
Published as a conference paper at ICLR 2024

WEBARENA: A REALISTIC WEB ENVIRONMENT FOR
BUILDING AUTONOMOUS AGENTS

Shuyan Zhou∗ Frank F. Xu∗

Hao Zhu † Xuhui Zhou† Robert Lo† Abishek Sridhar† Xianyi Cheng
Tianyue Ou Yonatan Bisk Daniel Fried Uri Alon Graham Neubig

Carnegie Mellon University
{shuyanzh, fangzhex, gneubig}@cs.cmu.edu

ABSTRACT

With advances in generative AI, there is now potential for autonomous agents
to manage daily tasks via natural language commands. However, current agents
are primarily created and tested in simplified synthetic environments, leading to
a disconnect with real-world scenarios. In this paper, we build an environment
for language-guided agents that is highly realistic and reproducible. Specifically,
we focus on agents that perform tasks on the web, and create an environment
with fully functional websites from four common domains: e-commerce, social
forum discussions, collaborative software development, and content management.
Our environment is enriched with tools (e.g., a map) and external knowledge
bases (e.g., user manuals) to encourage human-like task-solving. Building upon
our environment, we release a set of benchmark tasks focusing on evaluating the
functional correctness of task completions. The tasks in our benchmark are diverse,
long-horizon, and designed to emulate tasks that humans routinely perform on the
internet. We experiment with several baseline agents, integrating recent techniques
such as reasoning before acting. The results demonstrate that solving complex
tasks is challenging: our best GPT-4-based agent only achieves an end-to-end
task success rate of 14.41%, significantly lower than the human performance of
78.24%. These results highlight the need for further development of robust agents,
that current state-of-the-art large language models are far from perfect performance
in these real-life tasks, and that WebArena can be used to measure such progress.
Our code, data, environment reproduction resources, and video demonstrations are
publicly available at https://webarena.dev/.

1 INTRODUCTION

Autonomous agents that perform everyday tasks via human natural language commands could
significantly augment human capabilities, improve efficiency, and increase accessibility. Nonetheless,
to fully leverage the power of autonomous agents, it is crucial to understand their behavior within an
environment that is both authentic and reproducible. This will allow measurement of the ability of
agents on tasks that human users care about in a fair and consistent manner.

Current environments for evaluate agents tend to over-simplify real-world situations. As a result, the
functionality of many environments is a limited version of their real-world counterparts, leading to
a lack of task diversity (Shi et al., 2017; Anderson et al., 2018; Gordon et al., 2018; Misra et al.,
2016; Shridhar et al., 2020; 2021; Yao et al., 2022a). In addition, these simplifications often lower
the complexity of tasks as compared to their execution in the real world (Puig et al., 2018; Shridhar
et al., 2020; Yao et al., 2022a). Finally, some environments are presented as a static resource (Shi
et al., 2017; Deng et al., 2023) where agents are confined to accessing only those states that were
previously cached during data collection, thus limiting the breadth and diversity of exploration.
For evaluation, many environments focus on comparing the textual surface form of the predicted

∗Lead contributors.
†Equal contribution.

1

https://webarena.dev/

Published as a conference paper at ICLR 2024

Tell me how much I spent on
food purchase in March 2023

15

WebArena Environment

”

”

“

“ Create a ‘NolanFans' repo,
listing Nolan's Oscar-winning
films in a README file

Action

Feedback

AI Agent

Tool Sites Knowledge resources

Web applications from popular domains

check_repo
check_readme
check_answer

Functional
Success

Functional
Failure

Figure 1: WebArena is a standalone, self-hostable web environment for building autonomous agents.
WebArena creates websites from four popular categories with functionality and data mimicking
their real-world equivalents. To emulate human problem-solving, WebArena also embeds tools and
knowledge resources as independent websites. WebArena introduces a benchmark on interpreting
high-level realistic natural language command to concrete web-based interactions. We provide
validators to programmatically validate the functional correctness of each task.

action sequences with reference action sequences, disregarding the functional correctness of the
executions and possible alternative solutions (Puig et al., 2018; Jernite et al., 2019; Xu et al., 2021; Li
et al., 2020; Deng et al., 2023). These limitations often result in a discrepancy between simulated
environments and the real world, and can potentially impact the generalizability of AI agents to
successfully understand, adapt, and operate within complex real-world situations.

