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Abstract

Current machine learning methods for medical image analysis primarily focus on devel-
oping models tailored for their specific tasks, utilizing data within their target domain.
These specialized models tend to be data-hungry and often exhibit limitations in generaliz-
ing to out-of-distribution samples. Recently, foundation models have been proposed, which
combine data from various domains and demonstrate excellent generalization capabilities.
Building upon this, this work introduces the incorporation of diverse medical image domains,
including different imaging modalities like X-ray, MRI, CT, and ultrasound images, as well
as various viewpoints such as axial, coronal, and sagittal views. We refer to this approach as
multi-domain model and compare its performance to that of specialized models. Our find-
ings underscore the superior generalization capabilities of multi-domain models, particularly
in scenarios characterized by limited data availability and out-of-distribution, frequently en-
countered in healthcare applications. The integration of diverse data allows multi-domain
models to utilize shared information across domains, enhancing the overall outcomes signif-
icantly. To illustrate, for organ recognition, multi-domain model can enhance accuracy by
up to 8% compared to conventional specialized models.

1 Introduction

In medical image analysis, existing machine learning approaches propose models to address wide range of
problems (Gulshan et al., 2016; Irvin et al., 2019; Liu et al., 2020), which have been tailored for their
designated applications and typically utilize data from a single target domain. This approach leads to
data-intensive specialized models and show limited generalization capabilities.

A spectrum of imaging modalities, including X-rays, magnetic resonance imaging (MRI), computed tomog-
raphy (CT), ultrasound (US), and positron emission tomography (PET) provides unique perspectives into
different aspects of anatomy and pathology. X-ray images excel in revealing bone structures and detecting
fractures, while MRI scans provide detailed images of soft tissues like the brain, muscles, and organs. CT
scans offer cross-sectional views, helping to identify internal injuries and complex conditions. US images are
non-invasive and excel in real-time imaging, often used for monitoring pregnancies and examining internal
organs, whereas PET provides metabolic information, aiding in cancer detection and localization. Thus, in-
sights gathered from one imaging modality might benefit another, enhancing overall prediction capabilities.
Furthermore, in medical decision-making, clinicians often consider diverse viewpoints, examining a single
medical case from multiple angles to reveal hidden critical information. Certain anomalies may be more
apparent from one angle than another, ensuring a comprehensive understanding of the patient’s condition
and facilitating accurate diagnoses and effective treatment strategies.

Existing works in medical image analysis falls short of fully leveraging the diverse image data available.
Such limitations constrain the potential that can be derived from cross-learning across diverse data domains,
such as imaging modalities and/or viewpoints. Integrating information from different image domains can
provide a comprehensive understanding of a medical condition, enabling more holistic diagnoses and tailored
treatment plans. Building upon the advancements in foundation models as OpenAI (2023); Touvron et al.
(2023); Thoppilan et al. (2022) and the growth of medical image datasets, our work seeks to address a pivotal
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question: Can the integration of diverse data domains improve the generalization capabilities of models for
medical image analysis? If this proves to be the case, the combination of expanding datasets and the deep
learning era may serve as a catalyst for the development and progression of models, thereby facilitating
breakthroughs in medical image analysis (Zhang et al., 2023).

In this work, we introduce the incorporation of diverse medical image data domains and evaluate the perfor-
mance of specialized models in comparison to multi-domain models. Our evaluation spans out-of-distribution
(OOD) and data-limited scenarios, common in healthcare applications. This analysis represents the first in-
stance where multi-domain data is assessed for a single task, different from multi-task setups. It provides
new insights into the respective strengths and drawbacks of these models, paving the path toward exploiting
the potential of diverse data domains in medical image analysis applications and foundation models.

