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ABSTRACT

Deep learning models owe their success at large, to the availability of a large1

amount of annotated data. They try to extract features from the data that contain2

useful information needed to improve their performance on target applications.3

Most works focus on directly optimizing the target loss functions to improve the4

accuracy by allowing the model to implicitly learn representations from the data.5

There has not been much work on using background/noise data to estimate the6

statistics of in-domain data to improve the feature representation of deep neural7

networks. In this paper, we probe this direction by deriving a relationship between8

the estimation of unknown parameters of the probability density function (pdf)9

of input data and classification accuracy. Using this relationship, we show that10

having a better estimate of the unknown parameters using background and in-11

domain data provides better features which leads to better accuracy. Based on12

this result, we introduce a simple but effective detection booster training (DBT)13

method that applies a detection loss function on the early layers of a neural network14

to discriminate in-domain data points from noise/background data, to improve15

the classifier accuracy. The background/noise data comes from the same family16

of pdfs of input data but with different parameter sets (e.g., mean, variance). In17

addition, we also show that our proposed DBT method improves the accuracy even18

with limited labeled in-domain training samples as compared to normal training.19

We conduct experiments on face recognition, image classification, and speaker20

classification problems and show that our method achieves superior performance21

over strong baselines across various datasets and model architectures.22

1 INTRODUCTION23

Modern pattern recognition systems achieve outstanding accuracies on a vast domain of challenging24

computer vision, natural language, and speech recognition benchmarks (Russakovsky et al. (2015);25

Lin et al. (2014); Everingham et al. (2015); Panayotov et al. (2015)). The success of deep learning26

approaches relies on the availability of a large amount of annotated data and on extracting useful27

features from them for different applications. Learning rich feature representations from the available28

data is a challenging problem in deep learning. A related line of work includes learning deep latent29

space embedding through deep generative models (Kingma & Welling (2014); Goodfellow et al.30

(2014); Berthelot et al. (2019) or using self-supervised learning methods (Noroozi & Favaro (2016);31

Gidaris et al. (2018); Zhang et al. (2016b)) or through transfer learning approaches (Yosinski et al.32

(2014); Oquab et al. (2014); Razavian et al. (2014)).33

In this paper, we propose to use a different approach to improve the feature representations of deep34

neural nets and eventually improve their accuracy by estimating the unknown parameters of the35

probability density function (pdf) of input data. Parameter estimation or Point estimation methods36

are well studied in the field of statistical inference (Lehmann & Casella (1998)). The insights from37

the theory of point estimation can help us to develop better deep model architectures for improving38

the model’s performance. We make use of this theory to derive a correlation between the estimation39

of unknown parameters of pdf and classifier outputs. However, directly estimating the unknown40

pdf parameters for practical problems such as image classification is not feasible since it can sum41

up to millions of parameters. In order to overcome this bottleneck, we assume that the input data42

points are sampled from a family of pdfs instead of a single pdf and propose to use a detection43

based training approach to better estimate the unknowns using in-domain and background/noise data.44

One alternative is that we can use generative models for this task, however, they mimic the general45
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distribution of training data conditioned on random latent vectors and hence cannot be directly applied46

for estimating the unknown parameters of a family of pdfs. Our proposed detection method involves47

a binary class discriminator that separates the target data points from noise or background data. The48

noise or background data is assumed to come from the same family of distribution of in-domain49

data but with different moments (Please refer to the appendix for more details about the family of50

distributions and its extension to a general structure). In image classification, this typically represents51

the background patches from input data that fall under the same distribution family. In speech domain,52

it can be random noise or the silence intervals in speech data. Collecting such background data to53

improve the feature representations is much simpler as compared to using labeled training data since54

it is time-consuming and expensive to collect labeled data. Since the background patches in images55

or noise in speech signals are used for binary classification in our method, we refer to such data56

as the noise of an auxiliary binary classification problem denoted by auxiliary binary classification57

(ABC)-noise dataset. An advantage of using ABC-noise data during training is that it can implicitly58

add robustness to deep neural networks against the background or noisy data.59

Since ABC-noise data can be collected in large quantities for free and using that data in our approach60

improves the classification benchmarks, we investigate whether this data can act as a substitute for61

labeled data. We conduct empirical analysis and show that using only a fraction of labeled training62

data together with ABC-noise data in our DBT method, indeed improves the accuracy as compared63

to normal training.64

To summarize, our contributions are threefold. First, we present a detailed theoretical analysis on65

the relation between the estimation of unknown parameters of pdf of data and classification outputs.66

Second, based on the theoretical analysis, we present a simple booster training method to improve67

classification accuracy which also doubles up as an augmented training method when only limited68

labeled data is available. Third, we consistently achieve improved performances over strong baselines69

on face recognition, image classification, and speaker recognition problems using our proposed70

method, showing its generalization across different domains and model architectures.71

2 RELATED WORK72

Notations and Preliminary: In this paper, vectors, matrices, functions, and sets are denoted by bold73

lower case, bold uppercase, lower case, and calligraphic characters, respectively. Consider a datapoint74

denoted by x. We assume that x belongs to a family of probability density functions (pdf’s) defined75

as P = {p(x,θ),θ ∈ Θ}, where Θ is the possible set of parameters of the pdf. In general, θ is a real76

vector in higher dimensions. For example, in a mixture of Gaussians, θ is a vector containing the77

component weights, the component means, and the component covariance matrices. In this paper, we78

assume that θ is an unknown deterministic function (There are other approaches such as bayesian79

that consider θ as a random vector). In general, although the structure of the family of pdfs is itself80

unknown, defining a family of pdfs such as P can help us to develop theorems and use those results81

to derive a new method. For the family of distribution P , we can define the following classification82

problem83

{ C1 : θ ∈ Θ1, C2 : θ ∈ Θ2, · · · , Cn : θ ∈ Θn } (1)

where set of Θi’s is a partition of Θ. The notation of (1) means that, class Ci deals with a set of84

data points whose pdf is p(x,θi) where θi ∈ Θi. A wide range of classification problems can be85

defined using (1) e.g., ((Lehmann & Casella, 2006, Chapter 3)) and ((Duda et al., 2012, Chapter 4)).86

The problem of estimating θ comes under the category of parametric estimation or point estimation87

