a Text-to-CAD framework that addresses long-horizon challenges
by preserving global assembly coherence while satisfying local geometric constraints during code genera-
tion. Our framework employs a three-stage generation process: it sequentially transforms natural language
instructions into a geometric decomposition graph, a sequence of CAD operations, and bpy code. We addi-
tionally describe a human–AI annotation pipeline for training/evaluation data and a structure-aware progres-
sive curriculum that improves robustness on complex assemblies.

3.1 GRAPH-CAD FRAMEWORK

As illustrated in Figure 2, Graph-CAD transforms instructions into executable CAD code through a three-
stage pipeline: Geometry Decomposition, Action Planning, and Code Generation. This modular design aims
to produce CAD models with accurate structures and robust geometric constraints. Each stage is processed
by a dedicated LLM-based module for its specific task. In Stage 1, the Geometry Decomposition Model
converts the user-specified target CAD model into a geometric decomposition graph based on two primary
principles: top-down decomposition and geometric constraint establishment. As depicted in Figure 1(a),
we recursively disassemble the object by assembly relations until reaching atomic components realizable by
primitive operators (e.g., bpy primitives) The resulting parts/subcomponents become nodes, and their spatial
relations are encoded as edges representing geometric constraints (Figure 1(b)). Guided by these principles,
the Geometry Decomposition Model then formats this graph into a structured textual description (Figure
1(c)), outlining all nodes and edges. Following this, in Stage 2, the Action Planning Model leverages the
node features and geometric constraints from the generated decomposition graph to determine an optimal
graph traversal order and construct the sequence of CAD operations. Finally, in Stage 3, the Code Generation
Model translates the planned operations into executable bpy code.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Graph-CAD

Geometry 

Decomposition 

Model

Action Planning 

Model

Code Generation 

Model

User Instruction
Geometry 

Decomposition

Geometry 

Decomposition
Action Sequence

Action Sequence Bpy Code

Supervised Fine-Tuning

Problem Generator

Sampling

1: Easy Problem

2: Intermediate 
Problem

3: Advanced 
Problem

Problem Set

Discriminator Graph-CAD

Boundary Data 

Generation

Auxiliary

Structure-aware Progressive Curriculum Exploration

(Size or Texture adjustment)

(Structural adjustment)

(Category derivation)

Exploration of 

Capability Boundary

Graph-CADDiscriminator

Figure 3: The SAPCL mechanism. This mechanism alternates between two core modules: SFT and
SAPCE. The SFT module fine-tunes the three constituent models of the Graph-CAD using all training data.
The SAPCE module, in turn, begins by sampling a subset of training instances and introduces a Problem
Generator to synthesize three-level difficulty variants for each instance, forming a comprehensive problem
set. Subsequently, a Exploration of Capability Boundary sub-module assesses the model’s performance on
these variants to determine its current capability level. Based on these levels, a Boundary Data Generation
sub-module uses the Graph-CAD and an auxiliary LLM to synthesize new data at the determined difficulty
boundary. After validation, these new data are merged into the training set for the next round of SFT.

3.2 DATA ANNOTATION FOR GEOMETRIC DECOMPOSITION

To support the training and evaluation of our three-stage Graph-CAD framework, we meticulously con-
structed a BlendGeo dataset that contains 12K quadruplets of user instructions, geometric decomposition
graphs, action sequences, and executable bpy code. Specifically, the user instructions spanning 1.4K object
categories are extracted from the BlendNet (Du et al., 2024). The data was annotated using a collaborative
human-AI pipeline. First, an LLM guided by structured prompts generates a preliminary quadruplet for
each instruction. This output is then subjected to a rigorous validation process where a Vision-Language
Model (VLM) assesses the visual-semantic alignment, after which professional industrial designers either
confirm its correctness or perform comprehensive corrections to the graph, sequence, and code. The re-
sulting high-quality samples form the BlendGeo dataset. Furthermore, to enable a rigorous evaluation of
geometric decomposition graph accuracy and geometric constraint satisfaction, we applied this same anno-
tation pipeline to the CADBench benchmark (Du et al., 2024). A detailed description of the data annotation
pipeline is provided in Appendix C.1.

3.3 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

As the complexity of CAD models increases, the number of nodes and geometric constraints grows signif-
icantly. Under limited training samples, this inherent complexity hinders the model’s ability to generalize
to CAD designs of greater variety and structural intricacy. To address this challenge, we propose a novel
Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism. The core principle is to progres-
sively enhance the model’s capabilities by first ascertaining its current performance boundary and subse-
quently generating targeted instances to strategically expand it.

As depicted in Figure 3, the SAPCL mechanism operates iteratively through two alternating modules: Super-
vised Fine-Tuning (SFT) and Structure-Aware Progressive Curriculum Exploration (SAPCE). Each iteration
starts with the SFT module, which continues to train from the previous round using all training data, pro-

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

ducing an enhanced model that serves as a baseline for the subsequent exploration phase. The SAPCE
module then probes and extends the model’s capabilities. It begins by sampling a subset of seed exemplars
from the training data, prioritizing categories with fewer instances to ensure diversity. For each exemplar, a
Problem Generator, implemented with a LLM (e.g., GPT-5), synthesizes a spectrum of task variations based
on the original user instruction and geometric decomposition graph. These variants are categorized into
three difficulty levels: Easy, involving simple modifications such as dimensions or textures; Intermediate,
which alters local geometric structures; and Advanced, transitioning the object to a distinct yet structurally
analogous or functionally related category. The fine-tuned model then attempts to solve these variants in
ascending order of difficulty. A multimodal Discriminator automatically evaluates the correctness of the
generated CAD outputs, identifying the highest difficulty level the model can reliably handle per exemplar.
The aggregate results across all exemplars collectively define the model’s current capability boundary. Based
on this boundary, a Boundary Data Generation process synthesizes new training instances at and slightly be-
yond the model’s current mastery level. For example, if the model succeeds at the Intermediate level, new
data is generated for both the Intermediate and Advanced levels. An auxiliary LLM accelerates this process
by using the original exemplar in a one-shot demonstration. Finally, these newly synthesized and validated
instances are merged into the training set, forming an enriched dataset for the next SFT round. This iterative
cycle enables a progressive expansion of the model’s ability to handle increasingly complex CAD designs.
The complete SAPCL process is detailed in pseudocode in Appendix C.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train the Graph-CAD model on our BlendGeo dataset. We split the dataset 90%/10% for
training and validation, with the validation set used for hyperparameter tuning. For evaluation, we utilize the
CADBench benchmark (Du et al., 2024), which includes CADBench-Sim (in-distribution instructions) and
CADBench-Wild (out-of-distribution instructions) to fully assess model performance and generalization.

Metrics. We evaluate our method using metrics targeting three key aspects: visual quality, structural in-
tegrity, and intermediate graph fidelity. For visual quality and code executability, we adopt CADBench
metrics including scores for attribute accuracy (Attr.), spatial relations (Spat.), instruction following (Inst.),
and syntax error rate (Esyntax). Attr., Spat. and Inst. score reported as the average of three independent
evaluations from a VLM (e.g., GPT-5). The effectiveness of using a VLM as an evaluator is analyzed and
validated in Appendix D.4. In addition, we report a CLIP-based text–image similarity score (CLIP) between
the textual instruction and the multi-view renderings of the generated CAD models Chen et al. (2023). This
metric serves as a widely used indicator of how well the generated geometry visually aligns with the input
instruction, complementing our VLM-based and geometry-based metrics. To assess structural integrity, we
introduce Geometric Constraint Satisfaction (GCS), a novel metric that measures whether parts in the final
assembly satisfy predefined geometric relationships, such as contact, alignment, and relative orientation.
Finally, to evaluate the correctness of our intermediate representation, we propose Node-Level Accuracy
(NLA) and Hierarchy-Level Accuracy (HLA). NLA measures if the correct set of parts (nodes) was gen-
erated, while HLA measures if their hierarchical structure (edges) is correct. Detailed formulations for all
metrics are provided in the Appendix C.4.

Implementation Details. We select Qwen3-8B (Yang et al., 2025) as the backbone for all three models
within the Graph-CAD framework and employed the Low-Rank Adaptation (LoRA) method (Hu et al.,
2022) with a rank of 64 for efficient fine-tuning. Our model is trained via iterative SAPCL rounds. Each
round consists of two phases: a data synthesis phase (SAPCE) and a fine-tuning phase (SFT). In the SAPCE
phase, we sample 1% of the training set as seed examples and generate 20 new data instances per seed, a
process that takes approximately 30 hours. Subsequently, in the SFT phase, the model is fine-tuned on the

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 2: Quantitative comparison of CAD code generation methods on CADBench. Results are reported
separately on the CADBench-Sim (in-distribution instructions) and CADBench-Wild (out-of-distribution
instructions) subsets to evaluate both in-domain performance and out-of-distribution generalization. Attr.,
Spat., and Inst. measure visual quality via VLM, and Avg. is the average of these three scores. CLIP
measures global text–shape semantic alignment, complementing the VLM-based visual metrics. Esyntax

denotes the syntax error rate, and GCS measures geometric constraint satisfaction. Best results are in bold.
Models CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑
Specifically Text-to-CAD open-source models

BlenderLLM 0.6893 0.6953 0.3650 0.5832 2.4% 0.6409 0.5513 0.6782 0.6363 0.4581 0.5909 5.3% 0.6056 0.4983
Text2CAD 0.3278 0.2084 0.0446 0.1936 6.6% 0.5707 - 0.4198 0.3082 0.1323 0.2868 14.0% 0.5211 -
CADFusion 0.3566 0.2258 0.0674 0.2166 6.2% 0.5578 - 0.3822 0.3716 0.1496 0.3011 11.5% 0.5278 -

General-purpose Large Language Models
Qwen-Plus 0.3604 0.3777 0.2072 0.3151 48.4% 0.3362 0.2379 0.2596 0.2722 0.1951 0.2423 61.0% 0.2446 0.1305
Llama-3.1-405b 0.3302 0.3355 0.1537 0.2731 36.4% 0.3943 0.3269 0.3331 0.3530 0.1943 0.2934 47.2% 0.3242 0.2903
Deepseek-r1 0.4124 0.4366 0.2179 0.3556 19.2% 0.5011 0.5556 0.4814 0.5141 0.3735 0.4564 20.50% 0.4858 0.4275
Gemini-2.5-pro 0.2173 0.2180 0.1565 0.1972 42.4% 0.2050 0.4048 0.2002 0.1880 0.1667 0.1850 48.7% 0.1750 0.2584
GPT-5 0.7013 0.7347 0.4250 0.6203 2.8% 0.6449 0.3846 0.6858 0.7091 0.5595 0.6515 5.5% 0.6003 0.4017
Claude-opus-4-1 0.7216 0.7368 0.5403 0.6662 7.4% 0.6151 0.4932 0.6847 0.7218 0.5997 0.6687 14.5% 0.5550 0.5062

Graph-CAD (Ours)
Graph-CAD (SFT) 0.7295 0.7265 0.4733 0.6431 2.4% 0.6544 0.7830 0.6944 0.7270 0.5861 0.6692 4.5% 0.6358 0.8025
Graph-CAD (SAPCL) 0.7681 0.7423 0.5546 0.6883 2.0% 0.6693 0.9018 0.7695 0.7590 0.6057 0.7114 2.5% 0.6577 0.8943
SAPCL vs SFT (5.29%↑) (2.17%↑) (17.18%↑) (7.03%↑) (2.28%↑) (15.17%↑) (10.82%↑) (4.40%↑) (3.34%↑) (6.31%↑) (3.44%↑) (11.44%↑)

newly augmented dataset for 7 epochs on two Nvidia A800-80GB GPUs, which takes approximately 3 days.
The entire SAPCL cycle is repeated for four iterations to progressively enhance the model’s capabilities.

Baselines. Our evaluation primarily considers two categories of baseline models. The first category in-
cludes open-source models specifically designed for the Text-to-CAD task (Khan et al., 2024b; Du et al.,
2024). For these baselines, we use the officially provided weights for evaluation. The second category com-
prises general-purpose LLMs that have acquired some CAD-related knowledge during their pre-training
phase (Yang et al., 2025; Dubey et al., 2024; Guo et al., 2025; Comanici et al., 2025; OpenAI, 2025; An-
thropic, 2025). And for GPT-5, Claude-opus-4.1, Gemini-2.5-Pro, DeepSeek-R1, and Qwen-Plus, we enable
their official reasoning or thinking modes during inference. To evaluate the effectiveness of the Graph-CAD
framework, we leverage these models to perform few-shot, three-stage inference, generating a geometric
decomposition graph and an action sequence as intermediate representations to guide the final bpy code
generation.

4.2 PERFORMANCE COMPARISION WITH EXISTING METHODS

Quantitative Comparison Results. We evaluated all methods on CADBench, with quantitative results
summarized in Table 2. Our Graph-CAD (SAPCL) model, trained with Structure-Aware Progressive Cur-
riculum Learning, achieves the best performance across all metrics. By learning to first generate a structured
geometric decomposition, our model generalizes more effectively to unseen and complex instructions than
all baseline methods. This strong OOD performance indicates that our model has learned a more robust and
generalizable approach to solving Text-to-CAD tasks.

