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ABSTRACT

Offline Reinforcement Learning (ORL) enables us to separately study the two in-
terlinked processes of reinforcement learning: collecting informative experience
and inferring optimal behaviour. The second step has been widely studied in the
offline setting, but just as critical to data-efficient RL is the collection of infor-
mative data. The task-agnostic setting for data collection, where the task is not
known a priori, is of particular interest due to the possibility of collecting a single
dataset and using it to solve several downstream tasks as they arise. We investi-
gate this setting via curiosity-based intrinsic motivation, a family of exploration
methods which encourage the agent to explore those states or transitions it has not
yet learned to model. With Explore2Offline, we propose to evaluate the quality
of collected data by transferring the collected data and inferring policies with re-
ward relabelling and standard offline RL algorithms. We evaluate a wide variety
of data collection strategies, including a new exploration agent, Intrinsic Model
Predictive Control (IMPC), using this scheme and demonstrate their performance
on various tasks. We use this decoupled framework to strengthen intuitions about
exploration and the data prerequisites for effective offline RL.

1 INTRODUCTION

The field of offline reinforcement learning (ORL) is growing quickly, motivated by its promise to
use previously-collected datasets to produce new high-quality policies. It enables the disentangling
of collection and inference processes underlying effective RL (Riedmiller et al., 2021). To date, the
majority of research in the offline RL setting has focused on the inference side - the extraction of a
performant policy given a dataset, but just as crucial is the development of the dataset itself. While
challenges of the inference step are increasingly well investigated (Levine et al., 2020; Agarwal
et al., 2020), we instead investigate the collection step. For evaluation, we investigate correlations
between the properties of collected data and final performance, how much data is necessary, and
the impact of different collection strategies. Whereas most existing benchmarks for ORL (Fu et al.,
2020; Gulcehre et al., 2020) focus on the single-task setting with the task known a priori, we evaluate
the potential of task-agnostic exploration methods to collect datasets for previously-unknown tasks.
Task-agnostic data is an exciting avenue to pursue to illuminate potential tasks of interest in a space
via unsupervised learning. In this setting, we transfer information from the unsupervised pretraining
phase not via the policy (Yarats et al., 2021) but via the collected data.

Historically the question of how to act - and therefore collect data - in RL has been studied through
the exploration-exploitation trade-off, which amounts to a balance of an agent’s goals in solving a
task immediately versus collecting data to perform better in the future. Task-agnostic exploration ex-
pands this well-studied direction towards how to explore in the absence of knowledge about current
or future agent goals (Dasagi et al., 2019). In this work, we particularly focus on intrinsic moti-
vation (Oudeyer & Kaplan, 2009), which explores novel states based on rewards derived from the
agent’s internal information. These intrinsic rewards can take many forms, such as curiosity-based
methods that learning a world model (Burda et al., 2018b; Pathak et al., 2017; Shyam et al., 2019),
data-based methods that optimize statistical properties of the agent’s experience (Yarats et al., 2021),
or competence-based metrics that extract skills (Eysenbach et al., 2018). In particular, we perform
a wide study of data collected via curiosity-based exploration methods, similar to ExORL (Yarats
et al., 2022). In addition, we introduce a novel method for effectively combining curiosity-based
rewards with model predictive control.
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Figure 1: The Explore2Offline framework for evaluating data-efficient intrinsic agents. First the
agent acts in the environment task-agnostically to search for novel states. After a set lifetime, the
agent experience stored in a replay buffer is labeled with the rewards of a task of interest. This
replay buffer is used to train an RL policy with the offline reinforcement learning algorithm Critic
Regularized Regression in order to finally evaluate the quality of exploration in the environment.

In Explore2Offline, we use offline RL as a mechanism for evaluating exploration performance of
these curiosity-based models, which separates the fundamental feedback loop key to RL in order
to disentangle questions of collection and inference Riedmiller et al. (2021) as displayed in Fig. 1.
With this methodology, our paper has a series of contributions for understanding properties and
applications of data collected by curiosity-based agents.

Contribution 1: We propose Explore2Offline to combine offline RL and reward relabelling for
transferring information gained in the data from task-agnostic exploration to downstream tasks. Our
results showcase how experiences from intrinsic exploration can solve many tasks, partially reaching
similar performance to state-of-the-art online RL data collection.
Contribution 2: We propose Intrinsic Model Predictive Control (IMPC) which combines a learned
dynamics model and a curiosity approach to enable online planning for exploration to minimize
the potential of stale intrinsic rewards. A large sweep over existing and new methods shows where
task-agnostic exploration succeeds and where it fails.
Contribution 3: By investigating multi-task downstream learning, we highlight a further strength
of task-agnostic data collection where each datapoint can be assigned multiple rewards in hindsight.