We introduce WebArena, a realistic and reproducible web environment designed to facilitate the
development of autonomous agents capable of executing tasks (§2). An overview of WebArena
is in Figure 1. Our environment comprises four fully operational, self-hosted web applications,
each representing a distinct domain prevalent on the internet: online shopping, discussion forums,
collaborative development, and business content management. Furthermore, WebArena incorporates
several utility tools, such as map, calculator, and scratchpad, to best support possible human-like task
executions. Lastly, WebArena is complemented by an extensive collection of documentation and
knowledge bases that vary from general resources like English Wikipedia to more domain-specific
references, such as manuals for using the integrated development tool (Fan et al., 2022). The content
populating these websites is extracted from their real-world counterparts, preserving the authenticity
of the content served on each platform. We deliver the hosting services using Docker containers with
gym-APIs (Brockman et al., 2016), ensuring both the usability and the reproducibility of WebArena.

Along with WebArena, we release a ready-to-use benchmark with 812 long-horizon web-based
tasks (§3). Each task is described as a high-level natural language intent, emulating the abstract
language usage patterns typically employed by humans (Bisk et al., 2019). Two example intents
are shown in the upper left of Figure 1. We focus on evaluating the functional correctness of these
tasks, i.e., does the result of the execution actually achieve the desired goal (§3.2). For instance,
to evaluate the example in Figure 2, our evaluation method verifies the concrete contents in the
designated repository. This evaluation is not only more reliable (Zhong et al., 2017; Chen et al., 2021;
Wang et al., 2022) than comparing the textual surface-form action sequences (Puig et al., 2018; Deng
et al., 2023) but also accommodate a range of potential valid paths to achieve the same goal, which is
a ubiquitous phenomenon in sufficiently complex tasks.

We use this benchmark to evaluate several agents that can follow NL command and perform web-
based tasks (§4). These agents are implemented in a few-shot in-context learning fashion with
powerful large language models (LLMs) such as GPT-4 and PALM-2. Experiment results show that
the best GPT-4 agent performance is somewhat limited, with an end-to-end task success rate of only
14.41%, while the human performance is 78.24%. We hypothesize that the limited performance of
current LLMs stems from a lack of crucial capabilities such as active exploration and failure recovery
to successfully perform complex tasks (§5.1). These outcomes underscore the necessity for further
development towards robust and effective agents (LeCun, 2022) in WebArena.

2 WEBARENA : WEBSITES AS AN ENVIRONMENT FOR AUTONOMOUS AGENTS

Our goal is to create a realistic and reproducible web environment. We achieve reproducibility by
making the environment standalone, without relying on live websites. This circumvents technical

2

Published as a conference paper at ICLR 2024

Search for museums
in Pittsburgh

webarena.wikipedia.com

Search for each art
museum on the Map

webarena.openstreetmap.com

Record the optimized
results to the repo

webarena.gitlab.com

…

Create an efficient itinerary to visit all of Pittsburgh's art museums with minimal driving distance
starting from Schenley Park. Log the order in my “awesome-northeast-us-travel” repository

“
”

Figure 2: A high-level task that can be fully executed in WebArena. Success requires sophisticated,
long-term planning and reasoning. To accomplish the goal (top), an agent needs to (1) find Pittsburgh
art museums on Wikipedia, (2) identify their locations on a map (while optimizing the itinerary), and
(3) update the README file in the appropriate repository with the planned route.

challenges such as bots being subject to CAPTCHAs, unpredictable content modifications, and
configuration changes, which obstruct a fair comparison across different systems over time. We
achieve realism by using open-source libraries that underlie many in-use sites from several popular
categories and importing data to our environment from their real-world counterparts.

2.1 CONTROLLING AGENTS THROUGH HIGH-LEVEL NATURAL LANGUAGE

The WebArena environment is denoted as E= ⟨S,A,O, T ⟩ with state space S , action space A (§2.4)
and observation space O (§2.3). The transition function T : S × A−→ S is deterministic, and
it is defined by the underlying implementation of each website in the environment. Given a task
described as a natural language intent i, an agent issues an action at∈ A based on intent i, the
current observation ot∈ O, the action history at−1

1 and the observation history ot−1
1 . Consequently,

the action results in a new state st+1∈ S and its corresponding observation ot+1∈ O. We propose
a reward function r(aT1 , s

T
1) to measure the success of a task execution, where aT1 represents the

sequence of actions from start to the end time step T , and sT1 denotes all intermediate states. This
reward function assesses if state transitions align with the expectations of the intents. For example,
with an intent to place an order, it verifies whether an order has been placed. Additionally, it evaluates
the accuracy of the agent’s actions, such as checking the correctness of the predicted answer.