In addition, as evidenced in Table 1, a key observation emerges when general-purpose LLMs (e.g., GPT-
5, Claude-opus-4-1) are guided through our three-stage inference process using two-shot examples: their
Geometric Constraint Satisfaction (GCS) scores improve substantially compared to direct end-to-end gen-
eration. This gain in structural correctness is achieved while maintaining comparable, and in some cases
better, performance on visual metrics like Attr. and Avg., underscoring the general utility of the Graph-CAD
framework. By employing an explicit geometric decomposition graph and an action sequence as intermedi-
ate representations, our framework provides a more reliable pathway for generating CAD models with valid
geometric constraints, a benefit that extends to general-purpose models in a few-shot setting. Qualitative
Comparison Results. Figure 4 presents a visual comparison of the outputs from our model and baselines
on the CADBench benchmark. Our Graph-CAD (SAPCL) model generates CAD models with higher visual
quality and more plausible geometric constraints, closely matching the user instructions. This highlights

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Text2CAD BlenderLLM Claude-opus-4-1 

(3 stages)

Ours (SFT) Ours (SAPCL)

Let's design a 

convertible 

sofa bed…

Design a 3D 

model of a 

helicopter……

GPT-5 (e2e) Claude-opus-4-1 

(e2e)

GPT-5 

(3 stages)

Let's create a 

hand saw ……

Figure 4: Qualitative results of Graph-CAD and baseline methods on the CADBench. Our method generates
more geometrically plausible models that better align with user instructions compared to baseline methods.

the joint effectiveness of our Graph-CAD framework and the SAPCL mechanism. Further insight comes
from comparing GPT-5 under end-to-end and three-stage settings: the latter always yields more orderly and
geometrically coherent part arrangements. A similar improvement is observed with Claude-opus-4-1. These
results collectively validate its robustness in producing well-structured CAD models.

4.3 ABLATION STUDIES

4.3.1 THREE-STAGE PIPELINE OF GRAPH-CAD

To evaluate the effectiveness of the core stages in Graph-CAD, we conduct ablation studies under the SFT
setting, as graph-free variants cannot undergo our SAPCL mechanism. The quantitative results are sum-
marized in Table 3, and representative qualitative comparisons are shown in Figure 5. Overall, the full
three-stage Graph-CAD (SFT) achieves the best performance across all metrics, especially in terms of GCS
and code executability, while incurring only a moderate increase in inference time. In Figure 5, Graph-CAD
(SFT) produces coherent, visually plausible assemblies that satisfy the instructions, whereas the ablated
variants exhibit typical failure modes such as assembly errors, unreasonable shapes, or even invalid code. A
detailed analysis of the inference time trade-off is provided in the Appendix B.

Effect of the graph representations. To explore the effect of the geometric graph, we compare the full
Graph-CAD (SFT) model against the End-to-end baseline and the two-stage variant without graph decompo-
sition (w/o Graph Decom.). The End-to-end baseline performs worst, which suggests that lacking structured
intermediate representation hinders expressivity. While the (w/o Graph Decom.) variant provides modest
gains, it still remains substantially lower than our full approach, highlighting that the graph representations
are essential for capturing structural relationships and guiding coherent generation. For more quantitative
and qualitative analysis on the graph represtion, please refer to the Appendix D.8.

Effect of the Action Planning. To investigate the effect of the Action Planning stage, we compare the full
model with a two-stage variant that removes action planning (w/o Action Planning). The result shows that it
leads to a clear drop in performance, especially in (Inst.) and (Esyntax), underscoring that explicitly planning
the conversion from a non-linear graph to a sequential program is essential for producing executable code.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

End-to-end w/o Graph Decom.

Let's create a 3D model of 
a bookshelf with an 
attached ladder……

Design a cargo elevator 
with a rectangular 
platform……

w/o Action Planning Graph-CAD (SFT)

Could you create a 
coffee machine with a 
sleek design? ……

Unreasonable shape

Assembly error Assembly error

Unreasonable shape Syntax error

Assembly error Unreasonable shape

Assembly error

Unreasonable shape

Figure 5: Qualitative comparison of ablated variants. For three CADBench prompts, we show results from
the end-to-end baseline, w/o Graph Decom., w/o Action Planning, and the full Graph-CAD (SFT). Red
marks indicate typical failures (assembly errors, unreasonable shapes, syntax errors), while Graph-CAD
produces coherent assemblies that better follow the instructions.

4.3.2 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

To evaluate the effect of the SAPCL mechanism, we conduct ablation studies under the full model setting
and provide a set of evaluation protocols and metrics to assess graph-mediated CAD generation methods.

Effect of different difficulty curriculum designs. To explore the impact of different levels of difficulty, we
compare our SAPCL mechanism with two baselines: one without curriculum learning (Only SFT) and an-
other that expands the training set by randomly rephrasing instructions without difficulty grading (w/o Hier-
archical Difficulty), following BlenderLLM’s self-improvement approach (Du et al., 2024). Under matched
data volumes per iteration (Figure 6(f)), SAPCL consistently outperforms both baselines in overall accu-
racy on CADBench (Figure 6(a)). Detailed analysis using our proposed evaluation metrics: NLA, HLA, and
GCS confirm greater gains in all structural aspects of the intermediate graph representations (Figure 6(b–d)).
These metrics offer an intuitive way to assess geometric decomposition quality in any graph-mediated Text-
to-CAD approach. Furthermore, as training advances, SAPCL enhances the model’s capacity to process
complex instructions, indicated by a rising number and proportion of generated hard samples (Figure 6(e)).

Effect of the Auxilary model. We analyze the effectiveness of the auxiliary model in capability boundary
exploration by comparing our full method against a variant that omits this component. As shown in Figure

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of our pipeline components, evaluated on the CADBench using the SFT setting. We
compare our three-stage pipeline against an End-to-end baseline. To isolate the impact of each intermediate
representation, we also evaluate two two-stage variants: w/o Graph Decom., which omits the graph by
generating an action sequence directly from the instruction; and w/o Action Planning, which omits the
action sequence by generating code directly from the graph. CLIP measures global text–shape semantic
alignment, and Time reports the average inference time per sample. Best results are in bold.

Training pipeline
CADBench-Sim CADBench-Wild

Time (s)↓
Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑

End-to-end 0.6701 0.6542 0.3477 0.5573 5.8% 0.6381 0.6923 0.6785 0.6643 0.4268 0.5899 8.0% 0.6087 0.7012 64.861
w/o Graph Decom. 0.6942 0.6995 0.4561 0.6166 5.0% 0.6424 0.7268 0.6730 0.7123 0.5018 0.6290 6.5% 0.6164 0.7207 79.516
w/o Action Planning 0.6791 0.6825 0.4006 0.5874 6.4% 0.6405 0.7545 0.6735 0.6849 0.4502 0.6029 11.0% 0.6127 0.7451 91.830
Graph-CAD (SFT) 0.7295 0.7265 0.4733 0.6431 2.2% 0.6544 0.7830 0.6944 0.7270 0.5861 0.6692 4.5% 0.6358 0.8025 104.755

0 1 2 3 4
Iteration (t)

0.655

0.660

0.665

0.670

0.675

0.680

0.685

0.690

Av
er

ag
e 

Ac
cu

ra
cy

(a) Acc. vs. Iter.

Only SFT
w/o Hierarchical Difficulty
SAPCL
SAPCL (w/o Auxiliary)

0 1 2 3 4
Iteration (t)

0.82

0.84

0.86

0.88

0.90

0.92

NL
A

(b) NLA vs. Iter.
Only SFT
w/o Hierarchical Difficulty
SAPCL

0 1 2 3 4
Iteration (t)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

HL
A

(c) HLA vs. Iter.

Only SFT
w/o Hierarchical Difficulty
SAPCL

0 1 2 3 4
Iteration (t)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

GC
S

(d) GCS vs. Iter.
Only SFT
w/o Hierarchical Difficulty
SAPCL

1 2 3 4
Iteration (t)

0

10

20

30

40

50

60

70

80

Se
ed

 In
st

an
ce

s

(e) Capability Boundary vs. Iter.
Fail
Easy

Interm.
Adv.

1 2 3 4
Iteration (t)

0

1000

2000

3000

4000

5000

6000

7000

In
cr

em
en

t

(f) Data Growth vs. Iter.
w/o Hierarchical Difficulty
Easy
Interm.
Adv.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Sampling Proportion (%)

0.670

0.675

0.680

0.685

0.690

Av
g.

 A
cc

ur
ac

y

Accuracy
Training Time

0

10

20

30

40

50

60

Av
g.

 h
ou

rs
/it

er
.

(g) Sampling Proportion vs. Acc. & Time

10 15 20 25 30
Generated Variants per Seed Instance

0.6725

0.6750

0.6775

0.6800

0.6825

0.6850

0.6875

0.6900

0.6925

Av
g.

 A
cc

ur
ac

y

Accuracy
Training Time 20

25

30

35

40

45

50

Av
g.

 h
ou

rs
/it

er
.

(h) Generation per Seed vs. Acc. & Time

Figure 6: Detailed visualization analysis of the SAPCL mechanism.

6(a), the variant without the auxiliary model (w/o Auxilary) achieves lower overall accuracy and exhibits a
slower improvement rate across training iterations, confirming its importance in efficient model progression.

Effect of hyperparameters in SAPCL. We examine two key hyperparameters in SAPCL: the sampling
proportion for Exploration of Capability Boundary module and the number of new instances generated
per seed in the Boundary Data Generation module. As shown in Figure 6(g) and (h), increasing either
hyperparameter improves final performance but linearly increases training time. To balance effectiveness and
efficiency, we set the sampling proportion to 1% and generated 20 instances per seed in all main experiments.

5 CONCLUSION

We propose learning a graph-based intermediate representation that explicitly models assembly hierarchy
and geometric constraints. This representation acts as a structural prior, narrowing the search space to im-
prove both geometric fidelity and constraint satisfaction. We further introduce a structure-aware progressive
curriculum learning to boost the model’s robustness on complex assemblies by identifying its capability
boundary and augmenting training with new, filtered examples at this boundary. To support this research, we
provide the BlendGeo dataset with 12K examples and novel metrics for evaluating the fidelity of the interme-
diate graph representation. Experiments on public benchmark CADBench demonstrate that our graph-based
approach and curriculum strategy significantly outperform existing methods.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

The research presented in this paper focuses on the generation of Computer-Aided Design (CAD) models,
a highly specialized domain. The inherent nature of this task minimizes the risk of misuse, as the devel-
oped methods are intended to primarily benefit professional design and engineering workflows. Our dataset,
BlendGeo, is derived from publicly available academic benchmarks, and we intend to release it responsibly
to foster reproducible research and further innovation in the field. This work involved human participation in
two capacities: professional industrial designers for the validation and correction of our annotated dataset,
and experienced volunteers for our final user study. All participation was voluntary. For the user study,
we obtained informed consent from all participants before they began the evaluation. We conducted all
human-involved activities in accordance with established ethical guidelines, ensuring that participants were
treated fairly, respectfully, and safely throughout the process. To protect their privacy, no personally iden-
tifiable information was collected from any participant. The data gathered from these activities, including
the designers’ corrections and the volunteers’ evaluation scores, were used solely for the research purpose
of developing and validating CAD generation techniques.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our research. Our Graph-CAD framework is
detailed in Section 3, and the core Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism
is formalized with pseudocode in Appendix C.2. All implementation details, including model architecture
and training hyperparameters for both the SFT and SAPCL phases, are provided in the Experimental Setup
(Section 4.1). The annotation pipeline for our BlendGeo dataset is described in Appendix C.1, and all
prompts used for data generation and evaluation are listed in Appendix E. The precise formulations for
our proposed evaluation metrics (GCS, NLA, HLA) are also detailed in the Appendix C.4. To facilitate
direct replication and further research, we will release our source code, the BlendGeo dataset, and model
checkpoints upon publication, contributing to the open-source community.

REFERENCES

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and Matthew Gom-
bolay. Generating cad code with vision-language models for 3d designs. arXiv preprint arXiv:2410.05340,
2024.

Anthropic. Claude opus 4.1. https://www.anthropic.com/news/claude-opus-4-1, 2025. Official an-
nouncement and model overview.

Akshay Badagabettu, Sai Sravan Yarlagadda, and Amir Barati Farimani. Query2cad: Generating cad models
using natural language queries. arXiv preprint arXiv:2406.00144, 2024.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:
Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceed-
ings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Shijie Bian, Daniele Grandi, Kaveh Hassani, Elliot Sadler, Bodia Borijin, Axel Fernandes, Andrew Wang,
Thomas Lu, Richard Otis, Nhut Ho, et al. Material prediction for design automation using graph rep-
resentation learning. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, volume 86229, pp. V03AT03A001. American Society of Me-
chanical Engineers, 2022.

11

https://www.anthropic.com/news/claude-opus-4-1


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Shijie Bian, Daniele Grandi, Tianyang Liu, Pradeep Kumar Jayaraman, Karl Willis, Elliot Sadler, Bodia
Borijin, Thomas Lu, Richard Otis, Nhut Ho, et al. Hg-cad: hierarchical graph learning for material
prediction and recommendation in computer-aided design. Journal of Computing and Information Science
in Engineering, 24(1):011007, 2024.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative code
modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging grammar
and reinforcement learning for neural program synthesis. arXiv preprint arXiv:1805.04276, 2018.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Cheng Chen, Jiacheng Wei, Tianrun Chen, Chi Zhang, Xiaofeng Yang, Shangzhan Zhang, Bingchen Yang,
Chuan-Sheng Foo, Guosheng Lin, Qixing Huang, et al. Cadcrafter: Generating computer-aided design
models from unconstrained images. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 11073–11082, 2025.

Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser: Diffusion
models as text painters. Advances in Neural Information Processing Systems, 36:9353–9387, 2023.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In International
Conference on Learning Representations, 2018.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, Nicu Sebe, and Mubarak Shah. Curriculum
direct preference optimization for diffusion and consistency models. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 2824–2834, 2025.

Yuhao Du, Shunian Chen, Wenbo Zan, Peizhao Li, Mingxuan Wang, Dingjie Song, Bo Li, Yan Hu,
and Benyou Wang. Blenderllm: Training large language models for computer-aided design with self-
improvement. arXiv preprint arXiv:2412.14203, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, Dong Xu, and Qian Yu. Cad-coder: Text-to-cad
generation with chain-of-thought and geometric reward. arXiv preprint arXiv:2505.19713, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance guided
attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4713–4722, 2024a.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muhammad Zeshan
Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level text prompts. Advances
in Neural Information Processing Systems, 37:7552–7579, 2024b.

Jin-Young Kim, Hyojun Go, Soonwoo Kwon, and Hyun-Gyoon Kim. Denoising task difficulty-based cur-
riculum for training diffusion models. arXiv preprint arXiv:2403.10348, 2024.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. Advances
in neural information processing systems, 23, 2010.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th symposium on operating systems principles, pp. 611–626,
2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-
ing. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for text to 3d
parametric computer-aided design generative modeling. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 8461–8470, 2024.

Jianxing Liao, Junyan Xu, Yatao Sun, Maowen Tang, Sicheng He, Jingxian Liao, Shui Yu, Yun Li, and
Hongguan Xiao. Automated cad modeling sequence generation from text descriptions via transformer-
based large language models. arXiv preprint arXiv:2505.19490, 2025.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-
task learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. Advances in neural information processing systems, 31, 2018.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone. Curriculum
learning for reinforcement learning domains: A framework and survey. Journal of Machine Learning
Research, 21(181):1–50, 2020.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf, 2025. Official system
card describing GPT-5 architecture, routing, and safety evaluations.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in neural
information processing systems, 10, 1997.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic curricu-
lum learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

Aditya Sanghi, Pradeep Kumar Jayaraman, Arianna Rampini, Joseph Lambourne, Hooman Shayani, Evan
Atherton, and Saeid Asgari Taghanaki. Sketch-a-shape: Zero-shot sketch-to-3d shape generation. arXiv
preprint arXiv:2307.03869, 2023.

13

https://cdn.openai.com/gpt-5-system-card.pdf


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. Interna-
tional Journal of Computer Vision, 130(6):1526–1565, 2022.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. Advances in Neural Information Processing Systems, 31, 2018.

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual feed-
back in large language models. arXiv preprint arXiv:2501.19054, 2025a.

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthe-
sising cad construction sequence with spatial reasoning-enhanced multimodal llms. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 7880–7888, 2025b.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on pattern
analysis and machine intelligence, 44(9):4555–4576, 2021.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided
design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6772–
6782, 2021.

Haoyang Xie and Feng Ju. Text-to-cadquery: A new paradigm for cad generation with scalable large model
capabilities. arXiv preprint arXiv:2505.06507, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. Advances in neural information processing systems, 33:5824–5836, 2020.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and versatile
controllable cad generation with fine-tuned large language models. arXiv preprint arXiv:2411.05823,
2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
Llamafactory: Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), Bangkok,
Thailand, 2024. Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.

APPENDIX

Considering the space limitation of the main paper, we provide more results and discussion in this appendix,
which is organized as follows:

• Section A: Use of Large Language Models
• Section B: Limitations
• Section C: Additional Methodology Details

– Sec. C.1: Data Annotation For Geometric Decomposition
– Sec. C.2: Structure-Aware Progressive Curriculum Learning
– Sec. C.3: More Implementation Details of SFT
– Sec. C.4: More Details of Metrics

14

http://arxiv.org/abs/2403.13372


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

– Sec. C.5: Analysis of Parameter Efficiency
– Sec. C.6: Graph Representations in CAD and Relation to This Work

• Section D: Additional Results
– Sec. D.1: Human Evaluation
– Sec. D.2: Additional Qualitative Results
– Sec. D.3: Visualization of Progressive Improvement with SAPCL
– Sec. D.4: Validation of VLM-based Evaluation
– Sec. D.5: Impact of Few-Shot Examples on General LLMs
– Sec. D.6: Effect of Different Base Models
– Sec. D.7: Comparison with Sketch-and-Extrude Methods
– Sec. D.8: Effect of Graph Representation under Varying Object Complexity
– Sec. D.9: Captioning Cost and Comparison with Open-Source LVLMs
– Sec. D.10: Comparison with a Unified Single Model
– Sec. D.11: Annotation Accuracy and Typical Failure Cases

• Section E: The Prompts Used in the Experiment
– Sec. E.1: Prompt for the VLM Evaluator
– Sec. E.2: Prompt for the Problem Generator
– Sec. E.3: Prompt for Geometry Decomposition
– Sec. E.4: Prompt for Action Planning
– Sec. E.5: Prompt for Code Generation

• Section F: Illustrative Data Example

A USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized a large language model (LLM), specifically GPT-5 (Ope-
nAI, 2025), as a writing assistant. The role of the LLM was strictly limited to language enhancement
and did not extend to any aspect of the research ideation or scientific methodology. Our process involved
providing the LLM with drafts, specific sentences, or high-level concepts already formulated by the au-
thors. We then used the model’s outputs to refine sentence structure, improve clarity and fluency, and ensure
grammatical correctness in the final English text. It is important to state explicitly that all core scientific
contributions—including the formulation of the graph-structured geometric decomposition, the design of
the structure-aware progressive curriculum learning mechanism, the experimental design, and the analysis
and interpretation of results—are solely the work of the human authors. The LLM was not used to generate
scientific claims, hypotheses, or conclusions. In accordance with ICLR policy, the authors have meticulously
reviewed, edited, and validated all content in this paper. We take full responsibility for the final manuscript,
including its scientific accuracy and integrity.

B LIMITATIONS

Inference Time. Our three stage inference sequentially predicts a structure graph, an action plan, and
executable code. This increases the number of generated tokens and leads to an average inference time
of about 1.7 minutes per sample, which is longer than the subminute times reported for models such as
BlenderLLM (Du et al., 2024). The detailed average inference time on CADBench is reported in Table 4.
In the context of CAD authoring this latency is small relative to a typical design iteration and is offset by
higher geometric fidelity and better constraint satisfaction, which reduce downstream edits and additional

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Table 4: Inference time breakdown of different pipeline variants. Stage1, Stage2, and Stage3 correspond to
the three components of our Graph-CAD inference pipeline. Total time is the sum of the stages used by each
method.

Training pipeline Stage1 (s) Stage2 (s) Stage3 (s) Total (s)

End-to-end – – – 64.861
w/o Graph Decom. – 12.603 66.913 79.516
w/o Action Planning 25.549 – 66.281 91.830
Graph-CAD (SFT) 24.345 15.141 65.269 104.755

regeneration. In practice, the overall time to a usable model is often lower than when a faster method
produces an output that requires extensive manual correction. We did not target latency optimization in
this work, and complementary techniques can further reduce runtime without changing the core approach,
including efficient management of key and value cache to support larger batch sizes (Kwon et al., 2023),
speculative or blockwise parallel decoding that proposes and verifies multiple tokens per step (Leviathan
et al., 2023; Stern et al., 2018; Cai et al., 2024), and knowledge distillation to compact backbones (Hinton
et al., 2015).

Failure Cases and Model Scalability. As shown in Figure 7, our method can struggle to generate assemblies
with extremely complex geometric structures. This limitation primarily stems from two factors: the inherent
capabilities of the current LLM backbones and the scarcity of publicly available training data for such
highly sophisticated designs. We posit that this is not a fundamental flaw in our graph-based approach but
rather a reflection of the current resources available. The framework itself is designed to be scalable. As
more powerful base models are developed and more diverse, complex CAD datasets become available, we
anticipate that the performance of our framework on these challenging cases will naturally improve. Future
work will focus on exploring these scaling properties and curating more complex datasets to further push
the boundaries of automated CAD generation.

C ADDITIONAL METHODOLOGY DETAILS

C.1 DATA ANNOTATION FOR GEOMETRIC DECOMPOSITION

To support the training and evaluation of our three-stage Graph-CAD framework, we meticulously con-
structed a BlendGeo dataset that contains 12K quadruplets of user instructions, geometric decomposition
graphs, action sequences, and executable bpy code. The overall data construction pipeline is illustrated in
Figure 8. In the Data Generation stage, we designed three distinct prompt sets, one for each stage of the
Graph-CAD framework, to guide LLM-based data generation. Specifically, the Geometry Decomposition
Prompt formalizes the principles of top-down geometric decomposition, rules for establishing geometric
constraints between nodes, and structural specifications for the output text format. The Action Planning
Prompt specifies how to convert a geometric decomposition graph into a CAD operation sequence, while
the Code Generation Prompt defines translation rules from actions to bpy code, along with standard func-
tion definitions. Subsequently, we extracted 12K user instructions spanning 1.4K object categories from the
BlendNet (Du et al., 2024). Using an LLM (e.g., GPT-5), we applied stage-specific prompts to perform the
three-stage conversions, thereby generating preliminary quadruplets.

In the Data Validation stage, we employed a dual human–AI verification pipeline to ensure high-quality
generated data. The generated bpy code for each instance was executed in Blender, producing four dis-
tinct multi-view rendered images. A Vision-Language Model (VLM) (e.g., GPT-5) then evaluated whether
these renderings semantically matched the original user instructions. The samples approved by the VLM

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

So I have been trying to model an ant queen, 

can you help me to make this 3D model?
Help me please, create a bike with a round grap.

(a) (b)

Figure 7: Examples of Failure Cases on Highly Complex Geometries. This figure illustrates current limi-
tations of our method when tasked with generating objects with extremely intricate structures. (a) An “ant
queen” model, which requires complex, organic curves and a high part count. (b) A “bicycle” model, which
involves a large number of parts with precise mechanical and transmission-related constraints. In both cases,
while the model attempts to capture the overall form, it struggles with the fine-grained geometric details and
the complex inter-part relationships, leading to structural errors. These failures highlight the need for more
powerful base models and more diverse, complex training data.

were further validated by professional industrial designers to guarantee absolute accuracy. Those samples
that failed the VLM evaluation were comprehensively corrected by designers, who synchronously rectified
the geometric decomposition graph, action sequence, and bpy code. Ultimately, these rigorously validated
samples, originating from the BlendNet instructions, form the BlendGeo dataset. Furthermore, to enable a
rigorous evaluation of geometric decomposition graph accuracy and geometric constraint satisfaction, we
applied this same annotation pipeline to the CADBench benchmark (Du et al., 2024).

C.2 STRUCTURE-AWARE PROGRESSIVE CURRICULUM LEARNING

To provide a detailed, step-by-step specification of our training strategy, we present the pseudocode for the
Structure-Aware Progressive Curriculum Learning (SAPCL) mechanism in Algorithm 1. The algorithm for-
malizes the iterative process described in the main text, which alternates between Supervised Fine-Tuning
(SFT) and Structure-Aware Progressive Curriculum Exploration (SAPCE). It provides a concrete imple-
mentation for the key procedures within the SAPCE module, including the sampling of seed exemplars,
the generation of graded problem variants, the identification of the model’s capability boundary using a
Discriminator, and the synthesis of new data at this frontier.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

User InstructionBlenderLLM
Dataset

Bpy CodeGeometry Decomposition

Geometry Decomposition Prompt Action Planing Prompt Code Generation Prompt

Action Sequence

Blender

LLM LLM LLM

VLM

Multi-view 
Renderings

Manual Confirmation

Manual Modification
Our Dataset Verified data

Data Generation

Data Validation

Figure 8: Data annotation pipeline. Our annotation process begins with user instructions sourced from the
BlenderLLM dataset. It proceeds through a three-stage generation workflow, where distinct prompts guide a
LLM to sequentially produce geometric decomposition graphs, action sequences, and executable bpy code.
Subsequently, a VLM evaluates whether the multi-view renderings generated from the bpy code align with
the original instructions. Finally, industrial designers perform a second round of verification, reviewing the
VLM’s judgments, confirming correct samples, and refining erroneous ones. The validated quadruplets are
then integrated into our dataset.

C.3 MORE IMPLEMENTATION DETAILS OF SFT

We selected Qwen3-8B (Yang et al., 2025) as the backbone for all three models within the Graph-CAD
framework, utilizing a maximum token length of 8192. For efficient fine-tuning, we employed the Low-
Rank Adaptation (LoRA) method (Hu et al., 2022) within the LLamaFactory training framework (Zheng
et al., 2024), using hyperparameters rank = 64. Each model was trained on two Nvidia A800-80GB GPUs.
We set the batch size to 2, with a gradient accumulation steps of 8, and a learning rate of 1.0×10−4. Training
proceeded for 7 epochs, taking approximately 3 days. The model weights that achieved the lowest validation
loss were selected as the optimal weights.