2 RELATED WORKS

2.1 CURIOSITY-DRIVEN EXPLORATION

Intrinsic exploration is a well studied direction in reinforcement learning with the goal of enabling
agents to generate compelling behavior in any environment by having an internal reward represen-
tation. Curiosity-driven learning uses learned models to reward agents that reach states with high
modelling error or uncertainty. Many recent works use the prediction error of a learned neural net-
work model to reward agents’ that see new states Burda et al. (2018b); Pathak et al. (2017). Often,
the intrinsic curiosity agents are trained with on-policy RL algorithms such as Proximal Policy Op-
timization (PPO) to maintain recent reward labels for visited states. Burda et al. (2018a) did a wide
study on different intrinsic reward models, focusing on pixel-based learning. Instead, we use off-
policy learning and re-label the intrinsic rewards associated with a tuple when learning the policy.
Other strategies for using learned dynamics models to explore is to reward agents based on the vari-
ance of the predictions Pathak et al.; Sekar et al. or the value function (Lowrey et al., 2018). We
build on recent advancements in intrinsic curiosity with the Intrinsic Model Predictive Control agent
that has two new properties: online planning of states to explore and using a separate reward model
from the dynamics model used for control.

2.2 UNSUPERVISED PRETRAINING IN RL

Recent works have proposed a two-phase RL setting consisting of a long “pretraining” phase in a
version of the environment without rewards, and a sample-limited “task learning” phase with visible
rewards (Schwarzer et al., 2021). In this setting the agent attempts to learn task-agnostic information
about the environment in the first phase, then rapidly re-explore to find rewards and produce a policy
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specialized to the task. Various methods have addressed this setting with diverse policy ensembles,
such as a policy conditioned on a random variable whose marginal state distribution exhibits high
coverage (Eysenbach et al., 2018) or finding a set of policies with diverse successor features (Hansen
et al., 2020). Similarly Liu & Abbeel (2021) learn a single policy which approximately maximizes
the estimated entropy of its state distribution in a contrastive representation space. Another strategy
collects diverse data during the pretraining phase and uses it to learn representations and exploration
rewards that are beneficial for downstream tasks (Yarats et al., 2021). A central focus of all of these
methods is delivering agents which can explore efficiently at task learning time. While the pretrain-
ing and data collection phases of unsupervised RL pretraining and Explore2Offline (respectively)
are similar, in Explore2Offline the task learning phase is performed on relabeled offline transitions,
enabling us to use information acquired throughout training and not only the final policy.

2.3 EVALUATING TASK-AGNOSTIC EXPLORATION

While there are many proposed methods for exploration, evaluation of exploration methods is varied.
Recent work in exploration have proposed a variety of evaluation metrics, including fine-tuning of
agents post-exploration (Laskin et al., 2021), sample-efficiency and peak performance of online
RL (Whitney et al., 2021), zero-shot transfer of learned dynamics models (Sekar et al.), multi-
environment transfer (Parisi et al., 2021), and skill extraction to a separate curriculum (Groth et al.,
2021). Task-agnostic exploration has been investigated via random data (Cabi et al., 2019) and
intrinsic motivation as a source of data for offline RL (Dasagi et al., 2019; Endrawis et al., 2021),
but has only been evaluated in the single-task setting and limited by current ORL implementations.
Offline RL is a compelling candidate for evaluating exploration data because of its emerging ability
to generalize across experiences in addition to imitating useful behaviors.

Complementary work echoes the importance of data collection for offline RL from the perspective
of unsupervised RL (Yarats et al., 2022), while our work focuses more on the relationship between
the exploration challenges of an environment and how a new exploration algorithm could address
current data generation shortcomings.

2.4 OFFLINE REINFORCEMENT LEARNING

With Offline Reinforcement Learning, we decouple the learning mechanism from exploration by
training agents from fixed datasets. Various recent methods have demonstrated strong performance
in the offline setting (Wang et al., 2020; Kumar et al., 2020; Peng et al., 2019; Fujimoto & Gu, 2021).
In Explore2Offline we use a variant of Critic Regularised Regression (Wang et al., 2020).

Many datasets and benchmarks such as D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al.,
2020) have been proposed to investigate different approaches. The use of offline datasets has even
been extended to improve online RL performance (Nair et al., 2020). Our goal is related; instead
of investigating multiple offline RL approaches, we investigate mechanisms to generate datasets
for downstream tasks. Analysis over the desired state-action and reward distributions for ORL are
studied, but little work is done to address how best to generate this data (Schweighofer et al., 2021).

On the theory side, recent works have investigated the Explore2Offline setting, which they call
“reward-free exploration” (Jin et al., 2020; Kaufmann et al., 2021). These works study algorithms
which guarantee the discovery of ε-optimal policies after polynomially many episodes of task-
agnostic data collection, though the algorithms they study are not straightforwardly applicable to
the high-dimensional deep RL setting with function approximation.

