
Under review as a conference paper at ICLR 2024

ORTHCAPS: AN ORTHOGONAL CAPSNET WITH
SPARSE ATTENTION ROUTING AND PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Redundancy is a persistent challenge in Capsule Networks (CapsNet), leading
to high computational costs and parameter counts (Jeong et al., 2019; Sharifi
et al., 2021; Renzulli & Grangetto, 2022). Although previous works have
introduced pruning after the initial capsule layer, dynamic routing’s iterative
and fully connected nature reintroduces inefficiencies and redundancy in deeper
layers. In this paper, we propose the Orthogonal Capsule Network (OrthCaps) to
reduce redundancy, improve routing performance and decrease parameter count.
Specifically, an efficient pruned capsule layer is placed to discard redundant
capsules and dynamic routing is replaced with orthogonal sparse attention routing.
Besides, we orthogonalize weight matrices during routing to ensure feature
diversity and sustain low capsule similarity, the idea of which is inspired by
the application of orthogonality in Convolutional Neural Networks (CNNs).
Moreover, a novel activation function named Capsule ReLU is proposed to
address vanishing gradient. Our experiments on baseline datasets affirm the
efficiency and robustness of OrthCaps in classification tasks, in which ablation
studies validate the criticality of each component. Remarkably, with only 110k
parameters, merely 1.25% of a standard Capsule Network’s total, OrthCaps-
Shallow outperforms state-of-the-art (SOTA) benchmarks on four datasets, while
OrthCaps-Deep attains nearly SOTA accuracy with 1.2% of its parameters on four
datasets. The code is available at ornamentt/Orthogonal-Capsnet (github.com).

1 INTRODUCTION

CapsNet replaces neurons with capsule vectors, where the capsule length denotes the existence
probability of entities in the image, and its direction indicates captured features(Sabour et al., 2017).
Thus, a high similarity of the two capsules’ directions implies they extract analogous features.
Recent studies have mentioned that Capsnet contains redundant capsules (Chen et al., 2022; Sharifi
et al., 2021; Renzulli & Grangetto, 2022). As evidence, Figure (1) shows 48.2% of primary capsule
pairs exhibit cosine similarities above 0.65, indicating significant redundancy.

While some works have employed pruning techniques at the primary capsule layer(Renzulli et al.,
2022), deeper layers continue to exhibit high similarity issues, as illustrated in Figure (6). This deep
redundancy is primarily a result of dynamic routing. In this mechanism, every lower-level capsule
connects to all higher-level ones. This full connection structure leads to potential transmission
of redundant information. Furthermore, weight matrices in routing can shift capsule directions,
increasing the reduced capsule similarity after pruning and causing feature overlap. Such overlap
not only impairs routing performance but also reintroduces redundancies in subsequent layers. This
means that despite the initial pruning, new redundancies emerge in subsequent layers due to dynamic
routing. Additionally, dynamic routing requires multiple iterations and repeatedly updating coupling
coefficients until convergence, further straining computational resources.

Considering these challenges, and inspired by the introduction of orthogonality in CNNs to reduce
filter overlaps, we integrate orthogonality into capsule networks. Our proposed solution, the
Orthogonal Capsule Network (OrthCaps), addresses the iterative convergence, directional shifts in
capsule vectors, and the fully connected structure of dynamic routing. We present two versions
of OrthCaps: a lightweight model, OrthCaps-Shallow (OrthCaps-S), and an efficient deep model,
OrthCaps-Deep (OrthCaps-D).

1

https://github.com/ornamentt/Orthogonal-Capsnet

Under review as a conference paper at ICLR 2024

Firstly, we introduce a pruned capsule
layer following the primary capsule
layer, This layer eliminates redundant
capsules, retaining only the essential
and representative ones. The impor-
tance of capsules is gauged by L2-norm,
as it reflects the existence probability of
the entities they represent. Given that a
capsule’s direction signifies the features
it extracts, we measure their correla-
tion using cosine similarity and employ
broadcasting and matrix multiplication
for algorithmic efficiency.

Figure 1: Left: In CapsNets primary capsule layer, 48.2%
of capsule pairs have cosine similarities greater than 0.65,
indicating significant redundancy among capsules. Right:
After introducing the Pruned Layer, capsule similarities
effectively decrease. (Detailed in Section 3.2)

Secondly, dynamic routing is replaced with attention routing, eliminating the need for iteration.
For solving the fully-connected problem, We leverage sparsemax-based self-attention to produce an
attention map, which selectively amplifies relevant feature groups corresponding to specific entities
while downplaying irrelevant ones. For OrthCaps-S, a simplified attention-routing mechanism is
adopted, optimizing parameter count and computational demands.

Thirdly, to address the issue of capsule vector direction shifts, we introduce orthogonality into
capsule networks. An orthogonal weight matrix preserves the direction of capsule vectors, thus
mitigating feature interference. Utilizing Householder orthogonal decomposition, we enforce
orthogonality in the weight matrices during attention routing, which sustains low inter-capsule
correlation and enriches feature diversity.

Lastly, we propose an activation function called Capsule ReLU, tailored for deep capsule networks.
Although squash prevails in capsule networks, its saturation regions, akin to the sigmoid function,
lead to vanishing gradient problems in deeper architectures. Thus, Capsule ReLU is designed to
better suit OrthCaps-D.