(Lehmann & Casella (1998)). Estimating the unknown parameters of a given pdf p(x,θ), have been88

extensively studied in the field of point estimation methods (Lindgren (2017); Lee et al. (2018);89

Lehmann & Casella (2006)). An important estimator in this field is the minimum variance unbiased90

estimator and it is governed by the Cramer Rao bound. The Cramer Rao bound provides the lower91

bound of the variance of an unbiased estimator (Bobrovsky et al. (1987)). Let the estimation of92

θ be denoted by θ̂, and assume that θ̂ is an unbiased estimator, i.e., E(θ̂) = θ. Its covariance93

matrix denoted by Σθ̂ satisfies Σθ̂ − I−1(θ) � 0, where A � 0 implies that A is a non-negative94

definite matrix ((Lehmann & Casella, 1998, chapter 5)) and I(θ) := −E(∂2 log(p(x,θ))/∂θ2)95

is called the Fisher information matrix. For an arbitrary differentiable function g(·), an efficient96

estimator of g(θ) is an unbiased estimator when its covariance matrix equals to I−1
g (θ), where I−1

g (θ)97

is the fisher information matrix of g(θ), i.e., the efficient estimator achieves the lowest possible98
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variance among all unbiased estimators. The efficient estimator can be achieved using factorization of99

∂ log(p(x,θ))/∂g(θ) = Ig(θ)(ĝ(x)− g(θ)), if it exists (Rao (1992); Lehmann & Casella (1998)).100

Based on these results, we derive a relationship between the efficient estimation of unknowns and101

maximum likelihood classifier of (1) and use auxiliary binary classifiers to apply that result in our102

proposed DBT method.103

Parameter Estimations: Independent component analysis (Hyvärinen (1999)) decomposes a multi-104

variate signal into independent non-Gaussian signals. ICA can extract non-Gaussian features from105

Gaussian noise. Additionally, there is a class of classifiers called generalized likelihood ratio functions106

that replaces the estimation of unknown parameters into the likelihood functions. This approach107

provides a huge improvement in the field of parametric classifiers, where the family of pdf of data108

is given (Zeitouni et al. (1992), Conte et al. (2001), Lehmann & Casella (2006)). Noise-contrastive109

estimation (NCE) (Gutmann & Hyvärinen (2010)) involves training a generative model that allows110

a model to discriminate data from a fixed noise distribution. Then, this trained model can be used111

for training a sequence of models of increasing quality. This can be seen as an informal competition112

mechanism similar in spirit to the formal competition used in the adversarial networks game. In113

Bachman et al. (2019), a feature selection is proposed by maximizing the mutual information of the114

difference between features extracted from multiple views of a shared context. In that work, it is115

shown that the best results is given by using a mutual information bound based on NCE. The key116

difference between our method and NCE is that, we do not construct a generative model for noise.117

Instead of estimating the pdf of noise in NCE, we estimate the parameters of pdf of in-domain dataset118

using an auxiliary class that has many common parameters in its pdf. Moreover, we show that the119

estimation of that parameters are sufficient statistic for a classifier. We assume that the noise dataset is120

not pure and it has some similarity with the in-domain dataset, where it can help the feature selection121

layers to select relevant (in-domain) features, e.g., see Fig. 3. Further, in our approach, we do not122

construct the pdf of noise or in-domain data, instead we estimate its parameters directly, which is123

more efficient in terms of training, computation and also dimensionality reduction.124

Auxiliary classifiers were introduced in inception networks (Szegedy et al. (2015)) and used in (Lee125

et al. (2015); S. et al. (2016)) for training very deep networks to prevent vanishing gradient problems.126

Further, auxiliary classifiers were also proposed for early exit schemes (Teerapittayanon et al. (2016))127

and self-distillation methods (Zhang et al. (2019a;b)). Such auxiliary classifiers tackle different128

problems by predicting the same target as the final classification layer. In contrast, our proposed DBT129

method involves auxiliary binary classifiers that detect noise, interference, and/or background data130

from in-domain data points for improving the target classification accuracy.131

3 ESTIMATION OF PARAMETERS OF PDF AND CLASSIFICATION132

For (1), we define a deterministic discriminative function of Θi, denoted by ti(·) such that the133

following conditions are satisfied:134

• ti(·) maps Θ to real numbers such that ti(θ) > 0, if θ ∈ Θi and ti(θ) ≤ 0 for θ /∈ Θi.135

• ti(·) is a differentiable function almost everywhere and
∫

Θ
|ti(θ)|dµl(θ) <∞, where µl denotes136

the Lebesgue measure.137

The following theorem shows the relationship of ti(·) and the log-likelihood ratio of class Ci versus138

other classes. The proofs of Theorems 1, 2 and 3 are provided in the appendix.139

Theorem 1 Assume that the pdf p(x,θ) is differentiable with respect to θ almost everywhere. If the140

efficient minimum variance and unbiased estimation of a deterministic discriminative function of Θi141

exists, then the log likelihood ratio of class i against the rest of classes is an increasing function of142

the minimum variance and unbiased estimation of Θi.143

Directly from this theorem, it follows that the optimal classifier using the maximum likelihood for (1)144

is given as follows d(x) = arg maxi∈{1,··· ,n} ki(t̂i(x)), where ki’s are some increasing functions and145

ti(·)’s are the deterministic discriminative function of Θi’s such that the efficient minimum variance146

and unbiased estimation for them exists. Based on this result, a set of minimum variance and unbiased147

estimation of deterministic discriminative functions of Θi’s leads us to the maximum likelihood148

classifier. One approach is to directly estimate the deterministic discriminative functions, instead of149

maximizing the likelihood function. However, finding deterministic discriminative functions that150

have efficient minimum variance and unbiased estimation may not be feasible in practical problems,151
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Figure 1: Visualizing Theorems 1,2 and 3 Figure 2: A general schema of our proposed
DBT method with PEF, DDF and ABC blocks

especially when the dimension of θ increases. Theorems 2 and 3 study the same relationship between152

the estimation of unknown parameters and the accuracy of classifiers for sub-optimal estimators and153

classifiers.154

Theorem 2 Consider the output of two classifiers for the ith class as follows: rj(x) = i if hj(x) > τ155

and rj(x) = other classes if hj(x) < τ , where j ∈ {1, 2}. where hj(x) is the estimation of a156

deterministic discriminative function and τ is a classification threshold. Assume that the cumulative157

distribution function of hj(x)’s have bounded inflection points, and also, the probability of true158

positive of rj(x) is an increasing function of d(θ), which is the deterministic discriminative function159

of class i, for all i. Further assume that for each τ the probability of false positive of r1(x) is less160

than the probability of false positive of r2(x) and the probability of true positive of r1(x) is greater161

than the probability of true positive of r2(x). Then, there exists a hmin such that for all d(θ) > hmin162

and all θ we have Pr(|h1(x)− d(θ)| < ε) > Pr(|h2(x)− d(θ)| < ε).163

Theorem 2 shows that a better classifier leads to a better estimation of d(θ). In the next theorem, we164

show the dual property of this result.165

Theorem 3 Let Θm be a Borel set with positive Lebesgue measure in (1) for all m ∈ {1, · · · , n}.166

