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ABSTRACT

Learning representations that generalize out-of-distribution (OOD) is critical for
machine learning models to be deployed in the real world. However, despite the
significant effort in the last decade, algorithmic advances in this direction have
been limited. In this work, we seek to answer the fundamental question: is learn-
ing OOD generalizable representations with only in-distribution data really fea-
sible? We first empirically show that perhaps surprisingly, even with an “oracle”
representation learning objective that allows the model to explicitly fit good rep-
resentations on the training set, the learned model still underperforms OOD in a
wide range of distribution shift benchmarks. To explain the gap, we then formally
study the OOD generalization of two-layer ReLU networks trained by stochas-
tic gradient descent (SGD) in a structured setting, unveiling an unexplored OOD
generalization failure mode that we refer to as feature accompaniment. We show
that this failure mode essentially stems from the inductive biases of non-linear
neural networks and fundamentally differs from the prevailing narrative of spuri-
ous correlations. Overall, our results imply that it may be generally not feasible
to learn OOD generalizable representations without explicitly considering the in-
ductive biases of SGD-trained neural networks and provide new insights into the
OOD generalization failure, suggesting that OOD generalization in practice may
behave very differently from existing theoretical models and explanations.

1 INTRODUCTION

Robustness to distribution shifts is a critical requirement for machine learning systems to be de-
ployed in the wild (Amodei et al., 2016; Koh et al., 2021). In the last decade, it has proved that
the conventional principle of empirical risk minimization (ERM), when combined with (deep) neu-
ral networks optimized by stochastic gradient descent (SGD), can lead to remarkable in-distribution
(ID) generalization performance with sufficient training data. Unfortunately, this powerful paradigm
can also fail catastrophically in out-of-distribution (OOD) generalization (Torralba & Efros, 2011;
Beery et al., 2018; Geirhos et al., 2018; DeGrave et al., 2021), where the test data exhibits distribu-
tion shifts stemming from data variations that are not well-covered in training. Due to their ubiquity
in the real world, distribution shifts have posed significant challenges to machine learning.

As a result, recent years have witnessed a surge of developing novel learning algorithms to train
models that can generalize OOD. Nevertheless, the effectiveness of many of those algorithms has
been called into question by several studies (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021; Wiles
et al., 2022), where no tested algorithm exhibits consistent and significant advantage compared with
the most “vanilla” baseline ERM. On the other hand, an important observation made by recent
work is that increasing the diversity of training data, either through pre-training or though special
diverse data augmentation, often yields representations with significant improvement in OOD gen-
eralization (Taori et al., 2020; Hendrycks et al., 2021a; Wiles et al., 2022). For example, properly
fine-tuning CLIP representations (Radford et al., 2021) has yielded state-of-the-art performance on
various distribution shift benchmarks (Wortsman et al., 2022; Kumar et al., 2022), and it has been
empirically observed that such distribution shift robustness heavily depends on the amount and di-
versity of pre-training data (Fang et al., 2022; Santurkar et al., 2023). This overarching trend leaves
some important open questions to be answered, which motivates this work.
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On the empirical side, a notable facet of OOD generalization revealed by recent work is that data
may outweigh algorithms. However, increasing (pre-)training data also blurs the notion of “OOD” it-
self since it essentially expands the training distribution: for example, CLIP is trained using a dataset
of 400 million image-text pairs, which is at least hundreds of times larger than any existing OOD
generalization dataset. Therefore, given the somewhat pessimistic empirical results without more
training data, a fundamental question arises regarding the ongoing pursuit of OOD generalization:

Is it really feasible to learn OOD generalizable representations by training on only ID data, in
particular, when (i) ID and OOD data do have structural similarities that enable generalization and
(ii) ID data is informative enough for extracting such generalizable structures?

On the theoretical side, a large body of work has been devoted to understanding and addressing
the OOD generalization failure caused by spurious correlations, which represent the failure mode
caused by the model using features that have non-causal relationships with desired outputs. These
studies, however, do not give satisfying answers to the above question due to the following two
reasons: (i) the majority of existing theory either only considers linear models such as linear clas-
sification over prescribed features or neural tangent kernels (NTKs) (Arjovsky et al., 2019; Sagawa
et al., 2020b; Nagarajan et al., 2021; Xu et al., 2021; Ahuja et al., 2021b;a; Pezeshki et al., 2021;
Chen et al., 2022; Wang et al., 2022; Rosenfeld et al., 2022; Abbe et al., 2023), or also considers non-
linear models but is optimization-independent (Rosenfeld et al., 2021; Kamath et al., 2021; Ye et al.,
2021). Hence, these results may fail to capture the inductive biases of the most widely used model
class in practice, i.e., overparametrized non-linear neural networks, for which it is well-known that
the implicit biases of SGD optimization is vital to generalization (Zhang et al., 2017). (ii) As we
will show in Section 2, the viewpoint of spurious correlations itself is unable to explain some impor-
tant observations in OOD generalization. Indeed, it has been shown that many OOD generalization
algorithms that enjoy provable guarantees in their specific settings do not excel in real-world bench-
marks (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021). Motivated by the gap between theory and
practice, we argue that taking into account the inductive biases of non-linear neural networks and
SGD may be not only important but also necessary for OOD generalization.

1.1 SUMMARY OF OUR RESULTS

In this work, we take steps toward formally answering the above question:

Empirically, we show on 8 common distribution shift datasets that, perhaps surprisingly, even with
an “oracle” representation learning objective that allows the model to explicitly fit OOD generaliz-
able pre-trained representations on the training set, the learned representaions still perform much
worse in OOD generalization than their pre-trained counterparts. This indicates that it may be gen-
erally not feasible to learn OOD generalizable representations without explicitly taking into account
the inductive biases of non-linear neural networks in many existing benchmarks. Our results chal-
lenge the common belief in the community that the empirically observed OOD failure in existing
benchmarks is mainly caused by spurious correlations, suggesting a large OOD generalization gap
that cannot be explained by spurious correlations or other existing explanations of OOD failure.

Theoretically, we prove that in certain binary classification tasks where the data is generated from
OOD generalizable core features and other background features (formally defined in Section 3), a
randomly initialized two-layer ReLU neural network trained by SGD can achieve good ID gener-
alization given sufficient data and SGD iterations, yet still fails to generalize OOD. We also show
that OOD generalization using neural networks with non-linear activation can be provably different
from linear models, which allows us to draw several new conclusions in OOD generalization. No-
tably, we demonstrate that the above OOD generalization failure differs fundamentally from those
in prior work as it holds even when (i) background features are not correlated with the label at all
(nullifying the possibility of spurious correlations), (ii) ground-truth labels are perfectly determined
by core features (nullifying the possibility of lacking training data or informative features), and (iii)
core and background features are not correlated (nullifying the possibility of the innate non-linear
entanglement or correlation between core and background features).

Instead, we theoretically prove that at the core of this OOD failure is an unexplored feature learning
proclivity of non-linear neural networks that we refer to as feature accompaniment. In brief, fea-
ture accompaniment refers to the process where during the learning of core features, SGD-trained
neural networks also provably learn a portion of background features simultaneously—even when
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background features have no correlation with the label and in the presence of weight decay regu-
larization. We formally show that the reason for this phenomenon is that neurons in the network
tend to have asymmetric activation for examples from different classes during training, resulting in
non-zero gradient projections onto the span of background features. This further causes the accumu-
lation of background features in the weights of the network during SGD, leading to large OOD risk
under the distribution shifts on background features due to the non-linear coupling of core and back-
ground features in the neurons’ activation. We provide more detailed explanations of why feature
accompaniment happens in Section 4, and present empirical evidence suggesting that this expla-
nation matches the observed OOD failure in our experiments. At a high level, we believe that our
theoretical finding of feature accompaniment as a novel inductive bias of SGD-trained neural net-
works can also serve as a new perspective for understanding the existing success and shortcomings
of deep learning by characterizing its learned features, complementing known inductive biases such
as the simplicity bias of neural networks (Arpit et al., 2017; Shah et al., 2020; Pezeshki et al., 2021).

2 OOD GENERALIZABLE REPRESENTATIONS ARE HARD TO LEARN EVEN
WHEN EXPLICITLY GIVEN ON ID DATA

We begin our analysis by an experiment motivated by recent algorithmic explorations in OOD gen-
eralization: existing algorithms have made various attempts to learn good representations that gen-
eralizes OOD by designing auxiliary objectives beyond the original training objective of minimizing
the empirical prediction risk (see Gulrajani & Lopez-Paz (2021); Koh et al. (2021) and Section E
for some examples). However, a major downside of those objectives is that their minimizers may
not readily lead to ideal representions. Indeed, many critisisms on those objectives construct hard
instances where incorporating spurious features can induce even smaller training risk than the ideal
representation that only extracts generalizable features (Kamath et al., 2021; Rosenfeld et al., 2021).
Therefore, the limited empirical success of existing objectives does not nullify the possibility that
good representations may be learned with “better” objectives. Motivated by this, we would like to
ask: what is the very best we can get by representation learning given a finite training set?

An “oracle” representation learning objective. In this work, we empirically approach the above
question by introducing an “oracle” representation learning objective that allows the network to
explicitly fit given good representations that can generalize OOD. Note that without further prior
knowledge on the inductive biases of the model or the task, this is already the best objective we can
possibly define since its minimizer can uniquely recover the “right” representations for all exam-
ples in the training set. We implement this idea by leveraging large-scale pre-trained models such
as CLIP, whose representations have shown remarkable robustness under distribution shifts (Rad-
ford et al., 2021). Concretely, given a pre-trained “teacher” encoder, we randomly initialize another
“student” encoder with an identical architecture to the teacher encoder. We then train the student
encoder by minimizing the Euclidean distance between its output representations and the represen-
tations extracted by the teacher encoder on the training set, a process also known as representation
distillation. The main difference between our work and existing work on representation distillation
is that we focus on OOD generalization with teacher and student models sharing the same archi-
tecture, while existing work mainly considers model compression and knowledge transfer between
a teacher model and a smaller student model under ID evaluations (Hinton et al., 2014; Tian et al.,
2020). In total, our experiments span 8 distribution shift datasets that are extensively benchmarked
by the community, including 5 large-scale ImageNet-based natural distribution shift datasets (Taori
et al., 2020), 2 in-the-wild distribution shift datasets from WILDS (Koh et al., 2021), and a do-
main generalization dataset DomainNet (Peng et al., 2019). In those experiments, we employed
fully-fledged neural network architectures including Vision Transformers (ViTs) (Dosovitskiy et al.,
2021) and ResNets (He et al., 2016). Details of our experiments are provided in Section E.

Evaluation protocol. We evaluate the ID and OOD performance of the pre-trained and distilled
representations by training linear probes on top of the representations on the ID training set and then
evaluate those linear probes on both ID and OOD test sets. Note that under our protocol, the trained
linear probes still need to complete an OOD generalization task on the OOD test sets, albeit with
representations instead of raw image pixels as input. To compare the OOD generalization ability of
different models, we follow the evaluation protocol of effective robustness proposed by Taori et al.
(2020), which quantifies a model’s distribution shift robustness as its OOD performance advantage
over a baseline representing standard models trained on ID data. We follow Taori et al. (2020);
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DomainNet

Linear probes on pre-trained representations Linear probes on distilled representations Standard models

Figure 1: OOD performance (y-axes) v.s. ID performance (x-axes) for three model families includ-
ing (i) linear probes on pre-trained representations (purple stars), (ii) linear probes on the represen-
tations distilled on the training set (orange squares), and (iii) standard models trained on the training
set (blue circles). The y-axis of the 6-th panel stands for the average accuracy on ImageNet-based
OOD test sets, averaged from the first 5 panels. See Section E for more experimental details.

Miller et al. (2021) and illustrate the effective robustness of the models using scatter plots, with their
x-axes representing ID performance and y-axes representing OOD performance.

Results. As shown in Figure 1, linear probes on distilled representations exhibit consistent OOD
generalization improvements compared to standard models especially for large datasets such as Ima-
geNet.1 This is not surprising since our “oracle” distillation objective uses additional representation-
level supervision that standard models have no access to. However, we also observe that even with
such supervision, the OOD generalization ability of distilled representations still lags far behind
compared to pre-trained representations. For example, distilled representations only close about
half of the effective robustness gap between standard models and pre-trained representations on av-
erage in ImageNet-based datasets, with even worse performance on some datasets with fewer data
such as iWildCam and DomainNet. Given the fact that the representation learning objective itself
cannot be further improved in general, our result implies that OOD generalizable representations
may not be learnable using only ID data without explicitly taking into account the inductive
biases of the model or the task. This is consistent with existing observations that even a standard
ERM often remains strong in OOD generalization (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021).

Why does the distilled model still underperform OOD? We first argue that this failure mode is
not likely due to spurious correlations since we do not use any label in representation distillation—
unlike the scenario where the model picks up spurious features due to their correlations with the

1The main exception is on ImageNet Sketch where some standard models surpass the linear fit of the results
of distilled representations. By manually checking those models, we found that they use intensive, custom data
augmentations (Hendrycks et al., 2020; 2021a), which essentially lead to a more diverse training distribution.
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Figure 2: Prediction heatmaps for the linear probes on CLIP representations and distilled representa-
tions. Left: images from “real” (ID) and “sketch” (OOD) domains in DomainNet. Right: synthetic
image style transfer simulating gradual distribution shifts. While the core objects are focused in ID
images by the distilled model, their importance are gradually weakened under distribution shifts.

label. Also, due to our experimental protocol, our results can neither be explained by CLIP extract-
ing richer representations of ID data (Zhang et al., 2022; Zhang & Bottou, 2023) (since representa-
tion distillation will also learn those rich representations), nor by CLIP extracting more “OOD core
features” that are absent in ID data (since the linear probe ID-trained on top of CLIP representa-
tions cannot leverage them to achieve OOD generalization). To further understand this failure, we
visualize the prediction heatmaps (using Grad-CAM++ (Chattopadhay et al., 2018)) of our models
in DomainNet and a synthetic “gradual” distribution shift scenario based on image style transfer, as
shown in Figure 2. An intriguing phenomenon revealed by the visualization is that while the distilled
model indeed correctly focuses on the core objects for ID images, its attention to the core objects is
gradually weakened under distribution shifts, resulting in OOD failure. Being unaware of any theo-
retical result that can explain this “weakening” phenomenon, we argue that our observations suggest
the existence of a OOD generalization failure mode that is beyond the reach of existing OOD
generalization theory and is likely to be tied to the non-linear feature learning process of neural
networks. In the following sections, we will formally prove that a novel OOD generalization failure
mode, which we refer to as feature accompaniment, indeed exists in certain binary classification
tasks with two-layer ReLU networks and has strong connections to our empirical observations.