Contributions. To summarize our work, we make the following contributions:

1) A novel orthogonal sparse attention routing mechanism is proposed to replace dynamic routing.
Notably, it is the first time orthogonality has been introduced into capsule networks. This simple,
penalty-free orthogonalization method is also adaptable to other neural network architectures.

2) A pruned capsule layer is placed to alleviate capsule redundancy and a new activation function
named Capsule ReLU is proposed for deep capsule networks.

3) Two OrthCaps versions are created: OrthCaps-S and OrthCaps-D. OrthCaps-S sets a new
benchmark in accuracy with just 1.25% of CapsNet’s parameters on datasets of MNIST, SVHN,
smallNORB, and CIFAR10. OrthCaps-D excels on CIFAR10, CIFAR100 and FashionMNIST while
keeping parameters minimal.

2 RELATED WORK

Capsule Neural Networks. Dynamic routing was first introduced by (Sabour et al., 2017).
Although numerous studies have leveraged attention strategies (Hoogi et al., 2019; Peng et al.,
2020; Mazzia et al., 2021) to refine dynamic routing, the full connection structure and redundancy
introduction seldom changes(Sabour et al., 2017). (Choi et al., 2019) incorporated attention into
capsule routing via a non-iterative feed-forward operation. (Tsai et al., 2020) introduced parallel
iterative routing, which did not address the complexity of iterative requirements. Furthermore,
(Jeong et al., 2019; Sharifi et al., 2021; Renzulli et al., 2022) incorporated pruning, but did not
account for new redundancies introduced by dynamic routing. (Jeong et al., 2019) introduced a
ladder structure to CapsNet, using a pruning algorithm based on code vectors. (Sharifi et al., 2021)
created a pruning layer based on Taylor Decomposition. (Renzulli et al., 2022) utilized LOBSTER
to create a sparse parse tree. Different from existing research, this paper incorporates pruning,
orthogonality and sparsity to effectively eliminate redundancy.

Orthogonality. Various methods were proposed to introduce orthogonality into neural networks,
which can be categorized into hard and soft orthogonality. Hard orthogonality maintains matrix
orthogonality throughout training by either optimizing over the Stiefel manifold (Li et al., 2020;

2

Under review as a conference paper at ICLR 2024

Huang et al., 2018), or parameterizing a subset of orthogonal matrices (Trockman & Kolter, 2021;
Singla & Feizi, 2021; Virmaux & Scaman, 2018). These methods incur computational overhead
and result in vanishing or exploding gradients. Soft orthogonality, on the other hand, employs
a regularization term in the loss function to encourage orthogonality among column vectors of
weight matrix without strict enforcement (Wang et al., 2020; Qi et al., 2020; Huang et al., 2020).
Yet, strong regularization overshadows the primary task loss, while weak regularization fails to
effectively encourage orthogonality. We leverage Householder orthogonal decomposition (Uhlig,
2001; Mathiasen et al., 2020) to achieve strict matrix orthogonality, minimizing computational
complexity and obviating the need for additional regularization terms.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

We introduce OrthCaps, offering both deep (OrthCaps-D) and shallow (OrthCaps-S) architectures
to minimize parameter count while exploring the potential for deep multi-layer capsule networks.
As illustrated in Figure (2)(a), OrthCaps-D comprises five key components: a convolutional layer, a
primary capsule layer, a pruned capsule layer, capsule blocks and a flat capsule layer.

Figure 2: (a): In CIFAR10 classification task, the OrthCaps-D model comprises 7 capsule blocks,
each with 3 capsule layers, interconnected via shortcut connections and orthogonal sparse attention
routing. (b): The OrthCaps-S model contains two capsule layers coping with CIFAR10 and does
not use any capsule layer with MNIST. These layers are linked through simplified attention routing.

Given an input image x ∈ RH×W×3, low-level features Φl ∈ R(B,C,W l,Hl) are extracted through
four convolutional layers. The primary capsule layer generates initial capsules ul ∈ R(B,n,d,W l,Hl)

with a kernel size of 3 and stride of 2. A pruned capsule layer is then obtained to remove
redundant capsules. Each capsule block contains three convolutional capsule layers with depthwise
convolutions and shortcut connections preventing gradient vanishing. In capsule blocks, lower-level
capsules ul are routed to the next layer vl+1 via orthogonal sparse attention routing and Capsule
ReLU. The block structure permits stacking to construct deeper capsule networks. The flatcaps
layer comprises depthwise convolutional layers with a 3x3 kernel and a stride of 2 for capsule map
reduction, and 1x1 pointwise convolutions with a stride of 1 for dimensionality mapping.

OrthCaps-S, as illustrated in Figure (2)(b), replaces the complete attention routing with a simplified
version, retaining a single cell with adjustable convolutional capsule layers. Convolutional capsules
in the primary layer utilize a 9x9 kernel with a stride of 1. Other layers and the activation function
are consistent with OrthCaps-D.

3

Under review as a conference paper at ICLR 2024

3.2 PRUNED CAPSULE LAYER

The generation of capsules starts with the primary capsule layer, which derives its input from feature
maps of preceding convolutional layers. Reducing redundancy at this stage is crucial to ensure low-
correlated capsules, allowing for efficient feature representation. To achieve this, we introduce an
efficient capsule pruning algorithm after the primary capsule layer. The Algorithm 1 comprises the
following steps:

Capsule Sorting: To ensure that the less important capsule is discarded when the similarity
between a pair of capsules is high, each capsule ul,i is ranked based on its L2-norm ∥ul,i∥2.
This norm indicates the existence probability of entities extracted by ul,i, indicating the
importance of capsule ul,i. The sorted capsules are stored in tensor usorted. For the 5D tensor
[B, num capsules, dim capsules,W,H] of ul, we reshape it to [B, num capsules, dim capsules ×
W ×H] to simplify computation.