2.5 REWARD RELABELLING

By using off-policy or even offline learning, data generated for one task and reward can be applied
to learn a variety of potential tasks. In off-policy RL, we can identify useful rewards for an existing
trajectory based on later states from the same trajectories (Andrychowicz et al., 2017), uncertainty
over a trajectory (Nasiriany et al., 2021), distribution of goals (Nasiriany et al., 2021), related tasks
(Riedmiller et al., 2021; Wulfmeier et al., 2019), agent-intrinsic tasks (Wulfmeier et al., 2021), via
inverse reinforcement learning (Eysenbach et al., 2020) as well as other mechanisms (Li et al., 2020).
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In the context of pure offline RL, we can go one step further as we are not required to find the optimal
tasks for stored trajectory data. In this setting, data can be used for learning with a massive set of
rewards such as all states visited along stored trajectories (Chebotar et al., 2021). We will evaluate
our approaches for exploration across downstream tasks and relabel data with all possible tasks.

3 METHODOLOGY

3.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework where an agent interacts with an environment to solve
a task by trial and error. The objective of an agent is often to maximize the cumulative future reward
on a predetermined task, E[∑∞

τ=0 γ
τ
rτ ∣s0 = st].We utilize the setting where an agent’s interactions

with an environment are modeled as a Markov Decision Process (MDP). A MDP is defined by a
state of the environment s, an action a that is taken by an agent according to a policy πθ(st), a
transition function p(st+1∣st, at) governing the next state distribution, and a discount factor γ ∈

[0, 1] weighting future rewards. With a transition in dynamics, the agent receives a reward rt from
the environment and stores the SARS data in a dataset D ∶ {sk, ak, rk, sk+1}. Alternatively to
this environment-centric reward formulation is the concept of intrinsic rewards, where the agent
maximizes an internal notion of reward in an task-agnostic manner to collect data.

3.2 CURIOSITY-DRIVEN EXPLORATION

Existing Methods Reaching new, valuable areas of the state-space is crucial to solving sparse
tasks with RL. One method to balance attaining new experiences, exploration, with the goal of
solving a task, exploitation, is using curiosity models. Curiosity models are a subset of intrinsic
rewards an agent can use to explore by creating a reward signal, rint.. These models encourage
exploration by optimizing the signal from a learned model that corresponds to a modeling error or
uncertainty, which often occurs at states that have not been visited frequently. We deploy a series
of intrinsic models: the simplest, Next Step Model Error maximizes the error of a learned one-step
model rint.

= ∥ŝt+1 − st+1∥2, Random Network Distillation (RND) maximizes the distance of a
learned state encoding to that of a static encoding rint.

= ∥η̂(st) − η(s)∥2 (Burda et al., 2018b),
the Intrinsic Curiosity Module (ICM) maximizes the error on a forward dynamics model learned
in the latent space, φ(s), of a inverse dynamics model rint.

= ∥φ̂t − φ∥2 (Pathak et al., 2017), and
Dynamics Disagreement (DD) maximizes the variance of an ensemble of learned one-step dynamics
models rint.

= σ(ŝit+1) (Pathak et al.).

Online Intrinsic Planning Agent

Memory Novel State

Current Novel State

Executed 
Behavior

Imagined 
Trajectories

Uninteresting State

Figure 2: A conceptual depiction of an exploration
with foresight via planning. By simulating the fu-
ture with a learned dynamics model, ideally an agent
should be able to avoid damaging states before hav-
ing experienced them to collect interesting data in a
sample-efficient manner.

Intrinsic Model Predictive Control
Model Predictive Control (MPC) on a
learned model has been used for con-
trol across a variety of simulated an real
world settings (Wieber; Camacho & Alba,
2013), including recently with model-
based reinforcement learning (MBRL)
algorithms (Williams et al., 2017; Chua
et al., 2018; Lambert et al., 2019). MBRL
using MPC is an iterative loop of learning a
predictive model of environment dynamics
fθ(⋅) (e.g. a one-step transition model), and
acting in the environment through the use
of model based planning with the learned
model. This planning step usually involves optimizing for a sequence of actions that maximizes
the expected future reward (Eqn. 1), for example, via sample based optimization; the MPC loop
executes the first action of this sequence followed by replanning.

a = argmax
at∶t+τ

τ

∑
t

r(ŝt, at), s.t. ŝt+1 = fθ(st, at). (1)
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Curiosity Model Training Labels Eval. Labels MPC Compatible
Random Network Distillation (RND) {s} {s} Yes
Intrinsic Curiosity Module (ICM) {s, a, s′} {s, a, s′} No
Next Step Model Error (NSM) {s, a, s′} {s, a, s′} No
Dynamics Dissimilarity (DD) {s, a, s′} {s, a} Yes

Table 1: The intrinsic models used with the components of a tuple needed for training and evaluation.
To function with planning, an intrinsic model cannot need access to the next state to compute reward.

The reward function r defines the behavior of the planned sequence of actions in model-based plan-
ning. For task-specific RL this can be the task reward function (known or estimated from data).
Instead, our Intrinsic MPC (IMPC) agent uses a curiosity based reward for planning in order to en-
courage task agnostic exploration by reasoning about what states are currently interesting and novel.
The goal of planning being used to visit new interesting states, rather than states that were recorded
with high intrinsic reward in the replay memory is shown in Fig. 2. This evaluation occurs by sam-
pling action sequences, unrolling them using the forward dynamics model, scoring the rollouts with
the learned curiosity model, and finally taking the first action of the sequence with the highest score.
Given that this evaluation happens with access to only imagined states and a proposed action, only
a subset of intrinsic models can be used with planning, as summarized in Tab. 1. We primarily
evaluate IMPC using the RND curiosity model, but we also present results with the DD model.