2.2 WEBSITE SELECTION

To decide which categories of websites to use, we first analyzed approximately 200 examples from the
authors’ actual web browser histories. Each author delved into their browsing histories, summarizing
the goal of particular segments of their browser session. Based on this, we classified the visited
websites into abstract categories. We then identified the four most salient categories and implemented
one instance per category based on this analysis: (1) E-commerce platforms supporting online
shopping activities (e.g., Amazon, eBay), (2) social forum platforms for opinion exchanges (e.g.,
Reddit, StackExchange), (3) collaborative development platforms for software development (e.g.,
GitLab), and (4) content management systems (CMS) that manage the creation and revision of the
digital content (e.g., online store management).

In addition to these platforms, we selected three utility-style tools that are frequently used in web-
based tasks: (1) a map for navigation and searching for information about points of interest (POIs)
such as institutions or locations (2) a calculator, and (3) a scratchpad for taking notes. As information-
seeking and knowledge acquisition are critical in web-based tasks, we also incorporated various
knowledge resources into WebArena. These resources range from general information hubs, such
as the English Wikipedia, to more specialized knowledge bases, such as the website user manuals.

Implementation We leveraged open-source libraries relevant to each category to build our own
versions of an E-commerce website (OneStopShop), GitLab, Reddit, an online store content manage-
ment system (CMS), a map, and an English Wikipedia. Then we imported sampled data from their

3

Published as a conference paper at ICLR 2024

 <div>

 <div class>
 Outdoor Patio …

 <div>
 Rating:
 <div>
 82%
 </div>
 12
Reviews

webarena.onestopshop.comwebarena.onestopshop.com

RootWebArea ‘Patio, Lawn ..’
 link 'Image'
 img 'Image'
 link 'Outdoor Patio..’
 LayoutTable ''
 StaticText 'Rating:'
 generic '82%'
 link '12 Reviews'
 StaticText ‘$49.99'
 button 'Add to Cart’ focusable: True
 button 'Wish List’ focusable: …
 button 'Compare’ focusable: …

webarena.onestopshop.com

Figure 3: We design the observation to be the URL and the content of a web page, with options to
represent the content as a screenshot (left), HTML DOM tree (middle), and accessibility tree (right).
The content of the middle and right figures are trimmed to save space.

real-world counterparts. As an example, our version of GitLab was developed based on the actual
GitLab project.1 We carefully emulated the features of a typical code repository by including both
popular projects with many issues and pull requests and smaller, personal projects. Details of all
websites in WebArena can be found in Appendix A.1. We deliver the environment as dockers and
provide scripts to reset the environment to a deterministic initial state (See Appendix A.2).

2.3 OBSERVATION SPACE

We design the observation space to roughly mimic the web browser experience: a web page URL, the
opened tabs , and the web page content of the focused tab. WebArena is the first web environment
to consider multi-tab web-based tasks to promote tool usage, direct comparisons and references
across tabs, and other functionalities. The multi-tab functionality offers a more authentic replication
of human web browsing habits compared to maintaining everything in a single tab. We provide
flexible configuration to render the page content in many modes: (see Figure 3 for an example): (1)
the raw web page HTML, composed of a Document Object Model (DOM) tree, as commonly used
in past work (Shi et al., 2017; Deng et al., 2023; Li et al., 2020); (2) a screenshot, a pixel-based
representation that represents the current web page as an RGB array and (3) the accessibility tree of
the web page.2 The accessibility tree is a subset of the DOM tree with elements that are relevant and
useful for displaying the contents of a web page. Every element is represented as its role (e.g., a link),
its text content, and its properties (e.g., whether it is focusable). Accessibility trees largely retain the
structured information of a web page while being more compact than the DOM representation.

We provide an option to limit the content to the contents within a viewport for all modes. This
ensures that the observation can be input into a text-based model with limited context length or an
image-based model with image size or resolution requirements.