1.1 Related work

Recent years have witnessed a rise of foundation models, particularly in fields like natural language pro-
cessing and computer vision. Large language models for general applications including GPT4 (OpenAI,
2023), LLaMA (Touvron et al., 2023), PaLM (Chowdhery et al., 2022), LaMBDA (Thoppilan et al., 2022),
RoBERTa (Liu et al., 2019) and BERT (Devlin et al., 2018), as well as those in healthcare like Tu et al.
(2023); Zhang et al. (2023); Singhal et al. (2023); Yuan et al. (2021); Jin et al. (2019); Yuan et al. (2022); Lee
et al. (2019); Rasmy et al. (2021); Luo et al. (2022); Li et al. (2020); Yan et al. (2022) have played a crucial
role. Additionally, large vision models for general applications, such as Huang et al. (2018); Kolesnikov et al.
(2019); Radosavovic et al. (2020); Goyal et al. (2021); Tan & Le (2021); Liu et al. (2022); Chen et al. (2020);
Dosovitskiy et al. (2020); Han et al. (2021); Liu et al. (2021); Touvron et al. (2021); Wu et al. (2022), and
those in healthcare, like Wang et al. (2023); Zhao et al. (2023); Chen et al. (2019); Zhou et al. (2019); Azizi
et al. (2021); Zhou et al. (2020); Huang et al. (2021); Sowrirajan et al. (2021); Zhang et al. (2022); Tiu
et al. (2022); Nguyen et al. (2023); Chen et al. (2021); Zhang et al. (2021); Xie et al. (2021); Valanarasu
et al. (2021); Hatamizadeh et al. (2022); Cao et al. (2022); Shi et al. (2023) have emerged, driving signifi-
cant advancements across diverse applications (Qiu et al., 2023). These models have not only expanded in
terms of their number of parameters and data handling capacities but have also consistently demonstrated
remarkable performance once pre-trained. Furthermore, these models combine data from various domains
and demonstrate exceptional generalization capabilities beyond their primary training tasks.

When aiming to enhance generalization capabilities, an alternative approach to consider is multi-task learn-
ing (Caruana, 1997). Here, the goal is to improve the performance of a model while solving multiple related
tasks simultaneously. The idea is that learning from multiple tasks can help the model capture shared pat-
terns and representations, leading to better performance on each individual task. In contrast, in our work
we focus on learning from different domains or datasets without necessarily involving multiple tasks.

Several studies have explored the role of multi-modality approaches in healthcare contexts (Huang et al.,
2021; Acosta et al., 2022; Tiu et al., 2022; Zhang et al., 2022; Yuan et al., 2023). However, these methods
predominantly focus on integrating text with a single imaging modality, rather than incorporating data from
various image domains. Closest work to ours is BenchMD (Wantlin et al., 2023), where they combined 19
publicly available datasets for 7 medical modalities, including 1D sensor data, 2D images, and 3D volumetric
scans. In the case of 2D images, BenchMD combined data from diverse sources, including chest X-rays
(CXR), mammograms, dermoscopic, and fundus images. They utilized widely-cited and large dataset as the
primary source for each imaging modality, conducting evaluations of distribution shifts on a separate test
set. Nevertheless, their analysis did not encompass an assessment of the models’ generalization capability
across various domains.

In Table 1, we present a summary of our work, comparing it to related work based on their input, output,
and the data needed for training and testing.

2 Methods

The level of generalization that multi-domain models can achieve in scenarios involving out-of-distribution
and limited data remains uncertain based on prior research involving large scale models applied to medical
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Input [# Images] Output [# Tasks] Dataset [# Domains] Input instance [# Domains]
Specialized Single Single Single Single
Multi-task Single Multiple Single Single
Multi-modal Multiple Single Multiple Multiple
Multi-domain Single Single Multiple Single

Table 1: Summary of our work, the multi-domain model, compared to related work of specialized, multi-task
and multi-modal models based on their input, output, and the data needed for training and testing.

image analysis (Chen et al., 2019; Singhal et al., 2023; Wang et al., 2023; Zhao et al., 2023; Wantlin et al.,
2023). To illustrate this idea, consider the following research question: Can a neural network trained
on instances of a medical condition as observed through CT, PET, and X-ray images, provide accurate
predictions when presented with MRI images, even in cases where this condition has been encountered
infrequently in the training set from MRI images? In order to delve into the specifics, we aim to explore the
potential for shared information across different data domains, such as imaging modalities or viewpoints. To
achieve this, we will first introduce the datasets employed in this study and then outline the methods used
to generate data diversity within these datasets, thereby allowing us to analyse the impact of diverse data
domains on generalizability. For reproducability, we will make our code publicly available upon acceptance.

2.1 Datasets

Most existing datasets from various data domains are tailored to their specialized applications and these
datasets lack commonalities that would allow for evaluating potential knowledge transfer. Thus, we present
our results on the following datasets, which do not suffer from these challenges.

2.1.1 PolyMNIST

We start with the multi-modal benchmark PolyMNIST (Sutter et al., 2021) to understand behaviours for
different ablations. The PolyMNIST dataset consists of sets of ten MNIST digits where each set includes
five images with the same digit label but different backgrounds and different styles of hand writing. For
our experiments, each digit represents the shared information across modalities and different background
images represent modality-specific information. In total we used for each digit and modality combination
1000 samples of training and validation examples (50000 images in total for ten digits and five modalities)
and 891 samples of test examples (44550 images in total) from the original train and test split of the dataset.
Our objective is to perform multi-class classification of ten digits across five different modalities.