We use the Cross Entropy Method (CEM) (De Boer et al.), a sample based optimization procedure
for planning. Inspired by prior work Byravan et al. (2021) we use a policy to generate action can-
didates for the planner; this policy is trained using the Maximum a-posteriori Policy Optimization
(MPO) algorithm (Abdolmaleki et al., 2018) from data generated by the MPC actor. Additionally, to
amortize the cost of planning we interleave planning with directly executing actions sampled from
the learned policy. This is achieved by specifying a planning probability 0 < ρ < 1; at each step in
the actor loop we choose either to plan or execute the policy action according to ρ (we use ρ = 0.9).
Additional algorithmic details are included in Appendix A.1.

3.3 OFFLINE REINFORCEMENT LEARNING

To train an agent offline from task-agnostic exploration data, we determine rewards from observa-
tions in hindsight. While the approach relies on the ability to compute rewards based on observa-
tions, a large set of tasks can be described in this manner (Li et al., 2020). In comparison to online
learning, we have the benefit that we do not need to determine for which task data is most infor-
mative given a commensurate number of tasks. Instead we can relabel the data with all possible
rewards to maximise its utility. Given the new task rewards, we replace the intrinsic reward in our
trajectory data and apply a variant of a recent state-of-the-art offline RL algorithm, Critic Regu-
larised Regression (CRR) Wang et al. (2020). While we apply CRR for our investigation, the overall
method is general in that it could be applied with other approaches. We iteratively update critic and
actor optimising their respective losses following Equation 2 and 3.

LQ = EB[D(Qθ(st, at), (rt + γEat∼π(st+1)Qθ′(st+1, at)))], (2)

Since we use a distributional categorical critic, we apply the divergence measure D instead of the
squared Euclidean loss, following (Bellemare et al.). With f = ReLU(Â(st, at)) and Â the advan-
tage estimator via Qπ(st, at) − 1/m∑N

i=1Qπ(st, ai), the policy is optimized as:

π(at∣st) = argmax
π

E(st,at)∼B[f(Qπ, π, st, at) log π(a∣s)]. (3)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Exploration Agents In this work we benchmark a variety of task-agnostic exploration agents.
We classify agents as reactive, selecting actions with a policy, or planning, selecting actions by
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Figure 4: Comparing the collected rewards of an exploration agent (left) to the reward achieved
when training an offline RL algorithm on the same data (right). There is a substantial gain in
performance with offline RL algorithms simply by having more data, irregardless as to if the data
has higher density of observed rewards. The median, 90th and 10

th percentiles are shown for each
agent, combined across tasks. Note: the MPO agent learns online and is the only task-aware method.

optimizing over trajectories. The reactive agents are trained with Maximum Apriori Optimization
(MPO) (Abdolmaleki et al., 2018) and include the curiosity models RND, DD, ICM, and NS. We
compare these to IMPC with DD and RND optimized with CEM and a fixed random agent that sam-
ples from the action distribution. Some figures will include a label of MPO, which corresponds to the
benchmark of the task-aware RL agents, which provides interesting context to Explore2Offline. The
online agent represents the state-of-the-art performance when the task is known a priori – matching
it without an environment reward function would highlight the potential of Explore2Offline.

Reacher, EasyReacher, Easy Walker, Stand

Reacher, EasyReacher, Easy Explore Walker, Stand Explore

Figure 3: Collected reward per-episode (1000
env. steps) distributions across a subset of tasks
and their Explore Suite variants. Boxplots show
the median episode reward (red line), 25th and
75th percentiles (box), and the maximum and
minimum reward computed over 5000 training
episodes (whiskers). Only a horizontal line indi-
cates that the episode reward is equal or near 0.

Environments In this work, we investigate
the exploration performance of a variety of
DeepMind Control Suite tasks (Tassa et al.,
2018). We evaluate 4 domains (Ball-in-Cup,
Finger, Reacher, and Walker) including 14
tasks with a variety of state-action sizes, with
further details included in the Appendix. In or-
der to include more challenging environments
for task-agnostic exploration, we use modifica-
tions proposed by Whitney et al. (2021), Ex-
plore Suite, which include constrained initial
states and sparser reward functions.

4.2 TASK-AGNOSTIC DATA COLLECTION

We compare the amount of task-reward re-
ceived per-episode across a variety of agents
and tasks, which is an intuitive metric for ex-
ploration agent performance but can only act
as a proxy for exploration. To evaluate task-
agnostic reward, the exploration agents are run
without access to the environment rewards,
with the rewards are relabelled after. The dis-
tributions of normalized reward achieved dur-
ing the 5000 training episodes for four example
tasks are documented for all of the exploration
agents in Fig. 3. Crucially, the Explore Suite variants are challenging for the random agent across
its lifetime, where all of the examples shown have median episode-reward of 0. There is a wide
diversity in the agent-task pairings by proxy of measuring experienced reward, showcasing the large
potential of future work to better understand this area.