3 THEORETICAL MODEL ON OOD GENERALIZATION

Notation. We use [d] to denote the set {1, . . . , d} for positive integers d, Id to denote the d × d
identity matrix, and N (µ,Σ) to denote the Gaussian distribution with mean µ and covariance Σ.
For a set S, we denote its cardinality by |S|. For a vector u, we denote its ℓ2 norm by ∥u∥2. We
denote the inner product of two vectors u and v by ⟨u,v⟩. We use the standard big-O notation:
O(·), Ω(·), Θ(·), o(·), as well as their soft-O variants such as Θ̃(·) to hide logarithmic factors. For
some parameter d, we use poly(d) to denote Θ(dC) with some unspecified large constant C.

3.1 OOD GENERALIZATION PROBLEM AND DATA GENERATION MODEL

We consider a binary classification setting with an input space X ⊆ Rd, a label space Y = {−1, 1},
a model classH : X → R, and a loss function ℓ : Y ×Y → R. For every distributionD over X ×Y
and model h ∈ H, the expected risk of h ∈ H on D is given by RD(h) := E(x,y)∼Dℓ(h(x),y).
We consider an OOD generalization regime where there are a set of distributions D consisting of all
distributions to which we would like our model to generalize. Training examples are drawn from
a set of training distributions Dtrain ⊊ D, where Dtrain may contain one or multiple distributions
available. Following the most common objective studied by prior work (Arjovsky et al., 2019;
Sagawa et al., 2020a; Nagarajan et al., 2021; Rosenfeld et al., 2021; Weber et al., 2022), we aim to
select a model h ∈ H to minimize the OOD risk defined as the worst-case expected risk on D:

ROOD(h) := max
D∈D
RD(h). (1)

It is clear that without assumptions on Dtrain and D, OOD generalization is impossible since no
model can generalize to an arbitrary distribution. Fortunately, real-world distribution shifts are often
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structured with some structural similarities shared by different distributions. We can thus hope that
such structures can be captured by certain algorithms, leading to models that generalize OOD.

To formalize this, in this work we assume that both ID and OOD data are generated by a dictionary
M = (m1, . . . ,md0) ∈ Rd×d0 consisting of d0 features with each feature mi ∈ Rd. Throughout
the paper, we work with the case where d0 is sufficiently large and d ∈ [Ω(d2.50 ),poly(d0)]. For sim-
plicity, we assume that every feature has ℓ2 norm ∥mi∥2 = 1 and different features are orthogonal:
∀i ̸= j ∈ [d0], ⟨mi,mj⟩ = 0, although our results can also be extended to more general cases.2

Among all features in M , we assume that there are dcore features consistently correlating with
the label in all distributions from D. We denote the index set of those features by Score ⊊ [d0]
and refer to them as core features since they are predictive of the label regardless of distribution
shifts. We will refer to the remaining features as background features and denote their index set by
Sbg = [d0]\Score with dbg := |Sbg| = d0−dcore. We assume that dcore = Θ(d0) and dbg = Θ(d0).
With the above definitions, we now introduce the concrete ID and OOD data generation process.
Definition 1 (ID and OOD data generation). Consider an OOD generalization problem with a train-
ing distribution (ID data distribution) Dtrain ∈ Dtrain and a test distribution (OOD data distribu-
tion) Dtest ∈ D \ Dtrain.3 Each example (x,y) ∼ D ∈ {Dtrain,Dtest} is generated as follows:

1. Sample a label y from the uniform distribution over Y .

2. Sample a weight vector z = (z1, . . . , zd0
) ∈ Z ⊆ Rd0 where different coordinates of z are

independent random variables generated via the following process:

• ID data (D = Dtrain): for every j ∈ [d0], sample zj from some distribution Dj over [0, 1]
such that its moments satisfy µjp := EDjz

p
j = Θ(1) for p ∈ [3], and the expected total weight

of core features is not less than background features:
∑

j∈Score
µ2
j1 −

∑
j∈Sbg

µ2
j1 ≥ 0.

• OOD data (D = Dtest): for every j ∈ [d0], if j ∈ Score, sample zj from Dj over [0, 1]; if
j ∈ Sbg, sample zj from some distribution D′

j over [−1, 0] such that ED′
j
zj = −Θ(1).

3. Generate x =
∑

j∈Score
yzjmj +

∑
j∈Sbg

zjmj .

Remarks on data generation. Our data generation process formalize a natural OOD generalization
setting that reflects several important aspects of real-world OOD generalization problems:

• The explicit separation of core and background features captures structural assumptions ensuring
that OOD generalization is realistic: under the distribution shifts on background features, there
exists a set of core features that enable robust classification. Hence, a model that is insensitive to
background features and retains core features can generalize OOD. This rules out the ill-posed
cases where the ID data is not informative enough to learn a generalizable model (Tripuraneni
et al., 2020; Xu et al., 2021; Kumar et al., 2022) and is also the key intuition of many OOD
generalization algorithms aiming to learn invariances (Gulrajani & Lopez-Paz, 2021).

• The weights of background features are assumed to be independent of the label in generation,
rendering background features and labels uncorrelated. This fundamentally differs from prior
OOD generalization analysis (Arjovsky et al., 2019; Sagawa et al., 2020b; Nagarajan et al., 2021;
Rosenfeld et al., 2021) where it is assumed that non-core features are spuriously correlated with
the label during training and hence may be used by the model.

Connection to experiments. In the prediction heatmap visualization of our models (Figure 2),
we include a synthetic OOD scenario based on image style transfer, which closely matches our
data model in Definition 1 (keeping core features intact while only changing background features).
As shown in our visualization, the prediction heatmaps on synthetic OOD images exhibit visually
similar “weakening” patterns as in those of natural OOD images, suggesting that our data model can
indeed capture important characteristics of real-world data with distribution shifts.

3.2 MODEL AND TRAINING

We consider a model classH representing width-m two-layer neural networks with ReLU activation.
Formally, given hidden-layer weights W = (w1, . . . ,wm) ∈ Rd×m and output-layer weights a =

2Another advantage of assuming orthogonal features is that this nullifies the possibility of the network
learning background features due to its correlation with core features (as we will define in the next paragraph).

3Note that Dtrain and Dtest can also be (weighted) mixtures of multiple distributions in Dtrain and D\Dtrain.

6



Under review as a conference paper at ICLR 2024

(a1, . . . , am)⊤ ∈ Rm, the output of a model h : Rd → R given an input x ∈ X is

h(x) =
∑

k∈[m]
ak · ReLU(⟨wk,x⟩), (2)

where ReLU(u) = max{u, 0}, u ∈ R. Similar to practical design choices, we consider an overpa-
rameterized setting where m ∈ [Θ(d0),Θ(d)] and each weight vector wk, k ∈ [m] is independently
initialized by sampling w

(0)
i ∼ N (0, σ2

0Id) with σ2
0 = 1

d . We randomly initialize output-layer
weights a by sampling ak ∼ Uniform{− 1

m , 1
m} independently for each k ∈ [m]. To simplify our

analysis, we keep output-layer weights a fixed throughout training, which is a common assumption
in analyzing the optimization and generalization of two-layer neural networks in ID settings (Allen-
Zhu & Li, 2021; Karp et al., 2021; Wen & Li, 2021; Allen-Zhu & Li, 2023).

We train the network using SGD over the standard hinge loss ℓ(y, y′) = max{1 − yy′, 0} with
step size η > 0 for T iterations. We consider the most common ℓ2 weight decay with strength
λ = O( d0

m1.01 ) for regularization. At each iteration t ∈ {0, . . . , T − 1}, we sample a batch of
examples {(x(t)

i ,y
(t)
i )}i∈[N ] ∼ DN

train with batch size N = poly(d). The empirical loss is then

L̂(h(t)) =
1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
+

λ

2

∑
k∈[m]

∥∥w(t)
k

∥∥2
2
, (3)

where we use h(t) to denote the model parameterized by weights W(t) = (w
(t)
1 , . . . ,w

(t)
m ) at itera-

tion t. The corresponding SGD update for each weight vector wk, k ∈ [m] is then given by

w
(t+1)
k = w

(t)
k − η∇

w
(t)
k

L̂(h(t)) = (1− ηλ)w
(t)
k − η∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
. (4)

4 MAIN THEORETICAL RESULTS

In this section, we present our main theoretical results.

Technical challenges. As we have discussed in Section 1, most of existing theoretical work on OOD
generalization separates generalization and optimization, studying the global minimizers of their
training objecives without considering exact optimization dynamics. By contrast, our setup requires
an explicit analysis on the optimization trajectory of SGD, which is known to be challenging due
to its non-convex and non-linear nature. Prior work has studied fine-tuning pre-trained models for
OOD generalization using two-layer linear networks (Kumar et al., 2022; Lee et al., 2023). However,
analyzing non-linear networks further requires a careful treatment on the activation property of the
neurons, which results in SGD dynamics that fundamentally deviate from linear networks.

Our approach. At a high level, our analysis is based on the construction of two neuron subsets
with cardinality Θ(m) that are randomly initialized to have large enough expected correlations with
the examples from the two classes (i.e., “winning the lottery tickets” (Frankle & Carbin, 2019;
Allen-Zhu & Li, 2021)). Based on this construction, we apply Berry-Esseen theorem to bound the
activation probabilities of the ReLU functions for the neurons in the constructed subsets, iteratively
tracking their gradient updates throughout training. This treatment allows us to characterize the
output of the network up to constant factors while avoiding the nuisance of analyzing the activation
probability of every single neuron in the network, which turns out to be very challenging due to fine-
grained SGD dynamics. For ease of presentation, in the sequel we separate our main results into
four parts and introduce them progressively. The proofs of all theorems are deferred to Appendix I.

4.1. Neuron activation is asymmetric. Our key insight is that during training, every neuron in
the network has the incentive to be positively correlated with examples from at most one class
ypos (depending on the random initialization of the neuron); we refer to those examples as positive
examples (xpos,ypos) ∼ Dtrain|y = ypos for this neuron. Correspondingly, we refer to examples
from the other class yneg as negative examples (xneg,yneg) ∼ Dtrain|y = yneg. We can then
show that during SGD, at least Θ(m) neurons will accumulate (in expectation) positive correlations
with xpos and negative correlations with xneg.4 Since ReLU only activates for positive inputs, the
activation probability of those neurons would become much larger for xpos than for xneg, which we
refer to as activation asymmetry and formally demonstrate by the following theorem.

4We note that activation asymmetry also emerges in more general settings beyond our current data model
such as when different classes have distinct subsets of core features. The essential reason for this is that a
neuron that has positive correlations with both classes is not informative enough for classification.
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Sum of gradients

Sum of gradients
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Grad. of negative examples

Symmetric activation: 

Non-linear models

Grad. of positive examplesGrad. of positive examples Asymmetric activation: 

Figure 3: A diagram of feature accompaniment in non-linear models: activation asymmetry leads to
non-cancelling gradient projections onto background features, resulting in their accumulation.

Theorem 1 (Activation asymmetry). For every η ≤ 1
poly(d0)

and every y ∈ Y , there exists T0 =

Θ̃( m
η
√
d
) such that with high probability, there are Θ(m) neurons whose weights wk satisfy

Prx|y=y∼Dtrain
[⟨w(t)

k ,x⟩ ≥ 0] = 1− o(1), Prx|y=−y[⟨w
(t)
k ,x⟩ ≥ 0] = o(1), ∀t ≥ T0. (5)

4.2. Activation asymmetry leads to feature accompaniment. We first note that for every k ∈ [m],
the weight vector of the k-th neuron (in what follows we will also refer to it as the learned feature
of the neuron) after t iterations can be equivalently written as

w
(t)
k =

∑
j∈Score

⟨w(t)
k ,mj⟩mj +

∑
j∈Sbg

⟨w(t)
k ,mj⟩mj + residual, (6)

where ⟨residual,mj⟩ = 0 for every j ∈ [d0] and thus can be neglected. Intuitively, Eq. (6) indi-
cates that the learned feature can be decomposed into its projections onto different feature vectors.
Meanwhile, as we will prove in Section A, the gradient projection onto background features is

⟨−∇
w

(t)
k

L̂(h(t)),mj⟩ ≈
1

m
E(x,y)∼Dtrain

(1y=y − 1y=−y) · 1⟨w(t)
k ,x⟩≥0

zj , ∀j ∈ Sbg, ∀t (7)

for some y ∈ Y , where we omit the weight decay term here for simplicity. By Theorem 1, we
have for at least Θ(m) neurons, Ex|y=y1⟨w(t)

k ,x⟩≥0
would be much larger than Ex|y=−y1⟨w(t)

k ,x⟩≥0
,

resulting in a quite positive gradient projection to every background feature mj , j ∈ Sbg regardless
of its correlation with the label. We refer to this phenomenon as feature accompaniment and
illustrate it in Figure 3. Formally, we show that such accumulation would result in learned features
containing both core features and some “coupled” background features after enough SGD iterations.
Theorem 2 (Learned features). For every η ≤ 1

poly(d0)
and every y ∈ Y , after T1 = Θ( m

ηd0
)

iterations with high probability, there are Θ(m) neurons whose weights w(T1)
k satisfy∑

j∈Score

µj1⟨w(T1)
k ,mj⟩ = y ·Θ(1),

∑
j∈Sbg

µj1⟨w(T1)
k ,mj⟩ = Θ(1). (8)

4.3. Feature accompaniment has negligible impact on ID risk, yet causes large OOD risk. Our
next theorem characterizes the impact of feature accompaniment on both ID and OOD risks.

Theorem 3 (ID and OOD risks). For every η ≤ 1
poly(d0)

, after at most T2 = Θ̃( m
ηd0

) iterations with

high probability, the trained model h(T2) satisfies the following:

RDtrain
(h(T2)) ≤ o(1), ROOD(h

(T2)) = Θ(1). (9)

Intuitively, the reason for this result is that the learned model h(T2) predicts the label of ID examples
using both the learned core features and the “accompanied” background features due to their non-
linear coupling in the neuron’s activation. Due to this coupling, negative shift on the magnitude of
background features also reduces the overall activation of the neuron, resulting in OOD risk.5

Connection to experiments. We note that the OOD failure mode articulated above also explains
our empirical observations in Figure 2, where the model’s attention on the core objects gets weak-
ened under distribution shifts—since the Grad-CAM score of each feature map is proportional to

5While our theorems are proved in a binary classification setting since it is more amenable to analysis, our
numerical experiments suggest that feature accompaniment also happens in representation distillation. Thus, we
believe that our analysis can be extended to the setting that exactly matches our experimental setup in Section 2.
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the neuron’s activation (Selvaraju et al., 2019), if core and background features are coupled in the
activation as shown in Theorem 2, then the shift of background features can make the activation less
positive or even negative (i.e., removing the contribution of this neuron to classification), which in
turn reduces the Grad-CAM score of core features. Since higher Grad-CAM score corresponds to
more saliency in the prediction heatmap, this would result in weakened attention to core objects.