C.4 MORE DETAILS OF METRICS

CADBench metrics. We adopt the CADBench metrics introduced in BlenderLLM (Du et al., 2024) for
open-ended CAD generation from text. The benchmark decomposes evaluation into three complementary
dimensions tailored to CAD renderings: Attr. (object-attribute accuracy), Spat. (spatial-relation accuracy),
and Inst. (instruction-following accuracy). Concretely, each test prompt is paired with a set of human-
verified criteria covering fine-grained sub-dimensions (e.g., color/material/size for attributes; relative place-
ment, contact, alignment and symmetry for spatial relations; and faithfulness to user-specified operations for
instruction following). For every criterion, a binary score is produced by an MLLM-as-judge, using both the
multi-view renders (four views per object) and, where appropriate, the generated script itself (script-based
checks are used for objective properties that are hard to judge visually). Sub-dimension scores are averaged
into a dimension score, and the Avg. column reports the uniform average over the three dimensions, yielding
an overall fidelity measure. In addition, we report the syntax error rate Esyntax, defined as the proportion of
generated scripts that fail to execute to a valid rendering, which captures robustness and executability of
the outputs. For completeness, CADBench is instantiated on two test suites—CADBench-Sim (synthetic)
and CADBench-Wild (real, out-of-distribution forum questions)—and scores are computed separately on
each. This protocol yields multi-dimensional, execution-grounded assessments that align well with human
judgments while remaining scalable and reproducible.

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Geometric Constraint Satisfaction (GCS). Beyond visual fidelity, we developed a novel metric to evaluate
the structural integrity of the generated models, which we term Geometric Constraint Satisfaction (GCS).
This metric assesses whether a CAD model’s structure satisfies common geometric constraints (e.g., a table-
top must be above and in contact with the top surface of its legs). For this purpose, we manually annotated
approximately 500 geometric constraint ground truths across 280 samples from the CADBench test set that
feature common geometric relationships. During evaluation, we first extract the name and geometric pa-
rameters (e.g., bounding box, position, rotation) of each CAD part within Blender. An LLM is then used to
map these part names to the corresponding names in our evaluation standards (e.g., a table surface might be
named ’table top,’ ’table base,’ or ’base’). Finally, numerical computations determine if these mapped parts
satisfy the specified geometric constraints, yielding a score of 0 or 1 for each constraint. For every sample,
an average score is computed across all its geometric constraints to represent its GCS score. The final GCS
metric for the model is the average of these scores across all evaluated samples.

Node-Level Accuracy (NLA) and Hierarchy-Level Accuracy (HLA). To assess the correctness of gener-
ated geometric decomposition graphs, we introduce two dedicated metrics: NLA and HLA. NLA evaluates
whether the system identifies the correct set of parts under a one-to-one correspondence with ground truth.
Concretely, we first build an L1-based cost matrix per class (size, position, orientation, and optional at-
tributes; see Algorithm 2), then apply LLM-guided aliasing to canonically rename predicted nodes to the
ground-truth namespace and perform class-wise Hungarian assignment (Algorithm 3). We report the mean
L1 assignment cost across all matched pairs as the NLA score (lower is better).

HLA, in contrast, evaluates the structural integrity of the graph by examining the parent–child relationships.
This metric combines two critical checks: first, whether the predicted edges (representing relationships)
between nodes are correct (Algorithm 4); and second, whether each part appears at the correct depth in the
hierarchy, followed by a weighted aggregation into the final score (Algorithm 5).

This metric combines two critical checks: first, whether the predicted edges (representing relationships)
between nodes are correct, and second, whether each part appears at the correct depth in the hierarchy. In
summary, while NLA assesses if the model predicted the right pieces, HLA assesses if it arranged those
pieces correctly.

C.5 ANALYSIS OF PARAMETER EFFICIENCY

A potential consideration regarding our three-stage framework is the total parameter count, as it utilizes three
separate models. One might hypothesize that the performance gains are a consequence of an increased num-
ber of trainable parameters compared to a single end-to-end model. However, a closer analysis of our training
methodology suggests this is not the case.. We employ the Low-Rank Adaptation (LoRA) method (Hu et al.,
2022) for efficient fine-tuning. With a rank of 64, the number of trainable parameters for each of our three
models is approximately 174.6 million. This constitutes only 2.13% of the total parameters of the Qwen3-8B
backbone (Yang et al., 2025). The total number of trainable parameters across all three models is therefore
approximately 524 million, which is still a small fraction of the base model’s total size and is comparable to
or less than what a full fine-tuning of a single, smaller model might require. This high degree of parameter
efficiency indicates that our framework’s success is not attributable to a massive update of the base model’s
weights. Instead, our approach effectively leverages the vast, pre-existing knowledge embedded within the
LLM. The performance improvements are derived from teaching the model to apply this knowledge within
our structured, multi-stage problem-solving paradigm. Therefore, we attribute the observed gains primarily
to the architectural and data-centric contributions of our work—namely, the decoupling of the problem via
the three-stage pipeline and the power of the graph-structured intermediate representation—rather than to an
increase in the scale of trainable parameters.

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table 5: Quantitative results of the human evaluation. The table shows user preference scores for CAD
models generated by different methods. App. indicates the preference rate based on visual appearance and
alignment with the user’s instruction. GP indicates the preference rate based on the geometric plausibility of
the final assembly.

BlenderLLM GPT-5 (e2e) GPT-5 (3 stages) Claude-opus-4-1 (e2e) Claude-opus-4-1 (3 stages) Ours (SFT) Ours (SAPCL)

App. 2.3 % 2.7 % 8.4 % 4 % 9.65 % 10.05 % 62.9 %
GP. 3.8 % 0.4 % 5.2 % 0.55 % 6.5 % 16.3 % 67.25 %

C.6 GRAPH REPRESENTATIONS IN CAD AND RELATION TO THIS WORK

A few works have introduced assembly graphs into CAD, typically by constructing a part–part graph on
top of an existing CAD model and using it for predictive tasks such as material prediction or recommenda-
tion (Bian et al., 2024; 2022). Compared to these assembly graphs, our hierarchical, geometry-aware graph
differs in two key aspects: its source and its role in the overall pipeline.

First, the source of the graph is different. In prior work, the assembly graph is a descriptive structure con-
structed from pre-defined, human-specified relationships within an existing CAD file, and thus re-expresses
information that is already present in a fully specified design. This setting is fundamentally different from
Text-to-CAD, where no CAD model or assembly structure is available at inference time. In Graph-CAD,
the hierarchical, geometry-aware graph is a learned intermediate representation that is predicted directly
from natural-language instructions, before any geometry exists. It is specifically designed to bridge the gap
between ambiguous text and structured CAD programs under this generative setting.

Second, the role of the graph is different. In previous work, the assembly graph serves as an analytical input
to a predictive model (for example, a GNN) that reasons about a fixed assembly. In Graph-CAD, the graph
acts as a prescriptive blueprint or structural prior that guides generation: nodes define the assembly hierarchy
and part attributes, and edges represent actionable geometric constraints that the subsequent action-planning
and CAD code generation stages must satisfy. The graph is thus a causal intermediate that tells the model
how to build the assembly, rather than a passive descriptor of an existing design.

To the best of our knowledge, this is the first work that learns a hierarchical, geometry-aware assembly graph
from text and uses it as a central generative constraint for CAD code generation in the Text-to-CAD setting.
Our experiments show that this graph-guided formulation yields clear improvements in geometric fidelity,
constraint satisfaction, and code executability over strong end-to-end LLM baselines, supporting both the
novelty and the effectiveness of the proposed representation.

D ADDITIONAL RESULTS

D.1 HUMAN EVALUATION

To evaluate user preference for our method compared to the baselines, we conducted a user study. We
recruited 40 volunteers, all with prior experience in CAD design, to participate in a questionnaire-based
evaluation. Each participant was presented with 50 randomly selected examples from our test set. The
evaluation for each example was based on two criteria: how well the geometric appearance matches the
user instruction (Appearance, App), and whether the model satisfies common-sense geometric constraints
(Geometric Plausibility, GP). The aggregated results of this study are summarized in Table 5, indicating
that our method, Graph-CAD (SAPCL), achieves the highest user-rated quality for both appearance and
geometric plausibility.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Text2CAD BlenderLLM Claude-opus-4-1 

(3 stages)

Ours (SFT) Ours (SAPCL)

Design an 

armchair……

Could you create 

a 3D model of a 

bedside table?

Can you help me 

to model an 

airplane, like the 

basic structure is 

fine.

Let's build a 

3D model of 

an alarm 

clock……

GPT-5 (e2e) Claude-opus-4-1 

(e2e)

GPT-5 

(3 stages)

Design a 

bookshelf 

with 

adjustable 

shelves……

New to Blender, 

trying to create 

a hammer……

I'm designing 

glasses……

Hi, I'm working 

on modeling this 

camera……

Hey, can you 

create a 3D model 

of a desktop 

computer……

Figure 9: Additional Qualitative Comparison with Baselines. This figure presents more qualitative examples
comparing our method, Graph-CAD, with baseline approaches on challenging prompts from the CADBench
benchmark.

D.2 ADDITIONAL QUALITATIVE RESULTS

For a more extensive qualitative comparison, we provide additional side-by-side results against baseline
methods in the appendix (Figure 9). These examples further illustrate common failure modes in baseline
outputs, such as generating misaligned parts, violating geometric constraints, or failing to capture complex

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Base Model

(Qwen3-8B)

SFT

Hey there, could 

you create a 3D 

model of a cargo 

crane for 

me……

Can you render a 

3D model for the 

'Dave&Banbi' 

character?

Can you create a 

3D model of a 

guitar……

My task is to 

renovate an 

oven……

SAPCL 

Iteration 1

SAPCL 

Iteration 2

SAPCL 

Iteration 3

SAPCL 

Iteration 4

Please create a 

3D model of a 

cargo truck……

Figure 10: Visualization of Progressive Improvement with SAPCL. This figure illustrates the evolution of the
model’s generative capabilities on a single, challenging user instruction across different stages of training.

assembly structures. In contrast, these results consistently show that our method, Graph-CAD, produces
more geometrically plausible and structurally coherent assemblies that better align with the user instructions,
underscoring the robustness of our approach.

D.3 VISUALIZATION OF PROGRESSIVE IMPROVEMENT WITH SAPCL

To provide an intuitive understanding of how our Structure-Aware Progressive Curriculum Learning
(SAPCL) mechanism improves model performance, this section visualizes the evolution of the model’s
generative capabilities. In the Figure 10, we present a side-by-side comparison of outputs generated for the
same challenging user instruction at different stages of our training pipeline. This comparison begins with
the base pre-trained model, followed by the model after the initial Supervised Fine-Tuning (SFT) phase,
and finally, the outputs after four successive iterations of SAPCL. This sequence is designed to qualitatively
demonstrate the progressive refinement of the model’s ability to handle complex assembly structures and
satisfy geometric constraints.

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

D.4 VALIDATION OF VLM-BASED EVALUATION

In our methodology, we employ GPT-5 (OpenAI, 2025) as our Vision-Language Model (VLM). The VLM
serves two critical functions: first, as an automated filter for preliminary data screening during our annotation
pipeline, and second, as the “Discriminator” that assesses the quality of newly synthesized examples during
the curriculum learning phase. To ensure that the VLM’s judgments are a reliable proxy for human assess-
ment in these roles, we conducted a cross-validation study. We compared the VLM’s automated judgments
against those provided by our professional industrial designers on a representative subset of the generated
samples. The results of this comparison are presented in a confusion matrix in Table 6. We observed a high
degree of consistency between the two assessments. The VLM and the human experts were in agreement on
93.37% of the evaluated cases. This figure is composed of a 30.84% consistency on “Pass” judgments and a
62.53% consistency on “Fail” judgments. Conversely, the assessments differed in only 6.63% of cases. This
strong correlation demonstrates that the VLM serves as a reliable and scalable proxy for human judgment
for this specific task. Therefore, we consider its use for large-scale, automated evaluation throughout our
experiments to be well-justified.

To further validate the use of our VLM-based evaluation protocol, we conducted a human evaluation on a
30% subset of samples randomly drawn from both CADBench-Sim and CADBench-Wild. We recruited 10
volunteers with professional design experience and asked them to score the generated models according to
the official CADBench scoring guidelines. This protocol was designed to directly align with the prompt and
criteria provided to the VLM. The results of this human evaluation are presented in Table 7. A direct com-
parison reveals a strong correlation between the human scores and our main VLM-based results from Table
1 and 2. Crucially, the relative performance ranking of all evaluated models remains consistent between the
two methods, supporting the use of the VLM as a reliable proxy for human judgment in our experiments

Table 6: Cross Validation with GPT-5.