Redundancy Definition: The direction of each
capsule vector represents specific features. Capsules
with closer directions indicate similar features and
entities. Therefore, we utilize the cosine similarity
of capsule directions to measure their correlation
and redundancy. The similarity matrix S for usorted
is computed using broadcasting.

Pruning: The capsule pair with similarity exceed-
ing the threshold θ = 0.7 is considered oversimilar.
Then, the capsule with a lower rank in list usorted
of the pair is deemed redundant and deactivated by
multiplying with a mask matrix M .

Algorithm 1: Efficient Capsule Pruning

Require: u ∈ RB×n×d×W×H , θ
Ensure: upruned ∈ RB×n×d×W×H

1: Reshape u→ uflat ∈ RB×n×(d×W×H)

2: Compute L2-norm: ∥uflat∥2
3: Sort capsules by L2-norm: usorted
4: Flatten usorted to uflat ∈ RB×n×(d×W×H)

5: S = cosine similarity(uflat,i, uflat,j)
6: Create mask M where S > θ
7: Prune using M : upruned = usorted ⊙M
8: return upruned

3.3 ORTHOGONAL SPARSE ATTENTION ROUTING

We introduce the orthogonal sparse attention routing to replace dynamic routing, which enable non-
iterative and less redundant feature transmission from lower-level to higher-level capsules.

3.3.1 ROUTING ALGORITHM

Let ul,i and vl+1,j represent capsules at layer l and l + 1 respectively, each with dimension d. We
employ three weight matrices WQ, WK , WV ∈ Rd×d to derive keys, queries, and values from ul,i.
Q = WQ × ul,i,K = WK × ul,i, V = WV × ul,i. Specifically, WQ, WK , and WV are designed as
orthogonal matrices, enabling them to project capsule ul,i into a d-dimensional orthogonal subspace.

Figure 3: Orthogonal self-attention routing.

As shown in Figure (3), attention routing aims to produce coupling coefficients cij , which quantifies
the information transmitted from a lower-level to a higher-level capsule. The coupling coefficient
matrix Cij is derived from the attention map C, generated through the dot product of queries and
keys, C = α-Entmax(QKT /

√
d). Here, we replace the softmax function in the original attention

mechanism with the α-Entmax function (Peters et al., 2019) to enhance the sparsity of the attention

4

Under review as a conference paper at ICLR 2024

map, thereby encouraging routing to prioritize more important capsules while minimizing irrelevant
information transfer. The vote si,j is computed as the product of V and C. Higher-level capsules
vl+1,j are generated by si,j from a multi-head self-attention mechanism with 16 heads, using the
nonlinear activation function g.

vl+1,j = g(si,j) = g(Entmax(α)(QKT /
√
d)× V) (1)

For simplified attention-routing in Figure (3), we condense prediction matrices W from three to
one and replace K,Q, V with ul,i. ûl,i is the prediction for vl+1,j . The attention map C is
obtained using α-entmax with the dot product to produce the vote si,j = ul,i × C = ul,i ×
(Entmax(α)(ûl,iu

T
l,i/
√
d)). si,j is concatenated with ûl,i and then processed through g to produce

vl+1,j . Notably, standard convolutions are supplanted by depthwise convolutions to minimize
parameter count. Without any iteration, attention routing reduces computational complexity.

3.3.2 ORTHOGONALIZATION OF WEIGHT MATRIX

The pruned capsule layer diminishes capsule similarity to reduce redundancy. As we analyzed in
Section 1, the weight matrix modifies the capsule vector’s direction, potentially affecting the low
correlation among internal capsules of K,Q, V , thus introducing new redundancy in subsequent
layers. Orthogonal projection maintains the direction of vectors, thus preserving the low correlation
and preventing feature overlap, which augments the performance of attention routing and pruning.

Figure 4: The computing process of HouseHolder orthogonalization method.

Let W be the weight matrix requiring orthogonalization. As shown in Figure (4), Householder
orthogonal decomposition theorem is employed to formulate an endogenously optimizable
orthogonal matrix. The essence of this approach is in the following algebraic lemma (Uhlig, 2001):

Lemma 1: Any orthogonal n × n matrix is the product of at most n orthogonal Householder
transformations.

Let d represent the dimension of the capsule. Based on Lemma 1, an orthogonal matrix Wv ∈ Rd×d

can be formulated in Equation (2):

W = H0H1 . . . Hd−1 (2)

Each Hi represents a Householder transformation, defined as Hi = I − 2aia
T
i , where ai is a unit

column vector. We utilize a set of randomly generated column vectors {bi|i = 0, . . . , d− 1} instead
of ai to construct Hi as detailed in Equation (3). During training, bi is optimized through gradient
backpropagation. W inherently preserves its orthogonality during training.

W =

d−1∏
i=0

(
I − 2bib

T
i

∥bi∥2

)
(3)

5

Under review as a conference paper at ICLR 2024

Lemma 2: WQ, WK , and WV constructed using Equation (3) are Orthogonal.