2.1.2 MedMNIST

We use MedMNIST v2 (Yang et al., 2023) benchmark to explore generalization across viewpoints. MedM-
NIST v2 is a large-scale MNIST-like dataset collection of standardized biomedical images, including datasets
of 2D and 3D data. Among these, we use Organ{A,C,S}MNIST subset, which are based on CT images from
axial, coronal and sagittal views. The visible organs within this data include bladder, left femoral head, right
femoral head, heart, left kidney, right kidney, liver, left lung, right lung, pancreas and spleen. We used the
original data split, with 61521 training (34581 for axial, 13000 for coronal and 13940 for sagittal view), 11335
validation (6491 for axial, 2392 for coronal and 2452 for sagittal view) and 34875 test (17778 for axial, 8268
for coronal and 8829 for sagittal view) samples. The goal is to perform multi-class classification of 11 body
organs from axial, coronal and sagittal views.

2.1.3 ImageCLEFmedical

We use ImageCLEFmedical Caption challenge (Ionescu et al., 2022) dataset, a subset of the extended Ra-
diology Objects in COntext (ROCO) dataset (Pelka et al., 2018). This dataset is derived from biomedical
articles within the PMC OpenAccess subset, a comprehensive collection of figures sourced from open access
biomedical journal articles (PubMed Central), along with radiology images extracted from original medical
cases. In both training and validation data, each image is paired with UMLS 2020 AB concepts (Bodenrei-
der, 2004), extracted from the accompanying image captions. Our experiments exploit the concept detection
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Figure 1: We employ (a) PolyMNIST, multi-modal dataset for digit classification using data from different
modalities, (b) MedMNIST for the classification of organs from different views of CT image slices, and (c)
ImageCLEFmedical for organ classification using data from different imaging modalities.

data within this dataset. There are more than 8000 concepts in the dataset, each with varying frequencies
of occurrence. To enhance control and comprehension of generalization, we opted to work with a subset of
images and concepts. Our analysis focused on the 100 most frequently employed CUIs. Filtering was then
applied to images based on the semantic types of their associated concepts, specifically targeting concepts
related to “Diagnostic procedure" for imaging modality identification, and “Body Part, Organ, or Organ
Component" for presence of specific organs in the images. From the filtered list of CUIs, we selected a subset
of organs for further analysis. This subset comprised nine distinct body organs, namely pelvis, vertebral
column, lung, urinary bladder, right ventricular structure, stomach, pulmonary artery structure, anterior
descending branch of the left coronary artery, and left kidney. As for imaging modalities, we considered
CT, X-ray, MRI, US, angiogram (AG), and PET images. It’s important to note that not all body parts are
captured through all imaging modalities. Since the test images in the original dataset do not come with their
concepts, we employed the train split from the original challenge dataset for training and validation, while
the validation split was repurposed as the test set. This resulted in a dataset of 8433 images for training
and validation, with an additional 688 images reserved for testing. Our task entails multi-class classification
of the nine body organs across six distinct imaging modalities.

2.2 Dataset specific tasks and domains

In our experiments, we focus on classifying different digits for PolyMNIST or organs for the medical datasets
across different data domains. The datasets can be visualized as a square task and data domain combinations
grid. These combinations consist of digit/modality combination for PolyMNIST, organ/view combination
for MedMNIST and organ/modality combination for ImageCLEFmedical. For a summary of the tasks and
data domains within these datasets, please refer to Figure 1. Each row corresponds to a class, whether it be
a digit or an organ, while each column signifies a specific data domain, such as a view or a modality. Each
cell within the grid includes all the images from a particular combination of class and domain.

2.3 Generating train and validation splits for data diversity

The objective of this work is to conduct a comparative analysis and gain insights into specialized and multi-
domain models under conditions of data-limited and OOD scenarios. To accomplish this, we create different
data subsets characterized by differing aspects and levels of data diversity. We base the generation of these
partitions on two key factors: data availability and the level of OOD, which we will explain in more detail
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below. During the testing phase, we refrain from any additional data processing and exclusively employ the
predefined test splits as provided within each dataset.

2.3.1 Amount of data

For PolyMNIST, we start by constructing train and validation splits with different data distributions. For
each of the digit and modality combination in the set, we have access to 1000 samples. To introduce diversity
to data distribution, we implemented diverse probability distributions for digit and modality combinations,
as follows. We use standard distribution for digit and modality distributions with the following parameters:
µdigit = 0, σdigit ∈ {3, 5, 9, 17}, µmodality ∈ {0, 2} and σmodality ∈ {1, 3, 5}. We sampled and normalized
these distributions, ensuring that all values are within the range of 0 to 1. We then multiply the digit and
modality distributions and rescale the product by a factor of 1000, hereby guaranteeing that each distinct
modality and digit combination has a sample count between 0 and 1000. In Figure 2(a), we present a
graphical representation of this process, employing the specific parameter values of µdigit = 0, σdigit = 5,
µmodality = 2, and σmodality = 3. The combination of different mean and standard deviation parameters for
digit and modality distribution yields a total of 24 distinct distributions to use, as shown in Figure A.1.