4.4. Linear models are provably free from feature accompaniment. Finally, to further under-
stand the role of non-linearity, we prove that if we “remove” the non-linearity in the model by
replacing ReLU with identity functions, then feature accompaniment will no longer exist.
Theorem 4 (Linear networks). If we replace the ReLU functions in the network with identity func-
tions and keep other conditions the same as in Theorem 2, then with high probability, we have
|⟨w(T1)

k ,mj⟩| ≤ Õ( 1√
d
) for every k ∈ [m] and every j ∈ Sbg.

The intuition is that without non-linearity, the activation magnitude for different examples will be no
longer asymmetric: for two-layer linear networks, we have the gradient projection akin to Eq. (7) but
without the activation derivative 1⟨w(t)

k ,x⟩≥0
. This immediately leads to ⟨−∇

w
(t)
k

L̂(h(t)),mj⟩ ≈ 0

for every j ∈ Sbg, meaning that the background features will not be accumulated during SGD.

As more empirical evidence that corroborates our theory, in Section F.1, we provide numerical
experiments in both synthetic classification and representation distillation tasks. In Section F.2, we
visualize the features learned by a ResNet-32 on a modified CIFAR-10 dataset, showing that feature
accompaniment also happens in deep features learned by neural networks used in practice.

5 DISCUSSION

5.1 TAKEAWAYS

Takeaway 1: OOD generalization algorithms need to consider inductive biases. Prior algorith-
mic studies in OOD generalization often motivate and analyze their algorithms in simplified linear
settings, which may fail to capture the inductive biases of non-linear neural networks. Our work im-
plies that OOD generalization may not be feasible without considering such inductive biases, calling
for explicitly incorporating them into the development of principled OOD generalization algorithms.

Takeaway 2: Non-linearity in neural networks elicits new OOD generalization challenges be-
yond spurious correlations. As we formally show in Section 4, feature accompaniment is a new
OOD generalization challenge that is essentially induced by the non-linearity of SGD-trainied neu-
ral networks, being orthogonal to spurious correlations. We believe that this result provides a new
perspective on OOD generalization in practice and may inspire new algorithmic designs.

Takeaway 3: Learned features may behave very differently from prescribed ones. Many exist-
ing studies on OOD generalization explicitly or implicitly assume that we can directly work on a set
of well-separated features. While this assumption helps build intuitions, our results highlight that it
can also be misleading since the features learned by neural networks may manifest in a non-linearly
coupled manner, thus often diverging from the intuitions for prescribed, well-separated features.

5.2 LIMITATIONS AND FUTURE WORK

While our work takes a step towards fully understanding OOD generalization in practice, our re-
sults still leave much room for improvement such as extensions to more general data distributions,
multi-class classification, and more complicated network architectures. More importantly, while our
results indicate the innate difficulty in achieving OOD generalization with only ID data, they do
not readily explain how pre-training on more diverse data consistently helps OOD generalization as
observed in practice. Based on our preliminary experiments, we have the following conjecture:
Conjecture 1. Pre-training on a sufficiently large and diverse dataset alleviates feature accompa-
niment and leads to more linearized representations, hence improving OOD genenralization.

We provide preliminary empirical evidence that supports this conjecture in Section G. However,
we believe that formally proving this conjecture may require more fine-grained treatment in the
(pre-training) data generation process and the dynamics of SGD, which we leave as future work.
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APPENDIX

The appendix is divided into two parts to maximize readability. We provide complete proofs of our
theoretical results in Appendix I, while presenting the experimental details and additional empirical
results in Appendix II.

APPENDIX I: PROOFS OF THEORETICAL RESULTS

In this part of the appendix, we provide complete proofs of our theorems in the main text. A quick
overview of the structure of this part is as follows:

• In Section A, we introduce the preliminaries and some lemmas that characterize the neuron
properties at network initialization.

• In Section B, we provide the proofs of our main theorems on activation asymmetry (Theo-
rem 1), feature accompaniment (Theorem 2), and the induced ID and OOD risks (Theorem 3).

• In Section C, we provide the proof of our theorem on linear neural networks (Theorem 4).

• In Section D, we provide the basic probability theory lemmas used in the proofs for complete-
ness.

A PRELIMINARIES

Notation. Throughout the appendix, we overload Dtrain and Dtest to allow them to denote (joint)
training and test distributions on both X × Y and Z × Y . We also use Dtrain and Dtest to denote
the corresponding marginal distributions on X , Y and Z . For presentation brevity, unless otherwise
stated, we use the shorthand E(·) and Pr(·) to denote E(·)∼Dtrain

and Pr(·)∼Dtrain
, respectively, and

use the shorthand h to denote h(t) when it is clear from context. As in Definition 1, we denote
the moments of each zj on the training distribution by µjp := Ez∼Dtrain

zpj for every j ∈ [d0] and
p ∈ [3], and use the shorthand µj to denote µj1 when it is clear from the context.

A.1 WEIGHT DECOMPOSITION AND GRADIENT CALCULATIONS

We begin by recalling that each weight vector wk ∈ Rd, k ∈ [m] (i.e., the learned feature of the
k-th neuron) in the network can be decomposed into the sum of its projections to different feature
vectors:

w
(t)
k =

∑
j∈Score

⟨w(t)
k ,mj⟩mj +

∑
j∈Sbg

⟨w(t)
k ,mj⟩mj +

∑
j∈[d]\[d0]

⟨w(t)
k ,mj⟩mj , (10)

where (md0+1, . . . ,md) are an orthogonal complement of M . Since all possible inputs are gen-
erated to be in span{m1, . . . ,md0

} as in Definition 1, the last term in the RHS of Eq. (10) (i.e.,
the residual term in Eq. (6) in the main text) can be neglected due to the orthogonality of different
feature vector mjs. Therefore, throughout the following analysis, we will overload the notation
w

(t)
k and let

w
(t)
k =

∑
j∈Score

⟨w(t)
k ,mj⟩mj +

∑
j∈Sbg

⟨w(t)
k ,mj⟩mj . (11)

A direct consequence of Eq. (10) is that we can analyze the feature learning process of the network
by tracking the correlations between each weight vector w(t)

k and different feature vectors mj , j ∈
[d] as the training proceeds. To this end, we need to first analyze the gradient of each neuron at every
iteration.

Gradient of each neuron. Recall that at each iteration t = 0, . . . , T − 1, the SGD update for each
weight vector wk, k ∈ [m] is given by

w
(t+1)
k ← (1− ηλ)w

(t)
k − η∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
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where
h(t)(x

(t)
i ) =

∑
k∈[m]

ak · ReLU
(
⟨w(t)

k ,x
(t)
i ⟩
)

and ℓ(y, y′) = max{1−yy′, 0}. We can then calculate the gradient of each neuron w
(t)
k with regard

to a certain example (x,y):
Lemma 1 (Gradient). For every example (x, y) ∈ X × Y , every k ∈ [m], and every iteration t, the
following holds:

∇
w

(t)
k

ℓ (h(x), y) = −aky1h(x)≤11⟨w(t)
k ,x⟩≥0

x. (12)

Proof. The proof follows from simple calculation.

We then introduce a lemma that bounds the empirical growth of the correlation between each neuron
w

(t)
k and each feature vector mj after an SGD update using population gradients.

Lemma 2 (Gap between empirical and population gradients). For every k ∈ [m], every j ∈ [d],
and every iteration t, if the batch size N = poly(d) for some sufficiently large polynomial, then the
following holds with probability at least 1− e−Ω(d):∣∣∣∣〈∇w

(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
−
〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y),mj

〉∣∣∣∣ ≤ 1

poly(d)
.

(13)

Proof. Recall that ∥mj∥2 = 1. Applying Cauchy-Schwarz inequality gives∣∣∣∣〈∇w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
−
〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y),mj

〉∣∣∣∣
≤
∥∥∥∇w

(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
−∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y)

︸ ︷︷ ︸
S(t)

∥∥∥
2
.

We define

Z
(t)
i :=

1

N
∇

w
(t)
k

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
− 1

N
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y), ∀i ∈ [N ].

It is easy to see that S(t) =
∑

i∈[N ] Z
(t)
i , EZ(t)

i = 0 for every i ∈ [N ], and ∀i ̸= j ∈ [N ], Z(t)
i and

Z
(t)
j are independent. By Lemma 1, we have

Z
(t)
i =

1

N
E(x,y)∼Dtrain

aky1h(x)≤11⟨w(t)
k ,x⟩≥0

· x− 1

N
aky

(t)
i 1

h(t)(x
(t)
i )≤1

1⟨w(t)
k ,x

(t)
i ⟩≥0

· x(t)
i .

Recall that ak ∈ {− 1
m , 1

m} and x is generated by x =
∑

j∈Score
yzjmj +

∑
j∈Sbg

zjmj according

to Definition 1. We then have ∥Z(t)
i ∥2 ≤

2
√
d0

mN , which also indicates that E⟨Z(t)
i ,Z

(t)
i ⟩ ≤

4d0

m2N2 .
This gives

E⟨S(t),S(t)⟩ =
∑
i∈[N ]

E⟨Z(t)
i ,Z

(t)
i ⟩ ≤

4d0
m2N

.

Applying matrix Bernstein’s inequality (Lemma 20), we have

Pr
[
∥S(t)∥2 ≥ δ

]
≤ (d+ 1) exp

(
− 3m2N2δ2

24d0 + 4
√
d0δmN

)
hold with every δ = 1

poly(d) . Therefore, we have that for N = poly(d) with some sufficiently large

polynomial, the following holds with probability at least 1− e−Ω(d):

∥S(t)∥2 ≤
1

poly(d)
.

This gives the desired result.
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Lemma 2 directly leads to the following corollary:

Lemma 3 (Projection approximation). For every k ∈ [m], every j ∈ [d0], and every iteration t, the
following holds:〈

∇
w

(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
=
〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y),mj

〉
± 1

poly(d)

= −akE(x,y)∼Dtrain
y1h(x)≤11⟨w(t)

k ,x⟩≥0
· zj ±

1

poly(d)
, j ∈ [d0].

(14)

Proof. The proof directly follows from combining Lemma 1 and the generation process of x in Def-
inition 1.

Lemma 3 allows us to directly work with population gradients instead of empirical gradients when
analyzing the trajectory of SGD iterations in the subsequent sections.

A.2 NEURON CHARACTERIZATION

In this section, we define two subsets of neurons that will be used throughout our proofs.

Definition 2 (Neuron characterization). For each label y ∈ Y = {−1, 1} and every iteration t, we
define the set N (t)

y ⊆ [m] as:

N (t)
y :=

{
k ∈ [m] :

∑
j∈Score

yµj⟨w(t)
k ,mj⟩+

∑
j∈Sbg

µj⟨w(t)
k ,mj⟩ ≥ Θ

(√
d0
d

)
,

sign (ak) = y

}
.

(15)

Intuition. For each label y ∈ Y and iteration t, Definition 2 characterizes a subset of neuronsN (t)
y

in which

• each neuron has (in expectation) enough positive correlations with the examples from class y
(recall that x =

∑
j∈Score

yzjmj +
∑

j∈Sbg
zjmj);

• each neuron positively contributes to the classification of examples from class y (i.e.,
sign (ak) = y).

In our main proof, we will show in an iterative fashion that each neuron in N (t)
y will accumulate

either positive (if random initialization gives ak = 1
m ) or negative (if random initialization gives

ak = − 1
m ) correlations with features in Score (core feature learning), while also accumulating

positive correlations with features in Sbg (feature accompaniment).

For each neuron, we formally define the notion of positive examples and negative examples which
are informally mentioned in Section 4:

Definition 3 (Positive examples and negative examples). Let (x, y) ∈ X × Y be an example. For
every k ∈ [m], we say that (x, y) is a positive example of neuron k if sign(ak) = y, and say that
(x, y) is a negative example of neuron k if sign(ak) = −y.

A.3 PROPERTIES AT INITIALIZATION

In this section, we introduce some useful properties of the neurons at initialization t = 0, which
serve as a basis for our inductive proofs in the subsequent sections.
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Lemma 4. For every j ∈ [d0], every S ⊆ [d0], and every {yj}j∈S ∈ {−1, 1}|S|, the following
holds for every δ > 0 over random initialization:

PrW(0)

[∑
j∈S

yjµj⟨w(0)
k ,mj⟩ ≥

δ√
d

]
≥ 1√

2π

δ
√∑

j∈S µ2
j

δ2 +
∑

j∈S µ2
j

exp

(
− δ2

2
∑

j∈S µ2
j

)
,

PrW(0)

[∑
j∈S

yjµj⟨w(0)
k ,mj⟩ ≥

δ√
d

]
≤ 1√

2π

√∑
j∈S µ2

j

δ
exp

(
− δ2

2
∑

j∈S µ2
j

)
.

(16)

Proof. Recall that different neurons are independently initialized by w
(0)
k ∼ N (0, σ2

0Id),∀k ∈ [m]
with σ2

0 = 1
d . Using the fact that ∥mj∥2 = 1,∀j ∈ [d0] and y2j = 1,∀j ∈ S, we have∑

j∈S
yjµj⟨w(0)

k ,mj⟩ ∼ N
(
0,

1

d

∑
j∈S

µ2
j

)
Applying standard bounds for the Gaussian distribution function (Lemma 21) gives that for every
δ > 0,

1√
2π

δ

δ2 + 1
exp

(
−δ2

2

)
≤ PrW(0)

√d∑j∈S yjµj⟨w(0)
k ,mj⟩√∑

j∈S µ2
j

≥ δ

 ≤ 1√
2π

1

δ
exp

(
−δ2

2

)
.

A simple transformation completes the proof.

Lemma 5 (Neuron properties at initialization). For each label y ∈ Y , the following holds with
probability at least 1− e−Ω(m) over random initialization:∣∣N (0)

y

∣∣ = Θ(m). (17)

Proof. For each neuron k ∈ [m], define events Ek1 and Ek2 to be

Ek1 :=

{ ∑
j∈Score

yµj⟨w(0)
k ,mj⟩+

∑
j∈Sbg

µj⟨w(0)
k ,mj⟩ ≥ Θ

(√
d0
d

)}
,

Ek2 :=
{
sign (ak) = y

}
.

By ak ∼ Uniform{− 1
m , 1

m}, we immediately have Pr[Ek2] =
1
2 for every k ∈ [m]. For Ek1, by

applying Lemma 4 with δ = Θ(
√
d0) we obtain

PrW(0) [Ek1] ≥
1√
2π

Θ
(√

d0
∑

j∈[d0]
µ2
j

)
Θ(d0) +

∑
j∈[d0]

µ2
j

exp

(
−Θ

(
d0∑

j∈[d0]
µ2
j

))
,

PrW(0) [Ek1] ≤
1√
2π

Θ

√∑j∈[d0]
µ2
j

d0

 exp

(
−Θ

(
d0∑

j∈[d0]
µ2
j

))
.