VLM
Human Pass Fail

Pass 30.84% 3.64%
Fail 2.99% 62.53%

D.5 IMPACT OF FEW-SHOT EXAMPLES ON GENERAL LLMS

To further analyze the behavior of our three-stage inference paradigm on general-purpose LLMs, we con-
ducted a study on the impact of varying the number of few-shot examples from zero to three. For these
few-shot prompts, we selected examples with a similar level of complexity to the test instances to ensure
a fair comparison. The results are detailed in Table 8. In the zero-shot setting, both the end-to-end and
our three-stage paradigms struggle, exhibiting high code error rates. The three-stage approach performs
particularly poorly in this scenario. This is expected, as the model has no prior exposure to our specific
graph-structured representation and cannot reliably generate it without guidance. However, with the intro-
duction of just one to three few-shot examples, a clear trend emerges. The three-stage inference process
consistently outperforms the end-to-end approach, with the most substantial improvements observed in the
Geometric Constraint Satisfaction (GCS) metric. This demonstrates that once the model understands the
target format, the structured pipeline is a more effective method for generating geometrically sound models.
We also note that increasing the number of examples from two to three provides only a marginal perfor-
mance gain. Furthermore, even with three-shot prompting, the performance of the general-purpose LLM
remains below that of our specialized, fine-tuned Graph-CAD (SAPCL) model, highlighting the benefits of
task-specific training and our curriculum learning strategy.

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Table 7: Human Evaluation Scores on a 30% Subset of CADBench. The table shows the average scores
assigned by 10 human evaluators. The performance ranking of the models is consistent with the VLM-based
results in Table 1 and 2, supporting the reliability of our automated evaluation.

Models CADBench-Sim (human) CADBench-Wild (human)
Attr.↑ Spat.↑ Inst.↑ Avg.↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑

BlenderLLM 0.6914 0.6862 0.3759 0.5845 0.6722 0.6509 0.4651 0.5914
GPT-5 (end-to-end) 0.7146 0.7281 0.4507 0.6311 0.6894 0.7107 0.5902 0.6634
GPT-5 (Graph-CAD) 0.7351 0.7237 0.4398 0.6328 0.7682 0.7475 0.5460 0.6872
Claude-opus-4-1 (end-to-end) 0.7185 0.7298 0.5460 0.4458 0.6923 0.7285 0.6072 0.6760
Claude-opus-4-1 (Graph-CAD) 0.7521 0.7434 0.4962 0.6639 0.7462 0.7356 0.6907 0.7242
Ours (SFT) 0.7308 0.7326 0.4753 0.6462 0.7045 0.7268 0.5971 0.6761
Ours (SAPCL) 0.7693 0.7509 0.5482 0.6894 0.7746 0.7607 0.6139 0.7164

Table 8: Impact of Few-Shot Examples on the Performance of General-Purpose LLMs. The table compares
the direct End-to-end paradigm against our Three-stage Graph-CAD inference as the number of few-shot
examples is varied from zero to three. This analysis is conducted on the CADBench benchmark to evaluate
how each paradigm benefits from in-context learning.

Models
CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ GCS↑

GPT-5 (end-to-end inference with zero-shot) 0.5632 0.5896 0.3764 0.5097 20.8% 0.2467 0.5338 0.5610 0.3295 0.4748 18.0% 0.2522

GPT-5 (Graph-CAD inference with zero-shot) 0.2465 0.2447 0.1720 0.2211 31.6% 0.2663 0.2582 0.2733 0.2045 0.2453 37.5% 0.2038

GPT-5 (end-to-end inference with 1-shot) 0.6482 0.6895 0.3867 0.5745 7.0% 0.2971 0.6713 0.6519 0.4475 0.5902 11.5% 0.3294

GPT-5 (Graph-CAD inference with 1-shot) 0.6715 0.6620 0.4108 0.5814 8.4% 0.5984 0.6526 0.6935 0.4621 0.6027 12.5% 0.5211

GPT-5 (end-to-end inference with 2-shot) 0.7013 0.7347 0.4250 0.6203 2.8% 0.3846 0.6858 0.7091 0.5595 0.6515 5.5% 0.4017

GPT-5 (Graph-CAD inference with 2-shot) 0.7342 0.7199 0.4451 0.6270 2.2% 0.6603 0.7677 0.7523 0.5377 0.6859 4.0% 0.5849

GPT-5 (end-to-end inference with 3-shot) 0.7039 0.7325 0.4268 0.6211 3.2% 0.3961 0.6869 0.6903 0.5408 0.6393 4.5% 0.4235

GPT-5 (Graph-CAD inference with 3-shot) 0.7351 0.7007 0.4369 0.6242 2.8% 0.6431 0.7624 0.7438 0.5193 0.6752 6.0% 0.5971

Graph-CAD (SFT) 0.7295 0.7265 0.4733 0.6431 2.4% 0.7830 0.6944 0.7270 0.5861 0.6692 4.5% 0.8025

Graph-CAD (SAPCL) 0.7681 0.7423 0.5546 0.6883 2.0% 0.9018 0.7695 0.7590 0.6057 0.7114 2.5% 0.8943

D.6 EFFECT OF DIFFERENT BASE MODELS

To assess the impact of the underlying LLM backbone on our framework’s performance, we conducted an
additional experiment by substituting the Qwen3-8B model (Yang et al., 2025) with Llama3-8B (Dubey
et al., 2024). We repeated the full training and evaluation process using this alternative backbone. The
results, presented in Table 9, indicate that the choice between these two base models has a minimal effect
on the final performance. The Llama3-8B-based model achieves results that are highly comparable to those
of the Qwen3-8B-based model across all evaluation metrics. This finding suggests that the performance
gains demonstrated in our main experiments are not specific to a single model architecture. Instead, they
are primarily attributable to our proposed Graph-CAD framework and the SAPCL training strategy, which
provide a robust and model-agnostic approach to improving Text-to-CAD generation.

D.7 COMPARISON WITH SKETCH-AND-EXTRUDE METHODS

A prominent paradigm in Text-to-CAD generation involves modeling objects through a series of sketch-
and-extrude (SEM) operations, as seen in methods like Text2CAD and CADFusion (Khan et al., 2024b;
Wang et al., 2025a). These approaches are highly effective for generating single-part objects where a 2D
sketch can be logically extruded into a 3D form. However, they are often less suited for creating complex,
multi-part assemblies, as their underlying structure does not explicitly model the hierarchical relationships

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Table 9: Performance Comparison of Different LLM Backbones on CADBench. The table shows the results
of our full Graph-CAD framework when built upon two different 8B-parameter base models: Qwen3-8B
and Llama3-8B. The highly comparable performance across all metrics indicates that our approach is robust
to the choice of the underlying LLM.

Models
CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ GCS↑

Qwen3-8B (SFT) 0.7295 0.7265 0.4733 0.6431 2.4% 0.7830 0.6944 0.7270 0.5861 0.6692 4.5% 0.8025

Llama3-8B (SFT) 0.7146 0.7080 0.4941 0.6389 3.2% 0.7732 0.6894 0.7107 0.5902 0.6634 5.5% 0.8126

Qwen3-8B (SAPCL) 0.7681 0.7423 0.5546 0.6883 2.0% 0.9018 0.7695 0.7590 0.6057 0.7114 2.5% 0.8943

Llama3-8B (SAPCL) 0.7693 0.7356 0.5248 0.6765 2.6% 0.9142 0.7639 0.7651 0.5812 0.7034 3.0% 0.8817

Text2CAD CADFusion Ours (SAPCL) GT

Create the first 

part of the CAD 

model, a three-

dimensional 

rectangular 

prism with a 

rectangular 

opening.

The CAD model 

contains curved 

shape with a 

hollow center ……

Figure 11: Qualitative Comparison with Sketch-and-Extrude Methods on the DeepCAD Dataset. This figure
compares outputs from our Graph-CAD method with a representative sketch-and-extrude (SEM) baseline
on the DeepCAD test set.

and geometric constraints that govern how multiple parts connect and interact. The DeepCAD dataset (Wu
et al., 2021) is a common benchmark used to evaluate these SEM-based methods. Although our Graph-
CAD framework is not fundamentally a sketch-and-extrude system, we evaluated its performance on the
DeepCAD test set to provide a direct point of comparison. As illustrated in Figure 11, our method achieves
competitive performance, effectively generating both single-part and multi-part objects. This suggests that
our graph-based representation offers a more general and flexible approach to CAD generation that is not
limited to a single modeling paradigm.

D.8 EFFECT OF GRAPH REPRESENTATION UNDER VARYING OBJECT COMPLEXITY

To further analyze when the proposed graph representation becomes critical, we conduct an additional study
on CADBench Du et al. (2024) by varying the complexity of target objects. We quantify complexity using
the Unique Part Count, i.e., the number of distinct parts in the assembly excluding repeated instances created
via loops. We compare the Graph-CAD (SFT) model in Table 3 with an ablated variant that removes the
intermediate graph representation and directly predicts CAD code from text.

Figure 12 reports the evaluation metrics Attr, Spat, Inst, Avg, and GCS as a function of the Unique Part
Count. For simple objects with about 5 unique parts, both variants achieve very similar scores across all

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

0 10 20 30
Part Count

0.2

0.4

0.6

0.8

At
tr.

(a) Attr. vs Part Count

With Graph Representation
Without Graph Representation

0 10 20 30
Part Count

0.4

0.5

0.6

0.7

0.8

Sp
at

.

(b) Spat. vs Part Count

With Graph Representation
Without Graph Representation

0 10 20 30
Part Count

0.2

0.3

0.4

0.5

0.6

In
st

.

(c) Inst. vs Part Count
With Graph Representation
Without Graph Representation

0 10 20 30
Part Count

0.2

0.3

0.4

0.5

0.6

0.7

Av
g.

(d) Avg. vs Part Count

With Graph Representation
Without Graph Representation

0 10 20 30
Part Count

0.60

0.65

0.70

0.75

0.80

0.85
GC

S

(e) GCS vs Part Count
With Graph Representation
Without Graph Representation

Figure 12: Object-level metrics as a function of the Unique Part Count on CADBench. We report (a) Object
Attributes (Attr), (b) Spatial Understanding and Structure (Spat), (c) Instruction Execution (Inst), (d) Overall
Average (Avg), and (e) Geometric Constraint Satisfaction (GCS). Blue curves correspond to Graph-CAD
with the intermediate graph representation; orange curves correspond to the ablated model without graph
representation.

metrics. As the Unique Part Count increases, however, the gap between the two models widens steadily.
Around 10–15 parts, the graph-based model begins to exhibit a clear advantage, particularly on instruc-
tion execution (Inst). Beyond 20 parts, the model without graph representation degrades sharply across all
metrics, whereas the graph-based model degrades much more gracefully and maintains substantially higher
scores, especially on Geo and the overall Avg metric. These results suggest that the graph representation
provides little benefit for very simple assemblies but becomes increasingly important as object complexity
grows, and is effectively essential for reliable Text-to-CAD generation once the number of unique parts
exceeds roughly 15–20.

Figure 13 provides qualitative examples at different complexity levels. The columns correspond to objects
with 5, 10, 15, 20, 25, and 35 unique parts. For each object, we show the result of the model with graph
representation (top row) and the ablated model without graph representation (bottom row). For low part
counts (e.g., the pen with lid), both methods produce similar and reasonable shapes. As the assemblies be-
come more complex (printer, cargo ship, living room), the non-graph model frequently exhibits unreasonable
shapes and assembly errors, such as floating or intersecting parts, missing supports, and misaligned subcom-
ponents (highlighted by red circles). In contrast, the graph-based model is able to organize many parts into
coherent, well-aligned assemblies that better satisfy the intended geometric and functional relations. These
qualitative observations are fully consistent with the quantitative trends in Figure 12 and further support the
claim that the graph representation is crucial for handling medium- to high-complexity CAD assemblies.

26



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

5 10 35

Without Graph 
Representation

15 2520

With Graph 
Representation

Unique Part Count

Object Name A pen with lid A pistol A desktop printer A cargo ship

Unreasonable shape Unreasonable shapeAssembly error

A cozy living room

Unreasonable shape

Assembly error

A wall clock

Unreasonable shape

Figure 13: Columns show objects with 5, 10, 15, 20, 25, and 35 unique parts. For each object, the top row
shows results generated with the graph representation, and the bottom row shows results from the ablated
model without graph representation. Red circles highlight typical failure modes of the non-graph model,
including unreasonable shapes and assembly errors (e.g., floating or intersecting parts, missing supports).

D.9 CAPTIONING COST AND COMPARISON WITH OPEN-SOURCE LVLMS

Captioning and evaluation cost. We report here the monetary cost of using GPT-5 for generating
instruction–graph–action–code quadruplets in BlendGeo and computing the Attr/Spat/Inst metrics in CAD-
Bench. All costs are computed according to the official GPT-5 API pricing at the time of our experiments,
namely US$1.25 per 1M input tokens and US$10.00 per 1M output tokens.

For the evaluation metrics (Attr, Spat, Inst), each successfully generated CAD sample requires on average
5,513 input tokens and 44 output tokens for the GPT-5 evaluator. Under the above pricing, this corresponds
to an average cost of approximately US$0.0073 per evaluated sample. For data annotation in BlendGeo, we
use GPT-5 in three stages. In the first stage, the average usage is 4,011 input tokens and 704 output tokens,
which translates to an average cost of about US$0.0121 per sample. In the second stage, the average usage is
4,598 input tokens and 708 output tokens, with an average cost of about US$0.0128 per sample. In the third
stage, the average usage is 9,014 input tokens and 3,008 output tokens, yielding an average cost of about
US$0.0413 per sample. Summing over the three stages, the mean annotation cost per fully annotated sample
is therefore roughly US$0.0662.