The data distributions for MedMNIST are shown in Figure 2(c), with (i) representing the training, (ii)
validation, and (iii) test set. Similarly, for ImageCLEFmedical, the data distributions are visualized in
Figure 2(d), where (i) illustrates the combined train and validation set, and (ii) the test distribution. It
is important to note that the datasets for both MedMNIST and ImageCLEFmedical inherently exhibit
diversity, since they have varying sample counts for each organ across different views in MedMNIST and
across different modalities in ImageCLEFmedical. Thus, we employ a range of sampling percentages to create
distinct training and validation subsets for these datasets. We use their provided distributions and sample
training and validation subsets accordingly. The sampling percentages include {5, 10, 25, 35, 50, 75, 100}%,
where 100% indicates the utilization of the entire available training and validation data, while 5% implies
that only 5% of the data is incorporated into subsets. As a result, this sampling approach ensures consistent
ratios of training samples across different combinations, albeit with varying sample sizes.

2.3.2 Out-of-distribution (OOD) level

To evaluate the OOD performance of both specialized and multi-domain models across various datasets, we
introduce OOD levels, as follows: for each task and data domain combination, we systematically exclude
a subset of instances from both the training and validation sets. Subsequently, we repeat the training and
validation procedures for each of the combination.

We quantify OOD levels using percentages, specifically {0, 25, 50, 75, 85, 95, 100}%, where 100% signifies that
the specific combination is entirely absent from both the training and validation sets, whereas, 0% indicates
that the training and validation datasets contain the complete set of samples for the given combination. As
a result, for each experiment, the specific combination becomes either never or less frequently observed. For
a fair representation of each combination, we ensure that every combination occurs exactly once, that is,
each row and column features only a single cell representing a specific combination.

We present an illustrative example of diverse data strategies for PolyMNIST in Figure 2(b). Here, opacity is
used to represent the quantity of data, with less opacity indicating a larger amount of data. Specifically, (i)
demonstrates an example of utilized data for evaluating data distribution and employs distribution parame-
ters µdigit = 0, σdigit = 5, µmodality = 2, and σmodality = 3 to define the data distribution, as in Figure 2(a),
whereas and (iiå) showcases the OOD scenarios with a 75% OOD level for digit 2 and modality d.

2.4 Training and testing procedure

In our experimental setup, we employ identical datasets for both specialized and multi-domain models. The
key distinction lies in the manner with which (part of) data the models are trained. To elaborate, for
instance, in the case of MedMNIST, we train and evaluate three distinct specialized models, each dedicated
to classifying organs based on axial, coronal, or sagittal views using the respective data from the view. In
contrast, the multi-domain model leverages the entire available data for the same organ classification task.
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Figure 2: (a) Data diversity evaluation for PolyMNIST with (i) digit distribution using µdigit = 0 and
σdigit = 5, (ii) modality distribution with µmodality = 2 and σmodality = 3, (iii) number of samples from
the resulting distribution for each digit/modality combination. (b) Examples for generating train/validation
splits for data diversity for PolyMNIST with (i) data distribution evaluation using µdigit = 0, σdigit = 5,
µmodality = 2 and σmodality = 3 and (ii) OOD evaluation for digit 2 and modality d combination with OOD
level of 75%. (c) Data distribution for MedMNIST dataset with (i) training, (ii) validation, and (iii) test
set. (d) Data distribution for ImageCLEFmedical dataset with (i) training and validation, and (ii) test set.

It’s important to clarify that the choice between a multi-domain or specialized setup impacts the training
and validation phases, determining which data partitions the models are exposed to. When it comes to the
test phase, we assess each test image to predict its designated task. Therefore, the multi-domain doesn’t
require the simultaneous input of all modalities during testing, e. g. in contrast to multi-modal learning.