Together with µ2
j = Θ(1) for every j ∈ [d0], we have that PrW(0) [Ek1] = Θ(1) for every k ∈ [m].

Since events Ek1 and Ek2 are independent, we have that for each neuron k ∈ [m], the probability of
it belonging to N (0)

y is given by Pr(k ∈ N (0)
y ) = Pr(Ek1 ∩ Ek2) = Θ(1).

Since different neurons are independently initialized, |N (0)
y | follows a binomial distribution with

trial number m and some success probability Θ(1). Applying the standard tail bound for binomial
variables (Lemma 22) then gives |N (0)

y | ≥ Θ(m) with probability at least 1 − e−Ω(m). Together
with the trivial upper bound that |N (0)

y | ≤ m, we have that |N (0)
y | = Θ(m) with probability at least

1− e−Ω(m).
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Lemma 6 (Neuron properties at initialization, continued). With probability at least 1−O( 1
m ) over

random initialization, for every y ∈ Y , the following holds:

max
k∈[m]

∣∣Ex|y=y∼Dtrain
⟨w(0)

k ,x⟩
∣∣ ≤ O

(√
d0 logm

d

)
.

Proof. Recall that different neurons are independently initialized by w
(0)
k ∼ N (0, σ2

0Id),∀k ∈ [m]
with σ2

0 = 1
d . By ∥mj∥2 = 1, we have

Ex|y=y∼Dtrain
⟨w(0)

k ,x⟩ =
∑

j∈Score

yµj⟨w(0)
k ,mj⟩+

∑
j∈Sbg

µj⟨w(0)
k ,mj⟩

∼ N
(
0,

1

d

∑
j∈[d0]

µ2
j

)
.

Applying Lemma 23 over the i.i.d. random variables ⟨w(0)
1 ,x⟩, . . . , ⟨w(0)

m ,x⟩ gives

PrW(0)

Ex|y=y∼Dtrain
⟨w(0)

k ,x⟩ ≥ 2

√∑
j∈[d0]

µ2
j

d
logm

 ≤ 1

m
.

Finally, using
∑

j∈[d0]
µ2
j = Θ(d0) and m ∈ [Θ(d0),Θ(d)] completes the proof.

Lemma 7 (Output magnitude at initialization). For every x ∈ X , the following holds with proba-
bility at least 1− e−Ω(d0) over random initialization:∣∣h(0)(x)

∣∣ = O

(
1√
d0

)
. (18)

Proof. By w
(0)
k ∼ N (0, σ2

0Id) with σ2
0 = 1

d and ∥mj∥2 = 1, we have∑
k∈[m]

1

m

∑
j∈[d0]

⟨w(0)
k ,mj⟩ ∼ N

(
0,

d0
md

)
.

Applying standard bounds for the Gaussian distribution function (Lemma 21) gives

1√
2π

δ

δ2 + 1
exp

(
−δ2

2

)
≤ PrW(0)

 ∑
k∈[m]

1

m

∑
j∈[d0]

⟨w(0)
k ,mj⟩ ≥ δ

√
d0
md

 ≤ 1√
2π

1

δ
exp

(
−δ2

2

)
for every δ > 0. Substituting δ by Θ(

√
d0) and using the symmetry of Gaussian then yield

PrW(0)

[ ∣∣∣∣ ∑
k∈[m]

1

m

∑
j∈[d0]

⟨w(0)
k ,mj⟩

∣∣∣∣ ≥ Θ(d0)√
md

]
≤ exp(−Ω(d0)).

We then have ∣∣h(0)(x)
∣∣ = ∣∣∣ ∑

k∈[m]

ak · ReLU
(
⟨w(0)

k ,x⟩
)∣∣∣

≤
∣∣∣∣ ∑
k∈[m]

1

m
⟨w(0)

k ,x⟩
∣∣∣∣

≤
∣∣∣∣ ∑
k∈[m]

1

m

∑
j∈[d0]

⟨w(0)
k ,mj⟩

∣∣∣∣
≤ Θ(d0)√

md
= O

(
1√
d0

)
.

holds with probability at least 1−e−Ω(d0), where in the last equality we use the fact that m = Ω(d0)
and d = Ω(d2.50 ).

In what follows, we will always assume that the high-probability events at initialization
in Lemma 5, Lemma 6, and Lemma 7 hold—by a union bound argument and the fact that
m = Ω(d0), the probability that they all hold is at least 1−O( 1

m )− e−Ω(d0).
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B ACTIVATION ASYMMETRY, FEATURE ACCOMPANIMENT, AND OOD
FAILURE: PROOFS OF THEOREM 1, THEOREM 2, AND THEOREM 3

Before we delve into the main proofs, we first introduce some technical lemmas that characterize the
gradient updates starting from random initialization. We begin by introducing an important lemma
that characterizes the activation probability of the ReLU function for each neuron in N (t)

y :
Lemma 8 (Activation probability). Assume that the training (ID) data is generated according
to Definition 1. Then, for every label y ∈ Y , every k ∈ [m], and every iteration t, the follow-
ing holds:

Prx|y=y∼Dtrain
[⟨w(t)

k ,x⟩ ≥ 0] = Φ

 Ex|y=y⟨w
(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]
⟨w(t)

k ,mj⟩2

±O

(
1√
d0

)
, (19)

where Φ denotes the cumulative distribution function of N (0, 1).

Proof. Recall Definition 1 that given label y ∈ Y , x is generated by

x =
∑

j∈Score

yzjmj +
∑

j∈Sbg

zjmj .

Therefore,
⟨w(t)

k ,x⟩ =
∑

j∈Score

yzj⟨w(t)
k ,mj⟩+

∑
j∈Sbg

zj⟨w(t)
k ,mj⟩.

For every j ∈ [d0], define the random variable

rj := yj(zj − µj)⟨w(t)
k ,mj⟩,

where yj :=

{
y, j ∈ Score
1, j ∈ Sbg

. Recall that µj := Ez∼Dtrain
zj . It is then easy to derive that Erj = 0

and Er2j = Θ(1)⟨w(t)
k ,mj⟩2. We now upper bound E|r3j |: first recall that by Definition 1 we have

Ez3j = Θ(1). For every p ≥ 1, denote the ℓp norm of the random variable zj by ∥zj∥p := (E|zj |p)
1
p .

Applying Minkowsky’s inequality gives

∥zj − µj∥p ≤ ∥zj∥p + ∥µj∥p
(a)
= ∥zj∥p + ∥zj∥1
(b)

≤ 2∥zj∥p,

where (a) is due to the fact that ∥µj∥p = |µj | = ∥zj∥1 and (b) is due to the power norm inequal-
ity indicating that ∥·∥p is non-decreasing with regard to p. Letting p = 3 and cubing the above
inequality gives

E|zj − µj |3 ≤ 8E|z3j | = 8Ez3j = Θ(1),

from which we obtain E|r3j | = O(1) · |⟨w(t)
k ,mj⟩|3.

We then define the normalized sum of rj :

sd0
:=

∑
j∈[d0]

rj√∑
j∈[d0]

Er2j
.

Since ri and rj are independent and zero-mean for every i ̸= j ∈ [d0], we can apply Berry-Esseen
theorem (Lemma 24) to the normalized sum sd0

and obtain

sup
δ∈R

∣∣Prx|y=y[sd0 < δ]− Φ(δ)
∣∣ ≤ C0

(
d0∑
i=1

Er2j

)− 3
2 d0∑

i=1

E|r3j |

= O

(
1√
d0

)
.
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Note that
∑

j∈[d0]
rj = ⟨w(t)

k ,x⟩ − Ex|y=y⟨w
(t)
k ,x⟩. We then have for every δ ∈ R,

Prx|y=y

⟨w(t)
k ,x⟩ ≥ Ex|y=y⟨w

(t)
k ,x⟩+ δ

√∑
j∈[d0]

Er2j

 = 1− Φ(δ)±O

(
1√
d0

)
.

Finally, letting δ = −Ex|y=y⟨w
(t)
k ,x⟩√∑

j∈[d0] Er2j
and using the symmetry of unit Gaussian 1 − Φ(δ) = Φ(−δ)

give the desired result.

We then define two terms that will be frequently used when analyzing gradients.

Definition 4. For each label y ∈ Y , every k ∈ [m], every feature vector mj , j ∈ [d0], every
iteration t, and every subset S ⊆ [d0], define

g
(t)
k,y,j :=

1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=y1⟨w(t)
k ,x⟩≥0

µjzj ,

g
(t)
k,y,S :=

∑
j∈S

g
(t)
k,y,j .

(20)

Given the above notation, we now introduce two lemmas that separately bound the gradient projec-
tion onto the core features and the gradient projection onto the background features for neurons in
N (t)

y , which will be helpful for us to track the trajectory of SGD starting from network initialization.

Lemma 9 (Gradient projection onto core features, neurons inN (t)
y ). For every iteration t ≤ O( m

ηd0
),

the following holds for every y ∈ Y and every neuron k ∈ N (t)
y :

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
= y

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
, (21)

where

g
(t)
k,y,Score

= Θ

(
d0
m

)
. (22)

Proof. Recall Definition 1 that given a label y ∈ Y , x is generated by

x =
∑

j∈Score

yzjmj +
∑

j∈Sbg

zjmj .

Then, applying Lemma 3 to the LHS of Eq. (21) and using sign(ak) = y for every k ∈ N (t)
y , we

obtain

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
= −

〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ
(
h(t)(x),y

)
,
∑

j∈Score

µjmj

〉
± O(d0)

poly(d)

= akE(x,y)∼Dtrain
y1h(t)(x)≤11⟨w(t)

k ,x⟩≥0

∑
j∈Score

yµjzj ±
O(d0)

poly(d)

= akE(x,y)∼Dtrain
1h(t)(x)≤11y=y1⟨w(t)

k ,x⟩≥0

∑
j∈Score

µjzj

+ akE(x,y)∼Dtrain
1h(t)(x)≤11y=−y1⟨w(t)

k ,x⟩≥0

∑
j∈Score

µjzj ±
O(d0)

poly(d)

= y
(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
± O(d0)

poly(d)
.

(23)
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For g(t)k,y,Score
, by the law of total expectation we have

g
(t)
k,y,Score

=
1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=y1⟨w(t)
k ,x⟩≥0

∑
j∈Score

µjzj

=
1

2m
Ex|y=y

[
1h(t)(x)≤1

∑
j∈Score

µjzj

∣∣∣ ⟨w(t)
k ,x⟩ ≥ 0

]
Prx|y=y[⟨w

(t)
k ,x⟩ ≥ 0]

=
1

2m
Ex|y=y

[
1h(t)(x)≤1

∑
j∈Score

µjzj

]

− 1

2m
Ex|y=y

[
1h(t)(x)≤1

∑
j∈Score

µjzj

∣∣∣ ⟨w(t)
k ,x⟩ < 0

]
Prx|y=y[⟨w

(t)
k ,x⟩ < 0].

Applying Lemma 8 gives

Prx|y=y[⟨w
(t)
k ,x⟩ < 0] = Φ

− Ex|y=y⟨w
(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]
⟨w(t)

k ,mj⟩2

±O

(
1√
d0

)
.

Recall that for x ∼ Dtrain|y = y,

⟨w(t)
k ,x⟩ =

∑
j∈Score

yzj⟨w(t)
k ,mj⟩+

∑
j∈Sbg

zj⟨w(t)
k ,mj⟩.

By Definition 2, we have for every k ∈ N (t)
y , Ex|y=y⟨w

(t)
k ,x⟩ ≥ Θ

(√
d0

d

)
> 0, which indicates

that Φ

(
− Ex|y=y⟨w

(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]⟨w
(t)
k ,mj⟩2

)
< 1

2 . Together with h(t)(x) ≤ 1, this gives

g
(t)
k,y,Score

≥ 1

2m
Ex|y=y

[
1h(t)(x)≤1

∑
j∈Score

µjzj

]

− 1

2m
Ex|y=y

[
1h(t)(x)≤1

∑
j∈Score

µjzj

∣∣∣ ⟨w(t)
k ,x⟩ < 0

]
·
(
1

2
±O

(
1√
d0

))

≥
∑

j∈Score

µ2
j

2m
−

∑
j∈Score

µ2
j

4m
±

∑
j∈Score

µ2
j

Θ(m
√
d0)

= Θ

(
d0
m

)
.

(24)

Meanwhile, we also have the upper bound

g
(t)
k,y,Score

=
1

m
E(x,y)1h(t)(x)≤11y=y1⟨w(t)

k ,x⟩≥0

∑
j∈Score

µjzj

≤ 1

2m
Ex|y=y

∑
j∈Score

µjzj

= Θ

(
d0
m

)
.

(25)

Combining Eqs. (24) and (25) gives

g
(t)
k,y,Score

= Θ

(
d0
m

)
.

Finally, plugging the above equation and m = O(d) into Eq. (23) completes the proof.
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Lemma 10 (Gradient projection onto background features, neurons in N (t)
y ). For every iteration

t ≤ O( m
ηd0

), the following holds for every y ∈ Y and every neuron k ∈ N (t)
y :

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Sbg

µjmj

〉
= g

(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

, (26)

where

g
(t)
k,y,Sbg

= Θ

(
d0
m

)
. (27)

Proof. Similar to the proof of Lemma 9, we apply Lemma 3 to the LHS of Eq. (26) and using
sign(ak) = y for every k ∈ N (t)

y , which gives

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Sbg

µjmj

〉
= −

〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ
(
h(t)(x),y

)
,
∑

j∈Sbg

µjmj

〉
± O(d0)

poly(d)

= akE(x,y)∼Dtrain
y1h(t)(x)≤11⟨w(t)

k ,x⟩≥0

∑
j∈Sbg

µjzj ±
O(d0)

poly(d)

=
1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=y1⟨w(t)
k ,x⟩≥0

∑
j∈Sbg

µjzj

− 1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=−y1⟨w(t)
k ,x⟩≥0

∑
j∈Sbg

µjzj ±
O(d0)

poly(d)

= g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

± O(d0)

poly(d)
.

(28)

Also, by a nearly identical argument to Lemma 9, we can obtain

g
(t)
k,y,Sbg

= Θ

(
d0
m

)
. (29)

This completes the proof.

Next, we also introduce a lemma that bound the gradient projection onto core features for all neu-
rons:
Lemma 11 (Gradient projection onto core features, all neurons). For every iteration t ≤ O( m

ηd0
),

the following holds for every y ∈ Y and every neuron k ∈ [m] with sign (ak) = y:

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
= y ·O

(
d0
m

)
. (30)

Proof. By an identical proof to Lemma 9, we have

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
= y

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
± Θ(d0)

poly(d)
.