Assume that r1(·) and r2(·) are given as follows r1(x) = m, if θ̂1 ∈ Θm and r2(x) = m, if θ̂2 ∈ Θm.167

Also, assume that Pr(‖θ̂1 − θ‖ ≤ ε) ≥ Pr(‖θ̂2 − θ‖ ≤ ε), for all θ ∈ Θ = ∪nm=1Θm and ε > 0,168

then the probability of classification error r1(·) is less than r2(·) where θ̂1 and θ̂2 are two different169

estimators of θ ∈ Θ = ∪M−1
m=0 Θm.170

Theorem 3 proves that a more accurate estimator leads to a classifier that has a lower probability171

of classification error. From Theorem 1, we can infer that a sufficient statistic for developing the172

maximum likelihood classification is t̂i(x), which is the efficient minimum variance and unbiased173

estimation of the deterministic discriminative functions of Θi’s denoted by ti(θ). In other words, the174

maximum likelihood classifier is a function of x only via the efficient minimum variance and unbiased175

estimation ti(θ). We can estimate ti(θ) by replacing the estimation θ in ti(·), i.e., t̂i(θ) ≈ ti(θ̂),176

where θ̂ is a function of x. From the above theorems, we conclude that improving the estimation177

of unknown parameters of pdf of data can improve the accuracy of the classifier. On the other side,178

having a good classifier means having a good estimator of unknowns of the pdf of input data. In179

many practical problems, the optimal maximum likelihood classifier may not be achievable, but the180

likelihood function of the classifier provides an optimal bound of the probability of error. In such181

cases, we can improve the accuracy of sub-optimal classifiers and that is the main focus of this paper.182

Fig. 1 illustrates the proposed theorems visually.183

4 PROPOSED METHOD: DETECTION BOOSTER TRAINING (DBT)184

In this section, we propose the detection booster training (DBT) method based on the achieved185

theorems in the previous section to improve the accuracy of deep networks. Specifically, we divide186

a deep model into two parts - early and later layers. We apply a detector (detection here means187

detecting a target pattern from noise/background) on the early layers of the neural network in order188
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Loss Ver. Acc. (%)
ResNet-50-DBT (CE) 98.96
ResNet-50-DBT 99.12

Table 1: Verification accuracy on LFW
dataset for two different LABC trained using
CASIA Yi et al. (2014) dataset.

Loss Acc. Acc. on H-set
ResNet-100-AF 78.85 00.04
ResNet-100-DBT 81.11 21.00

Table 2: Comparison of Rank-1 identification
accuracy on the IJB-B, with animal distrac-
tors.

to improve the estimation of unknown parameters of the family of pdf (based on Theorem 2). A189

better estimation of unknown parameters corresponds to better feature representations in the early190

layers and these features are input to the rest of the layers to construct the deterministic discriminative191

functions (DDF) useful for the in-domain data classification (based on Theorem 3).192

A general schema for dividing a deep model into two sub-models namely PEF (parameter estimator193

functions) and DDF is depicted in Figure 2. The early layers of the model estimate the unknown194

parameters of pdf of data while the later layers construct the discriminative functions essential for195

classification. Based on this scheme, we formally define the three main components of DBT as196

follows:197

• parameter estimator functions (PEF): The sub-network from input layer to the kth layer, where k is198

a hyperparameter in the DBT approach.199

• auxiliary binary classification (ABC): Some additional layers are attached to the end of PEF,200

mapping the output of the kth layer to a one-dimensional vector.201

• deterministic discriminative functions (DDF): The sub-network from kth layer to the output of the202

model. The output of model is a vector equal to the length of the number of classes n.203

From Theorem 2, we showed that unknown parameter estimation can be improved using a detection204

approach. During training, we apply a binary classification on the early layers (PEF) of the model to205

improve the estimation of unknown parameters of pdf and subsequently provide rich feature vectors206

for DDF. We define the auxiliary binary classification problem (ABC problem) as follows:207

• Class 1 (alternative hypothesis) of ABC problem denoted byH1 is set of all data points of classes208

of C1 to Cn, i.e. θ ∈ ∪ni=1Θi.209

• Class 0 (null hypothesis) of ABC problem denoted by H0 is a dataset of data points from same210

distribution p(x,θ) but θ /∈ ∪ni=1Θi. We also define the dataset of Class 0 of ABC as ABC-noise211

dataset, i.e., the ABC is given by the following hypothesis testing problem: H1 : θ ∈ ∪ni=1Θi versus212

H0 : θ /∈ ∪ni=1Θi. In many practical problems, the noise, background or interference data related to213

the in-domain dataset have same type of probability distribution but different pdf parameters. Hence,214

using that dataset is a cheap and adept choice for the null hypothesis of ABC.215