The annotated BlendGeo dataset contains 12,059 samples. Using the per-sample estimate above, this corre-
sponds to a total annotation cost of approximately US$800. The CADBench benchmark used for evaluation
comprises 700 samples, so the total evaluation cost is about US$5.1. In aggregate, the GPT-5 usage for
dataset annotation and benchmark evaluation is therefore on the order of US$805, which we consider a rea-
sonable cost for constructing and evaluating a dataset of this scale. We hope this makes the trade-off between
annotation quality and monetary cost transparent for future work.

On the use of open-source LLMs/VLMs. We also analyze the role of open-source LLMs and VLMs in
our pipeline and explain why we do not adopt them as the primary annotators and evaluators at the current
stage.

On the generation side, the main paper includes strong open-source reasoning LLMs as Text-to-CAD gen-
erators in Table 2, including DeepSeek-R1 and Qwen-Plus (Qwen3-Plus). Under identical task settings and
prompts, these models exhibit substantially higher syntax error rates and markedly lower visual metrics

27



1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Table 10: Cross Validation with Qwen-VL.

VLM
Human Pass Fail

Pass 28.54% 4.07%
Fail 12.86% 54.53%

Table 11: Performance comparison of the three-stage pipeline (Graph-CAD (SFT)) versus a unified multi-
task single-model baseline on CADBench.

Method
CADBench-Sim CADBench-Wild

Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑ Attr.↑ Spat.↑ Inst.↑ Avg.↑ Esyntax↓ CLIP↑ GCS↑
Unified single model 0.7035 0.6951 0.4472 0.6153 5.6% 0.6371 0.7049 0.6840 0.6924 0.5386 0.6383 11.5% 0.6182 0.7544
Graph-CAD (SFT) 0.7295 0.7265 0.4733 0.6431 2.2% 0.6544 0.7830 0.6944 0.7270 0.5861 0.6692 4.5% 0.6358 0.8025

(Attr, Spat, Inst, Avg) than closed-source models such as GPT-5 and Claude-opus-4-1. This performance
gap indicates that current open-source LLMs still struggle to produce reliable, executable CAD code at the
level required for large-scale automatic data annotation. Using them as the main engines for generating
instruction–graph–action–code quadruplets would likely introduce a significant amount of noise into the
dataset and weaken the supervision signal for downstream models.

On the evaluation side, we reports an experiment that directly compares GPT-5 and Qwen-VL as automatic
judges under the same evaluation protocol as Table 10. For a representative subset of generated samples, we
compare each VLM’s binary Pass/Fail decisions against the judgments of professional industrial designers.
GPT-5 reaches an agreement rate of 93.37% with human experts, whereas Qwen-VL attains 83.07% under
exactly the same setup. This sizable difference in human agreement suggests that GPT-5 provides a more
reliable and stable evaluation signal than Qwen-VL in our setting. Considering that a full evaluation pass
over the 700-sample CADBench benchmark costs only about US$5 with GPT-5, the monetary savings from
switching to an open-source evaluator would be marginal relative to the loss in reliability.

D.10 COMPARISON WITH A UNIFIED SINGLE MODEL

To further understand the effect of our modular three-stage design, we additionally consider a unified variant
in which a single Qwen-based model is fine-tuned on the union of all training data from the three stages.
Concretely, we simply mix all graph-prediction, action-planning, and code-generation examples into a single
training corpus and fine-tune one model on this pooled dataset. At inference time, this unified model is
invoked three times, using the same stage-specific prompts as in our main pipeline, to sequentially produce
the decomposition graph, action sequence, and CAD code.

Quantitative results for this unified model are reported in Table 11. Across CADBench metrics, the unified
model performs consistently worse than our three-model pipeline, with lower scores in Attr, Spat, Inst, Avg,
and GCS, as well as a higher syntax error rate. The degradation is particularly pronounced on more challeng-
ing prompts, where assemblies involve many parts and dense geometric constraints. Qualitative examples
in Figure 14 show that, in such complex cases, the unified model more frequently generates structurally
flawed or geometrically inconsistent designs, including missing or floating parts, misaligned subassemblies,
and incomplete geometry, whereas the modular Graph-CAD pipeline still produces coherent and visually
plausible assemblies.

We attribute this gap to negative transfer between heterogeneous objectives that share a single set of pa-
rameters. The three sub-tasks differ substantially in input–output structure and difficulty: local action
prediction and simple graphs are relatively short-horizon, whereas CAD code generation for complex as-

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Create a broom suitable for 
household cleaning……

Unified single 
model

Graph-CAD (SFT) 

Create a 3D model of a 
test tube rack……

Create a desktop 
monitor……

Figure 14: Qualitative comparison between the three-stage pipeline (Graph-CAD (SFT)) and the unified
single-model baseline on CADBench prompts. The unified model more frequently produces structurally
flawed or incomplete assemblies (e.g., floating or missing parts, misaligned components), whereas the three-
stage Graph-CAD generates coherent, geometrically consistent designs that better satisfy the textual instruc-
tions.

semblies requires long-range reasoning about constraints and part interactions. When all objectives are
optimized together in a single model without explicit mechanisms to balance them, gradients from easier
or shorter-horizon examples can dominate the updates and interfere with learning robust long-horizon con-
straint reasoning. This phenomenon is consistent with observations on gradient conflict and task interference
in multi-task learning (Yu et al., 2020; Liu et al., 2021).

These findings support our choice of a modular three-stage architecture, where each stage is specialized for
its own structured prediction problem while communicating through explicit intermediate representations
(graph and action sequence). More advanced unified designs, such as parameter-efficient multi-task adapters
or explicitly modular multi-task architectures, remain interesting directions for future work, but a naı̈ve
single-model baseline does not match the performance of our three-stage Graph-CAD pipeline.

D.11 ANNOTATION ACCURACY AND TYPICAL FAILURE CASES

To assess the quality of the automated data generation pipeline, we conduct a post-hoc audit of all automat-
ically generated quadruplets in the annotated BlendGeo dataset (instruction, decomposition graph, action
sequence, CAD code). Each sample is reviewed by expert annotators and assigned to one of three cate-
gories: (i) correct and directly usable without modification, (ii) usable after minor corrections (e.g., small
fixes to part names or local geometry), or (iii) requiring a complete manual redesign by human annotators.
Table 12 reports the proportions of samples falling into each category over the entire annotated set, providing
a global quantitative measure of the raw accuracy of the LLM/VLM-based pipeline and the extent of human
intervention needed.

Overall, we observe that a substantial fraction of automatically generated samples are either accepted as-
is or only require light edits before inclusion, while a smaller portion must be redesigned from scratch.

29



1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

This indicates that the automated pipeline already produces reasonably high-quality supervision at scale,
with human annotators mainly acting as a quality filter and a corrective layer for difficult cases rather than
rewriting the majority of data.

To better understand the remaining failure modes, we also collect representative examples of both high-
quality and problematic annotations. Figure 15 shows typical instances of (a) automatically generated data
that passes human validation unchanged and (b) samples that are corrected or replaced during manual vali-
dation, along with brief explanations of the underlying issues. From these examples and annotator feedback,
two dominant error patterns emerge.

First, there are geometric placement errors, where the set of parts and their rough identities are correct,
but the spatial configuration is flawed. Typical symptoms include floating or intersecting components, mis-
aligned subassemblies, or incorrect relative positioning between functional parts (e.g., support structures
that do not actually touch the objects they are meant to hold). Second, there are failures on highly complex
geometries, where the model struggles to produce a visually reasonable CAD model for objects with intri-
cate shapes or dense local details, even when the high-level structure is roughly correct. In such cases, the
generated geometry often appears over-simplified, distorted, or missing key fine-scale features, and human
redesign is required to obtain usable supervision.

Table 12: Annotation outcomes for the automatically generated BlendGeo samples. All numbers are per-
centages over the full dataset. GPT-5 “auto pass” denotes samples initially judged correct by GPT-5 before
human review; the remaining rows summarize the final human assessment outcomes.

Outcome Proportion (%)

GPT-5 auto pass (before human review) 72.56
Human-accepted without modification 69.51
Human-accepted after minor corrections 26.45
Requiring complete manual redesign 4.04

E THE PROMPTS USED IN THE EXPERIMENT

This section provides an overview of the key prompts used throughout our methodology, including those
for data annotation, curriculum learning, and evaluation. For clarity and brevity, the prompts presented here
are simplified templates designed to illustrate their core logic and structure. The full prompts used in our
experiments may include additional formatting or more complex few-shot examples not shown here.

E.1 PROMPT FOR THE VLM EVALUATOR

Role

• A rigorous 3D model evaluation expert

Task

• Judge only from the images and the criteria for one single parameter.

• Return exactly one JSON object with two keys:

– {param}: a list of 0/1 with the same length as the criteria
– reasons: a list of one-sentence explanations aligned to each 0/1

30



1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Smartphone Router

Successful samples

Failure on complex 
geometries 
(redesign)

Umbrella Wardrobe

Geometric 
placement errors 
(minor 
modifications)

Office Desk 
Failed product Corrected product

Truck
Failed product Corrected product

Espresso Machine
Failed product Corrected product

Fish Tank 
Failed product Corrected product

Figure 15: Representative examples of automated annotations and human corrections. Top row: samples
that are directly accepted without modification. Middle row: geometric placement errors that are fixed by
minor edits. Bottom row: failures on complex geometries that require complete redesign.

Output Rules

1. Output JSON only (no extra text, no code fences).
2. Allowed keys: {param} and reasons only (no extra/missing keys).
3. Both lists must match the number and order of criteria.
4. Score 1 if the requirement is met or reasonably satisfied, else 0.
5. Each reason must be short, factual, and tied to visible evidence.

Do Not Penalize

• Primitive simplifications (e.g., boxy panels, cylindrical handles), generally low detail
• Minor camera clipping/aliasing

Criteria With Absolute Units (inch/cm/mm)

• Do not check absolute values; evaluate relative proportions only.
• Example: if depth is clearly smaller than diameter, PASS; if comparable or larger, FAIL.
• If uncertain or views are ambiguous, default to PASS (1).

31



1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Context (placeholders)

• Project Name: {project name}
• Type: {project type}
• Instruction: {project instruction}
• Dimension: {dimension}
• Parameter: {param}

Return Skeleton (replace 0 with 0/1; replace empty strings with one-sentence reasons)

{
"<param>": [0, 0, ...],
"reasons": ["...", "...", ...]

}

Criteria Input (use exact order)

[
"requirement_1",
"requirement_2",
...

]

E.2 PROMPT FOR THE PROBLEM GENERATOR

Role

• A CAD course question generator that creates one derived design question from a given MOTHER
ITEM.

Input (MOTHER ITEM)

• category: original item category
• mother id: unique ID
• mother user prompt: user’s natural-language description
• mother geometry graph: text graph (for understanding only; do not copy into output)

Generation Controls

• level ∈ {1, 2, 3}
• delta strength ∈ {1, 2, 3} (higher = more/larger changes within the level)
• max changes: soft cap on number of edits
• allowed ops: allowed change types for this level
• size range: permitted range if size scale is used

Task

• Produce exactly one derived design question.

32



1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

• Return JSON only following the exact schema below.

Requirement Paragraph (natural language)

• Write an absolute requirement paragraph: directly describe the new geometry’s characteristics.

• Do not write relative language (no comparisons to the theme/MOTHER ITEM).

Forbidden Topics

• Assembly order

• Tolerances

Difficulty Levels

• Level 1: Same category; only appearance/opacity/size tweaks; no structural/topology changes.

• Level 2: Same category; structural edits (layers, part shapes, arrays, holes, etc.); may add small
subordinate parts.

• Level 3: A related new category (similar function/form); state key dimensions/parts/layout explic-
itly.

Output Rules

1. Return JSON only. No extra text, comments, or code fences.

2. Use the exact keys and structure shown in the schema.

3. Ensure level and delta strength match the Generation Controls.

4. change ops items must align with allowed ops; keep count within max changes (soft cap).

Output Schema (exact)

{
"derived": {
"category": "<string>",
"user_prompt": "<one paragraph natural language>",
"level": 1,
"delta_strength": 2,
"change_ops": [
{ "type": "...", "target": "...",
"from": "...", "to": "...", "scale": 1.2 }

],
"parents": ["<mother_id>"],
"rationale": "<<=20 chars>"

}
}

User Prompt Template

MOTHER ITEM
- category: {category}
- mother_id: {mid}

33



1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

- mother_user_prompt: {user_prompt}
- mother_geometry_graph
(for understanding only; do NOT copy into output):
{graph}

GENERATION CONTROL
- level: {level} # 1/2/3
- delta_strength: {ds} # 1/2/3
- max_changes (soft cap): {max_changes}
- allowed change types for this level: {allowed_ops}
- size scale range if size_scale is used: {size_range}

Generate exactly ONE derived design question.
Return ONLY the JSON object with the schema defined by
the system prompt.

E.3 PROMPT FOR GEOMETRY DECOMPOSITION

Role & Outputs

1. Emit exactly two blocks in order: (1) MATERIAL LIBRARY, (2) Decomposition Graph .
2. Output only these two blocks (no extra text).

Units

• All linear dimensions in metres (m).

Decomposition & Graph Rules

• Recursively decompose until leaves are single primitives or basic boolean/auto connect.
• Record build order only on parent: assembly order=[group1],[group2],...