By Eq. (25), we have the upper bound g
(t)
k,y,Score

≤ Θ
(
d0

m

)
. By a similar argument, we also have

g
(t)
k,−y,Score

≤ Θ
(
d0

m

)
. Plugging those upper bounds and m = O(d) into the above equation com-

pletes the proof.

We then introduce a lemma that bounds the expected correlation between each neuron in N (t)
y and

its positive examples.
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Lemma 12 (Correlation with positive examples, neurons in N (t)
y ). For every iteration t ≤ O( m

ηd0
),

every y ∈ Y , and every k ∈ N (t)
y , the following holds:

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] ≥ (1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] + Θ

(
ηd0
m

)
. (31)

Proof. Recall Definition 1 that given the label y ∈ Y , x is generated by

x =
∑

j∈Score

yzjmj +
∑

j∈Sbg

zjmj .

We can thus obtain

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩]− Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩]

= y
(〈

w
(t+1)
k ,

∑
j∈Score

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉)
︸ ︷︷ ︸

∆
(t)
core

+
( 〈

w
(t+1)
k ,

∑
j∈Sbg

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
︸ ︷︷ ︸

∆
(t)
bg

)
.

For ∆(t)
core, by the SGD iteration (4) we have

∆(t)
core = −ηy

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
− ληy

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
.

Applying Lemma 9 gives

∆(t)
core = η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
− ληy

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
,

which results in the iterative expression

y
〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
= y(1− λη)

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
+ η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
. (32)

For ∆(t)
bg , by the SGD iteration (4) we have

∆
(t)
bg = −η

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Sbg

µjmj

〉
− λη

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
.

Applying Lemma 10 gives

∆
(t)
bg = η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
− λη

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
,

which results in the iterative expression〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
= (1− λη)

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
+ η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
. (33)
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Combining Eqs. (36) and (37) gives

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] = y
〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
+
〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
= y(1− λη)

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
+ η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
+ (1− λη)

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
+ η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
= y(1− λη)Ex|y=y∼Dtrain

[⟨w(t)
k ,x⟩]

+ η
(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

+ g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
≥ (1− λη)Ex|y=y∼Dtrain

[⟨w(t)
k ,x⟩] + Θ

(
ηd0
m

)
,

where in the last inequality we use

g
(t)
k,−y,Score

− g
(t)
k,−y,Sbg

=
1

m
E(x,y)1h(t)(x)≤11y=−y1⟨w(t)

k ,x⟩≥0

( ∑
j∈Score

µjzj −
∑

j∈Sbg

µjzj

)
≥ 0

as well as g(t)k,y,Score
= Θ

(
d0

m

)
and g

(t)
k,y,Sbg

= Θ
(
d0

m

)
from Lemma 9 and Lemma 10.

We also introduce a general upper bound on the expected correlation between every neuron in the
network and its positive examples.
Lemma 13 (Correlation with positive examples, all neurons). For every iteration t ≤ O( m

ηd0
), the

following holds for every y ∈ Y and every k ∈ N (t)
y with sign(ak) = y:

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] ≤ (1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] +O

(
ηd0
m

)
. (34)

Proof. By an identical proof to Lemma 12, we have

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] = y(1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩]

+ η
(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

+ g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
By Eq. (25), we have the upper bound g

(t)
k,y,Score

≤ Θ
(
d0

m

)
. By a similar argument, we also have the

upper bounds g(t)k,−y,Score
≤ Θ

(
d0

m

)
and g

(t)
k,y,Sbg

≤ Θ
(
d0

m

)
. Plugging those upper bounds and the

trivial lower bound g
(t)
k,−y,Sbg

≥ 0 into the above equation completes the proof.

The above two lemmas directly lead to the following result saying that if a neuron is initialized
to have large enough correlation to its positive examples (i.e., belonging to N (0)

y ), then this large
enough correlation will be retained during training.

Lemma 14 (Neuron properties during training). For every label y ∈ Y , every iteration t ≤ Õ( m
ηd0

),

and every step size η ≤ 1
poly(d0)

, we have N (t+1)
y ⊇ N (t)

y .

Proof. By Lemma 6, we have at initialization

max
k∈[m]

∣∣Ex|y=y∼Dtrain
⟨w(0)

k ,x⟩
∣∣ ≤ Õ

(√
d0
d

)
, ∀y ∈ Y.

By Lemma 13 and our choice of T = Θ( m
ηd0

), we have

Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] ≤ O

(
ηd0T

m

)
+ max

k∈[m]

∣∣Ex|y=y∼Dtrain
⟨w(0)

k ,x⟩
∣∣ = O(1).
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By Lemma 12, we have

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] ≥ (1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] + Θ

(
ηd0
m

)
.

Recall that λ = O( d0

m1.01 ). Therefore, as long as Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] = Õ(1),

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩]− Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] ≥ Θ

(
ηd0
m

)
− ληEx|y=y∼Dtrain

[⟨w(t)
k ,x⟩]

= Θ

(
ηd0
m

)
> 0.

Finally, recall that Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] =
∑

j∈Score
yµj⟨w(0)

k ,mj⟩ +
∑

j∈Sbg
µj⟨w(0)

k ,mj⟩.
By Definition 2, we immediately have N (t+1)

y ⊇ N (t)
y .

Finally, we introduce a lemma that bounds the expected correlation between every neuron in the
network and its negative examples.

Lemma 15 (Correlation with negative examples, all neurons). For every iteration t, every y ∈ Y ,
and every k ∈ [m] such that sign (ak) = y, the following holds:

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]

−Θ

(
ηd0
m

)
Prx|y=−y[⟨w

(t)
k ,x⟩ ≥ 0].

(35)

Proof. Similar to the proof of Lemma 12, we have

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩]− Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]

= −y
(〈

w
(t+1)
k ,

∑
j∈Score

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉)
︸ ︷︷ ︸

∆
(t)
core

+
( 〈

w
(t+1)
k ,

∑
j∈Sbg

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
︸ ︷︷ ︸

∆
(t)
bg

)
.

For ∆(t)
core, by the SGD iteration (4) we have

∆(t)
core = ηy

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
+ ληy

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
.

Applying Lemma 9 gives

∆(t)
core = −η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
+ ληy

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
,

which results in the iterative expression

−y
〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
= −y(1− λη)

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
− η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
.

(36)
For ∆(t)

bg , by the SGD iteration (4) we have

∆
(t)
bg = −η

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Sbg

µjmj

〉
− λη

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
.
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Applying Lemma 10 gives

∆
(t)
bg = η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
− λη

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
,

which results in the iterative expression〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
= (1− λη)

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
+ η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
. (37)

Combining Eqs. (36) and (37) gives

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = −y
〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
+
〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
= −y(1− λη)

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
− η

(
g
(t)
k,y,Score

+ g
(t)
k,−y,Score

)
+ (1− λη)

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
+ η

(
g
(t)
k,y,Sbg

− g
(t)
k,−y,Sbg

)
= (1− λη)Ex|y=−y∼Dtrain

[⟨w(t)
k ,x⟩]

+ η
(
g
(t)
k,y,Sbg

− g
(t)
k,y,Score

)
− η

(
g
(t)
k,−y,Score

+ g
(t)
k,−y,Sbg

)
.

(38)
For g(t)k,y,Sbg

− g
(t)
k,y,Score

, we have

g
(t)
k,y,Sbg

− g
(t)
k,y,Score

=
1

m
E(x,y)1h(t)(x)≤11y=y1⟨w(t)

k ,x⟩≥0

( ∑
j∈Sbg

µjzj −
∑

j∈Score

µjzj

)
≤ 0.

(39)

For g(t)k,−y,Score
+ g

(t)
k,−y,Sbg

, by the law of total expectation we have

g
(t)
k,−y,Score

+ g
(t)
k,−y,Sbg

=
1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=−y1⟨w(t)
k ,x⟩≥0

( ∑
j∈Sbg

µjzj +
∑

j∈Score

µjzj

)
=

1

m
E(x,y)∼Dtrain

1h(t)(x)≤11y=−y1⟨w(t)
k ,x⟩≥0

∑
j∈[d0]

µjzj

=
1

2m
Ex|y=−y

[
1h(t)(x)≤1

∑
j∈[d0]

µjzj

∣∣∣⟨w(t)
k ,x⟩ ≥ 0

]
Prx|y=−y[⟨w

(t)
k ,x⟩ ≥ 0]

= Θ

(
d0
m

)
Prx|y=−y[⟨w

(t)
k ,x⟩ ≥ 0]

(40)
Finally, plugging Eqs. (39) and (40) into Eq. (38) gives the desired result.

We are now ready to introduce the proofs of our main theoretical results.

B.1 PROOF OF THEOREM 1

For ease of presentation, we first restate the theorem:
Theorem 1 (Activation asymmetry). For every η ≤ 1

poly(d0)
and every y ∈ Y , there exists T0 =

Θ̃( m
η
√
d
) such that with high probability, there are Θ(m) neurons whose weights wk satisfy

Prx|y=y∼Dtrain
[⟨w(t)

k ,x⟩ ≥ 0] = 1− o(1), Prx|y=−y[⟨w
(t)
k ,x⟩ ≥ 0] = o(1), ∀t ≥ T0. (41)

Proof. For every y ∈ Y , consider the neuron set N (t)
y defined in Definition 2. By Lemma 5

and Lemma 14, we have |N (t)
y | = Θ(m) for every iteration t ≤ Θ( m

ηd0
). We then prove that after at
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most T0 iterations, for every neuron k ∈ N (T0)
y we have Prx|y=y∼Dtrain

[⟨w(T0)
k ,x⟩ ≥ 0] = 1−o(1)

and Prx|y=−y∼Dtrain
[⟨w(T0)

k ,x⟩ ≥ 0] = o(1).

Part 1: proving Prx|y=y∼Dtrain
[⟨w(T0)

k ,x⟩ ≥ 0] = 1− o(1).

Let T0 = Θ(m
√
logmd0

η
√
d

) = Θ̃( m
η
√
d
). By Lemma 12 and Lemma 13 we have

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] + Θ

(
ηd0
m

)
≤ Ex|y=y∼Dtrain

[⟨w(t)
k ,x⟩] + Θ

(
ηd0
m

)
,

which gives Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] ≤ Θ̃( d0√
d
) ≤ O(1). Recall that λ = o(d0

m ), we then have

Ex|y=y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=y∼Dtrain
[⟨w(t)

k ,x⟩] + Θ

(
ηd0
m

)
≥ Ex|y=y∼Dtrain

[⟨w(t)
k ,x⟩] + Θ

(
ηd0
m

)
− o

(
ηd0
m

)
= Ex|y=y∼Dtrain

[⟨w(t)
k ,x⟩] + Θ

(
ηd0
m

)
,

which gives Ex|y=−y∼Dtrain
[⟨w(T0)

k ,x⟩] ≥ Θ
(

d0

√
logmd0√

d

)
.

By Lemma 8, we have

Prx|y=y[⟨w
(T0)
k ,x⟩ ≥ 0] = Φ

 Ex|y=y⟨w
(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]
⟨w(t)

k ,mj⟩2

±O

(
1√
d0

)

≥ Φ

 Θ
(

d0

√
logmd0√

d

)
Θ(
√
d0)maxj∈[d0] |⟨w

(t)
k ,mj⟩|

±O

(
1√
d0

)

≥ Φ

 Θ
(

d0

√
logmd0√

d

)
Θ(
√
d0)

(
O

(√
d0 logm

d

)
+Θ

(√
logmd0√

d

))
±O

(
1√
d0

)

= Φ
(
Θ
(√

log d0

))
±O

(
1√
d0

)
.

Applying Lemma 21 gives Φ
(
Θ
(√

log d0
))

= 1−Θ( 1√
d0
). We then have

Prx|y=y[⟨w
(T0)
k ,x⟩ ≥ 0] = 1−O

(
1√
d0

)
= 1− o(1).

Part 2: proving Prx|y=−y∼Dtrain
[⟨w(T0)

k ,x⟩ ≥ 0] = o(1).

By Lemma 15, we have for every t and k ∈ N (t)
y :

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]

−Θ

(
ηd0
m

)
Prx|y=−y[⟨w

(t)
k ,x⟩ ≥ 0].

(42)

By Lemma 8, we have

Prx|y=−y[⟨w
(t)
k ,x⟩ ≥ 0] = Φ

 Ex|y=−y⟨w
(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]
⟨w(t)

k ,mj⟩2

±O

(
1√
d0

)
. (43)
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Assume that a neuron k ∈ N (0)
y satisfies Ex|y=−y⟨w

(t)
k ,x⟩ ≥ 0. Then by Eq. (43), we have

Prx|y=−y[⟨w
(t)
k ,x⟩ ≥ 0] ≥ 1

2 ±O( 1√
d0
), which gives

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]−Θ

(
ηd0
m

)
≤ Ex|y=−y∼Dtrain

[⟨w(t)
k ,x⟩]−Θ

(
ηd0
m

)
.

By Lemma 6, we have at initialization t = 0:

max
k∈[m]

∣∣Ex|y=−y∼Dtrain
⟨w(0)

k ,x⟩
∣∣ ≤ Õ

(√
d0
d

)
. (44)

Therefore, for any step size η = 1
poly(d0)

, after at most T01 := Θ̃( m
η
√
d0d

) iterations, we must have

Ex|y=−y⟨w
(t)
k ,x⟩ ≤ 0 for every k ∈ N (t)

y .

Now, let T02 := Θ(m
√
logmd0

η
√
d

). Suppose that Prx|y=−y[⟨w
(t)
k ,x⟩ ≥ 0] ≥ Θ(1) after t = T01 +

T02 = Θ̃( m
η
√
d
) steps. We then have for t = T01, . . . , T01 + T02 − 1 that

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]−Θ

(
ηd0
m

)
≥ Ex|y=−y∼Dtrain

[⟨w(t)
k ,x⟩]−Θ

(
ηd0
m

)
,

which gives Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩] ≥ −Õ
(√

d0

d

)
− Θ

(
d0

√
logmd0√

d

)
≥ −O(1). Since λ =

o(d0

m ), we then have

Ex|y=−y∼Dtrain
[⟨w(t+1)

k ,x⟩] = (1− λη)Ex|y=−y∼Dtrain
[⟨w(t)

k ,x⟩]−Θ

(
ηd0
m

)
≤ Ex|y=−y∼Dtrain

[⟨w(t)
k ,x⟩]−Θ

(
ηd0
m

)
+ o

(
ηd0
m

)
= Ex|y=−y∼Dtrain

[⟨w(t)
k ,x⟩]−Θ

(
ηd0
m

)
,

which gives Ex|y=−y∼Dtrain
[⟨w(T01+T02)

k ,x⟩] ≤ −Θ
(

d0

√
logmd0√

d

)
. Plugging this into Eq. (43), we

obtain

Prx|y=−y[⟨w
(T01+T02)
k ,x⟩ ≥ 0] = Φ

 Ex|y=−y⟨w
(t)
k ,x⟩

Θ(1)
√∑

j∈[d0]
⟨w(t)

k ,mj⟩2

±O

(
1√
d0

)

≤ Φ

− Θ
(

d0

√
logmd0√

d

)
Θ(
√
d0)maxj∈[d0] |⟨w

(t)
k ,mj⟩|

±O

(
1√
d0

)

≤ Φ

− Θ
(

d0

√
logmd0√

d

)
Θ(
√
d0)

(
O

(√
d0 logm

d

)
+Θ

(√
log d0√

d

))
±O

(
1√
d0

)

= Φ
(
−Θ

(√
log d0

))
±O

(
1√
d0

)
.