The Auxiliary Binary Classification problem influences only the PEF and ABC units while the main216

classification problem with n classes updates the parameters of both PEF and DDF using in-domain217

data. Since the auxiliary classifier is only used during training, the inference model (IM) consists of218

only PEF and DDF and hence, there is no additional computation cost during inference. We formulate219

the aforementioned method in the following notations and loss functions. Assume that x is a data220

point that belongs to Class Ci, i ∈ {1, · · · , n} or Class H0 of ABC. Here, we define two type of221

labels denoted by lABC and lMC, where the subscription "MC" stands for multi-classes. So, if x222

belongs to class Ci, then lABC = 1 and lMC = i− 1, else if x is a ABC-noise data point, lABC = 0223

and lMC is None. Therefore, the loss function is defined as:224

Ltot = LABC(QABC(QPEF(x)), lABC) + λlABCLMC(QDDF(QPEF(x)), lMC), (2)

where QPEF, QABC and QDDF are the functions of PEF, ABC and DDF blocks, respectively. We225

set the hyperparameter λ = 1 to balance the two loss terms. It is seen that, the second term of the226

total loss is zero if lABC = 0. LABC and LMC are selected based on the problem definition and227

datasets. For classification, a simple selection for them can be binary cross-entropy and cross-entropy,228

respectively. For a given task and deep neural network, the choice of k and LABC influences the229

feature representation of early layers differently and consequently the accuracy of the model. We230

provide empirical studies in the next section to verify the same.231
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Figure 3: Maximally activated receptive fields
of layer 15 of Inception-ResNet-v1 with (top
row) and without (bottom row) DBT.

Figure 4: Examples of mis-identified faces
along with their corresponding animal distrac-
tors on the IJB-B for ArcFace.

5 EXPERIMENTAL STUDY OF DBT232

FACE RECOGNITION233

We conduct experiments on face recognition benchmarks and show that the DBT method learns rich234

features essential for face recognition. We also discover an important observation that current state-235

of-the-art (SOTA) face recognition models are very sensitive to non-face data, in particular, animal236

faces. Fig. 4 shows a few examples of misidentified faces and their corresponding animal distractors237

from the IJB-B dataset using the ArcFace (Deng et al. (2019)) model. We show that our DBT method238

not only improves the verification accuracy but also implicitly tackles this robustness issue of current239

models against non-face data. Implementation details are provided in the appendix.240

We consider the PEF discussed in Section 4 to be the first three layers of the model and DDF to be241

the rest of layers. Ablation studies on the choice of PEF and DDF are provided in the supplementary242

material. We define LMC in (2) as the SOTA ArcFace loss function proposed in (Deng et al. (2019)).243

The ABC-noise is a non-face dataset containing 500K images that we collected from background244

patches of MS1MV2 (Guo et al. (2016)) (More details in Appendix). We experimented with two245

different loss functions for LABC. For the first one, since popular face recognition models (Deng et al.246

(2019); Wang et al. (2018)) use normalized output features and compute the losses on a hypersphere,247

we select LABC as follows. Let pf ∈ Rd and pnf ∈ Rd denote the prototypes for faces and non-248

faces, respectively. Following (Mettes et al. (2019)), we constrain the face/non-face prototypes on249

diametrically opposite directions i.e cos(θpfpnf ) = −1 and normalize the output feature vectors for250

faces and non-faces such that ‖pfi‖ = ‖pnfi‖ = 1. We then define the LABC as,251

LABC = − 1

N

N∑
i=1

log
( es(cos(m1θyi+m2)−m3)

es(cos(m1θyi+m2)−m3) + es cos θ2

)
+

1

N

N∑
i=1

(−1− |pfi .pnfi |)
2, (3)

where θyi and θ2 correspond to the angles between the weights and the features for face and non-face252

labels, respectively; m1,m2,m3 are the angular margins; s denotes the radius of the hypersphere. For253

the second choice, we use simple binary cross entropy for LABC. Table 1 shows that the verification254

accuracy on LFW (Huang et al. (2007)) using (3) is 0.16% higher than simple cross entropy loss. This255

also shows that choosing a task-specific LABC is essential in obtaining more accurate results. We use256

Eqn.1 as the default for LABC in all our face recognition experiments, unless otherwise stated.257

Table 3 compares the verification accuracy of our method versus the current SOTA method ArcFace258

on five different test sets, LFW, CPLFW (Zheng & Deng (2018)), CALFW (Zheng et al. (2017)),259

CFP-FP (Sengupta et al. (2016)) and AgeDb-30 (Moschoglou et al. (2017)). For the LFW test set,260

we follow the unrestricted with labeled outside data protocol to report the performance. We trained261

ResNet-50 and ResNet-100 using ArcFace and DBT approaches on CASIA (small) and MS1MV2262

(large) datasets, respectively. The results show that DBT method outperforms ArcFace on all datasets.263

Table 7 shows the angle statistics of the trained ArcFace and DBT models on the LFW dataset. Min.264

Inter and Inter refer to the mean of minimum angles and mean of all angles between the template265

embedding features of different classes (mean of the embedding features of all images for each class),266

respectively. Intra refers to the mean of angles between xi and template embedding feature for each267

class. From Table 7, we infer that DBT extracts better face features and hence reduces the intra-class268

variations. Directly from Tables 3 and 7, we infer that first, DBT consistently improves the accuracy269
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Method LFW CALFW CPLFW CFPFP AgeDb-30
ResNet-50-AF (ArcFace) 98.46 89.48 80.88 86.74 88.98
ResNet-50-DBT 99.12 91.38 87.10 94.95 91.23
ResNet-100-AF (ArcFace) 99.61 94.50 89.35 96.14 95.33
ResNet-100-DBT 99.75 95.13 90.70 96.90 96.16

Table 3: ArcFace vs. DBT-ArcFace: verification(%) accuracy on LFW, CALFW, CPLFW, CFP-FP
and AgeDb-30 of models ResNet-100 and ResNet-50.

on all test sets. Second, learning better features in the early layers is crucial to obtain rich face feature270

embeddings. Third, the achieved gain using DBT is more pronounced on models trained using a271

smaller (CASIA) dataset (it has fewer identities and images). This shows that DBT can address the272

issue of the lack of in-domain data using cheap ABC-noise data.273

We also provide the results of training Inception-ResNet-V1 and ResNet-64 models using DBT on274

MS1MV2 to show the generalization capacity of the DBT method. For the Inception-ResNet-V1 and275