Following Equation (3), WQ, WK , and WV could easily be orthogonalized, where the proof
is provided in Appendix A.3.1. The proposed orthogonalization method for weight matrices is
generalizable to any neural network, not limited to capsule networks. Householder orthogonalization
enables computationally efficient transformation of arbitrary coefficient matrices into orthogonal
matrices without any additional penalty terms in the loss function.

3.4 CAPSULE RELU

The activation function is an indispensable part of routing. However, as shown in Figure (8) in
Appendix A.4.2, squash has saturation regions similar to the sigmoid function, which may result
in vanishing gradients during backpropagation. Therefore, we incorporate a capsule structure with
ReLU, which excludes a saturation region and avoids the vanishing gradients.

The squash function, vj =
||sj ||2

1+||sj ||2
sj

||sj || , serves two primary functions: constraining the capsule
length to interval [0, 1] and preserving the capsule’s direction. Replacing squash with ReLU directly
would compromise these essential properties, leading to a large decline in network performance. To
resolve this, we integrate ReLU with BatchNorm to compress the capsule length while maintaining
its direction, as outlined in Equation (4):

vj = ReLU
(
BatchNorm

(
||sj ||2

)) sj

||sj ||2
(4)

In contrast to the neuron-level ReLU, Capsule ReLU performs group-level activation on capsules. If
the L2-norm of a capsule falls below zero after batch normalization, all elements within that capsule
are zeroed out, thereby introducing sparsity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details and datasets

We implemented OrthCaps using PyTorch 1.12.1 on Python 3.9. For training, we adopted the margin
loss as defined in (Sabour et al., 2017). We opted to exclude the reconstruction loss, observing
minimal performance benefits in our experiments. Our model utilized the AdamW optimizer,
combined with a cosine annealing learning rate scheduler and a 5-cycle linear warm-up. The initial
configurations are learning rate at 5e-3, weight decay at 5e-4, and a batch size of 512. The training
was facilitated by four GTX-3090 GPUs. We conducted experiments on SVHN(Netzer et al., 2011),
smallNORB(LeCun et al., 2004), affNIST(Sabour et al., 2017), CIFAR10, and MNIST(LeCun,
1998) for OrthCaps-S. OrthCaps-D was trained and tested on CIFAR10, CIFAR100(Krizhevsky,
2009), Fashion-MNIST(Xiao et al., 2017), and MNIST. We resized SmallNORB from 96 × 96 to
64× 64 and subsequently cropped it to 48× 48, in line with (Sabour et al., 2017). All other datasets
retained their original sizes, and data augmentation followed by (Hinton et al., 2018). To facilitate
reproducibility, we have detailed the hyperparameters in Appendix A.2.

Comparison baselines

We benchmarked OrthCaps against various baseline models. For OrthCaps-S, we compared it
with Efficient-Caps(Mazzia et al., 2021), CapsNet(Sabour et al., 2017), Matrix-CapsNet with EM
routing(Hinton et al., 2018), AR CapsNet(Choi et al., 2019), AA-Capsnet(Pucci et al., 2021), DA-
CapsNet(Huang & Zhou, 2020) and a standard 7-layer CNN. For OrthCaps-D, we used baselines
such as CapsNet (7 ensembles), AR CapsNet (7 ensembles), RS-Capsnet(Yang et al., 2020), Inverted
Dot-Product(Tsai et al., 2020), DeepCaps(Rajasegaran et al., 2019), ResNet-18(He et al., 2016), and
VGG-16(Simonyan & Zisserman, 2014). All comparative results were derived from running official
codes with the same hyperparameters in Appendix A.2.

4.2 CLASSIFICATION PERFORMANCE COMPARISON

Table (1) illustrates the classification performance of OrthCaps-S and OrthCaps-D, with model sizes
denoted by Param and computational demands represented as FLOPS[M]. All models utilize a

6

Under review as a conference paper at ICLR 2024

backbone of 4 convolutional layers and undergo training for 300 epochs. The Param and FLOPS[M]
of each table are tested on MNIST and CIFAR10, respectively. An asterisk (*) signifies that no
official code is available, so we refer to the model performance stated in the original papers.

Table 1: Top: OrthCaps-S ranks as the top or second best across five datasets, standing out as being
resource-efficient with only 105.5K parameters and 673.1M FLOPS. Bottom: OrthCaps-D shows
competitive performance with fewer parameters and less computational cost.

Shallow Networks Param↓ FLOPS[M]↓ MNIST SVHN smallNORB CIFAR10

OrthCaps-S 105.5K 673.1 99.68 96.26 98.30 87.92
Efficient-Caps 162.4K 631.1 99.58 93.12 97.46 81.51

Capsnet 8388 803.8K 99.52 91.36 95.42 68.72
Matrix-CapsNet with EM routing 450K 949.6 99.56 87.42 95.56 81.39

AR CapsNet 9.1M 2562.7 99.46 85.98 96.47 85.39
DA-CapsNet 7M* - 99.53* 94.82* 98.26* 85.47*

AA-Caps 6.6M* - 99.34* 91.23* 89.72* 79.41*

Baseline CNN 4.6M 1326.9 99.22 91.28 87.11 72.20

Deep Networks Param ↓ FLOPS[M]↓ CIFAR10 CIFAR100 MNIST FashionMNIST

OrthCaps-D (simplified routing) 164K 3156 89.09 67.43 99.72 93.19
OrthCaps-D (complete routing) 574K 3345 90.56 70.56 99.59 94.60