Applying Lemma 21 gives Φ
(
−Θ

(√
log d0

))
= Θ( 1√

d0
), which leads to

Prx|y=−y[⟨w
(T01+T02)
k ,x⟩ ≥ 0] = O

(
1√
d0

)
.
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This contradicts with our assumption that Prx|y=−y[⟨w
(T01+T02)
k ,x⟩ ≥ 0] ≥ Θ(1). Hence, we must

have Prx|y=−y[⟨w
(T01+T02)
k ,x⟩ ≥ 0] = o(1).

Finally, combining Part 1 and Part 2 finishes the proof.

B.2 PROOF OF THEOREM 2

Theorem 2 (Learned features). For every η ≤ 1
poly(d0)

and every y ∈ Y , after T1 = Θ( m
ηd0

)

iterations with high probability, there are Θ(m) neurons whose weights w(T1)
k satisfy∑

j∈Score

µj1⟨w(T1)
k ,mj⟩ = y ·Θ(1),

∑
j∈Sbg

µj1⟨w(T1)
k ,mj⟩ = Θ(1). (45)

Proof. For every y ∈ Y , consider the neuron set N (t)
y defined in Definition 2. By Lemma 5

and Lemma 14, we have |N (t)
y | = Θ(m) for every iteration t ≤ T1. We break the subsequent

proof into two parts: in the first part we prove the desired result for core features Score for all neu-
rons k ∈ N (T1)

y ; in the second part we prove the desired result for background features Sbg for all
neurons k ∈ N (T1)

y . Recall that we use the shorthand µj to denote µj1 = Ez∼Dtrain
zj .

Part 1: proving
∑

j∈Score
µj⟨w(T1)

k ,mj⟩ = ⟨w(T1)
k ,

∑
j∈Score

µjmj⟩ = Θ(1).

The SGD update (4) gives〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
= −η

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Score

µjmj

〉
− λη

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
for every t = 0, . . . , T1 − 1.

Applying Lemma 9, we obtain〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
= y ·Θ

(
ηd0
m

)
+ yg

(t)
k,−y,Score

− λη
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
= y ·Θ

(
ηd0
m

)
− λη

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
.

Without loss of generality, assume that y = 1 (the case of y = −1 is similar). By the choice of
T1 = Θ( m

ηd0
), we have〈

w
(T1)
k ,

∑
j∈Score

µjmj

〉
≤ Θ

(
ηT1d0
m

)
+
〈
w

(0)
k ,

∑
j∈Score

µjmj

〉
≤ Θ(1) + Õ

(
d0
d

)
= Θ(1),

where in the second inequality we apply the concentration inequality of the maximum absolute
Gaussian (Lemma 23). By our choice of λ = o(d0

m ), we have〈
w

(t+1)
k ,

∑
j∈Score

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
= Θ

(
ηd0
m

)
− λη

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
≥ Θ

(
ηd0
m

)
− o

(
ηd0
m

)
= Θ

(
ηd0
m

)
.
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Summing the above inequality from t = 0 to t = T1 − 1 yields〈
w

(T1)
k ,

∑
j∈Score

µjmj

〉
= Θ(1).

Similarly, for y = −1 we have
〈
w

(T1)
k ,

∑
j∈Score

µjmj

〉
= −Θ(1).

Part 2: proving
∑

j∈Sbg
µj⟨w(T1)

k ,mj⟩ = ⟨w(T1)
k ,

∑
j∈Sbg

µjmj⟩ = Θ(1).

Similar to the first part of the proof, we have the SGD update〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
= −η

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,
∑

j∈Sbg

µjmj

〉
− λη

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
.

Applying Lemma 10, we obtain〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
−
〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
= Θ

(
ηd0
m

)
− ηg

(t)
k,−y,Sbg

− λη
〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
,

where

g
(t)
k,−y,Sbg

=
1

m

∑
j∈Sbg

E(x,y)∼Dtrain
1h(t)(x)≤11y=−y1⟨w(t)

k ,x⟩≥0
µjzj

=
1

2m
Ex|y=−y

[
1h(t)(x)≤1

∑
j∈Sbg

µjzj

∣∣∣∣⟨w(t)
k ,x⟩ ≥ 0

]
Prx|y=−y

[
⟨w(t)

k ,x⟩ ≥ 0
]

≤ Θ

(
d0
m

)
Prx|y=−y

[
⟨w(t)

k ,x⟩ ≥ 0
]
.

Using Theorem 1, we have after at most T0 = Θ̃( m
η
√
d
) iterations, Prx|y=−y

[
⟨w(t)

k ,x⟩ ≥ 0
]
=

o(1). We thus have〈
w

(t+1)
k ,

∑
j∈Sbg

µjmj

〉
= (1− λη)

〈
w

(t)
k ,

∑
j∈Sbg

µjmj

〉
+Θ

(
ηd0
m

)
for every t ≥ T0. By a similar argument as in the first part of the proof, we have〈
w

(T )
k ,

∑
j∈Sbg

µjmj

〉
≤ Θ(1) and

〈
w

(T1)
k ,

∑
j∈Sbg

µjmj

〉
= (T1 − T0)Θ

(
ηd0
m

)
+
〈
w

(T0)
k ,

∑
j∈Sbg

µjmj

〉
≥ Θ(1)− T0 ·Θ

(
ηd0
m

)
− Õ

(√
d0
d

)
= Θ(1).

Finally, combining Part 1 and Part 2 completes the proof.

B.3 PROOF OF THEOREM 3

Theorem 3 (ID and OOD risks). For every η ≤ 1
poly(d0)

, after at most T2 = Θ̃( m
ηd0

) iterations with

high probability, the trained model h(T2) satisfies the following:

RDtrain(h
(T2)) ≤ o(1), ROOD(h

(T2)) = Θ(1). (46)
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Proof. We break the subsequent proof into two parts: in the first part we prove the desired result for
the ID risk; in the second part we prove the desired result for the OOD risk.

Part 1: provingRDtrain(h
(T2)) ≤ o(1).

By definition, we have

RDtrain
(h(T2)) = E(x,y)∼Dtrain

max
{
1− yh(T2)(x), 0

}
=

1

2
Ex|y=1

[
1− h(T2)(x)

∣∣∣h(T2)(x) ≤ 1
]
Prx|y=1

[
h(T2)(x) ≤ 1

]
︸ ︷︷ ︸

R1

+
1

2
Ex|y=−1

[
1 + h(T2)(x)

∣∣∣h(T2)(x) ≥ −1
]
Prx|y=−1

[
h(T2)(x) ≥ −1

]
︸ ︷︷ ︸

R−1

.

(47)
We first consider R1. By Theorem 2, we have that after T1 = Θ( m

ηd0
) iterations, for every neuron

k ∈ N (t)
1 with t ≥ T1, we have∑

j∈Score

µjzj⟨w(t)
k ,mj⟩ = Θ(1),

∑
j∈Sbg

µjzj⟨w(t)
k ,mj⟩ = Θ(1).

We can then obtain
Ex|y=1⟨w

(t)
k ,x⟩ =

∑
j∈[d0]

µjzj⟨w(t)
k ,x⟩ = Θ(1).

On the other hand, by Lemma 13, we know that for every neuron k satisfying sign(ak) = y, its
correlation grow rate is asymptotically not larger than the correlation grow rate of neurons in N (t)

y .
Denoting the set of those neurons asMy := {k ∈ [m] : sign(ak) = y}, ∀y ∈ Y , we then have

Ex|y=1⟨w
(t)
k ,x⟩ = O(1), ∀k ∈M1, t ≥ T1.

Meanwhile, for all neurons k ∈ M−1, by Lemma 15 and Theorem 1 we have for all t ≥ T0 =

Θ̃( m
η
√
d
),

Prx|y=1[⟨w
(t)
k ,x⟩ ≥ 0] = o(1).

Therefore, we have

Ex|y=1h
(T1)(x) =

1

m

∑
k∈M1

Ex|y=1

[
ReLU

(〈
w

(T1)
k ,x

〉)]
− 1

m

∑
k∈M−1

Ex|y=1

[
ReLU

(〈
w

(T1)
k ,x

〉)]
=

1

m

∑
k∈M1

Θ(1)− 1

m

∑
k∈M−1

o(1)

= Θ(1).

Now, suppose that R1 ≥ Θ(1). Choose T2 = Θ(m
√
logm

ηd0
) = Θ̃( m

ηd0
). Then, for every t =

T1, . . . , T2 − 1 we have
Prx|y=1

[
h(T2)(x) ≤ 1

]
= Θ(1).

This further leads to
1

m

∑
k∈M1

Ex|y=1

[
ReLU

(〈
w

(t+1)
k ,x

〉)]
− 1

m

∑
k∈M1

Ex|y=1

[
ReLU

(〈
w

(t)
k ,x

〉)]
=

1

m

∑
k∈M1

Ex|y=1

[〈
w

(t+1)
k ,x

〉
−
〈
w

(t)
k ,x

〉]
=

1

m

∑
k∈N (t)

1

Ex|y=1

[〈
w

(t+1)
k ,x

〉
−
〈
w

(t)
k ,x

〉]
+

1

m

∑
k∈M1\N (t)

1

Ex|y=1

[〈
w

(t+1)
k ,x

〉
−
〈
w

(t)
k ,x

〉]
(48)
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For the first term in the RHS of the last equality, by Lemma 12 we have

1

m

∑
k∈N (t)

1

Ex|y=1

[〈
w

(t+1)
k ,x

〉
−
〈
w

(t)
k ,x

〉]

=
1

m

∑
k∈N (t)

1

(
Θ

(
ηd0
m

)
− ληEx|y=1

〈
w

(t)
k ,x

〉)

= Θ

(
ηd0
m

)
,

where in the last equality we use |N (t)
1 | = Θ(m), λ = O( d0

m0.01 ) and Ex|y=1

〈
w

(t)
k ,x

〉
= Õ(1) for

t ≤ T2.

For the second term in the RHS of the last equality in (48), by Lemma 13 we have

1

m

∑
k∈M1\N (t)

1

Ex|y=1

[〈
w

(t+1)
k ,x

〉
−
〈
w

(t)
k ,x

〉]
≤ O

(
ηd0
m

)
.

Therefore,

Ex|y=1h
(T2)(x) = Ex|y=1h

(T1)(x) + Θ

(
ηd0(T2 − T1)

m

)
± o(1)

= Θ(1) + Θ(
√
logm)± o(1) = Θ(

√
logm).

Applying one-sided Bernstein’s inequality (Lemma 19) then gives

Prx|y=1

[
h(T2)(x) ≤ 1

]
= O

(
1√
m

)
,

which contradicts with Prx|y=1

[
h(T2)(x) ≤ 1

]
= Θ(1). Hence, we must have R1 = o(1). By a

similar argument, we also haveR−1 = o(1). We then have thatRDtrain(h
(T2)) = o(1) holds.

Part 2: provingROOD(h
(T )) = Θ(1).

This part of the proof directly follows from Theorem 2. Since after t = T1 iterations we have∑
j∈Sbg

µj⟨w(t)
k ,mj⟩ = Θ(1) for every neuron k ∈ N (t)

y , it can be shown that perturbing each µj

from Θ(1) to −Θ(1) changes the output of the network by at least − 1
m

∑
k∈N (t)

y
Θ(1) = −Θ(1)

using the fact that |N (t)
y | = Θ(m) for every t (using Lemma 5 and Lemma 14). By the definition of

the OOD risk we then arrive at the desired result.

Finally, combining Part 1 and Part 2 completes the proof.

C SEPARATION BETWEEN LINEARITY AND NON-LINEARITY: PROOF
OF THEOREM 4

C.1 TWO-LAYER LINEAR NETWORKS: PROOF OF THEOREM 4

Before providing the main proof, we first introduce some lemmas that characterize the gradients of
the two-layer linear network. In general, the gradients of two-layer linear networks take a similar
form to those of two-layer ReLU networks except for not having the ReLU derivative. We can thus
reuse some of our lemmas in Section A and Section B in the analysis of the gradients.

Notation. In this section, we overload the notation from the previous sections such as h(t)(x),w
(t)
k

and let them also denote the linear network model/weights.

Lemma 16 (Gradient of linear networks). For every example (x, y) ∈ X × Y , every k ∈ [m], and
every iteration t, the following holds:

∇
w

(t)
k

ℓ (h(x), y) = −aky1h(x)≤1x. (49)
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Proof. The proof follows from simple calculation.

Lemma 17 (Gap between empirical and population gradients). For every k ∈ [m], every j ∈ [d],
and every iteration t, if the batch size N = poly(d) for some sufficiently large polynomial, then the
following holds with probability at least 1− e−Ω(d):∣∣∣∣〈∇w

(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
−
〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ (h(x),y),mj

〉∣∣∣∣ ≤ 1

poly(d)
.

(50)

Proof. The proof is nearly identical to Lemma 2, hence we omit here.

Since in linear models we do not need to consider the activation probability (equivalently, this can
be viewed as each neuron being fully activated for every example), we can analyze the gradient
projections for all neurons without resorting to characterizing a subset of neurons as in Definition 2.
Lemma 18 (Gradient projection onto background features, linear networks). For every iteration
t ≤ O( m

ηd0
), every k ∈ [m], and every j ∈ Sbg, the following holds:∣∣∣∣∣∣

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉∣∣∣∣∣∣ = 1

poly(d)
, (51)

Proof. Applying Lemma 16 and Lemma 17, we obtain

−
〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
= −

〈
∇

w
(t)
k

E(x,y)∼Dtrain
ℓ
(
h(t)(x),y

)
,mj

〉
± 1

poly(d)

= akE(x,y)∼Dtrain
y1h(t)(x)≤1zj ±

1

poly(d)

= akE(x,y)∼Dtrain
1h(t)(x)≤11y=1zj

− akE(x,y)∼Dtrain
1h(t)(x)≤11y=−1zj ±

1

poly(d)

= ± 1

poly(d)
.

(52)

This gives the desired result.