ResNet-64, the PEF is set to be the first six layers and the DDF is the rest of the model. We use large276

margin cosine loss (LMCL) Wang et al. (2018) for LMC and Cross entropy (CE) for LABC. Table 4277

shows the verification accuracy on LFW for Inception-ResNet-V1 and ResNet-64 models trained278

on MS1MV2 with and without DBT. The results show that DBT method is independent of model279

depth or architectures or loss functions and thereby consistently improves the accuracy compared280

to baseline results. Table 4 also compares the DBT method with state-of-the-art methods on LFW281

and YTF datasets. DBT method notably improves the baselines that are comparable to ArcFace and282

superior to all the other methods. We were not able to reproduce the results of the ArcFace paper283

using our Tensorflow implementation and dataset. We believe that using the original implementation284

and dataset from ArcFace will achieve superior results over the baselines on the benchmark datasets285

as evident from the results of our implementation. Finally, we compare the result ArcFace and DBT286

on IJB-B and IJB-C, in Table 5. It is seen that DBT provides a notable boost on both IJB-B and287

IJB-C by a considerable margin. DBT improves the verification accuracy as high as 1.94 % on IJB-B288

and 2.57 % on IJB-C dataset at 10−4 false alarm rate (FAR). We plot the receptive fields of the top289

ten maximally activated neurons of an intermediate layer of the face recognition model to visualize290

the features learned using the DBT method. Fig. 3 shows that the receptive fields of layer 15 of291

the inception-resnet-v1 model trained using DBT attends to the regions of eyes, nose and mouth as292

compared to insignificant regions in the normal training method. This shows that DBT learns more293

discriminative features essential to face recognition, corroborating our theoretical claims.294

To show that current SOTA models are not robust to animal faces, we performed a 1:N identification295

experiment with approximately 3000 animal distractors on the IJB-B (Whitelam et al. (2017)) dataset.296

We trained the face recognition model with about 500K non-face data which contains 200 animal297

faces. This is disjoint from the 3000 distractors used in the identification experiment. We collected the298

animal faces from web images using MTCNN (Zhang et al. (2016a)) face detector which are the false299

positives from the face detector. Table 2 shows the Rank-1 identification accuracy of ResNet-100300

on IJB-B dataset, trained on MS1MV2 using the ArcFace loss (ResNet-100-AF) versus our DBT301

approach (ResNet-100-DBT). The third column of Table 2 denotes the accuracy on a hard subset302

of images (false positives from ArcFace model) on the IJB-B dataset denoted by H-set. Results303

of Table 2 show that current face recognition models are unable to discriminate out-of-distribution304

(non-face) images from face images. Our ResNet-100-DBT significantly (as high as 21%) reduces the305

misidentification rate as compared to the ArcFace model which shows that DBT method inherently306

overcomes this issue while also improving face recognition accuracy.307

IMAGE CLASSIFICATION308

In this section, we evaluate ResNet-110 and ResNext-101 models trained with and without DBT on309

image classification problem using CIFAR-10, CIFAR-100, and ImageNet. We also show the power310

of DBT to compensate for the smaller in-domain training set. For all implementations, PEF is defined311

to be the first three layers and DDF is the rest of the model. LABC and LMC are set to cross-entropy312

loss. ABC-noise is the same data used in face recognition experiments. We follow the same training313

configurations from (He et al. (2016); Xie et al. (2017)).314

To study the efficacy of the DBT method in augmenting smaller in-domain training datasets, we315

also trained ResNet-100 and ResNext-101 using partial training data on CIFAR-10 and CIFAR-100.316
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Model Loss LFW Method LFW YTF
Inception Resnet CE 99.45 Center Loss 99.28 94.9
Inception Resnet-DBT CE 99.50 Range Loss 99.52 93.7
Inception Resnet LMCL 99.55 SphereFace 99.42 95.0
Inception Resnet-DBT LMCL 99.60 SphereFace+ 99.47 -
Resnet 64 CE 99.55 CosFace 99.73 97.6
Resnet 64-DBT CE 99.63 ArcFace 99.82 98.02
Resnet 64 LMCL 99.65 ArcFace∗∗ 99.61 97.31
Resnet 64-DBT LMCL 99.68 ResNet-100-DBT 99.75 97.67

Table 4: Comparison of DBT models with SOTA methods on LFW and YTF. ArcFace ∗∗ refers to
our arcface implementation.

Method
IJB-B IJB-C

10−6 10−5 10−4 10−3 10−2 10−1 10−6 10−5 10−4 10−3 10−2 10−1

ArcFace 38.47 65.60 82.97 91.11 96.01 98.91 61.96 73.22 83.84 91.85 96.51 99.08
DBT 47.01 72.70 84.91 91.92 96.37 99.03 67.42 77.33 86.41 92.75 96.66 99.06

Table 5: 1:1 verification: ResNet-100: DBT vs. ArcFace on the IJB-B and IJB-C datasets

Method Top-1 Top-5
ResNet 22.10 6.15
ResNet-DBT 21.82 6.02

Table 6: Top-1 and Top-5 error rates (%) on
ILSVRC15 benchmark for ResNet w/o DBT.

Method Min. Inter Intra Inter
ArcFace 53.23 7.2 88.73
ResNet-DBT 52.96 7.16 88.52

Table 7: Comparison of inter and intra angles
(degrees) for different methods on LFW.

ResNet Models CIFAR-10 CIFAR-100 ResNext Models CIFAR-10 CIFAR-100
He et al. (2016)∗ 5.84 22.15 Xie et al. (2017)∗ 5.03 21.24
DBT (5/5) 5.25 21.53 DBT (5/5) 4.68 19.79
ResNet (4/5) 5.89 24.23 ResNext (4/5) 4.93 23.52
DBT (4/5) 5.36 23.98 DBT (4/5) 4.76 22.56
ResNet (3/5) 6.61 27.99 ResNext (3/5) 5.38 27.25
DBT (3/5) 5.44 26.81 DBT (3/5) 4.77 26.04
ResNet (2/5) 7.06 33.81 ResNext (2/5) 5.85 33.62
DBT (2/5) 5.94 31.95 DBT (2/5) 5.05 30.73
ResNet (1/5) 8.20 47.43 ResNext (1/5) 7.24 48.05
DBT (1/5) 6.86 43.65 DBT (1/5) 6.05 42.56

Table 8: Comparison of Top-1 error rates (%) for CIFAR-10 and CIFAR-100 datasets w/o DBT.∗
denotes our implementation. (x/5) denotes the fraction of training data used for training that model.

Method VoxC (top 1) VoxC (top 5) Librispeech VCTK ELSDSR
VGG-M CNN 80.5 92.1 93.12 82.52 79.98
VGG-M CNN-DBT 82.3 95.8 95.62 88.14 81.56

Table 9: Accuracy of speaker identification (%) for different datasets.