2.4 ACTION SPACE

Following previous work on navigation and operation in web and embodied environments (Shi et al.,
2017; Liu et al., 2018), we design a compound action space that emulates the keyboard and mouse
operations available on web pages. Figure 4 lists all the available actions categorized into three
distinct groups. The first group includes element operations such as clicking, hovering, typing, and
key combination pressing. The second comprises tab-related actions such as opening, closing, and
switching between tabs. The third category consists of URL navigation actions, such as visiting a
specific URL or navigating forward and backward in the browsing history.

Building on these actions, WebArena provides agents with the flexibility to refer to elements for
operation in different ways. An element can be selected by its on-screen coordinates, (x, y), or by
a unique element ID that is prepended to each element. This ID is generated when traversing the
Document Object Model (DOM) or accessibility tree. With element IDs, the element selection is
transformed into an n-way classification problem, thereby eliminating any disambiguation efforts
required from the agent or the underlying implementation. For example, issuing the action click
[1582] clicks the button given the observation of [1582] Add to Cart. This flexible element
selection allows WebArena to support agents designed in various ways (e.g., accepting input from
different modalities) without compromising fair comparison metrics such as step count.

1https://gitlab.com/gitlab-org/gitlab
2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

4

https://gitlab.com/gitlab-org/gitlab
https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

Published as a conference paper at ICLR 2024

Action Type Description

noop Do nothing
click(elem) Click at an element
hover(elem) Hover on an element
type(elem, text) Type to an element
press(key_comb) Press a key comb
scroll(dir) Scroll up and down

tab_focus(index) focus on i-th tab
new_tab Open a new tab
tab_close Close current tab

go_back Visit the last URL
go_forward Undo go_back
goto(URL) Go to URL

Figure 4: Action Space of WebArena

Category Example

Information
Seeking

When was the last time I bought shampoo

Compare walking and driving time
from AMC Waterfront to Randyland

Site
Navigation

Checkout merge requests assigned to me

Show me the ergonomic chair
with the best rating

Content
&

Config

Post to ask “whether I need a car in NYC”

Delete the reviews from the scammer Yoke

Figure 5: Example intents from three categories.

User Role Simulation Users of the same website often have disparate experiences due to their
distinct roles, permissions, and interaction histories. We emulate this scenario by generating unique
user profiles on each platform. The details can be found in Appendix A.3.

3 BENCHMARK SUITE OF WEB-BASED TASKS

We provide a benchmark with 812 test examples on grounding high-level natural language instructions
to interactions in WebArena. Each example has a metric to evaluate the functional correctness of
the task execution. In this section, we first formally define the task of controlling an autonomous
agent through natural language. Then we introduce the annotation process of our benchmark.

3.1 INTENT COLLECTION

We focus on curating realistic intents to carry out complex and creative tasks within WebArena. To
start with, our annotators were guided to spend a few minutes exploring the websites to familiarize
themselves with the websites’ content and functionalities. As most of our websites are virtually
identical to their open-web counterparts, despite having sampled data, most annotators can quickly
comprehend the websites.

Next, we instructed the annotators to formulate intents based on the following criteria:

(1) The intent should be abstract and high-level, implying that the task cannot be fulfilled with
merely one or two actions. As an example, instead of “click the science subreddit”, we
encouraged annotators to come up with something more complex like “post a greeting message
on science subreddit”, which involves performing multiple actions.

(2) The intent should be creative. Common tasks such as account creation can be easily thought of.
We encouraged the annotators to add constraints (e.g., “create a Reddit account identical to my
GitLab one”) to make the intents more unique.

(3) The intent should be formulated as a template by making replaceable elements as variables.
The annotators were also responsible for developing several instantiations for each variable.
For example, the intent “create a Reddit account identical to my GitLab one” can be converted
into “create a {{site1}} account identical to my {{site2}} one”, with an instantiation like “{site1:
Reddit, site2: GitLab}” and another like “{site1: GitLab, site2: OneStopShopping}”. Notably,
tasks derived from the same template can have distinct execution traces. The similarity resides
primarily in the high-level semantics rather than the specific implementation.

We also provided a prompt for the annotators to use with ChatGPT3 for inspiration, that contains an
overview of each website and instructs the model to describe potential tasks to be performed on these
sites. Furthermore, we offered a curated list of examples for annotators to reference.