3 Experiments and Results

3.1 Experimental Setup

3.1.1 Model Architecture and Hyperparameters

In our experiments, we utilize the pre-trained ResNet-18 architecture (He et al., 2016), employing the cross-
entropy loss and the AdamW optimizer (Loshchilov & Hutter, 2017). PolyMNIST and ImageCLEFmedical
raining data is split into training and validation sets with a ratio of 0.75. For testing we use the validation
data. For MedMNIST, we use the official train/validation/test splits. For MedMNIST and ImageCLEFmed-
ical datasets, we evaluate and report the average of five random seeds. We train the models for 25 epochs
and decay the learning rate by 0.1 every 5 epochs. For PolyMNIST, we set the learning rate to 0.005, use a
batch size of 512 and employ a weight decay of 0.001. For MedMNIST, the learning rate is set to 0.001, batch
size to 128, weight decay to 0.001. For ImageCLEFmedical, we use a learning rate of 0.0005, utilize a batch
size of 128, set the weight decay to 0.00001. Note that, we did hyperparameter tuning for multi-domain
models, and repeated this for specialized models, with the hyperparameters largely in alignment and did
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not impact the convergence of training. The images in PolyMNIST and MedMNIST have the resolution of
28×28 pixels2. We pre-process these images by resizing them to 32×32 pixels2. As for ImageCLEFmedical,
we center crop the images to ensure equal width and length, further augmenting them with a random 0x to
0.1x translation and resizing them to dimensions of 224 × 224 pixels2.

3.1.2 Evaluation

We employ balanced accuracy as our evaluation metric, encompassing two distinct evaluation scenarios: out-
of-distribution (OOD) accuracy and in-distribution (ID) accuracy. This involves evaluating the accuracy of
each excluded combination and subsequently computing the average accuracy across all such combinations.
For PolyMNIST, this approach results in a total of 50 evaluations (10 digits and 5 modalities), while for
MedMNIST, we conduct 33 evaluations (11 organs and 3 views), and for ImageCLEFmedical, there are 54
evaluations (9 organs and 6 modalities) in total. We refer to the resulting metric as OOD average balanced
accuracy. In addition, we calculate the average balanced accuracy of all combinations except for the excluded
ones and once again calculate the average across the different combinations set. We designate this outcome
as ID average balanced accuracy. All evaluation metrics are reported in test set.

3.2 Results

3.2.1 PolyMNIST

We begin our analysis by assessing data diversity across various OOD levels. For this, we not only com-
pare specialized and multi-domain models, but but also introduce a modified version of specialized models,
which we refer to as specialized upsampled models: we augment the data available to specialized models,
ensuring that each digit is classified with an equal number of images for both the specialized upsampled
and multi-domain models. The original PolyMNIST dataset provides a sufficient number of samples for this
purpose. Thus, both specialized and multi-domain models have access to a maximum of 1000 images for
each digit/modality combination, while the upsampled counterparts of the specialized models benefit from
an expanded dataset, containing up to 5000 images for each such combination. Furthermore, we would like
to mention that the scenario involving specialized upsampled models is not a realistic representation but is
exclusively examined to assess the advantages and limitations associated with an augmented dataset.

Figure 3 compares the performance of specialized, specialized upsampled and multi-domain models. We
compute the area under the curve (AUC) for both the OOD and ID average balanced accuracy curves across
various data distributions. Each data point represents the AUC for different OOD level, where (a) provides
a comparison of ID average balanced accuracy across different data distributions and OOD levels, while (b)
shows OOD average balanced accuracy among specialized (blue), specialized upsampled (green), and multi-
domain (red) models. Note that, in this experiment, the highest achievable AUC for a model is marked
with a dashed black line. The ideal outcome is represented by a flat line at maximum, indicating perfect
performance unaffected by OOD levels. Figure 4 provides an in-depth overview of the models across diverse
data distributions. We depict the balanced accuracy difference between specialized and multi-domain models
(a,b) and specialized upsampled and multi-domain models (c,d). Each line represents OOD levels showing
the differences between models during data distribution evaluations. For a more detailed overview, please
refer to Figure 5, which provides an overview of the average balanced accuracy scores for specialized (a,b),
specialized upsampled (c,d) and multi-domain (e,f) models. These are presented across various distributions
on the x-axis, and OOD levels, indicated by different color codes for both ID (a,c,e) and OOD (b,d,f)
evaluation. To facilitate a meaningful comparison across different distributions, we have organized the 24
distributions in ascending order based on their median values. Furthermore, we have calculated the AUC for
each line representing the OOD levels in these figures as in Figure 3. Additionally, we have computed the
balanced accuracy difference for each OOD level in these figures, and the outcomes are presented in Figure 4.