• No cycles: do not form loops with parent/after/depends on.

Block Formats

• MATERIAL LIBRARY

-- MATERIAL LIBRARY --
mat_name | diffuse_color=(R,G,B,A)
#END_MATERIALS

• Decomposition GRAPH

# ---------- BEGIN_GRAPH ----------
Lk: id=<id> | parent=<parent_or_-> | type=<type>

| size=<.../AUTO>
| align=<.../-> | pos=<offset()/polar()/-> | connect=<.../->
| orientation=<directive/->
| mat=<snake_case_or_-> | create_method=
<primitive/boolean_subtract/...>
| assembly_order=<groups_or_-> | constraint=<text_or_->
| after=<siblings_or_-> | depends_on=<ids_or_->

34



1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

| tool_id=<.../-> | target_id=<.../->
# ---------- END_GRAPH ----------

Layering & Presentation

• Use headings: Layer 0 – Root, Layer 1 – Primary Structure, ...
• Table per layer: | ID | Description | Key attributes / placement | (include
create method).

Placement (Minimal)

• Align-first: define which feature touches which feature.

Align(<axes>) <this>.<this_feature> to <target>
<axes> in {X,Y,Z}
<target> in {B.<feature> | B[*].<feature> | B[k].<feature> |
Avg(T1,T2,...)}

• Then offset(dx,dy,dz) in local frame; optional pos=polar(θ; dr=∆r).
• Connect two attachment features:

connect = <A>.<featureA> + <B>.<featureB>

Patterning

• Use one template node + pattern= only:

pattern=grid(rows:R, cols:C, x_spacing:dx, y_spacing:dy,
start_offset:(x0,y0))
pattern=polar(count:N, radius:r, start_angle:theta,
angle_step:delta_theta)

Shape & Description

• Leaf: start with primitive + size (m). If extrude from sketch, put sketch essentials in
constraint.

• Non-leaf: “Composite of <children>; brief assembly phrase”.

Dimensions

1. Convert given units to metres.
2. If partial/none: infer reasonable metre values.

Orientation & Rotation

• Primitives born in native pose (local +Z up). orientation= remaps local +Z:

orientation = axis:+X / +Y / -Z
orientation = axis:radial_from <obj> | axis:tangent_to <obj>
orientation = +X_face:normal_to <obj> | +Z_face:align
<other>.+Z_face
orientation = normal:<target_obj>

• Optional rotation= after orientation (free-angle tilt/spin).

35



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

No Shorthand

• No repeat= or similar; only pattern= allowed. Each non-pattern node on its own line.

Deliverables (Order Strict)

1. MATERIAL LIBRARY
2. Decomposition Graph

E.4 PROMPT FOR ACTION PLANNING

Role & I/O

• System role: CAD Action build-script generator; output strictly in the specified format.
• Input (each run): MATERIAL LIBRARY block + multi-layer knowledge graph (FORMAT v4;

includes orientation= and offset(dx,dy,dz) in metres; no repeat= shorthand).
• Output (each run): one plain-text Action script with exactly three top-level blocks (BLOCK

0/1/2).

Units

• All linear dimensions are in metres (m).

BLOCK 0 — Scene Reset & Units (always first)

1. Delete all existing objects (clean scene).
2. Set length unit to metres.

BLOCK 1 — Materials

• For each material: Define material <mat name>; diffuse color = (R,G,B,A).

BLOCK 2 — Stage-by-Stage Operations

• Follow each parent’s assembly order, group by group.
• Insert a heading per group: --- SECTION <n> { <summary> ---

Command Rules (STRICT)

1. Name every new object in its creation sentence.
2. Orientation before placement — use the exact sequence for each node:

(a) Create primitive and name it <id>.
(b) Rotate <id> so local +Z satisfies orientation=.
(c) Anchor/Align <id> to reference features.
(d) Then apply offset/polar/connect.

3. Iterative patterns (when pattern= is present): emit a natural-language loop for grid or polar
arrays.

4. After core steps, write additional single-line actions as needed: Boolean-union/subtract, Bevel,
Auto-connect, Snap/Align, Validate.

36



1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

5. If a parent specifies a guideline: quote, validate, end with “Assembly guideline satisfied.”
6. Close each section with “Stage <n> complete.” End with “All stages complete.”

Placement & Assembly

• Prefer assembly placement; use independent world pos/orientation only when necessary.
• Align before final placement:

Align(<axes>) <this>.<feature> to <target>
<axes> in {X,Y,Z}; <target> in {B.<feature> | B[*].<feature> |
B[k].<feature> | Avg(...)}

• Then offset(dx,dy,dz) in aligned frame;
optional pos=polar(θ; dr=∆r) or
pos=spherical(θ,Φ; dr=∆r).

• Connect: connect = <A>.<featureA> + <B>.<featureB>.
• Optional rotation= after orientation= (free-angle tilt/spin).
• Absolute world XYZ is forbidden unless already present in the graph.

Sizing-Only Anchors (if create method=group and size ̸= AUTO)

• Create an invisible Empty helper named exactly as the node ID; match its origin/orientation/size to
the node; use it as anchor for children.

Output Policy

• Return only the script text (no markdown, no extra tokens).

Sentence Templates

• Material: Define material <mat name>; diffuse color = (R,G,B,A).

• Section heading: --- SECTION <n> { <summary> ---

• Command verbs: Create / Rotate / Align / Anchor / Offset / Polar / Connect / Boolean-subtract /
Bevel / Snap / Validate

E.5 PROMPT FOR CODE GENERATION

Role & I/O

• System role: Blender-Python code generator.
• Input (each run): BLOCK 0 (Scene Reset & Units), BLOCK 1 (Materials), BLOCK 2 (Stage

Sections as action sentences: verbs, sizes, anchors, offset(dx,dy,dz), orientation hints).
• Output (each run): one self-contained Python script that recreates the model in Blender 3.x.

Output Policy

• Return only valid Python (no Markdown, no prose).

Units

37



1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

• All linear dimensions are in metres (m).

Script Skeleton (fixed order)

1. Helper functions: make material,boolean subtract, boolean union, add bevel, orient helpers.

2. Materials from BLOCK 1.

3. Geometry by sections from BLOCK 2.

Sentence→ Action (minimal mapping)

• Create primitive (cyl/disc/cube/cone/sphere/hemisphere)→ add primitive, orient, place.

• Bevel/Chamfer→ add bevel(target, radius, segments).

• Boolean-subtract/union→ boolean subtract / boolean union.

• Cut/hole/drill/slot→ build cutter + Boolean.

• Automatically connect / Connect A.f + B.f→ connect points (auto length).

• Snap/Align / orientation=feature:directive / “Rotate so its . . . ”→ use orient helpers.*.

Per-Object Step Order (STRICT)

1. Create primitive (or cutter) & name it by action ID.

2. Orient (local +Z per orientation=).

3. Anchor/Align to reference features (feature names must be explicit; if only reference ID is given,
default to centre-to-centre).

4. Place with offset(dx,dy,dz) or pos=polar(θ; dr=∆r) or connect A.f + B.f.

Placement & Alignment (concise)

• Prefer anchor-relative placement; use global world pos/orientation only when necessary.

• Emit one alignment block per Align(<axes>) . . . to . . . , in textual order; move only along
listed axes; keep a separate # align block followed by a separate # offset block.

• Polar uses reference local +Z; Offset is in reference local axes.

• Absolute world XYZ only if present in the graph.

Loops

• If action sentences describe repetition/pattern, generate a real Python for-loop; compute offsets
inside the loop.

Naming

• Every created object uses the action ID; auto-generated cutters append cutter.

F ILLUSTRATIVE DATA EXAMPLE

To provide a concrete illustration of our data structure, this section presents a complete annotated quadru-
plet from the BlendGeo dataset. The example demonstrates how a simple user instruction is translated

38



1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

Under review as a conference paper at ICLR 2026

into our structured intermediate representations—the geometric decomposition graph and the action se-
quence—before being realized as executable code. We use the example of a simple four-legged table.

User Instruction

Let’s design a dining table. The tabletop should be rectangular and large enough to seat six people comfort-
ably. The legs should be simple and positioned at the four corners.

Decomposition Graph

-- MATERIAL LIBRARY --
table_wood | diffuse_color=(0.60,0.40,0.25,1)
wood_dark | diffuse_color=(0.35,0.20,0.10,1)
#END_MATERIALS
# ---------- BEGIN_GRAPH ---------- ----------
### Layer 0 Root
| ID | Description | Key attributes / placement|
|--------------|-------------|------------|
| dining_table | Composite of tabletop + four legs | anchor=-; pos=-;
orientation=-; mat=-; create_method=group;
assembly_order=[[tabletop], [leg_fl, leg_fr, leg_bl, leg_br]] |
---
### Layer 1 Table Components

| ID | Description | Key attributes / placement |
|-----------|---------------|--------------------|
| tabletop | Rectangular tabletop 2.0×1.0×0.04 m |
pos=(0,0,0.75); orientation=axis:+Z;
mat=table_wood; create_method=primitive |
| leg_fl | Leg (front-left) 0.08×0.08×0.72 m |
Align leg_fl.top_face to tabletop.bottom_face;
offset(-0.96, 0.46, 0); mat=wood_dark; create_method=primitive |
| leg_fr | Leg (front-right) 0.08×0.08×0.72 m |
Align leg_fr.top_face to tabletop.bottom_face;
offset(0.96, 0.46, 0); mat=wood_dark; create_method=primitive |
| leg_bl | Leg (back-left) 0.08×0.08×0.72 m |
Align leg_bl.top_face to tabletop.bottom_face;
offset(-0.96, -0.46, 0); mat=wood_dark; create_method=primitive |
| leg_br | Leg (back-right) 0.08×0.08×0.72 m |
Align leg_br.top_face to tabletop.bottom_face;
offset(0.96, -0.46, 0); mat=wood_dark; create_method=primitive |

# ---------- END_GRAPH ----------

Action Sequence

BLOCK 0 { Scene Reset & Units

Delete every existing object to start from a clean scene.
Set the length unit to **metres**.

---

39



1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

Under review as a conference paper at ICLR 2026

BLOCK 1 { Materials

Define material table_wood; diffuse_color = (0.60, 0.40, 0.25, 1).
Define material wood_dark; diffuse_color = (0.35, 0.20, 0.10, 1).

---

BLOCK 2 { Stage-by-Stage Operations

--- SECTION 1 { Create tabletop ---
Create primitive cuboid with size 2.0×1.0×0.04 m and name it tabletop.
Rotate tabletop so its axis aligns +Z (world).
Anchor tabletop to world.origin.
Then move by offset(0, 0, 0.75).
Assign material table_wood to tabletop.
Stage 1 complete.

--- SECTION 2 { Attach four table legs ---
Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_fl.
Rotate leg_fl so its axis aligns +Z (world).
Align leg_fl.top_face to tabletop.bottom_face.
Then move by offset(-0.96, 0.46, 0).
Assign material wood_dark to leg_fl.

Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_fr.
Rotate leg_fr so its axis aligns +Z (world).
Align leg_fr.top_face to tabletop.bottom_face.
Then move by offset(0.96, 0.46, 0).
Assign material wood_dark to leg_fr.

Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_bl.
Rotate leg_bl so its axis aligns +Z (world).
Align leg_bl.top_face to tabletop.bottom_face.
Then move by offset(-0.96, -0.46, 0).
Assign material wood_dark to leg_bl.

Create primitive cuboid with size 0.08×0.08×0.72 m and name it leg_br.
Rotate leg_br so its axis aligns +Z (world).
Align leg_br.top_face to tabletop.bottom_face.
Then move by offset(0.96, -0.46, 0).
Assign material wood_dark to leg_br.
Stage 2 complete.

--- SECTION 3 { Complete dining table assembly ---
Validate that all legs are securely attached to the tabletop at their designated corners.
Assembly guideline satisfied.
Stage 3 complete.

All stages complete.