Intent Analysis In total, we curated 241 templates and 812 instantiated intents. On average, each
template is instantiated to 3.3 examples. The intent distribution is shown in Figure 6. Furthermore,
we classify the intents into three primary categories with examples shown in Figure 5:

3https://chat.openai.com/

5

https://chat.openai.com/

Published as a conference paper at ICLR 2024

(1) Information-seeking tasks expect a textual response. Importantly, these tasks in WebArena
often require navigation across multiple pages or focus on user-centric content. This makes
them distinct from open-domain question-answering (Yang et al., 2018; Kwiatkowski et al.,
2019), which focuses on querying general knowledge with a simple retrieval step. For instance,
to answer “When was the last time I bought the shampoo”, an agent traverses the user’s purchase
history, checking order details to identify the most recent shampoo purchase.

(2) Site navigation: This category is composed of tasks that require navigating through web pages
using a variety of interactive elements such as search functions and links. The objective is often
to locate specific information or navigate to a particular section of a site.

(3) Content and configuration operation: This category encapsulates tasks that require operating
in the web environment to create, revise, or configure content or settings. This includes adjusting
settings, managing accounts, performing online transactions, generating new web content, and
modifying existing content. Examples range from updating a social media status or README
file to conducting online purchases and configuring privacy settings.

3.2 EVALUATION ANNOTATION

Evaluating Information Seeking Tasks To measure the correctness of information-seeking tasks
where a textual answer is expected, we provide the annotated answer a∗ for each intent. The a∗ is
further compared with the predicted answer â with one of the following scoring functions rinfo(â, a

∗).

First, we define exact_match where only â that is identical with a∗ receives a score of one. This
function is primarily applicable to intent types whose responses follow a more standardized format,
similar to the evaluation on question answering literature (Rajpurkar et al., 2016; Yang et al., 2018).

Second, we create must_include where any â containing a∗ receives a score of one. This function
is primarily used in when an unordered list of text is expected or where the emphasis of evaluation is
on certain key concepts. In the second example in Table 1, we expect both the correct name and the
email address to be presented, irrespective of the precise wording used to convey the answer.

Finally, we introduce fuzzy_match where we utilize a language model to assess whether â is
semantically equivalent to a∗. Specifically, in this work, we use gpt-4-0613 to perform this
evaluation. The corresponding prompt details are provided in Appendix A.7. The fuzzy_match
function applies to situations where the format of the answer is diverse. For instance, in responding
to “Compare the time for walking and driving route from AMC Waterfront to Randyland”, it is
essential to ensure that driving time and walking time are accurately linked with the correct terms.
The fuzzy_match function could also flexibly match the time “2h58min” with different forms
such as “2 hour 58 minutes”, “2:58” and others. We demonstrate a language model can achieve nearly
perfect performance on this task in §A.8.

Evaluating Site Navigation and Content & Config Tasks The tasks in these categories require
accessing web pages that meet certain conditions or performing operations that modify the underlying
data storage of the respective websites. To assess these, we establish reward functions rprog(s)
that programmatically examine the intermediate states s within an execution trajectory to ascertain
whether the outcome aligns with the intended result. These intermediate states are often the underlying
databases of the websites, the status, and the content of a web page at each step of the execution.

Evaluating each instance involves two components. First, we provide a locator, tasked with
retrieving the critical content pertinent to each intent. The implementation of this locator varies from
a database query, a website-supported API call, to a JavaScript element selection on the relevant web
page, depending on implementation feasibility. For example, the evaluation process for the intent of
the fifth example in Table 1, first obtains the URL of the latest post by examining the last state in the
state sequence s. Then it navigates to the corresponding post page and obtains the post’s content by
running the Javascript “document.querySelector(‘.submission__inner’).outerText”.

Subsequently, we annotate keywords that need to exist within the located content. For example,
the evaluation verifies if the post is correctly posted in the “nyc” subreddit by examining the URL of
the post and if the post contains the requested content by examining the post content. We reuse the
exact_match and must_include functions from information-seeking tasks for this purpose.