To give an overall view of data collection for each agent, we show in Fig. 4 (left) the Control and
Explore Suite average collected reward across all tasks. The median, 90th and 10

th percentiles are
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Domain, Task Best Task-Agnostic Random Agent IMPC-RND Task-Aware
Ball-in-Cup, Catch 973.28 943.04 973.40 984.11
Ball-in-Cup, Catch Exp. 962.56 0.00 938.59 974.27
Finger, Turn Easy 981.76 822.27 981.76 983.16
Finger, Turn Easy Exp. 947.94 915.97 944.22 968.67
Finger, Turn hard 975.33 543.57 975.33 977.27
Finger, Turn hard Exp. 952.63 690.79 595.06 965.60
Reacher, Easy 955.01 955.01 900.67 766.79
Reacher, Easy Exp. 813.91 612.77 740.70 973.91
Reacher, Hard 719.90 428.38 719.90 587.37
Reacher, Hard Exp. 930.95 261.20 410.78 973.91
Walker, Stand 534.99 297.63 302.12 991.73
Walker, Stand Exp. 258.55 243.53 81.28 982.79
Walker, Walk 445.53 146.76 96.88 978.36
Walker, Walk Exp. 426.07 47.54 78.88 975.06

Table 2: The best performance with 5 × 10
6 transition datasets for all 7 task-agnostic exploration

agents, the specific performance of Random Agent and IMPC-RND (to illustrate strengths and weak-
nesses), and the task-aware MPO agent (the reported number is the median across 3 ORL seeds on
a fixed dataset). Bold represents the best reward across a task and the median of near-best agents
being within the 10th-to-90th percentile range of the best agent. This shows where exploration agents
perform similarly and consistently to online RL for dataset collection. Even for some tasks where
intrinsic agents are near to task-aware exploration, the online RL has much tighter performance
across seeds. Results for all agents are shown in Appendix A.3.

Finger, Turn-Easy Finger, Turn-Easy Explore Walker, Walk Walker, Walk Explore
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Figure 5: Correlation of final offline RL performance to cumulative reward in the training set on
two example tasks and their explore-suite variants. The ORL performances are the median across 3
trials for each task and agent. As the dataset sizes we use span many orders of magnitude of samples,
both axes are plotted on a log-scale. Across all tasks, there is a trend of more reward in the training
distribution relating to a better performing CRR agent.

shown for each agent, combined across tasks. Here we also show what reward a task-aware agent
(MPO) will collect in its lifetime. It is included to indicate an upper target for exploration, rather than
a competitive baseline. An important artifact here is the random agent’s flatness of reward achieved
across time – the other exploration agents show an increase in median reward as the dataset size
grows (especially on Explore Suite). This change in reward distribution across dataset size indicates
a diversity of behaviors in the intrinsic exploration agents, while the random agent receives reward
from the same distribution repeatedly. This can be seen as a curiosity-based agent such as IMPC
with RND achieves varied rewards and the random agent has a repeated reward distribution.

While the collected reward can be a indicator of the usefulness of an exploration agent, it is not
directly transferable to a task-focused policy capable of solving tasks. Without careful environment
design, task-agnostic agents focusing on novel states will cover the entire state-space regardless of
the predefined downstream task.

4.3 EVALUATING OFFLINE RL ON EXPLORATION DATA
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Figure 6: Performance across tasks in the Finger and
Pointmass domains for offline RL agents trained on a
single dataset. From left to right the tasks become qual-
itatively less similar to the initial task. Task-agnostic
exploration regimes show the potential for better per-
formance over task-aware learning, but the results are
varied across task.

We study the performance of intrinsic
agents via a SOTA offline reinforcement
learning algorithm, Critic Regularized Re-
gression (CRR) (Wang et al., 2020). For
each agent, 3 policies were trained on
dataset sizes within the range of 2 × 10

3

to 5 × 10
6 environment steps. The mean

of the performance across all explore and
control suite tasks with confidence inter-
vals is shown in Fig. 4 (right). Due to
the width of this study, we were only able
to evaluate the offline RL performance on
3 seeds per each collected dataset – the
median, max and min across these three
policies from CRR are shown in each sub-
plot. Here, we see three core findings that
we will continue to detail: 1) for dataset
sizes < 1 × 10

5, there is little benefit
to task-aware learning for data collection
and the random agent is a strong baseline
versus other intrinsic model-based agents;
2) on larger datasets, the task-aware RL
method, MPO, jumps ahead of the explor-
ers, but the exploration agents all continue
to improve in offline RL performance with
more data; 3) the novel IMPC approach
with RND, along with existing methods of
MPO with RND or DD, performs best on
average with the largest datasets.

To showcase which tasks are solved by the Explore2Offline framework, we document the median
performance of the exploration agents with the full 5 × 10

6 steps training set size versus the task-
aware MPO in Tab. 2. Explore2Offline with these agents solve all but the Walker domain tasks, with
further results included in the Appendix.