We are now ready to prove Theorem 4.
Theorem 4 (Linear networks). If we replace the ReLU functions in the network with identity func-
tions and keep other conditions the same as in Theorem 2, then with high probability, we have
|⟨w(T1)

k ,mj⟩| ≤ Õ( 1√
d
) for every k ∈ [m] and every j ∈ Sbg.

Proof. For every k ∈ [m] and every j ∈ Sbg, by the SGD update (4) we have

⟨w(t+1)
k ,mj⟩ = −η

〈
∇

w
(t)
k

1

N

∑
i∈[N ]

ℓ
(
h(t)(x

(t)
i ),y

(t)
i

)
,mj

〉
+ (1− λη)

〈
w

(t)
k ,

∑
j∈Score

µjmj

〉
.

By Lemma 18, we obtain

⟨w(t+1)
k ,mj⟩ = (1− λη)⟨w(t)

k ,mj⟩ ±
η

poly(d)
.

By Lemma 23, with probability at least 1−O( 1
m ), we have at initialization

max
k∈[m]

|⟨w(0)
k ,mj⟩| ≤ 2

√
logm

d
.

Recall that λ = O( d0

m1.01 ). Combining the above equations gives the desired result.
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Remark. Similar to our analysis of two-layer ReLU networks, for two-layer linear networks we can
also analyze the correlation growth between every neuron and the core features and show that SGD
can converge to a solution with small ID risk. Since Theorem 4 indicates that linear networks do not
have feature accompaniment (i.e., background features do not accumulate in the weights), we can
show that the network would also have small OOD risk at convergence. Since this analysis has a
similar procedure to (and is also much simpler than) our analysis on two-layer ReLU networks we
do not include it here.

D PROBABILITY THEORY LEMMAS

In this section, we provide the probability theory lemmas used in our proofs for completeness. Since
these lemmas are all standard results in the probability theory, we omit the proofs of them.

We first state an one-sided form of Bernstein’s inequality.
Lemma 19 (One-sided Bernstein’s inequality). Given n independent random variables {xi}i∈[n]

with xi ≤ b almost surely for every i ∈ [n], the following holds for every δ ≥ 0:

Pr
[ ∑
i∈[n]

(xi − Exi) ≥ nδ
]
≤ exp

(
− nδ2

1
n

∑
i∈[n] Ex2

i +
bδ
3

)
. (53)

Note that the above result can also be used to derive bounds on the lower tail by applying it to the
random variables {−xi}i∈[n] if each xi is bounded from below.

We then state a matrix extension of Bernstein’s inequality; such type of inequalities is useful for
bounding the gradients of the network in our proofs.
Lemma 20 (Matrix Bernstein’s inequality (Oliveira, 2010; Tropp, 2012)). Given n independent
random matrices {Xi}i∈[n] with dimension d1 × d2 and EXi = 0, ∥Xi∥2 ≤ b almost surely for
every i ∈ [n], define the sum S :=

∑
i∈[n] Xi and let v(S) denote the matrix variance statistic of

the sum:
v(S) := max {∥E[SS∗]∥2, ∥E[S∗S]∥2}, (54)

where ∥·∥2 denotes the spectral norm a matrix or the ℓ2 norm of a vector (when d1 = 1 or d2 = 1).
Then, the following holds for every δ ≥ 0:

Pr
[
∥S∥2 ≥ δ

]
≤ (d1 + d2) · exp

(
− δ2

2v(S) + 2bδ
3

)
. (55)

We then state a basic result for bounding the cumulative distribution function of the unit Gaussian
distribution that is repeatedly used in deriving neuron properties in initialization.
Lemma 21 (Bounds for unit Gaussian variables). Let x ∼ N (0, 1) be a unit Gaussian random
variable. Then, the following holds for every δ > 0:

1√
2π

δ

δ2 + 1
exp

(
−δ2

2

)
≤ Pr[x ≥ δ] ≤ 1√

2π

1

δ
exp

(
−δ2

2

)
. (56)

Finally, we state a result for lower bounding the upper tail of the cumulative distribution function
for binomial variables using Hoeffding’s inequality:
Lemma 22 (Tail bound for binomial variables). Let x ∼ B(n, p) be a binomial random variable
with trial number n and success probability p ∈ [0, 1]. Then, the following holds for every n, p and
integer k ≤ np:

Pr[x ≥ k] ≥ 1− exp

(
−2n

(
p− k − 1

n

)2
)
. (57)

Lemma 23 (Concentration of the maximum of absolute Gaussian). Let x1, . . . ,xn be i.i.d. random
variables that follow the zero-mean Gaussian distribution N (0, σ2). Then, the following holds for
every positive integer n:

Pr

[
max
i∈[n]
|xi| ≥ 2σ

√
log n

]
≤ 2

n
. (58)
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Lemma 24 (Berry–Esseen theorem). Let x1, . . . ,xn be independent random variables with Exi =
0, Ex2

i = σ2
i > 0, and ρi := E|x3

i | <∞. Also, define the normalized sum

sn :=

∑
i∈[n] xi√∑
i∈[n] σ

2
i

. (59)

Denote Φ the cumulative distribution function of N (0, 1). Then, there exists a constant C0 ∈
[0.40, 0.56] such that

sup
δ∈R
|Pr[sn < δ]− Φ(δ)| ≤ C0

(
n∑

i=1

σ2
i

)− 3
2 n∑

i=1

ρi. (60)
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APPENDIX II: EXPERIMENTAL DETAILS AND ADDITIONAL
EMPIRICAL RESULTS

In this part of the appendix, we provide the details of the experiments in the main text and include
additional empirical results in both real-world datasets and synthetic distribution shift settings. A
quick overview of the structure of this part is as follows:

• In Section E, we provide the implementation details and more results of the representation
distillation experiments in Section 2 in the main text.

• In Section F, we present numerical experiments in both classification and regression (repre-
sentation distillation) settings as well as additional feature visualizations on a variant of the
CIFAR-10 dataset.

• In Section G, we provide empirical evidence that supports Conjecture 1 in the main text and
some further discussion.

E REPRESENTATION DISTILLATION DETAILS

E.1 NATURAL DISTRIBUTION SHIFTS OF IMAGENET

Datasets. Following (Taori et al., 2020; Radford et al., 2021; Wortsman et al., 2022), we consider 5
natural distribution shift test sets of ImageNet that are representative of real-world distribution shifts
without artificial perturbations to images, including ImageNetV2 (Recht et al., 2019), ImageNet-
R (Hendrycks et al., 2021a), ObjectNet (Barbu et al., 2019), ImageNet Sketch (Wang et al., 2019),
and ImageNet-A (Hendrycks et al., 2021b). Compared to the original training and validation (ID
test) sets of ImageNet, those test sets are reflective of changes in data distribution due to natural
variations in the data collection process such as lighting, geographic location, image background,
and styles.

Pre-trained models. We used pre-trained checkpoints provided by CLIP (Radford et al., 2021),
which is reported to exhibit remarkable robustness to distribution shifts of ImageNet. The offi-
cial CLIP repository provide CLIP models pre-trained on the same dataset with varying sizes and
architectures (ResNets and ViTs). In our experiments, we used five different CLIP models, includ-
ing four ResNets and one ViT: CLIP-ResNet-50 (CLIP-RN50), CLIP-ResNet-101 (CLIP-RN101),
CLIP-ResNet-50x4 (CLIP-RN50x4), CLIP-ResNet-50x16 (CLIP-RN50x16), and CLIP-ViT-B/16.
For linear probing, we freezed the weights of the pre-trained models and trained randomly-initialized
linear classification heads on top of the extracted representations on the ImageNet training set for
10 epochs. Following the hyperparameters used by Wortsman et al. (2022), we used the AdamW
optimizer (Loshchilov & Hutter, 2019) with learning rate 0.001, ℓ2 weight decay 0.1, batch size 256,
and a cosine learning rate scheduler (Loshchilov & Hutter, 2017). The results are reported based on
the model with the best ID validation accuracy.

Representation distillation. For each pre-trained CLIP model (teacher model), we freezed its
weights and randomly initialized another model with identical architecture to the teacher model. We
used the Mean Squared Error (MSE) loss to train the student model on the ImageNet training set,
minimizing the mean Euclidean distance between the representations extracted by the student model
and the representations extracted by the teacher model. We did not perform extensive grid search on
the distillation hyperparameters and sticked to the following hyperparameter choices based on our
preliminary experiments:

• CLIP-RN50: AdamW optimizer with learning rate 0.001, ℓ2 weight decay 0.05, batch size 256,
and a cosine learning rate schedular with warmup for 10000 steps; 100 distillation epochs.

• CLIP-RN101: AdamW optimizer with learning rate 0.001, ℓ2 weight decay 0.1, batch size 256,
and a cosine learning rate scheduler with warmup for 10000 steps; 100 distillation epochs.

• CLIP-RN50x4 and CLIP-RN50x16: AdamW optimizer with learning rate 0.0001, ℓ2 weight
decay 0.5, batch size 256, and a cosine learning rate scheduler with warmup for 10000 steps;
100 distillation epochs.
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• CLIP-ViT-B/16: AdamW optimizer with learning rate 0.0001, ℓ2 weight decay 0.1, batch size
256, and a cosine learning rate scheduler with warmup for 10000 steps; 200 distillation epochs.
Besides minimizing the difference between final representations (i.e., the output of the last layer
of the networks) of student and teacher networks, we also minimized the difference between
student and teacher network’s intermediate representations of each residual attention block with
a weighting coefficient 0.1.

In the linear probing stage, we freezed the parameters of the student models and trained a randomly
initialized linear classification head for each student model on the ImageNet training set for 10
epochs. We used the AdamW optimizer with learning rate 0.001, ℓ2 weight decay of 0.001, batch
size 256, and a cosine learning rate scheduler. The results are reported based on the model with the
best ID validation accuracy.

Baseline models. We reported the results of baseline models provided by the testbed of Taori et al.
(2020). In their testbed, Taori et al. (2020) catogory the models into different types, where some type
of models are trained with more data than the original ImageNet training set. Since our aim is to
explore the limit of representation learning using only ID data, we omit the results of those models
trained with more data. We also omit the results of models with significantly lower accuracy than
common ImageNet models, such as linear classifier on pixels or random features, classifiers based
on nearest neighbors, and low accuracy CNNs. Concretely, we reported the results of the following
two types of models defined by Taori et al. (2020):

• STANDARD: models obtained by standard training (i.e., ERM) on the ImageNet training set.
• ROBUST INTV: models trained with existing robust intervention techniques on the ImageNet

training set.

Detailed results. We list detailed OOD generalization performance of linear probes on pre-trained
and distilled representations on all 5 distribution shift test sets as well as the ID generalization results
on the original ImageNet validation set in Table 1.

Table 1: Detailed ID and OOD top-1 accuracy (%) of linear probes on pre-trained and distilled
representations on ImageNet-based test sets. “IN” refers to “ImageNet”.

IN (ID) OOD Avg. INV2 IN-R ObjectNet IN Sketch IN-A

CLIP-RN50 70.37 39.42 59.03 51.18 37.72 31.87 17.31
Distilled RN50 69.85 31.63 57.97 38.22 32.72 20.97 8.25

CLIP-RN101 72.33 45.27 61.70 59.92 43.07 37.93 23.73
Distilled RN101 72.28 35.18 60.46 44.09 35.89 23.88 11.56

CLIP-ViT-B/16 79.40 57.59 69.72 72.42 51.85 47.33 46.64
Distilled ViT-B/16 73.58 37.14 62.45 44.43 35.52 23.83 19.47

CLIP-RN50x4 76.18 51.45 65.83 64.80 48.74 42.19 35.67
Distilled RN50x4 76.25 41.40 65.20 49.22 42.71 29.23 20.64

CLIP-RN50x16 80.24 60.61 70.13 73.67 56.92 48.52 53.79
Distilled RN50x16 79.65 48.26 68.49 55.03 48.90 32.93 35.97

E.2 IWILDCAM-WILDS

Dataset. We used the official version of the dataset provided by WILDS (Koh et al., 2021).

Pre-trained models. In order to obtain a feature extractor that exhibits sufficient generalization
ability on the dataset, we explored different pre-trained models including ViTs in CLIP (Rad-
ford et al., 2021), RegNets in SWAG (Singh et al., 2022) as well as ResNets pre-trained on Ima-
geNet (Deng et al., 2009). In the end, we chose a fine-tuned ResNet-50 (RN50) that is pre-trained
on ImageNet as the teacher model since we observed that ImageNet-scale pre-training already leads
to considerable robustness improvements compared to models trained from scratch on this dataset
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(also reported by Miller et al. (2021)), while being consistent to the network architecture used in the
official WILDS repository. For linear probing, we freezed the parameters of the pre-trained model
and trained a randomly initialized linear classification head using the hyperparameters provided by
the official WILDS repository. The results are reported based on the model with the best OOD
validation accuracy, following the protocol used by the WILDS paper (Koh et al., 2021).

Representation distillation. We freezed the weights of the teacher model and randomly initial-
ized a ResNet-50 as the student model. We trained the student model by minimizing the Euclidean
distance between its extracted representations and the representations extracted by the teacher model
using the MSE loss on the training domains of iWildCam-WILDS. The student model was trained for
150 epochs using AdamW with batch size 128, learning rate 0.0001, and ℓ2 weight decay 0.1. In the
linear probing stage, we freezed the parameters of the student model and trained a randomly initial-
ized linear classification head using the hyperparameters provided by the official WILDS repository.
The results are reported based on the model with the best OOD validation accuracy, following the
protocol used by the WILDS paper.

Baseline models. We reported the results of baseline models provided by (Miller et al., 2021). In
their result file, Miller et al. (2021) report both results for ImageNet-pre-trained neural networks
(corresponding to models with model type as “Neural Network” in the result file) and results for
neural networks trained from scratch (corresponding to models with model type as “ImageNet
Pretrained Network”). Since our aim is to explore the limit of representation learning using only ID
data, we omit the results of the models with pre-training.

Detailed results. We list detailed ID and OOD generalization performance of linear probes on
pre-trained and distilled representations on iWildCam-WILDS in Table 2.

Table 2: Detailed ID and OOD Macro F1 of linear probes on pre-trained and distilled representations
on iWildCam-WILDS.

ID Macro F1 OOD Macro F1

ImageNet RN50 49.30 32.46
Distilled RN50 32.32 13.83

E.3 CAMELYON17-WILDS

Dataset. We used the official version of the dataset provided by WILDS (Koh et al., 2021).

Pre-trained models. After preliminary experiments, we chose a ViT-B/16 pre-trained by CLIP
as our teacher model. For linear probing, we freezed the parameters of the pre-trained model and
trained a randomly initialized linear classification head using the hyperparameters provided by the
official WILDS repository. The results are reported based on the model with the best OOD validation
accuracy, following the protocol used by the WILDS paper (Koh et al., 2021).