6

Published as a conference paper at ICLR 2024

Function ID Intent Eval Implementation

rinfo(a
∗, â)

1 Tell me the name of the customer who
has the most cancellations in the history exact_match(â, “Samantha Jones”)

2 Find the customer name and
email with phone number 8015551212

must_include(â, “Sean Miller”)
must_include(â, “sean@gmail.com”)

3
Compare walking and driving time

from AMC Waterfront to Randyland
fuzzy_match(â, “walking: 2h58min”)
fuzzy_match(â, “driving: 21min”)

rprog(s)

4
Checkout merge requests

assigned to me

url=locate_current_url(s)
exact_match(URL, “gitlab.com/merge_

requests?assignee_username=byteblaze”)

5 Post to ask “whether I
need a car in NYC”

url=locate_latest_post_url(s)
body=locate_latest_post_body(s)
must_include(URL, “/f/nyc”)
must_include(body,“a car in NYC”)

Table 1: We introduce two evaluation approaches. rinfo (top) measures the correctness of performing
information-seeking tasks. It compares the predicted answer â with the annotated reference a∗

with three implementations. rprog (bottom) programmatically checks whether the intermediate states
during the executions possess the anticipated properties specified by the intent.

Unachievable Tasks Due to constraints such as inadequate evidence, user permissions (§A.3),
or the absence of necessary functional support on the website, humans may ask for tasks that are
not possible to complete. Inspired by previous work on evaluating question-answering models on
unanswerable questions (Rajpurkar et al., 2018), we design unachievable tasks in WebArena. For
instance, fulfilling an intent like “Tell me the contact number of OneStopShop” is impracticable
in WebArena, given that the website does not provide such contact information. We label such
instances as "N/A" and expect an agent to produce an equivalent response. These examples allow us
to assess an agent’s ability to avoid making unfounded claims and its adherence to factual accuracy.

Annotation Process The intents were contributed by the authors following the annotation guideline
in §3.1. Every author has extensive experience with web-based tasks. The reference answers to
the information-seeking tasks were curated by the authors and an external annotator. To ensure
consistency and accuracy, each question was annotated twice. If the two annotators disagreed, a
third annotator finalized the annotation. The programs to evaluate the remaining examples were
contributed by three of the authors who are proficient in JavaScript programming. Difficult tasks
were often discussed collectively to ensure the correctness of the annotation. The annotation required
the annotator to undertake the full execution and scrutinize the intermediate states.

Avg. Time 110s
Success Rateinfo 74.68%
Success Rateothers 81.32%
Success Rateall 78.24%

Human Performance We sample one task from each of the 170 tem-
plates and ask five computer science graduate students to perform these
tasks. The human performance is on the right. Overall, the human
annotators complete 78.24% of the tasks, with lower performance on
information-seeking tasks. Through examining the recorded trajectories,
we found that 50% of the failures are due to misinterpreting the intent (e.g., providing travel distance
when asked for travel time), incomplete answers (e.g., providing only name when asked for name and
email), and incomplete executions (e.g., partially filling the product information), while the remaining
instances have more severe failures, where the executions are off-target. More discussions on human
annotations can be found in §A.5.

4 BASELINE WEB AGENTS

We experiment with three LLMs using two prompting strategies, both with two examples in the
context. In the first setting, we ask the LLM to directly predict the next action given the current
observation, the intent and the previously performed action. In the second setting, with the same
information, the model first performs chain-of-thought reasoning steps in the text before the action
prediction (CoT, Wei et al. (2022); Yao et al. (2022b)). Before the examples, we provide a detailed
overview of the browser environment, the allowed actions, and many rules. To make the model aware
of the unachievable tasks, the instruction explicitly asks the agent to stop if it believes the task is
impossible to perform. We refer to this directive as Unachievable hint, or UA hint. This introduction

7

Published as a conference paper at ICLR 2024

is largely identical to the guidelines we presented to human annotators to ensure a fair comparison.
We use an accessibility tree with element IDs as the observation space. The agent can identify which
element to interact with by the ID of the element. For instance, the agent can issue click [1582]
to click the “Add to Cart” button with the ID of 1582. The full prompts can be found in Appendix
A.9. The detailed configurations of each model can be found in Appendix A.6.