To highlight why dataset size and observed reward are such powerful indicators of ORL perfor-
mance, we show in Fig. 5 the correlation for the Finger Turn and Walker Walk tasks of the cumu-
lative reward in a dataset versus the offline RL performance for that dataset. There is a clear trend
of more reward resulting in a better policy for the tasks paired with the environment. Fig. 7 uses
Spearman’s rank correlation to visualise how dataset size is a considerably better predictor of perfor-
mance than any reward statistics including mean, sum or 80% quantile. This further emphasises the
importance to transfer via increasingly large datasets instead instead of the final exploration policy.
In the next section we will evaluate how re-using data from task-agnostic exploration can enable
multi-task performance.

4.4 EVALUATING TASK-AGNOSTIC DATA FOR MULTITASK RL

A key motivation for collecting task-agnostic data is its applicability when there are a variety of
downstream tasks of interest, including those which might not be known at data collection time.
In the ideal case, task-agnostic exploration could collect a single dataset, then offline RL could
consume that data (along with relabeled rewards) to solve arbitrary tasks. We evaluate the quality of
datasets collected by various exploration agents for use with multiple downstream tasks.

For this evaluation we collected one dataset for the Pointmass and Finger environments using each
of seven exploration agents, then trained policies for downstream tasks by relabeling the data with
different reward functions. Each of the tasks is defined by a sparse +1 reward corresponding to a
particular goal state. As a baseline, the Online agent collects experience using a standard online RL
algorithm as it learns to solve a “Training” task, while all of the other data collection agents are task
agnostic. The datasets collected by each agent are evaluated with offline RL on the “Training” task
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and three others: “Easy Transfer”, “Medium Transfer”, and “Hard Transfer”. These datasets are
ranked in the level of challenge that a task-aware agent has in generalization. Tasks increase in chal-
lenge when goals require moving farther away from the training goal, which can be either travelling
further in the same direction (often easier) or entirely misaligned (for harder generalization). Due
to the dynamics of the systems, farther-away targets may be easier to discover, e.g. the “Medium
Transfer” target for Pointmass lies in the corner of the arena. Full details of these environments,
along with experiments on three more, are available in Appendix A.4.

Figure 7: Spearman’s rank correlation be-
tween performance of the ORL policy and
data statistics such as reward (mean, cumula-
tive and 80

th quantile) as well as dataset size
for task-agnostic datasets.

The performance of the exploration agents and the
task-aware MPO agent are varied across the tasks
as shown in Fig. 6. Depicted is the mean reward
achieved of offline RL policies trained on 3 ran-
dom seeds for each of 3 datasets of 5 × 10

6 transi-
tions. While collecting data specifically for the tar-
get downstream task is the best option when the data
will be used only on that task, the task-aware per-
formance can degrade on even a slightly misaligned
test-task when compared to task-agnostic counter-
parts. The potential for multitask transfer of ex-
ploration agents is highlighted, but further work is
needed in more open ended environments to show
the potential of Explore2Offline.

5 DISCUSSION

Explore2Offline points to interesting directions for further understanding and utilizing task-agnostic
exploration agents. To start, there are two trends that point to a need for further work on explo-
ration methods. On average across our evaluation suite, the random agent performs very closely to
the curiosity-based methods, and any particular exploration method varies substantially across task.
The performance of the random agent suggests some similarities in the data collected by the random
agent and the curiosity-based methods. As mentioned previously, curiosity-based methods are ex-
haustive (given enough time), and do not consider useful trends that may be common in downstream
tasks. This shows a need for future exploration methods to be able to prioritize interesting subsets
of a state-space and generalize across domains to create flexible agents.

Although our evaluation demonstrates the potential of using offline RL on task-agnostic data, there
is substantial variation across task-agent pairings with the chosen static offline RL algorithm (CRR).
This variation needs to be studied in more detail to better understand the limitations posed by the
algorithm, and differentiate them from the quality of the data itself.

The intrinsic MPC agent can be progressed by utilizing it in other forms of deep RL evaluation. By
transferring a learned dynamics model, this flexible exploration agent could also be evaluated as a
task-aware agent (i.e. zero-shot learning of a new task) or in online RL by weighting the intrinsic
reward model and the environment reward (i.e. better explore-exploit balance).

6 CONCLUSION

We introduce Explore2Offline, a method for utilizing task-agnostic data for policy learning of un-
known downstream tasks. We describe how an agent can be used to collect the requisite data once
for solving multiple tasks, and demonstrate performance comparable to an online learning agent.
Additionally, we show policies trained on task-agnostic data may be robust to variations to the ini-
tial task compared to task-aware learning, resulting in better transfer performance. Finally, data from
the new exploration agent, Intrinsic Model Predictive Control, performs strongly across many tasks.
As offline RL emerges as a useful tool in more domains, a deeper understanding of the required
data for learning will be needed. Directions for future work include developing better exploration
methods specifically for offline training, and identification of experiences with high information for
effective datasets.
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Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and efficient off-
policy reinforcement learning. preprint arXiv:1606.02647, 2016.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Soroush Nasiriany, Vitchyr H Pong, Ashvin Nair, Alexander Khazatsky, Glen Berseth, and Sergey
Levine. Disco rl: Distribution-conditioned reinforcement learning for general-purpose policies.
arXiv preprint arXiv:2104.11707, 2021.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Simone Parisi, Victoria Dean, Deepak Pathak, and Abhinav Gupta. Interesting object, curious agent:
Learning task-agnostic exploration. Advances in Neural Information Processing Systems, 34,
2021.