40



1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

Under review as a conference paper at ICLR 2026

Bpy Code

import bpy
import math
from mathutils import Vector, Matrix
import mathutils as mu

#
# Helper Functions
#

def make_material(name, rgba):
mat = bpy.data.materials.new(name)
mat.diffuse_color = rgba
return mat

def add_cube(obj_name, size_xyz_m):
bpy.ops.mesh.primitive_cube_add(size=1)
obj = bpy.context.active_object
obj.name = obj_name
obj.scale = (size_xyz_m[0], size_xyz_m[1], size_xyz_m[2])
bpy.ops.object.transform_apply(scale=True)
return obj

def align_axis_to_vector(obj, local_axis, target_vec):
axis_vec = {'X':Vector((1,0,0)), 'Y':Vector((0,1,0)),
'Z':Vector((0,0,1))}[local_axis]
tgt_vec = Vector(target_vec).normalized()
angle = axis_vec.angle(tgt_vec)

if angle < 1e-6:
return

elif abs(angle - math.pi) < 1e-6:
if abs(axis_vec.x) < 0.99:

rot_axis = Vector((1,0,0)).cross(axis_vec).normalized()
else:

rot_axis = Vector((0,1,0)).cross(axis_vec).normalized()
else:

rot_axis = axis_vec.cross(tgt_vec).normalized()

rot_matrix = Matrix.Rotation(angle, 4, rot_axis)
obj.matrix_world = rot_matrix @ obj.matrix_world

_FACE = {'left': ('X', 'min'), 'right': ('X', 'max'),
'back': ('Y', 'min'), 'front': ('Y', 'max'),
'bottom':('Z', 'min'), 'top' : ('Z', 'max')}

class Locator:

41



1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

Under review as a conference paper at ICLR 2026

def __init__(self, obj: bpy.types.Object):
self.obj = obj
self._make_bbox()

def _make_bbox(self):
if self.obj.type in {'MESH', 'CURVE', 'SURFACE', 'META', 'FONT'}:

dg = bpy.context.evaluated_depsgraph_get()
eval_me = self.obj.evaluated_get(dg).to_mesh()
xs = [v.co.x for v in eval_me.vertices]
ys = [v.co.y for v in eval_me.vertices]
zs = [v.co.z for v in eval_me.vertices]
self.obj.evaluated_get(dg).to_mesh_clear()
if xs:

self.bb = {
'minX': min(xs), 'maxX': max(xs),
'minY': min(ys), 'maxY': max(ys),
'minZ': min(zs), 'maxZ': max(zs),

}
return

dim = getattr(self.obj, "dimensions", Vector((0,0,0)))
hx, hy, hz = dim.x*0.5, dim.y*0.5, dim.z*0.5
self.bb = {

'minX': -hx, 'maxX': hx,
'minY': -hy, 'maxY': hy,
'minZ': -hz, 'maxZ': hz,

}

def face_center_world(self, face_key: str):
key = face_key.lower()
if key == 'center':

return self.center_world()
axis, ext = _FACE[key]
val = self.bb[f"{ext}{axis}"]
if axis == 'X':

p_local = mu.Vector((val,
(self.bb['minY']+self.bb['maxY'])*0.5, (self.bb['minZ']+self.bb['maxZ'])*0.5))
elif axis == 'Y':

p_local = mu.Vector(((self.bb['minX']+self.bb['maxX'])*0.5, val,
(self.bb['minZ']+self.bb['maxZ'])*0.5))

else:
p_local = mu.Vector(((self.bb['minX']+self.bb['maxX'])*0.5,
(self.bb['minY']+self.bb['maxY'])*0.5, val))

return self.obj.matrix_world @ p_local

#
# Scene Reset & Units
#

bpy.ops.object.select_all(action='SELECT')
bpy.ops.object.delete()

42



1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Under review as a conference paper at ICLR 2026

bpy.context.scene.unit_settings.system = 'METRIC'
bpy.context.scene.unit_settings.scale_length = 1

#
# Materials
#

mat_table_wood = make_material("table_wood", (0.60, 0.40, 0.25, 1))
mat_wood_dark = make_material("wood_dark", (0.35, 0.20, 0.10, 1))

#
# SECTION 1 { Create tabletop
#

tabletop = add_cube("tabletop", (2.0, 1.0, 0.04))
align_axis_to_vector(tabletop, 'Z', (0, 0, 1))
tabletop.location = Vector((0, 0, 0.75))
tabletop.data.materials.append(mat_table_wood)

#
# SECTION 2 { Attach four table legs
#

# leg_fl
leg_fl = add_cube("leg_fl", (0.08, 0.08, 0.72))
align_axis_to_vector(leg_fl, 'Z', (0, 0, 1))
ref = Locator(tabletop).face_center_world("bottom")
offs = Locator(leg_fl).face_center_world("top")
delta = ref - offs
leg_fl.location += delta
leg_fl.location += Vector((-0.96, 0.46, 0))
leg_fl.data.materials.append(mat_wood_dark)

# leg_fr
leg_fr = add_cube("leg_fr", (0.08, 0.08, 0.72))
align_axis_to_vector(leg_fr, 'Z', (0, 0, 1))
ref = Locator(tabletop).face_center_world("bottom")
offs = Locator(leg_fr).face_center_world("top")
delta = ref - offs
leg_fr.location += delta
leg_fr.location += Vector((0.96, 0.46, 0))
leg_fr.data.materials.append(mat_wood_dark)

# leg_bl
leg_bl = add_cube("leg_bl", (0.08, 0.08, 0.72))
align_axis_to_vector(leg_bl, 'Z', (0, 0, 1))
ref = Locator(tabletop).face_center_world("bottom")
offs = Locator(leg_bl).face_center_world("top")
delta = ref - offs
leg_bl.location += delta

43



2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

Under review as a conference paper at ICLR 2026

leg_bl.location += Vector((-0.96, -0.46, 0))
leg_bl.data.materials.append(mat_wood_dark)

# leg_br
leg_br = add_cube("leg_br", (0.08, 0.08, 0.72))
align_axis_to_vector(leg_br, 'Z', (0, 0, 1))
ref = Locator(tabletop).face_center_world("bottom")
offs = Locator(leg_br).face_center_world("top")
delta = ref - offs
leg_br.location += delta
leg_br.location += Vector((0.96, -0.46, 0))
leg_br.data.materials.append(mat_wood_dark)

44



2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

Under review as a conference paper at ICLR 2026

Algorithm 1: Structure-Aware Progressive Curriculum Learning (SFT + SAPCE)
Input: Initial training dataset D1, base model M0, sampling proportion α, threshold τ , #variants per

level K
Output: Final model Mfinal

t← 1; Dt ← D1; Mfinal ←M0;
while not converged do

// Stage A: Supervised Fine-Tuning (SFT)
Mt ← SFT(Mt−1, Dt);
// Stage B: SAPCE (Capability Exploration)
I ← CategoryAwareSample(Dt, α); L← ∅;
foreach Ii ∈ I do

Generate K variants Pi[1..3]← PG(Ii,K);
Li ← 0;
for ℓ = 1 to 3 do

correct← 0; total← K;
foreach p ∈ Pi[ℓ] do

out← Solve(Mt, Ii, p); ok ← Disc(out, p);
if ok == Match then

correct← correct+ 1;

acc← correct/K;
if acc ≥ τ then

Li ← ℓ;
else

break ; // Stop exploration for Ii

L← L ∪ {(Ii, Li)};
// Data Generation at Capability Boundary
Snew ← ∅;
foreach (Ii, Li) ∈ L do

targets← ∅;
if Li ≥ 1 then

targets← targets ∪ {Li}
if Li < 3 then

targets← targets ∪ {Li + 1}
foreach ℓ ∈ targets do

S ← CoGen(Ii, ℓ);
Svalid ← {s ∈ S | Disc(s.output, s.prompt) == Match};
Snew ← Snew ∪ Svalid;

// Merge & Iterate
Dt+1 ← Dt ∪ Snew;
if StopCondition(L, Snew, t) then

Mfinal ←Mt;
break;

t← t+ 1;
Mt−1 ←Mt; Dt ← Dt+1;

return Mfinal;

45



2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

Under review as a conference paper at ICLR 2026

Algorithm 2: Per-class cost matrix construction for node alignment (L1-based components).
Input : Pred nodes of a class Pc = {pi}; GT nodes of the class Gc = {gj};

Global GT scale Smax = maxg∈G max(SizeVec(g));
weights (ws, wp, wo, wa) and attribute penalty γ

Output: Cost matrix C ∈ R|Pc|×|Gc|

Function SizeVec(n):
if n has box size (lx, ly, lz) then

return (lx, ly, lz)
else if n has cylinder size (d, h) then

return (d, d, h)
else

return (0, 0, 0)
end

Function OriVec(ori):
Map {+X,−X,+Y,−Y,+Z,−Z} to unit vectors; default to +Z
return mapped unit vector

Function BuildCostMatrix(Pc, Gc, Smax, ws, wp, wo, wa, γ):
Initialize C as a |Pc| × |Gc| zero matrix
for i← 1 to |Pc| do

p← pi
ps ← SizeVec(p)/Smax

px ← p.pose.pos
po ← OriVec(p.pose.ori or + Z)
for j ← 1 to |Gc| do

g ← gj
gs ← SizeVec(g)/Smax

gx ← g.pose.pos
go ← OriVec(g.pose.ori or + Z)
csize ← ∥ps − gs∥1
cpos ← ∥px − gx∥1/max(1, Smax)
cori ← AngDeg(po,go)/180

cattr ←
{
0, if materials are equal or missing
γ, otherwise

C[i, j]← wscsize + wpcpos + wocori + wacattr
end

end
return C

46



2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Under review as a conference paper at ICLR 2026

Algorithm 3: Node-Level Alignment (NLA) with LLM-guided aliasing, class-wise Hungarian match-
ing, and L1 aggregation.
Input : GT graph text TG, Pred graph text TP ; weights (ws, wp, wo, wa); attribute penalty γ
Output: NLA score (lower is better) and matched pairs P
G← ParseGraph(TG); P ← ParseGraph(TP )
Compute global Smax = maxg∈G.nodes max(SizeVec(g))

M ← LLM AliasMapping(G,P ) // one-to-one mapping: pred id 7→ gt id
P ← RenamePredWithMapping(P,G,M, also set class=true) // sync IDs in
nodes/edges/constraints

TotalCost← 0; TotalPairs← 0; P ← ∅
C ← union of classes in G and P
foreach c ∈ C do

Pc ← {p ∈ P.nodes | p.cls = c}
Gc ← {g ∈ G.nodes | g.cls = c}
if |Pc| = 0 or |Gc| = 0 then

continue
end
C ← BuildCostMatrix(Pc, Gc, Smax, ws, wp, wo, wa, γ)
(r, t)← Hungarian(C) // row/col indices of optimal assignment
for k ← 1 to |r| do

TotalCost← TotalCost + C[r[k], t[k]]
TotalPairs← TotalPairs + 1
P ← P ∪ {(Pc[r[k]].id, Gc[t[k]].id)}

end
end
NLA← TotalCost

/
max(1,TotalPairs) // mean L1-based assignment cost

return (NLA, P)

47



2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

Under review as a conference paper at ICLR 2026

Algorithm 4: Depth computation and edge consistency for HLA.
Input : Graph X = (VX , EX); Node mappingM
Output: Depth map dX , EdgeF1 score

Function ComputeDepths(X = (VX , EX)):
C ← {c | (u, c) ∈ EX}; R← {v ∈ VX | v /∈ C}
if R = ∅ then

R← {v ∈ VX | layer(v) = 0} or VX

end
Initialize depth map d with d(r) = 0 for all r ∈ R; queue Q← R
while Q not empty do

u← pop(Q)
foreach (u, v) ∈ EX do

if v /∈ d then
d(v) = d(u) + 1; push v

end
end

end
foreach v ∈ VX do

if v /∈ d then
d(v) = 0

end
end
return d

Function EdgeF1(EP , EG,M):
hits← 0; nP = |EP |; nG = |EG|
foreach (ppar, pch) ∈ EP do

if ppar, pch ∈M then
gpar ←M[ppar]; gch ←M[pch]
if (gpar, gch) ∈ EG then

hits← hits+ 1
end

end
end
Prec← hits/nP if nP > 0 else 0
Rec← hits/nG if nG > 0 else 0
EdgeF1← 2 · Prec ·Rec/(Prec+Rec) if Prec+Rec > 0 else 0
return EdgeF1

48



2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

Under review as a conference paper at ICLR 2026

Algorithm 5: Depth consistency and final aggregation for HLA.
Input : GT graph G, Pred graph P , Node mappingM, mixing weight α
Output: HLA score, EdgeF1, DepthScore

Function DepthConsistency(dP , dG,M):
S ← []
foreach p ∈ VP do

if p ∈M then
g ←M[p]; ∆← |dP [p]− dG[g]|
append exp(−∆) to S

end
end
return mean(S) if |S| > 0 else 0

Function HierarchyLevelAccuracy(G,P,M, α):
dG ← ComputeDepths(G); dP ← ComputeDepths(P )
EdgeF1← EdgeF1(EP , EG,M)
DepthScore← DepthConsistency(dP , dG,M)
HLA← α · EdgeF1 + (1− α) ·DepthScore
return (HLA,EdgeF1, DepthScore)

49


	Introduction
	Related Work
	Methodology
	Graph-CAD Framework
	Data Annotation for Geometric Decomposition
	Structure-Aware Progressive Curriculum Learning

	Experiments
	Experimental Setup
	Performance Comparision With Existing Methods
	Ablation Studies
	Three-Stage Pipeline of Graph-CAD
	Structure-Aware Progressive Curriculum Learning


	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models
	Limitations
	Additional Methodology Details
	Data Annotation For Geometric Decomposition
	Structure-Aware Progressive Curriculum Learning
	More Implementation Details of SFT
	More Details of Metrics
	Analysis of Parameter Efficiency
	Graph Representations in CAD and Relation to This Work

	Additional Results
	Human Evaluation
	Additional Qualitative Results
	Visualization of Progressive Improvement with SAPCL
	Validation of VLM-based Evaluation
	Impact of Few-Shot Examples on General LLMs
	Effect of Different Base Models
	Comparison with Sketch-and-Extrude Methods
	Effect of Graph Representation under Varying Object Complexity
	Captioning Cost and Comparison with Open-Source LVLMs
	Comparison with a Unified Single Model
	Annotation Accuracy and Typical Failure Cases

	The Prompts Used in the Experiment
	Prompt for the VLM Evaluator
	Prompt for the Problem Generator
	Prompt for Geometry Decomposition
	Prompt for Action Planning
	Prompt for Code Generation

	Illustrative Data Example