5 RESULTS

CoT UA Hint Model SR SRAC SRUA

✓ ✓ TEXT-BISON-001 5.05 4.00 27.78
✗ ✓ GPT-3.5 6.41 4.90 38.89
✓ ✓ GPT-3.5 8.75 6.44 58.33
✓ ✓ GPT-4 11.70 8.63 77.78

✗ ✗ GPT-3.5 5.10 4.90 8.33
✓ ✗ GPT-3.5 6.16 6.06 8.33
✓ ✗ GPT-4 14.41 13.02 44.44

- ✓ Human 78.24 77.30 100.00

Table 2: The end-to-end task success rate (SR %) on
WebArena with different prompting strategies. CoT:
the model performs step-by-step reasoning before is-
suing the action. UA hint: ask the model to stop when
encountering unachievable questions.

The main results are shown on the top of
Table 2. GPT-4 (OpenAI, 2023) with CoT
prompting achieves a modest end-to-end task
success rate of 11.70%, which is signifi-
cantly lower than the human performance
of 78.24%. GPT-3.5 (OpenAI, 2022) with
CoT prompting is only able to successfully
perform 8.75% of the tasks. The explicit
reasoning procedure is somewhat helpful, it
brings 2.34% improvement over the version
without it. Further, TEXT-BISON-001 (Anil
et al., 2023) underperforms GPT-3.5, with
a success rate of 5.05%. These results under-
line the inherent challenges and complexities
of executing tasks that span long horizons,
particularly in realistic environments such as
WebArena.

5.1 ANALYSIS

Do models know when to stop? In our error analysis of the execution trajectories, we observe
a prevalent error pattern of early stopping due to the model’s conclusion of unachievability. For
instance, GPT-4 erroneously identifies 54.9% of feasible tasks as impossible. This issue primarily
stems from the UA hint in the instruction, while this hint allows models to identify unachievable
tasks, it also hinders performance on achievable tasks. To address this, we conduct an ablation study
where we remove this hint. We then break down the success rate for both achievable and unachievable
tasks. As shown in Table 2, eliminating this instruction led to a performance boost in achievable
tasks, enhancing the overall task success rate of GPT-4 to 14.41%. Despite an overall decline in
identifying unachievable tasks, GPT-4 retains the capacity to recognize 44.44% of such tasks. It does
so by generating reasons of non-achievability, even without explicit instructions. On the other hand,
GPT-3.5 rarely exhibits this level of reasoning. Instead, it tends to follow problematic patterns such
as hallucinating incorrect answers, repeating invalid actions, or exceeding the step limits. This result
suggests that even subtle differences in instruction design can significantly influence the behavior of
a model in performing interactive tasks in complex environments.

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0
Success rate (%) within a template

0

5

10

15

20

25

Te

m
pl

at
e

gpt-3.5-direct
gpt-3.5-cot
gpt-4-cot

Table 3: Distribution of suc-
cess rates on templates with
≥ 1 successful executions on
GPT models (no UA hint).

Can a model maintain consistent performance across similar
tasks? Tasks that originate from the same template usually follow
similar reasoning and planning processes, even though their observa-
tions and executions will differ. We plot a histogram of per-template
success rates for our models in Table 3. Of the 61 templates, GPT-4
manages to achieve a 100% task success rate on only four templates,
while GPT-3.5 fails to achieve full task completion for any of the
templates. In many cases, the models are only able to complete one
task variation with a template. These observations indicate that even
when tasks are derived from the same template, they can present
distinct challenges. For instance, while “Fork metaseq” can be a
straightforward task, “Fork all repos from Facebook” derived from the same template requires more
repetitive operations, hence increasing its complexity. Therefore, WebArena provide a testbed to
evaluate more sophisticated methods. In particular, those that incorporate memory components,

8

Published as a conference paper at ICLR 2024

Benchmark
Dynamic

Interaction?
Realistic

Environment?
Diverse

Human Tasks?
Functional

Correctness?

Mind2Web (Deng et al., 2023) ✗ ✓ ✓ ✗
Form/QAWoB (Shi et al., 2017) ✗ ✓ ✓ ✗
MiniWoB++ (Liu et al., 2018) ✓ ✗ ✗ ✓
Webshop (Yao et al., 2022a) ✓ ✗ ✗ ✓
ALFRED (Shridhar et al., 2020) ✓ ✗ ✗ ✓
VirtualHome (Puig et al., 2018) ✗ ✗ ✓ ✗
AndroidEnv (Toyama et al., 2021) ✓ ✓ ✗ ✗

WebArena ✓ ✓ ✓ ✓

Table 4: The comparison between our benchmark and existing benchmarks on grounding natural
language instructions to concrete executions. Our benchmark is implemented in our fully interactable
highly-realistic environment. It features diverse tasks humans may encounter in their daily routines.
We design evaluation metrics to assess the functional correctness of task executions.

enabling the reuse of successful strategies from past experiments Zhou et al. (2022a); Wang et al.
(2023). More error analysis with examples can be found in Appendix A.10.