11



Under review as a conference paper at ICLR 2023

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Martin Riedmiller, Jost Tobias Springenberg, Roland Hafner, and Nicolas Heess. Collect & infer-a
fresh look at data-efficient reinforcement learning. In 5th Annual Conference on Robot Learning,
2021.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Kajetan Schweighofer, Markus Hofmarcher, Marius-Constantin Dinu, Philipp Renz, Angela Bitto-
Nemling, Vihang Patil, and Sepp Hochreiter. Understanding the effects of dataset characteristics
on offline reinforcement learning. arXiv preprint arXiv:2111.04714, 2021.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning.
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Domain Task ds, da Description & Explore Suite Modifications

Ball-in-Cup Catch 8,2 Agent moves a cup to swing a ball attached
via string into it. The explore suite version
restricts the initial states to avoid trivial so-
lutions.

Catch Explore

Finger

Turn-Easy

12,2

Agent controls a finger, similar to a manip-
ulator, to interact with objects. The explore
suite version restricts the initial state of the
finger to be away from the object.

Turn-Easy Explore
Turn-Hard
Turn-Hard Explore

Reacher

Turn-Easy

6,2

Agent controls a 2d manipulator to reach
an arbitrary target state.
The explore suite version restricts the pos-
sible targets to a positive cone in front of
the manipulator.

Turn-Easy Explore
Turn-Hard
Turn-Hard Explore

Walker

Stand

24, 6

Agent controls a 2d humanoid robot to
move forward or stand. The explore suite
version allows the robot to start on the
ground rather than standing and has a
sparse walking reward.

Stand Explore
Walk
Walk Explore

Table 3: Extra information on the tasks used in the paper in DM Control Suite.

A APPENDIX

Here we include additional experimental context and results.

A.1 ALGORITHMIC DETAILS

A summary of the exploration algorithm, Intrinsic Model Predictive Control is shown in Alg. 1. We
utilize a distributed setup where multiple actors and learners can be deployed concurrently.

Algorithm 1 Intrinsic MPC
Given: Randomly initialized proposal πθ , dynamics model mφ, reward model ri, random critic Qψ .
{Modules to be learned}
Given: Planning probability pplan, replay buffer B, MPO loss weight α, learning rates & optimizers
(ADAM) for the different modules. {Known modules and parameters}

{Exploration loop – Asynchronously on the actors}
while True do

Initialize ENV and observe state s0.
while episode is not terminated do

{Choose between intrinsic planner and random action depending on pplan}
{Use learned proposal (πθ) as proposal for planner}.
sample x ∼ U[0, 1]
at ∼ { PLANNER(st, πθ,mφ, r) if x ≤ pplan

πθ(st) otherwise.
Step ENV(st, at) → (st+1) and write transition to replay buffer B

end while
end while

{Asynchronously on the learner}
while True do

Sample batch B of trajectories, each of sequence length T from the replay buffer B
Label rewards with reward model ri.
Update action-value function Qψ based on B using Retrace (Munos et al., 2016).
Update model mφ based on B using multi-step.
Update reward model ri based on B.
Update proposal πθ based on B using (Byravan et al., 2021))

end while
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The PLANNER subroutine takes in the current state st, the action proposal πθ, a dynamics model
mφ that predicts next state st+1 given current state st and action at, the reward function model
ri(st, at). Optionally, a learned state-value function Vψ(s) (with parameters ψ) that predicts the
expected return from state s can be provided. We use the Cross-Entropy Method (CEM) (Botev
et al.), shown in Alg. 2.

Algorithm 2 CEM planner

Given: state s0, action proposal πθ, dynamics model mφ, reward model ri, planning horizon H ,
number of samples S, elite fraction E, noise standard deviation σinit, and number of iterations I .

{Rollout proposal distribution using the model.}
(s0, a0, s1, . . . , sH) ← proposal(mφ, πθ, H)
µ← [a0, a1, . . . , aH] {initial plan}
σ ← σinit
{Evaluate candidate action sequences open loop according to the model and compute associated
returns.}
for i = 1 . . . I do

for k = 1 . . . S do
pk ∼ N (µ, σ) {Sample candidate actions.}
rk ←evaluate actions(mφ, pk, H, ri)

end for
Rank candidate sequences by reward and retain top E fraction.
Compute mean µelite and per-dim standard deviation σelite based on the retained elite sequences.
µ← (1 − αmean)µ + αmeanµelite {Update mean; αmean = 0.9}
σ ← (1 − αstd)σ + αstdσelite {Update standard deviation; αstd = 0.5}

end for
return first action in µ

A.2 ADDITIONAL ENVIRONMENT DETAILS

The state-actions dimensions (ds, da) and descriptions for the environments used in this paper are
detailed in Tab. 3. Additional collected reward distributions are shown in Fig. 11.