AR CapsNet(7 ensembled) 6.3M 16657.5 88.94 56.53 99.49 91.73
Capsnet(7 ensembled) 5.8M* 5137.4* 89.4* - - -
Inverted Dot-Product 1.4M 5340.9 84.98 57.32 99.35 92.85

RS-CapsNet 5.0M* - 89.81* 64.14* - 93.51*
DeepCaps 13.5M 2687 91.01 69.72 99.46 92.52

ResNet-181 11.7M 5578.8 95.10 77.60 99.29 93.32
VGG-161 147.3M 15143.1 93.57 73.10 99.21 92.21

As shown in Table (1), OrthCaps-S achieves superior efficiency with merely 105.5K parameters,
outperforming CNN, CapsNet, and many variants. For instance, Efficient-Caps, a state-of-the-art
model on efficiency, has about 50% more parameters. Despite its compact design, OrthCaps-S either
outperforms or matches the performance of other capsule network designs across all four datasets.
On the SVHN and CIFAR10, OrthCaps-S achieves accuracies of 96.26% and 87.92%, respectively,
surpassing CapsNet which has 80 times more parameters. With a computational demand of 673.1M
FLOPS, it’s worth noting that the slight increase in FLOPS compared to Efficient-Caps is due to the
additional computations from the pruned capsule layer and orthogonal transformations. Given the
substantial decrease in parameter count and the enhanced accuracy of both networks, this FLOPS
trade-off is warranted.

For OrthCaps-D, as illustrated in Table (1), it exhibits competitive performance with fewer
parameters and less computational cost. On complex datasets, OrthCaps-D delivers compelling
results using fewer parameters. Although convolution-based networks such as ResNet-18 and VGG-
16 perform well on CIFAR10 and CIFAR100, OrthCaps-D offers competitive performance using just
1.41% and 0.11% of their parameters as well as 56% and 20.8% of their FLOPS, respectively. The
efficiency of OrthCaps becomes evident when compared with DeepCaps. While DeepCaps achieves
a 91.01% accuracy on CIFAR10, its significant parameter count of 13.42M highlights a compromise.
It’s noteworthy that both OrthCaps variants maintain high performance with fewer parameters.

4.3 ABLATION STUDY

Orthogonal Self-Attention Routing

Through a cross-comparison of accuracy (ACC) and frames-per-second (FPS), as shown in the
Table (b) of Figure (5), we contrast attention routing with dynamic routing(Sabour et al., 2017)
and compare sparse softmax with standard softmax. Attention routing consistently outperforms
dynamic routing in both classification accuracy and processing speed, achieving a 25.8% speed
enhancement on average. Even with a faster softmax, dynamic routing only reaches 1339 FPS,
indicating its inherent computational inefficiencies. While the complexity of α-entmax over softmax
and the added computations from orthogonality lead to a slight decrease in speed compared to
using the softmax, the trade-off brings a significant accuracy boost at a small reduction in FPS.

1https://github.com/kuangliu/pytorch-cifar

7

Under review as a conference paper at ICLR 2024

(a)

Variants FPS↑ ACC↑
Attention routing & α-entmax & orthogonality 1639 99.69

Attention routing & softmax 1785 99.62
Dynamic routing & α-entmax & orthogonality 1232 99.51

Dynamic routing & softmax 1339 99.49

(b)

Variant Param[K]↓ ACC↑
OrthCaps-S with pruning 105 99.69

OrthCaps-S 127 99.63
Capsnet with pruning 7492 99.45

Capsnet 8388 99.42

(c)

Figure 5: Ablation study results. (a): Test accuracy curve of different activation functions of
OrthCaps-D and OrthCaps-S model on CIFAR-10. We train for 200 epochs with a learning rate of
0.001 and decayed the learning rate to 80% of its original value at epochs 60, 120, and 160. (b):
Comparison of Orthogonal sparse attention routing and dynamic routing algorithms on MNIST. We
report the performance of OrthCaps-S trained 300 epochs. (c): CapsNets are compared with and
without the pruning layer on the MNIST dataset, with the similarity threshold set to 0.7.

Overall, our attention routing combined with α-entmax and orthogonality balances performance
and computational efficiency.

Pruned Capsule Layer

Figure (1) illustrates that by integrating the pruned layer, the average capsule similarity decreases
significantly due to redundant capsule elimination. Consequently, as the capsule count reduces, the
dimensions of the associated prediction matrix diminish, thereby lowering the parameter count. This
is proved in Table (c) of Figure(5), where the pruned version of OrthCaps-S has fewer parameters,
reduced from 127K to 105K. Despite the reduction, performance is not compromised; in fact, the
pruned model achieves an improved accuracy of 99.69%, compared to 99.63% for the unpruned
version. When applying similar pruning to CapsNet, it yields an accuracy of 99.45% with 7492K
parameters, which is fewer than its original 8388K parameters. Evidently, our pruning approach
streamlines the model by eliminating redundant capsules and slightly enhances its performance.