Method CIFAR-10 CIFAR-100
ResNet-Back 5.65 21.84
ResNet-DBT 5.25 21.53
ResNext-Back 4.97 21.65
ResNext-DBT 4.68 19.79

Table 10: Comparison of top-1 error rates on CIFAR-10 and CIFAR-100 using an additional back-
ground class vs DBT.
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Method LFW CALFW CPLFW CFP-FP AgeDb-30
ResNet+mod 99.16 91.46 86.11 93.81 92.71
ResNet-DBT+mod 99.65 95.05 90.08 96.20 95.87

Table 11: Ablation study on the verification performance of adding background class to the model on
MS1MV2 dataset.

We randomly selected a fraction of the training data to be our training set, e.g., k/5 of dataset317

means that we only used k fifth of total samples for training. From first row of Table 8, we find that318

models trained with DBT show 0.59% and 0.35% improvement on CIFAR-10, 0.62% and 1.45%319

improvement on CIFAR-100 over baseline models for ResNet-110 and ResNext-101 architectures,320

respectively. Furthermore, using partial training data with our DBT method achieves superior results321

(as high as 5.49 % on ResNext (1/5) CIFAR-100) as compared to normal training. Table 6 shows322

the results on Imagenet. We see that DBT improves the accuracy by 0.28% on Top-1 accuracy. This323

shows that the DBT method consistently improves the results on both small and large datasets.324

SPEAKER IDENTIFICATION325

We consider the problem of speaker identification using the VGG-M (Chatfield et al. (2014)) model.326

We set PEF as the first two CNN layers and DDF as the remaining CNN layers. LABC and LMC327

are defined to be the cross-entropy loss. The ABC-noise is generated from the silence intervals of328

VoxCeleb (Nagrani et al. (2017)) augmented with Gaussian noise with variance one. The input to the329

model is the short-time Fourier transformation of speech signals with a hamming sliding window330

of width 25 ms and step 10 ms. Table 9 provides the accuracies of VGG-M model trained with and331

without DBT on VoxCeleb, Librispeech (Panayotov et al. (2015)), VCTK (Veaux et al. (2016)) and332

ELSDR (L. (2004)) datasets. Table 9 shows that the trained models using DBT significantly improves333

the accuracy (as high as 5.62%) for all datasets. Implementation details are provided in the appendix.334

335

MISCELLANEOUS EXPERIMENTS336

In this section, we experiment with the naive way of using background data by considering non-faces337

as a separate class in the final classification layer. For face recognition, Table 11 shows the results338

of training with an additional background class on MS1MV2 dataset with and without using DBT.339

ResNet+mod refers to a model trained with ArcFace loss and n + 1 classes where the additional class340

corresponds to the non-faces. ResNet-DBT+mod refers to a model trained with both DBT and the341

additional non-face class. We find that adding the additional non-face class hurts the performance342

of the model whereas ResNet-DBT+mod improves the results significantly relative to ResNet+mod343

model. Since the non-face dataset is sampled from a wide range of a family of distributions compared344

with faces, it has a larger range of unknown parameters, then the sufficient statistic of them should be345

larger than the sufficient statistics of face data. Thus, when we restrict faces and non-faces on the346

surface of a hypersphere, the non-face data is more spread on the surface compared with each of the347

other face classes. We demonstrate this effect with the help of a toy example in Fig. 6 in the appendix.348

We also conduct this experiment on CIFAR-10/CIFAR-100 and report it in Table 10. We see that349

naively incorporating the background class is inferior to DBT showing that DBT is an effective350

technique to utilize background data to boost the performance of classification models.351

6 CONCLUSION352

In this paper, we presented a detailed theoretical analysis of the dual relationship between estimating353

the unknown pdf parameters and classification accuracy. Based on the theoretical study, we presented354

a new method called DBT using ABC-noise data for improving in-distribution classification accuracy.355

We showed that using ABC-noise data helps in better estimation of unknown parameters of pdf of356

input data and thereby improves the feature representations and consequently the accuracy in image357

classification, speaker classification, and face recognition benchmarks. It also augments the training358

data when only limited labeled data is available by improving accuracy. We showed that the concept359

of DBT is generic and generalizes well across domains through extensive experiments using different360

model architectures and datasets. Our framework is complementary to existing training methods and361

hence, it can be easily integrated with current and possibly future classification methods to enhance362

accuracy. In summary, the proposed DBT method is a powerful technique that can augment limited363

training data and improve classification accuracy in deep neural networks.364
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APPENDIX483

IN-DOMAIN FAMILY OF PDFS AND THE EXTENDED FAMILY OF DISTRIBUTIONS484

In this section, we discuss about background/noise and in-domain data points and their corresponding485

distributions to clarify the definition of those concepts in this paper. Consider a random vector denoted486

by s. Assume that the corresponding distribution is Gaussian with mean and variance given by α 6= 0487

and σ = 1, respectively. Now, assume that we observed x = s + n, where the pdf of n is assumed to488

be Guassian with zero mean and variance σ2
n, hence the pdf of x is Gaussian with mean α and variance489

1 + σ2
n. Here, n is the background or noise data and the vector of unknowns is given by, θ = [α, σ2

n].490

The in-domain family of pdfs for x is then given by Px = {N (α, 1 + σ2
n)|α 6= 0, σ2

n > 0}. If we491

include the family of pdf of n to Px, then we can extend Px as P = {N (α, 1 +σ2
n)|α ∈ R, σ2

n > 0}.492

So P is the union of family of pdfs of in-domain data points and noise/background data. From493

estimation theory, we know that the sufficient statistics and the unknown parameters of P can also494

represent the sufficient statistics and the unknown parameters of Px. In other words, an estimation of495

α can help us detect if the observed data point is from s + n or n by comparing it with a threshold.496

Thus, estimating the unknown parameters of the family of pdfs using P can provide more information497

about the observed data useful for tasks such as classification.498

In general, we can assume that a generalized family of pdfs is given by the family of pdf of noise or
background along with the family of pdfs of in-domain data. Hence, estimating from the extended

12



Under review as a conference paper at ICLR 2021

Figure 5: In-domain data point versus background data point. The background is cropped from the
in-domain image and provides complementary information to the main data, thereby we can provide
a better estimation of the pdf parameters of in-domain data.