A.3 FULL OFFLINE RL AGENT-TASK PERFORMANCES

To supplement the results discussed in Sec. 4.3, we have included the performance per dataset size
for all agents across all tasks. The results are shown in Fig. 13 and show the considerable variation
when studying any given agent or task. There is substantially more variation across task than across
agent, showing the value in continuing to fine-tune a set of tasks for benchmarking task-agnostic
agents. The mean performance across all tasks is shown in Fig. 9, with a per-task breakdown shown
in Table 4. A subset of agents and tasks are shown in Fig. 8 to show the convergence on a set of
tasks.

A.4 ADDITIONAL MULTI-TASK LEARNING EXPERIMENTS

To compliment Sec. 4.4, we have included additional experiments for multi-task learning in the
Reacher, Cheetah, and Walker environments, shown in Fig. 10. For these tasks, there is less clear
of a benefit of using task-agnostic learning to generate data for offline RL policy generation. In our
experience, this limited performance can be due to the fact that the environments are designed with
specific behaviors and algorithms in mind, reducing the need for a diverse exploration method. A
description of the starting state and the goal state for each task, as well as for the Pointmass and
Finger environments from the main text, is available in Table 4.
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Figure 8: Highlighting performance of a subset of tasks and agents to showcase the relative differ-
ences that can emerge across tasks. The median, max and min across 3 training seeds are shown for
one input dataset.
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Figure 9: The median, max and min across 3 training seeds are shown for different dataset sizes.
This figure shows how most of the exploration methods we evaluated performed similarly, yet our
new IMPC agent with RND does have the best overall performance.
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Figure 10: Performance across multiple tasks for offline RL agents trained on a single task-agnostic
dataset.
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Ball-in-Cup, Catch Finger, Turn-Hard

Ball-in-Cup, Catch Explore Finger, Turn-Hard Explore

Figure 11: Collected reward per-episode (1000 environment steps) distributions across a subset of
tasks and their Explore Suite variants. Boxplots depict the median episode reward (red line), 25th
and 75th percentiles (box), and the maximum and minimum reward over 5000 episodes (whiskers).
Across the suite of tasks we studied, there is often comparable variation among the exploration
agents as the variation among tasks.

Domain, Task
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N
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D
D
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M
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SM
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D

Ball-in-Cup, Catch 984 943 973 973 975 901 972 922
Ball-in-Cup, Catch Explore 974 0 886 939 963 882 955 927
Finger, Turn Easy 983 822 768 982 577 541 689 630
Finger, Turn Easy Explore 969 916 636 944 850 170 920 948
Finger, Turn hard 977 544 486 975 513 366 510 567
Finger, Turn hard Explore 966 691 86 595 152 235 953 863
Reacher, Easy 767 955 881 901 626 612 550 868
Reacher, Easy Explore 974 613 254 741 98 89 235 814
Reacher, Hard 587 428 105 720 705 143 128 266
Reacher, Hard Explore 974 261 407 411 931 542 773 148
Walker, Stand 992 298 504 302 411 242 535 519
Walker, Stand Explore 983 244 259 81 188 232 179 256
Walker, Walk 978 147 446 97 103 60 107 84
Walker, Walk Explore 975 48 426 79 76 79 91 37

Table 4: The best performance with 5 × 10
6 transition datasets for all task-agnostic exploration

agents and the task-aware MPO agent to compliment Table 2. To complement the table in the main
text, bold represents the best reward among only task-agnostic agents across a task being within the
range of 10th and 90

th percentiles.

17



Under review as a conference paper at ICLR 2023

Domain Start state Training Easy Transfer Medium Transfer Hard Transfer
Pointmass (x, y) (0, 0) (0.1, 0.1) (−0.1,−0.1) (0.3, 0.3) (0.2, 0.2)
Finger (θ) (0) (0.5) (1.0) (2.6) (−2.6)
Reacher (x, y) (0.24, 0) (0, 0.1) (0, 0.2) (0,−0.1) (−0.1, 0.15)
Cheetah (v) (0) (2.5) (−1.1) (1.1) (4.3)
Walker (v) (0) (1.5) (0.5) (−0.5) (2.5)

Table 5: Starting and goal states for each of the multitask environments. For Finger, θ represents
the angle of a spinner which the finger can turn, and for Cheetah and Walker v represents forward
velocity.
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Figure 12: Correlation of final offline RL performance to cumulative reward in the training set. As
the dataset sizes we use span many orders of magnitude of samples, both axes are plotted on a log-
scale. Across all tasks, there is a trend of more reward in the training distribution relating to a better
performing CRR agent.
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Figure 13: All agent-task pairings for final offline reinforcement learning performance. All tasks in
the Explore and Control Suite occupy the rows while the Agents occupy the columns. The average
results highlight the increased variation across tasks when compared to agents.
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