Figure (6) illustrates the necessity of incor-
porating pruning with orthogonality. Capsule
similarity is gauged with cosine similarity to
measure the redundancy as mentioned above.
As the network goes deeper, the dashed line
(indicating pruning without orthogonality)
shifts rightward, suggesting an increase in
capsule similarity and redundancy. This shift
proves that the alteration in capsule direction
from the weight matrix reintroduces redun-
dancy. In contrast, the solid line (indicating
pruning with orthogonality) demonstrates
consistently low capsule similarity. Even
at 28 layers deep, the similarity remains
below the 0.7 pruning threshold, affirming
the efficacy of orthogonality in preserving
capsule directions to maintain low inter-
capsule correlations. The black dash-dot line
denotes similarity without orthogonality and
pruning, exhibiting the highest redundancy,
further emphasizing the significance of our
pruning approach.

Figure 6: Redundancy comparison between differ-
ent pruning strategies. (The more to the left, the
better.) The x-axis shows capsule similarity; the y-
axis indicates capsule count percentage. PCL, C3,
and C28 mark the primary, third, and twenty-eighth
capsule layers. Solid (C3-Orth, C28-Orth) and dashed
lines contrast pruning with and without orthogonality;
the dash-dot line shows no pruning or orthogonality.

Capsule ReLU

Figure (5)(a) presents the performance of various activation functions on CIFAR10. In shallow
networks, squash converges faster, evident from its steep accuracy trajectory. However, in deeper

8

Under review as a conference paper at ICLR 2024

networks, squash without batch normalization struggles to learn useful information during training,
leading to an accuracy near 10%. Introducing batch normalization to this deep squash model
enhances its accuracy, underscoring the importance of batch normalization. In contrast, models
employing Capsule ReLU as their activation function show quicker convergence during gradient
optimization and achieve superior local minima.

4.4 ROBUSTNESS TO ADVERSARIAL ATTACKS

Capsule networks have demonstrated exceptional performance in terms of robustness (Hinton et al.,
2018). Considering OrthCaps as it eliminates redundant capsules to suppress low L2-norm capsules,
which we consider as noise capsules (De Sousa Ribeiro et al., 2020). It can enhance better
robustness against small perturbations. To evaluate this, we conduct a robustness comparison
between OrthCaps, Capsule Networks, Orthogonal CNNs (OCNN) and 7-layer CNNs using the
CIFAR10 dataset. We employ the Projected Gradient Descent (PGD) white-box attack method(Guo
et al., 2019), setting the maximum iteration count at 40, step size at 0.01, and the maximum
perturbation at 0.1. We assess the robustness using three metrics: attack time (AT), model query
count (QC), and accuracy after attacks (Acc). As shown in Table (5), OrthCaps outperforms in all
three metrics, confirming its superior handling of complex spatial structures. Specifically, OrthCaps
requires 1.72 times more queries compared to CapsNet and exhibits a 9% higher accuracy after
attacks, showing its robustness in image classification.

Table 4: Orthogonality of weight ma-
trices in attention routing of SVHN
dataset. O decreases from 0.02 to 0.01
during training.

EPOCH ACC O ↓
1 83.75 0.0236

10 98.58 0.0215
100 99.42 0.0153
300 99.56 0.0120

Table 5: Comparison of 7 ensembled OrthCaps, Cap-
sNet, OCNN and baseline CNN under PGD attack. The
CIFAR10 dataset is used without any data augmentation.

Variants AT(s) ↑ QC[K] ↑ Acc ↑
OrthCaps 345.92 69K 23.52%
CapsNet 198.93 48K 14.62%
OCNN 136.7 46K -

baseline CNN 16.65 10K 0.35%

4.5 ORTHOGONALITY

This experiment demonstrates the effectiveness of the HouseHolder orthogonalization method
and its advantages over other orthogonalization methods. We define an orthogonality metric
O = ∥KTK − I∥. In Table (4), O decreases from 0.02 to 0.01 during training, substantiating
the effectiveness of the orthogonalization method.

We further demonstrate Householder’s role as a regularization technique for neural networks,
detailed in Appendix A.3.2. In Figure (7), our method achieves better orthogonality and loss decay
than OCNN (Wang et al., 2020). The baseline ResNet18, without any orthogonal regularization,
is depicted by the blue line. while the green and red lines stand for OCNN and our method,
respectively. Despite the decrease in orthogonality loss for OCNN throughout training, it remains
almost 10 times higher compared to our Householder technique. The near-flat trajectory of
the red line testifies to Householder’s consistent orthogonality preservation across the training.
Furthermore, our method registers a smaller loss than OCNN, due to its better training performance.

5 CONCLUSIONS AND FUTURE WORK

In this study, we have introduced a novel capsule network with orthogonal sparse attention routing.
Specifically, Householder orthogonal decomposition is used to ensure strict matrix orthogonality in
attention routing without additional penalty terms, and the capsule pruning layer introduces sparsity
into routing, minimizing capsule redundancies. Our new activation function called Capsule ReLU
mitigates the vanishing gradient problem. It has been shown in experiments that OrthCaps has
lower parameters and reduces computational overhead, overcoming the challenges of computational
expense and redundancy in dynamic routing. On image classification tasks, OrthCaps outperforms
state-of-the-art methods, demonstrating improved robustness. This work paves the way for future
research in capsule networks, and we look forward to further developments in this area.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Hao Chen, Xian-bo Wang, and Zhi-Xin Yang. Fast robust capsule network with dynamic pruning
and multiscale mutual information maximization for compound-fault diagnosis. IEEE/ASME
Transactions on Mechatronics, 2022.

Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo Kang. Attention routing between capsules. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
2019.

Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos Kollias. Introducing routing uncertainty
in capsule networks. In Advances in Neural Information Processing Systems, volume 33, pp.
6490–6502, 2020.

Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
black-box adversarial attacks. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 2484–2493. PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing. In
International Conference on Learning Representations, 2018.

Assaf Hoogi, Brian Wilcox, Yachee Gupta, and Daniel L Rubin. Self-attention capsule networks for
object classification. arXiv preprint arXiv:1904.12483, 2019.

Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang Wang, and Bo Li. Orthogonal weight
normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

Lei Huang, Li Liu, Fan Zhu, Diwen Wan, Zehuan Yuan, Bo Li, and Ling Shao. Controllable
orthogonalization in training DNNs. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6429–6438, 2020.

Wenkai Huang and Fobao Zhou. Da-capsnet: Dual attention mechanism capsule network. Scientific
Reports, 10(1):11383, 2020.

Taewon Jeong, Youngmin Lee, and Heeyoung Kim. Ladder capsule network. In Proceedings of the
36th International Conference on Machine Learning, volume 97, pp. 3071–3079. PMLR, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. Technical report, Courant Institute of Mathematical Sciences,
New York University, 2004.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold
via the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

Alexander Mathiasen, Frederik Hvilshø j, Jakob Rø dsgaard Jø rgensen, Anshul Nasery, and Davide
Mottin. What if neural networks had SVDs? In Advances in Neural Information Processing
Systems, volume 33, pp. 18411–18420, 2020.

Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. Efficient-capsnet: Capsule network
with self-attention routing. Scientific Reports, 11(1):14634, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

10

Under review as a conference paper at ICLR 2024

Dunlu Peng, Dongdong Zhang, Cong Liu, and Jing Lu. Bg-sac: Entity relationship classification
model based on self-attention supported capsule networks. Applied Soft Computing, 91:106186,
2020.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702, 2019.

Rita Pucci, Christian Micheloni, and Niki Martinel. Self-attention agreement among capsules. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
pp. 272–280, 2021.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for
visual recognition. In Proceedings of the 37th International Conference on Machine Learning,
volume 119, pp. 7824–7835. PMLR, 2020.

Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Suranga
Seneviratne, and Ranga Rodrigo. Deepcaps: Going deeper with capsule networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10725–
10733, 2019.

Riccardo Renzulli and Marco Grangetto. Towards efficient capsule networks. In 2022 IEEE
International Conference on Image Processing (ICIP), pp. 2801–2805. IEEE, 2022.

Riccardo Renzulli, Enzo Tartaglione, and Marco Grangetto. Rem: Routing entropy minimization
for capsule networks. arXiv preprint arXiv:2204.01298, 2022.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, volume 30, pp. 3856–3866, 2017.

Ramin Sharifi, Pouya Shiri, and Amirali Baniasadi. Prunedcaps: A case for primary capsules
discrimination. In 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 1437–1442. IEEE, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In Proceedings of the 38th
International Conference on Machine Learning, volume 139, pp. 9756–9766. PMLR, 2021.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
arXiv preprint arXiv:2104.07167, 2021.

Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Capsules with
inverted dot-product attention routing. arXiv preprint arXiv:2002.04764, 2020.

Frank Uhlig. Constructive ways for generating (generalized) real orthogonal matrices as products
of (generalized) symmetries. Linear Algebra and its Applications, 332:459–467, 2001.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Advances in Neural Information Processing Systems, pp. 3835–3844,
2018.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X. Yu. Orthogonal convolutional
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11505–11515, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Shuai Yang, Feifei Lee, Ran Miao, Jiawei Cai, Lu Chen, Wei Yao, Koji Kotani, and Qiu Chen.
Rs-capsnet: An advanced capsule network. IEEE Access, 8:85007–85018, 2020. doi: 10.1109/
ACCESS.2020.2992655.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SYMBOLS AND ABBREVIATION USED IN THIS PAPER

Symbol Description

OrthCaps Orthogonal Capsule Network
OrthCaps-S Shallow network variant of OrthCaps
OrthCaps-D Deep network variant of OrthCaps
x Input image
l Layer index
Φl Features from convolutional layers at level l
ul Capsules at layer l
vl+1 Capsules at layer l + 1
n Capsule count in a given layer
d Capsule dimension
W Feature map width
H Feature map height
B Batch size
uflat Flattened capsules
usorted Capsules sorted by their L2-norm
upruned Pruned capsules
M Mask matrix for pruned capsule layer
S Cosine similarity matrix for pruned capsule layer
θ Threshold for pruned capsule layer
Wij Weight matrix for simplified attention routing
Q,K, V Attention routing components: Query, Key, Value
WQ,WK ,WV Weight matrices for Q, K, V
Ci,j Coefficient matrix for attention routing
si,j Votes for attention routing
g Activation function
H Householder matrix
ai Unit vector in Householder matrix formulation
bi Learnable vector in Householder matrix

A.2 HYPERPARAMETERS

Hyperparameter Value

Batchsize 512 (4 paralleled)
Learning rate 5e-3
Weight decay 5e-4
Optimizer AdamW
Scheduler CosineAnnealingLR and 5-cycle linear warm-up
Epochs 300
Data augmentation RandomHorizonFlip, RandonClip with padding of 4
Dropout 0.25
m+ 0.9
m− 0.1
λ 0.5
θ 0.7
d 16

12

Under review as a conference paper at ICLR 2024

A.3 HOUSEHOLDER ORTHOGONALIZATION

A.3.1 PROOF OF LEMMA 2

Proof:

Let W represent one of WQ,WK ,WV as W can be expressed as

W = H0H1 . . . Hd−1 (5)

where Hi = I − 2aia
T
i . We have

WTW = HT
d−1 . . . H

T
1 H

T
0 H0H1 . . . Hd−1 (6)

We demonstrate that Hi is orthogonal, i.e. HT
i Hi = I . This is obvious, as

HT
i Hi = (I − 2aia

T
i)

T (I − 2aia
T
i)

= I − 4aia
T
i + 4aia

T
i = I

(7)

Therefore, Equation (6) can be written as WTW = I . . . I︸ ︷︷ ︸
d

= I .