When assessing the ID accuracy, our results indicate that varying levels of OOD scenarios do not significantly
affect ID accuracy. The performance of the specialized models are still lower than the specialized upsampled
and multi-domain models, showing that ID accuracy can be compensated with higher number of samples.
Upon analyzing OOD performance, a notable and consistent pattern emerges: as the OOD level increases,
OOD accuracy declines noticeably for specialized and specialized upsampled models. This stands in stark
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Figure 3: Evaluating OOD levels for PolyMNIST. Each point shows the area under the balanced accuracy
curve through different evaluation of data distributions for different OOD levels in x-axis.
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(c) ID evaluation for specialized up-
sampled vs multi-domain
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(d) OOD evaluation for specialized upsam-
pled vs multi-domain

Figure 4: Evaluating amount of data for PolyMNIST. Reporting balanced accuracy difference between
specialized and multi-domain models (a,b) and between specialized upsampled and multi-domain models
(c,d). Each line corresponds to different OOD levels and presents the difference between models across
various data distribution evaluations, as indicated on the x-axis.

contrast to multi-domain models, which exhibit considerably greater resilience to this phenomenon. The
difference becomes particularly pronounced for OOD levels >50%. This can be attributed to the fact that
multi-domain models benefit from shared information across different modalities for the classification task,
thereby aiding OOD recovery. In contrast, specialized models struggle to recover unseen (at OOD level 100%)
or scarce encountered (at OOD level < 100%) digit/modality combinations, even when provided with larger
sample sizes with specialized upsampled models. Furthermore, across all models, we observe a consistent
trend: both ID and OOD performance declines as the number of samples decreases.

For testing potential knowledge transfer, we conducted a control experiment, where our goal was to evaluate
a scenario where information sharing is constrained for multi-domain model. For this, we split the data from
various modalities into two distinct domains, grouping classes as follows: 0 and 5 together as one class, 1
and 6 as another, and so on, with classes 4 and 9 comprising the final group. Thus, we split digits 0 through
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(a) ID evaluation for specialized models
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(b) OOD evaluation for specialized models
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(c) ID evaluation for specialized up-
sampled models
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(d) OOD evaluation for specialized upsam-
pled models
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(e) ID evaluation for multi-domain
model
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(f) OOD evaluation for multi-domain
model

Figure 5: PolyMNIST across various data distributions. We report average balanced accuracy for specialized
(a,b), specialized upsampled (c,d) and multi-domain (e,f) models across various distributions, depicted in
x-axis, and OOD levels, indicated by different color codes, for both ID (a,c,e) and OOD (b,d,f) evaluation.

4 into one domain and digits 5 through 9 into another. Consequently, our multi-domain model exploits both
domains, with each class encompassing two dissimilar digits. We then run OOD level experiments for each
digit and repeat this experiment for each of the original modalities a to e. In Figure 6, we present the OOC
evaluation results, showcasing the average balanced accuracy achieved by aggregating the experiments. The
lower the OOD level, the higher is the accuracy. However, when the OOD level reaches 100%, the average
accuracy declines to a level expected by chance. This observation shows the fact that at 100% OOD, there
is no opportunity for knowledge transfer, emphasizing the absence of information sharing.

3.2.2 MedMNIST

In Figure 7, we present a comparison of AUC values achieved by specialized and multi-domain models
across various sampling percentages for both ID (a) and OOD (b) average balanced accuracy curves. The
dashed black line, marked with a value of 100, represents the highest attainable AUC, which corresponds
to a 100% sampling rate and perfect accuracy. Figure 8 provides a more comprehensive analysis of the
specialized and multi-domain models with different amount of data for both ID evaluation (a) and OOD
evaluation (b). Each line corresponds to different OOD levels and illustrates the differences between the
models across different sampling percentages, as indicated on the x-axis. For a detailed overview, please
refer to Figure B.1, which presents an overview of the average balanced accuracy scores for specialized
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Figure 6: Control experiment for PolyMNIST. We test the potential knowledge transfer and evaluate a
scenario where information sharing is limited for multi-domain model. Dashed line shows the level of chance.

and multi-domain models. Furthermore, in Figure B.2, Figure B.3 and B.4, we report the AUC, accuracy
differences, and model accuracies at view level.