Representation distillation. We freezed the weights of the teacher model and randomly initial-
ized a ViT-B/16 with identical architecture to the teacher model as the student model. We trained
the student model by minimizing the Euclidean distance between its extracted representations and
the representations extracted by the teacher model using the MSE loss on the training domains of
Camelyon17-WILDS. The student model was trained for 120 epochs with batch size 128, learning
rate 0.0001 and ℓ2 weight decay 0.1 using AdamW. For linear probing, we freezed the parameters
of the student model and trained a randomly initialized linear classification head using the hyperpa-
rameters provided by the official WILDS repository. The results are reported based on the model
with the best OOD validation accuracy, following the protocol used by the WILDS paper.

Baseline models. We reported the results of all algorithms from the offcial WILDS leaderboard
(accessed at September 26th, 2023) that do not use custom data augmentation or pre-training (in-
cluding “SGD (Freeze-Embed)” that uses CLIP pre-training and “ContriMix”, “MBDG”, “ERM
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w/ targeted aug” and “ERM w/ H&E jitter” that use custom, task-specific data augmentations) as
baseline results.

Detailed results. We list detailed ID and OOD generalization performance of linear probes on
pre-trained and distilled representations on Camelyon17-WILDS in Table 3.

Table 3: Detailed ID validation and OOD test accuracy (%) of linear probes on pre-trained and
distilled representations on Camelyon17-WILDS.

ID Validation Accuracy OOD Test Accuracy

CLIP-ViT-B/16 98.22 92.88
Distilled ViT-B/16 98.28 89.83

E.4 DOMAINNET

Dataset. Following the setup of Tan et al. (2020); Kumar et al. (2022), we used a pruned version
of the original DomainNet dataset (Peng et al., 2019). The pruned dataset consists of 4 domains
{Clipart, Painting, Real, Sketch} and 40 commonly occurring classes, selected from the original
DomainNet which consists of 6 domains and 345 classes.

Implementation details. We adhered to the experimental settings as in DomainBed (Gulrajani &
Lopez-Paz, 2021), which encompassed protocols for data augmentation, dataset partitioning, and
hyperparameter search strategies. We opted for the widely adopted training domain validation for
the model selection criterion. To reduce the computational cost, without loss of generality, we chose
the Sketch domain with the largest distributional shifts as the test domain (OOD), while training
on the other three domains (ID). For both our model and baseline models, we performed random
searches on the hyperparameters with three different random seeds, each involving 5 trials.

Pre-trained models. We used the official ResNet-50 (RN50), ResNet-101 (RN101), and ViT-B/32
pre-trained checkpoints provided by CLIP.

Representation distillation. Due to limitations imposed by the scale of the dataset, we exclusively
employed the CLIP-RN50 as the teacher model—it turns out in our preliminary experiments that
distilling the other two pre-trained models results in worse performance both ID and OOD, which we
believe is because the scale of the dataset is too small for distilling larger models. In the distillation
stage, we freezed the pre-trained CLIP-RN50 as the teacher model and used the MSE loss to train
the student RN50 model with the exact same structure as CLIP-RN50 but with random initialization.
We used the AdamW optimizer with a cosine scheduler and learning rate 0.0003, ℓ2 weight decay
5e-5, batch size 32, and trained the student model for 95000 iterations. In the linear probe stage,
we freezed the parameters of the student model and add a randomly initialized single-layer linear
classifier. We trained the linear probe on the training sets of the three training domains and performed
zero-shot evaluation on the test domain. We ultimately select the checkpoints with the highest
accuracy on the validation set from the training domain. During this stage, we used the Adam
optimizer (Kingma & Ba, 2015) with a cosine scheduler and learning rate 0.003, ℓ2 weight decay
1e-6, batch size 32, and trained the linear probe for 5000 iterations.

Baseline models. We generally followed the settings of DomainBed, with the exception of using a
modified RN50 model with the same structure as CLIP-RN50 but randomly initialized. Additionally,
we introduced a cosine scheduler with a warmup to enhance the convergence of models trained
from scratch. We conducted extensive experiments with 15 representative domain generalization
algorithms, including ERM (Vapnik, 1999), IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al.,
2020a), Mixup (Zhang et al., 2018), MLDG (Li et al., 2018), Deep CORAL (Sun & Saenko, 2016),
DANN (Ganin et al., 2016), SagNet (Nam et al., 2021), ARM (Zhang et al., 2021), VREx (Krueger
et al., 2021), RSC (Huang et al., 2020), SelfReg (Kim et al., 2021), IB-ERM (Ahuja et al., 2021a),
and IB-IRM (Ahuja et al., 2021a), and Fish (Shi et al., 2022). We increased the training iterations
from the default 5000 to 20000 to ensure the convergence of all methods.
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Detailed results. We list detailed ID and OOD generalization performance of linear probes on
pre-trained and distilled representations on DomainNet in Table 4.

Table 4: Detailed ID test and OOD test accuracy (%) of linear probes on pre-trained and distilled
representations on DomainNet.

ID Test Accuracy OOD Test Accuracy

CLIP-RN101 92.30 87.34
CLIP-ViT-B/32 92.35 87.60

CLIP-RN50 87.02 82.58
Distilled RN50 77.91 64.78
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Figure 4: (Activation asymmetry) The average correlation between 10 random neurons and exam-
ples from both classes as a function of training iterations in the classification setting. In each column,
the top plot above shows the average correlation between the weight (learned feature) of the neuron
and the examples from class y = 1, while the bottom plot shows the average correlation between the
weight (learned feature) of the neuron and the examples from class y = −1. As the training goes
on, each neuron evolves to have positive correlation with at most one class of examples, which leads
to activation asymmetry.

F ADDITIONAL EXPERIMENTS

F.1 NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical experiments. The numerical experiments were
conducted with parameters dcore = dbg = 32, d = 256, m = 256, and N = 1000. During training,
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(a) Two-layer ReLU network
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(b) Two-layer linear network

Figure 5: The ID and OOD risks (top) and the norm of weight projections onto core and background
features (bottom) in the classification setting.
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(a) Two-layer ReLU network
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(b) Two-layer linear network

Figure 6: The ID and OOD risks (top) and the norm of weight projections onto core and background
features (bottom) in the regression setting.

each zi, i ∈ [d0] was sampled from the uniform distribution on its support [0, 1]; during testing,
each zi, i ∈ Score was sampled from the same distribution as in training, while each zi, i ∈ Sbg
was sampled from the uniform distribution on [−1, 0]. We considered two experimental settings:

• Classification: We trained a two-layer ReLU network to predict the binary label for each input,
which matches our theoretical setting in Section 4. As an ablation, we also trained a two-layer
linear network for the same task, replacing the ReLU functions in the network by identity
functions.

• Regression (representation distillation): We trained a two-layer ReLU network to predict the
vector (zi)i∈Score

for each input—note that this is an optimal representation for OOD gener-
alization, which matches the setting as our real-world representation distillation experiments
in Section 2. As an ablation, we also trained a two-layer linear network.
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(a) Example images from the original CIFAR-10 dataset.

(b) Example images from the modified CIFAR-10 dataset.

Figure 7: Our modifications to CIFAR-10 by padding colored pixels for all images.

(a) Learned features of a ResNet-32 trained
on the original CIFAR-10 dataset.

(b) Learned features of a ResNet-32 trained
on the modified CIFAR-10 dataset.

Figure 8: Visualizations of the learned deep features.

In both settings, we trained the network using SGD with learning rate 0.001 and ℓ2 weight decay
0.01. The results are in Figure 4, Figure 5, and Figure 6, which corroborate our theoretical results
on

• Activation asymmetry: as shown by Figure 4, each neuron evolves to have positive correla-
tions with at most one class of examples during training.

• Feature accompaniment happens for non-linear networks: as shown by Figure 5a (clas-
sification) and Figure 6a (regression), two-layer ReLU networks indeed accumulate weight
projections onto the background features during training, leading to small ID risk yet large
OOD risk.

• Feature accompaniment does not happen for linear networks: as shown by Figure 5b (clas-
sification) and Figure 6b (regression), two-layer linear networks does not accumulate weight
projections onto the background features during training, leading to both small ID risk and
small OOD risk when the concept class is linearly separable.

F.2 FEATURE VISUALIZATIONS ON A VARIANT OF CIFAR-10

To investigate the presence of feature accompaniment in real-world datasets, we conducted a exper-
iment based on a variant of the CIFAR-10 dataset that is explicitly modified to incorporate back-
ground features that have no correlation with the label. Concretely, we augmented the CIFAR-10
training set by padding brick red pixels to the original images from CIFAR-10 and resized the padded
images to the size of the original images, as shown in Figure 7. Since our padding does not impact
the original image contents, it follows the “orthogonal” setting in our theoretical model where the
core features (the original image contents) and the background features (the padded pixels) are in-
dependent.
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Figure 9: Visualizations of ERM and CLIP representations after PCA dimensionality reduction to
two dimensions. Circles refer to image representations in the training domains, while crosses refer to
image representations in the test domain. Different colors represent different classes. Compared to
ERM representations where the examples from training and test domains are visually mixed, CLIP
representations exhibit strong linear separability of different domains.

We then visualize the learned features of a ResNet-32 network trained on the original CIAFR-10
dataset and another ResNet-32 trained on our modified dataset. Following the visualization tech-
nique in Allen-Zhu & Li (2021), we performed adversarial training using the method proposed
by Salman et al. (2019) and visualized the features learned by the network’s convolutional kernels
in the 31st layer using the same hyperparameters as described in Allen-Zhu & Li (2021). As shown
by Figure 8, we observe notable differences in the learned color information between models trained
on the original CIFAR-10 dataset and its modified variant. Meanwhile, we note that there are no ob-
vious geometric patterns in the red areas, which we conjecture is due to the augmentations used
during training such as random cropping and flipping. In general, the visualization results suggest
that background features are indeed learned by deep neural networks despite having no correlation
with the label, which corroborates our theory and indicates that feature accompaniment also happens
in deep features learned from real-world image data.

G EMPIRICAL EVIDENCE THAT SUPPORTS CONJECTURE 1

In this section, we provide preliminary empirical evidence that supports Conjecture 1 stated in the
main text. For ease of presentation, here we restate this conjecture:
Conjecture 1. Pre-training on a sufficiently large and diverse dataset alleviates feature accompa-
niment and leads to more linearized representations, hence improving OOD genenralization.

Table 5: Detailed ID test accuracy, OOD test accuracy, and domain classification error (%) of linear
probes on pre-trained and distilled representations on PACS.

ID Test Acc. OOD Test Acc. Domain Classification Error

CLIP-ViT-B/16 99.68 91.59 0.06
CLIP-RN50 97.35 85.67 0.19

ERM-RN50 99.28 76.47 1.02

G.1 LARGE-SCALE PRE-TRAINING LEADS TO LINEAR SEPARABILITY OF DOMAINS

To empirically test this conjecture, we first examined the properties of the pre-trained representations
from CLIP and the representations learned by ERM on a domain generalization dataset PACS (Li
et al., 2017) for image classification. The images in PACS are divided into four domains, namely
Photo, Art painting, Cartoon, and Sketch, with seven common categories. We trained a ResNet-50
ERM model using the examples from the first three domains (ID) and the Sketch domain was treated
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as the OOD domain. To evaluate the robustness of CLIP representations, we fitted a linear probe
on top of freezed CLIP representations on ID domains and evaluated the learned linear probe on the
OOD domain.

We begin by a 2-dimensional visualization of both the learned ERM representations and the CLIP
representations using PCA dimensionality reduction. As shown in Figure 9, ERM representations
and CLIP representations exhibit quite different properties in terms of domain separability: while
examples from training and test domains are visually mixed in ERM representations, examples from
training and test domains are strongly linearly separable in CLIP representations.

We then quantitatively examined this linear separability by fitting linear classifiers on top of ERM
and CLIP representations for domain classification. Concretely, we trained linear classifiers with the
original “class” label of each example substituted by its domain index. We then evalute the accuracy
of this classifier on a hold-out validation set. As shown in Table 5, domain classifiers on CLIP
representations have considerably smaller error than domain classifiers on ERM representations,
which is consistent with visualization. This phenomenon is related to recent work on unsupervised
domain adaptation based on contrastive learning (Shen et al., 2022; HaoChen et al., 2022), where
it has been shown that contrastive learning can learn representations that disentangle domain and
class information, enabling generalization that they refer to as “linear transferability” (HaoChen
et al., 2022). However, their analysis requires that unlabeled examples from the target domain
are seen by the contrastive learning algorithm during training, while large-scale pre-training in our
context seems to achieve a similar disentangling effect even without explicitly trained on the target
distribution. Further theoretical explanations of this phenomenon is an important future work.

In summary, the results in this section suggest that the representations learned by large-scale pre-
training is highly linearized, with features representing different factors of variation not as non-
linearly coupled as in our analysis on feature accompaniment. We believe that such high linearity of
representations plays a critical role in the OOD capability of pre-trained models.

G.2 LARGE-SCALE PRE-TRAINING LEADS TO DENSER NEURON ACTIVATION

In this section, we study property of pre-trained representations from another angle of neuron ac-
tivation. As we have formally proved in Section 4, feature accompaniment causes the neurons to
learn non-linearly coupled features. The activation of each neuron is thus likely to involve multi-
ple feature vectors due to this coupling. By the above deduction, if pre-training alleviates feature
accompaniment and learns more linearized features, then the activation of different feature vectors
would be more likely to involve different neurons, resulting in an increase in the total number of
activated neurons for each input.

Empirically, we confirmed the above hypothesis by calculating the histogram of the neuron’s ex-
pected activation value in pre-trained and distilled models from the ImageNet experiments in Sec-
tion 2. We considered the CLIP-RN50 teacher model and its corresponding student model obtained
from representation distillation, and maintained an estimate of the average activation value for each
output ReLU activation in the first residual block during one evaluation run. We plot the histogram
of the neuron’s average activation value in Figure 10. As shown by the figure, the pre-trained CLIP
model indeed have considerably denser neuron activation than the distilled model, even on the ID
ImageNet validation set where their top-1 accuracy is nearly the same (70.37% for the pre-trained
CLIP model and 69.85% for the distilled model). This suggests that pre-trained models learn more
“decoupled” features than models trained solely on the ID data.
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(a) ImageNet
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(b) ImageNetV2
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(c) ImageNet-R
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(d) ObjectNet
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(e) ImageNet Sketch
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(f) ImageNet-A

Figure 10: Histograms of average neuron activations of both pre-trained CLIP models and distilled
models on ImageNet-based distribution shift datasets. In each subfigure, the top plot shows the
histogram of CLIP, and the bottom plot shows the histogram of the distilled model.
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