family of distribution can provide more information about the in-domain distribution. Let us consider
that the pdf of in-domain data points is given by px(x, [θs,θn]) and the pdf of noise/background is
given by pn(x,θn), so the extended pdf can be represented by

h(pn(x,θn), px(x, [θs,θn])),

where h is a function that combines two pdfs in a general structure. So a general family of distribution
can be denoted as follows:

P = {h(pn(x,θn), px(x, [θs,θn]))|θ := [θs,θn] ∈ Θs,n},
where θ is defined as a new set of parameters in a higher dimension and Θs,n are set of all possible499

[θs,θn] that belongs to pn and px. The extended family of pdf provides more information about500

the nuisance parameters of pdf of in-domain datapoints. Inspired by this observation, we develop501

our detection booster training method using background/noise data. Figure 5 shows an example of502

background and in-domain data point.503

PROOF OF THEOREM 1504

Let ti(·) denote deterministic discriminative function of Θi. Since the efficient minimum variance505

and unbiased estimation of ti(θ) exists, we have506

∂ ln(p(x,θ))

∂ti(θ)
= Iti(θ)(t̂i(x)− ti(θ)), (4)

where t̂i(x) is the minimum variance and unbiased estimation of ti(θ) using the data point x and
Iti(x) is the Fisher information function of ti(θ), which is given by

Iti(θ) =
∂ti(θ)

∂θ

T

I(θ)
∂ti(θ)

∂θ
≥ 0,

where T denotes the transpose and I(θ) is the Fisher information matrix of θ. Now we show that507

the log-likelihood ratio is an increasing function in t̂i(x). Note that Iti(θ) ≥ 0 (Lehmann & Casella508

(2006)).509

On the other hand, we have d ln(p(x,θ)) =
∑
j

∂ ln(p(x,θ))
∂θj

dθj , therefore,510

ln(p(x,θ)) + k(x) =
∑
j

∫
∂ ln(p(x,θ))

∂θj
dθj =

∑
j

∫
∂ ln(p(x,θ))

∂ti(θ)

∂ti(θ)

∂θj
dθj =

∫
∂ ln(p(x,θ))

∂ti(θ)

∑
j

∂ti(θ)

∂θj
dθj =

∫ (
Iti(θ)(t̂i(x)− ti(θ))

)∑
j

∂ti(θ)

∂θj
dθj = α(θ)t̂i(x)− β(θ) (5)

where the third equality is archived based on the third property of ti(·) in its definition and the forth
equality is given by replacing (4; k(x) is the constant of integration. Finally, the last equality is given
by defining the following terms

α(θ) :=

∫
Iti(θ)

∑
j

∂ti(θ)

∂θj
dθj , β(θ) :=

∫
Iti(θ)ti(θ)

∑
j

∂ti(θ)

∂θj
dθj , (6)

thus dα(θ)
dti(θ) = Iti(θ) ≥ 0, i.e., α(θ) is increasing in ti(θ). Since, ti is a deterministic discriminative511

function of Θi, so for each j 6= i and θi ∈ Θi and θj ∈ Θj , we have ti(θi) > ti(θj), therefore512
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α(θi) ≥ α(θj). The later inequality is achieved based on the increasing property of α(θ) with513

respect to ti(θ).514

Using (5), the log likelihood ratio of class i against the rest of classes is given by LLR :=515

ln(p(x,θi)) − ln(p(x,θj)), so we have LLR =
(
α(θi) − α(θi)

)
t̂i(x) −

(
β(θi) − β(θj)

)
. LLR516

depends on x only via t̂i(x) and since for each j 6= i and θi ∈ Θi and θj /∈ Θi, α(θi)− α(θi) > 0,517

then LLR is increasing in t̂i(x). �518

PROOF OF THEOREM 2519

The probability of true positive of class i of rj is given by

Ptp,i,j = Prθ(hj(x) > τ) = 1− Fjθ (τ),

where Fiθ (·) denotes the Cumulative distribution function (CDF) of hj . Since the probability of true
positive of class i of r1 is greater than r2 for all τ , F1θ (τ) < F2θ

(τ), for all τ . Now we define a
function as follows

u(τ,θ) := F2θ
(τ)− F1θ

(τ).

Since the CDFs are increasing in τ and tend to 1 and the number of inflection points of these CDFs
are bounded, there is an hmin such that, for τ > hmin, such that u(τ, θ) is a monotonically decreasing
function in τ . Thus for any θ that satisfies d(θ) > hmin we have

u(d(θ) + ε, θ) < u(d(θ)− ε, θ).
Replacing u(h, θ) = F2θ

(h)− F1θ
(h) in the last inequality, we have520

F2θ
(d(θ) + ε)− F1θ

(d(θ) + ε) < F2θ
(d(θ)− ε)− F1θ

(d(θ)− ε)⇒ (7)
F2θ

(d(θ) + ε)− F2θ
(d(θ)− ε) < F1θ

(d(θ) + ε)− F1θ
(d(θ)− ε). (8)

Based on the definition of CDF, we have521

Prθ

(
|h2(x)− d(θ)| < ε

)
= Prθ

(
d(θ)− ε < h2(x) < d(θ) + ε

)
<

Prθ

(
d(θ)− ε < h1(x)) < d(θ) + ε

)
= Prθ

(
|h1(x)− d(θ)| < ε

)
. (9)

�522

PROOF OF THEOREM 3523

First, we prove the following claim,524

Claim: For any open set, there exists a set of disjoint countable open balls such that their union equals525

the origin open set.526

Proof of claim: Consider an open set O, and also consider x0 ∈ O, such that B(x0, r0) ⊆ O527

and r0 is the greatest possible radius between all possible open balls in O, where B(x0, r0) is the528

open ball with radius r0 at point x0. Now, we define x1 ∈ O − B(x0, r0), where B(x0, r0) is529

the closure of B(x0, r0), as the point with greatest radius in O − B(x0, r0) and similarly xi ∈530

O − ∪i−1
k=0B(xk, rk) such that B(xi, ri) provides the greatest radius in O − ∪i−1

k=0B(xk, rk). So531

we have O = ∪∞k=0B(xk, rk). This is because, if the latest equality is not valid, then there exists532

an open ball in O − ∪∞k=0B(xk, rk) hence another open ball with greatest radius will be added to533