When assessing the ID accuracy, such as in the case of PolyMNIST, our findings suggest that varying OOD
levels do not significantly impact ID accuracy and both models exhibit similar levels of accuracy. For the OOD
performance, as the OOD level increases, OOD accuracy experiences a noticeable decline for both models.
This distinction between the models becomes particularly pronounced for OOD levels exceeding 75%. In
the extreme case of a 100% OOD level, the specialized model’s accuracy drops, which makes it impossible
for specialized models to predict fully unseen data. In contrast, the multi-domain model still benefits from
shared information in this scenario. Furthermore, across all models, both ID and OOD performance decrease
as the number of samples for each digit/modality combination decreases.
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Figure 7: OOD levels for MedMNIST. Each point shows the area under the balanced accuracy curve through
different evaluation of data availability (sampling percentage) for different OOD levels, shown in x-axis.
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Figure 8: Amount of data for MedMNIST. Each line corresponds to different OOD levels and presents the
balanced accuracy difference between specialized and multi-domain models across different amount of data
(sampling percentage), as indicated on the x-axis.
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(a) Original distribution
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(b) Resampled uniform distri-
bution

Figure 9: Evaluating data distribution in MedMNIST. ID balanced accuracy for specialized and multi-domain
models across different amount of data. Results are presented for two scenarios: (a) utilizing the official data
split and (b) employing a resampled uniform distribution.

The data distribution for MedMNIST shows a significant bias towards the axial view, particularly in the
liver/axial organ/view combination. To investigate whether the matching ID accuracy between specialized
and multi-domain models can be attributed to data distribution, we conducted a control experiment. For
this, we restructured the data by resampling so that each organ/view combination contained 600 samples
for training and 95 samples for the validation split, aligning with the minimum sample size observed in
the official training and validation split. We repeat the experiment with using the resampled dataset and
for different amount of data using sampling percentage. As an example, with a 50% sampling percentage,
each organ/view combination benefits from 300 training and 48 validation samples. Figure 9 provides a
comparison of these different distributions for OOD level of 0%. These show that the data distribution has
a negligible impact on ID accuracy, as the resampled uniform distribution data continues to demonstrate
matching ID accuracy between specialized and multi-domain models.

3.2.3 ImageCLEFmedical

In Figure 10, we compare the models in terms of their AUC values under ID (a) and OOD (b) average
balanced accuracy curves. Figure 11 presents a more in-depth comparison of the specialized and multi-
domain models in terms of varying amount of data for both ID (a) and OOD (b) evaluation. For a detailed
overview, please refer to Figure C.1, which provides a summary of the average balanced accuracy scores for
specialized and multi-domain models.

For ID accuracy, our findings are consistent with the outcomes observed in PolyMNIST and MedMNIST stud-
ies. Here, variations in OOD scenarios do not significantly impact ID accuracy. In contrast to MedMNIST,
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Figure 10: OOD levels for ImageCLEFmedical. Each point shows the area under the balanced accuracy
curve through different data availability (sampling percentage) for different OOD levels, shown in x-axis.
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Figure 11: Amount of data for ImageCLEFmedical. Each line corresponds to different OOD levels and
presents the balanced accuracy difference between specialized and multi-domain models across different
amount of data (sampling percentage), as indicated on the x-axis.

the multi-domain model demonstrates an 8% improvement in accuracy, mirroring the findings in PolyMNIST
where multi-domain model outperformed specialized models. This result is particularly intriguing given that
the utilized images are unprocessed and have remarkable diversity. Regarding OOD performance, as the
OOD level increases, both models experience a noticeable decline. Importantly, the multi-domain model
maintains a consistent 8% advantage across all OOD levels, where the multi-domain model continues to
benefit from shared information for both ID and OOD evaluation, even in data-limited and OOD scenarios.

4 Discussion and Conclusion

Motivated by the recent advancements in foundation models exploiting diverse data sources and demon-
strating exceptional generalization abilities, this work investigated specialized and multi-domain models,
comparing their performance in scenarios involving OOD and data-limited scenarios. We evaluate three
datasets, such as the toy dataset PolyMNIST (Sutter et al., 2021), as well as two medical datasets, MedM-
NIST (Yang et al., 2023) and ImageCLEFmedical (Ionescu et al., 2022) and obtain following key conclusions:

- Multi-domain models outperform specialized models in OOD and data-limited scenarios, capitalizing on
their ability to leverage shared information across diverse domains.

- Multi-domain models consistently either match or excel specialized models in terms of their ID accuracy.

- Specialized models can compensate for ID accuracy with a higher number of samples. However, they face
considerable challenges in recovering OOD accuracy for tasks that are entirely unseen or encountered only
infrequently, even when provided with larger sample sizes.

- The level of OOD scenario does not impact ID accuracy for any of the models, indicating the robustness
in preserving ID accuracy across varying OOD levels.

It’s worth noting that the extent of the advantage of knowledge transfer between domains is limited upon
the availability of shared information. As a future direction, understanding the underlying mechanisms
behind the generalization capabilities of multi-domain models for OOD and data-limited scenarios is a
crucial direction. Deeper investigations into the information sharing within these models hold the potential
to yield more efficient strategies for knowledge transfer and domain adaptation. Furthermore, addressing
the scalability of these models for real-world, large-scale applications remains a pressing concern for medical
image analysis. Future research can concentrate on working with refining these models for efficiency and
ensuring their practicality in real-world resource-constrained environments. Additionally, the exploration of
more diverse datasets and problem domains will be essential for validating and extending our findings.