A.3.2 HOUSEHOLDER AS A REGULARIZATION TECHNIQUE

We demonstrate Householder’s role as a regularization technique for neural networks. For
ResNet18, we flatten and concatenate convolutional kernels into a matrix W , and orthogonalize it
to minimize off-diagonal elements, which reduces channel-wise filter similarity and redundancy.
To quantify these properties, we used Guided Backpropagation to dynamically visualize the
activations(Wang et al., 2020). Compared to directly computing the covariance matrix of
convolutional kernels, The gradient-based covariance matrix offers a more comprehensive view of
the dynamic behavior of filters. We define the gradients from Guided Backpropagation as G and
compute its gradient correlation matrix corr(G) as:

(diag(KGG))
− 1

2 KGG (diag(KGG))
− 1

2 (8)

where KGG = 1
M

(
(G− E[G])(G− E[G])T

)
, M is the number of channels. Figure (7) of the

off-diagonal elements of corr(G) shows a left-shifted distribution for the Householder-regularized
model, confirming its effectiveness in enhancing filter diversity and reducing redundancy.

(a) (b)
Figure 7: (a): The normalized histogram of pairwise filter similarities in standard ResNet34
with different regularizers. HouseHolder orthogonalization method shows the best performance
of descending filter similarity. (b): Capsnet with different Orthogonal regularization on MNIST
dataset. Our HouseHolder orthogonalization method reaches better orthogonality and loss decay.

13

Under review as a conference paper at ICLR 2024

A.4 CAPSULE NETWORK

A.4.1 DYNAMIC ROUTING

Algorithm 2 describes the dynamic routing algorithm. This algorithm allows lower-level capsule
output vectors to be allocated to higher-level capsules based on their similarity, thereby achieving
an adaptive feature combination. However, as evident from

∑
i cij ûj|i, each higher-level capsule

is a weighted sum of lower-level capsules. The higher-level capsules are fully connected with the
lower level. Furthermore, the routing algorithm fundamentally serves as an unsupervised clustering
process for capsules, requiring r iterations to converge the coupling coefficients c. It’s crucial
to strike a balance in choosing r: an inadequate number of iterations may hinder convergence
of c, impairing routing efficacy, while an excessive count increases computational demands. In

Algorithm 2 Dynamic Routing

1: procedure ROUTING(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1) do bij ← 0

3: for T iterations do
4: for all capsule i in layer l do ci ← softmax(bi)
5: for all capsule j in layer (l + 1) do sj ←

∑
i cij ûj|i

6: for all capsule j in layer (l + 1) do vj ← squash(sj)
7: for all capsule i in layer l and capsule j in layer (l + 1) do bij ← bij + ûj|i · vj
8: return vj

Conclusion, it is crucial to introduce a straightforward, iterative-free routing algorithm.

A.4.2 SQUASH ACTIVATION FUNCTION

Figure(8) displays the functions and their derivatives for both sigmoid and squash. The x-axis
represents the L2-norm of the vote from routing, serving as the function input, while the y-axis
denotes the function values and their respective derivatives.

Figure 8: Comparison of function and derivative figure of sigmoid and squash. Left: Function figure
of sigmoid and squash. Right: Derivative figure of sigmoid and squash.

The Squash function is defined as:

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

where vj is the output vector, sj is the input vector, and ||sj || represents the L2 norm of the input
vector.

When the norm ||sj || of the input vector sj approaches zero or infinity, the output vj of the Squash
function tends to be zero, due to the dominance of the denominator 1 + ||sj || in the former and

14

Under review as a conference paper at ICLR 2024

the normalization by the vector magnitude ||sj ||2 in the latter. For intermediate magnitudes, the
function undergoes a rapid transition. When ||sj || is near zero, the output vj of the Squash function
changes relatively rapidly, which is not conducive to gradient optimization and leads to unstable
training. The derivative approaches zero when the norm ||sj || of the input vector sj approaches zero
or infinity, leading to gradient vanishing issues.

Thus, it is necessary to design a new activation function to replace the Squash function for the deep
Capsule Network.

15

	Introduction
	Related Work
	Methodology
	Overall Architecture
	Pruned Capsule layer
	Orthogonal Sparse Attention Routing
	Routing Algorithm
	Orthogonalization of weight matrix

	Capsule Relu

	Experiments
	experimental setup
	Classification performance Comparison
	Ablation study
	Robustness to adversarial attacks
	Orthogonality

	Conclusions and Future Work
	Appendix
	Symbols and abbreviation used in this paper
	hyperparameters
	HouseHolder Orthogonalization
	Proof of Lemma 2
	Householder as a Regularization Technique

	Capsule Network
	Dynamic Routing
	Squash Activation Function