∪∞k=0B(xk, rk), which has a contradiction with the definition of ∪∞k=0B(xk, rk). The claim is proven534

at this point.535

Now, we show the true positive probability of r1 is greater than r2. Let Θ′m be the set of interior
points of Θm, then, there exists a union of disjoint open balls such that Θ′m = ∪∞k=0B(xk, rk). From
assumptions in the theorem, we have Pr(‖θ̂1 − θ‖ ≤ ε) ≥ Pr(‖θ̂2 − θ‖ ≤ ε), then

Prθ(θ̂1 ∈ B(xk, rk)) ≥ Prθ(θ̂2 ∈ B(xk, rk)),

where θ ∈ Θm. Based on the claim we have536

Prθ(θ̂1 ∈ Θ′m) ≥ Prθ(θ̂2 ∈ Θ′m). (10)

Moreover, based on definition of ri, the true positive probability of class m is given by

ptp,i = Prθ(θ̂i ∈ Θm) = Prθ(θ̂i ∈ Θ′m) + Prθ(θ̂i ∈ Θm −Θ′m),
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Figure 6: Relationship between the theorems in Section 3 and the proposed method in Section 4.

Figure 7: Feature distance between different classes with and without additional background class for
a toy example. Left: Contains 8 classes and the feature separation is visibly larger; Right: Contains
an additional noise class that decreases the feature distance for all the other classes.

for i = 1, 2. Additionally, from the Cauchy–Schwarz inequality, we have

Prθ(θ̂i ∈ Θm −Θ′m) ≤ µl(Θm −Θ′m) = 0,

So, ptp,i = Prθ(θ̂i ∈ Θ′m) and from (10) the true positive probability of class i of r1 is greater than537

r1.538

The error probability of rj is given by per,j = 1−
∑n
i=1 PiPtp,i,j , where Pi is the prior probability539

of class i. Therefor, per,1 ≤ per,2. �540

541

CONNECTING THE THEOREMS WITH THE PROPOSED METHOD542

Fig. 6 shows the connection between the proposed theorems and the approach. In part 1, Theorem543

2 connects the estimation of unknown parameters to the auxiliary classifier. In part 2, the learned544

features are passed to a decision making network (result of Theorem 2). In part 3, Theorem 3545

guarantees that the multi-class classifier outperforms other classifiers, because it is using the features546

from a better estimation of unknown parameters of pdf.547

548

TOY EXAMPLE:549

We demonstrate the effect of adding background class to the original classifier with a toy example550

and visualize it in Fig. 7. In this example, the input is a sequence of binary bits (+1 and −1) with551

length 3 in white Gaussian noise. the classifier is constructed using two fully connected layers with552

sigmoid and the last layer is normalized on unit circle. As seen from Fig. 7, adding an additional553

noise class visibly reduces the feature separation between all the other classes.554

IMPLEMENTATION DETAILS555

FACE RECOGNITION556

We use Tensorflow (Abadi et al. (2015)) to conduct all our experiments. We train with a batch557

size of 256 on two NVIDIA TeslaV100 (32G) GPUs. We train our models following small (less558

than 1M training images) and large (more than 1M training images) protocol conventions. We use559

CASIA-Webface (Yi et al. (2014)) dataset for small protocol and MS1MV2 dataset for the large560

protocol. We use ResNet-50 (He et al. (2016)) and ResNet-100 models for small and large protocols,561

respectively. The PEF is selected as the first three layers. Following (Deng et al. (2019)), we apply562
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BN (Ioffe & Szegedy (2015)), dropout (Srivastava et al. (2014)) to the last feature map layer followed563

by a fully connected layer and batch normalization to obtain the 512-D embedding vector. We set564

the feature scale s parameter to 64 following (Wang et al. (2018); Deng et al. (2019)) and set the565

margin parameters (m1,m2,m3) to (1, 0.5, 0), respectively. For small scale protocol, we start the566

learning rate at 0.01 and divide the learning rate by 10 at 40K, 80K, and 100K iterations. We train for567

120K iterations. For large scale protocol, we start the learning rate at 0.01 and divide the learning568

rate by 10 at 80K, 100K, and 200K iterations. We train for 240K iterations. We use Momentum569

optimizer and set the momentum to 0.9 and weight decay to 5e-4. We use the feature centre of all570

images from a template or all frames from a video in order to report the results on IJB-B, IJB-C and571

YTF datasets. For ABC-noise data, we cropped background images patches from MS1MV2 (Guo572

et al. (2016)) dataset and cropped hard examples from the Caltech-101 (F. F. Li et al. (2004)) dataset573

plus a few open sourced images (animal faces) using MTCNN (Zhang et al. (2016a)) face detector.574

We generated roughly 500K non-face images for training the ABCs.575

SPEAKER IDENTIFICATION576

L2 loss and dropout with a rate of 0.2 are applied during training for generalization. The ABC-noise577

is collected form silence intervals of the VoxCeleb dataset, where an energy-based voice activity578

detection (VAD) is applied to detect the silence intervals. To augment the ABC-noise, Gaussian579

noise is added to the silence intervals. Each batch size is set to 64 and the optimizer is ADAM with580

a learning rate of 0.001. The VoxCeleb dataset is trained for 11 epochs and the other datasets are581

trained for 6 epochs.582

LFW AND YTF DATASETS583

LFW database contains the annotations for 5171 faces in a set of 2845 images taken from the Faces584

in the Wild data set (Berg et al. (2004)). YouTubeFaces (Wolf et al. (2011)) contains 3,425 videos of585

1,595 people. Following the standard convention, we report the results on 5000 video pairs using586

unrestricted with labeled outside data protocol.587

IJB-B AND IJB-C DATASETS588

The IJB-B contains 1,845 subjects with 21.8K still images and 55K frames from 7,011 videos. In589

total, there are 12,115 templates with 10,270 genuine matches and 8M impostor matches. The IJB-C590

dataset (Maze et al. (2018)) is a further extension of IJB-B, having 3,531 subjects with 31.3K still591

images and 117.5K frames from 11,779 videos. In total, there are 23, 124 templates with 19,557592

genuine matches and 15, 639K impostor matches.593
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