In summary, our work underlines the effectiveness of multi-domain models in tackling OOD and data-limited
challenges, offering promising avenues for their application in medical image analysis where such challenges
are prevalent. These insights contribute to the ongoing exploration and implementation of large scale models
in diverse fields and applications.
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A PolyMNIST

In Figure A.1, we present 24 distinct data distributions, each representing the number of samples within
training and validation splits. Within each subfigure, the titles align with the data points employed for the
evaluations in Figure 4 and Figure 5 along the x-axis.
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Figure A.1: 24 distinct data distributions, each representing the number of samples within various training
and validation splits. These are characterized by diverse probability distributions for digit and modality
combinations. They are organized in ascending order, based on their respective median values.

We conducted an additional experiment, mirroring the amount of data experiments conducted with MedM-
NIST and ImageCLEFmedical datasets using the sampling percentage. For this, we used a uniform sample
distribution for each digit/modality combination having 1000 samples. Subsequently, we performed sampling
at rates of {5, 10, 25, 35, 50, 75, 100}%, resulting further in a uniform distribution. For example, when using a
10% sampling percentage, we obtained 100 samples for each digit/modality combination. Figure A.2 reports
AUC under the average balanced accuracy curves across sampling percentage for various OOD levels for
PolyMNIST. Notably, these results underscores the similar trend to those observed in Figure 3.
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Figure A.2: OOD levels for PolyMNIST. Each point shows the area under the balanced accuracy curve
through different evaluation of sampling percentage for different OOD levels, shown in x-axis.
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B MedMNIST

Figure B.1 presents a comprehensive summary of the average balanced accuracy scores for both specialized
and multi-domain models for different OOD levels and amount of data. We report the mean and standard
deviation (as the error bar) of the test accuracy across five random seeds.

Figure B.2 reports the AUC, Figure B.3 highlights the accuracy differences, and Figure B.4 shows the
accuracy of the specialized and multi-domain models at a more granular view level.
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Figure B.1: Comparison of models across various amount of data for MedMNIST. We report average balanced
accuracy for specialized and multi-domain models across various sampling rates, depicted in x-axis, and OOD
levels, indicated by different color codes, for both ID (a) and OOD (b) evaluation. We report the mean and
standard deviation of the test accuracy across five random seeds.
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Figure B.2: Evaluating OOD levels for MedMNIST for each of the views: axial (a,b), coronal (c,d), and
sagittal (e,f). Each point shows the area under the balanced accuracy curve through different evaluation of
data availability (sampling percentage) for different OOD levels, shown in x-axis.
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(a) ID evaluation for axial view
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(b) OOD evaluation for axial view
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(c) ID evaluation for coronal view
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(d) OOD evaluation for coronal view
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(e) ID evaluation for sagittal view
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(f) OOD evaluation for sagittal view

Figure B.3: Evaluating amount of data for MedMNIST for each of the views: axial (a,b), coronal (c,d), and
sagittal (e,f). Each line corresponds to different OOD levels and presents the balanced accuracy difference
between specialized and multi-domain models across different amount of data (sampling percentage), as
indicated on the x-axis.
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(a) ID evaluation for axial view
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(b) OOD evaluation for axial view
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(c) ID evaluation for coronal view
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(d) OOD evaluation for coronal view
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(e) ID evaluation for sagittal view
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(f) OOD evaluation for sagittal view

Figure B.4: Comparison of models across various amount of data for MedMNIST for each of the views: axial
(a,b), coronal (c,d), and sagittal (e,f). We report average balanced accuracy for specialized and multi-domain
models across sampling rates, depicted in x-axis, and OOD levels, indicated by different color codes, for both
ID (a,c,e) and OOD (b,d,f) evaluation. We report the mean and standard deviation of the test accuracy
across five random seeds.
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C ImageCLEFmedical

Figure C.1 presents a comprehensive summary of the average balanced accuracy scores for both specialized
and multi-domain models for different OOD levels and amount of data. We report the mean and standard
deviation (as the error bar) of the test accuracy across five random seeds.
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Figure C.1: Comparison of models across various amount of data for ImageCLEFmedical. We report average
balanced accuracy for specialized and multi-domain models across various sampling rates, depicted in x-axis,
and OOD levels, indicated by different color codes, for both ID (a) and OOD (b) evaluation. We report the
mean and standard deviation of the test accuracy across five random seeds.
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