6 RELATED WORK

Benchmarks for Controlling Agents through Natural Language Controlling agents via natural
language in the digital world have been studied in the literature (Branavan et al., 2009; Shi et al., 2017;
Liu et al., 2018; Toyama et al., 2021; Deng et al., 2023; Li et al., 2020; Xu et al., 2021). However,
the balance between functionality, authenticity, and support for environmental dynamics remains a
challenge. Existing benchmarks often compromise these aspects, as shown in Table 4. Some works
rely on static states, limiting agents’ explorations and functional correctness evaluation (Shi et al.,
2017; Deng et al., 2023), while others simplify real-world complexities, restricting task variety (Yao
et al., 2022a; Liu et al., 2018). While AndroidEnv (Toyama et al., 2021) replicates an Android setup,
it does not guarantee the reproducibility since live Android applications are used. (Kolve et al., 2017;
Shridhar et al., 2020; Puig et al., 2018) and extends to gaming environments (Fan et al., 2022; Küttler
et al., 2020), where the environment mechanisms often diverge from human objectives.

Interactive Decision-Making Agents Nakano et al. (2021) introduce WebGPT which searches
the web and reads the search results to answer questions. Gur et al. (2023) propose a web agent that
synthesizes Javascript code for the task executions. Adding a multi-modal dimension, Lee et al. (2023)
and Shaw et al. (2023) develop agents that predict actions based on screenshots of web pages rather
than relying on the text-based DOM trees. Performing tasks in interactive environments requires the
agents to exhibit several capabilities including hierarchical planning, state tracking, and error recovery.
Existing works (Huang et al., 2022; Madaan et al., 2022; Li et al., 2023) observe LLMs could break
a task into more manageable sub-tasks (Zhou et al., 2022b). This process can be further refined
by representing task executions as programs, a technique that aids sub-task management and skill
reuse (Zhou et al., 2022a; Liang et al., 2023; Wang et al., 2023; Gao et al., 2023). Meanwhile, search
and backtracking methods introduce a more structured approach to planning while also allowing
for decision reconsideration (Yao et al., 2023; Long, 2023). Existing works also incorporate failure
recovery, self-correction (Shinn et al., 2023; Kim et al., 2023), observation summarization (Sridhar
et al., 2023) to improve execution robustness. The complexity of WebArena presents a unique
challenge and opportunity for further testing and improvement of these methods.

7 CONCLUSION

We present WebArena, a highly-realistic, standalone, and reproducible web environment designed
for the development and testing of autonomous agents. WebArena includes fully functional web
applications and organic data from popular domains. Additionally, we curate a comprehensive
benchmark consisting of 812 examples that focus on mapping high-level natural language intents into
concrete web interactions. We also offer outcome-based evaluation that programmatically validate
the tasks success. Our experiments show that even GPT-4 only achieves a limited end-to-end task
success rate of 14.41%, significantly lagging behind the human performance of 78.24%. These
findings underscore the need for future research to focus on enhancing the robustness and efficacy of
autonomous agents within WebArena environment.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We would like to thank Emmy Liu, Zhiruo Wang, Zhitong Guo for examining our annotations,
Shunyu Yao for providing the raw Amazon product data in Webshop, Pengfei Liu, Zaid Sheikh
and Aman Madaan for the helpful discussions. We are also grateful to the Center for AI Safety for
providing computational resources. This material is partly based on research sponsored in part by the
Air Force Research Laboratory under agreement number FA8750-19-2-0200. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Laboratory or the U.S. Government. This project
was also partially supported by a gift from AWS AI.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian D.
Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpret-
ing visually-grounded navigation instructions in real environments. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pp. 3674–3683. IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00387.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_
Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,
Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A.
Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa
Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad
Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari,
Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang
Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John
Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov,
Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So,
Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny
Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.

Yonatan Bisk, Jan Buys, Karl Pichotta, and Yejin Choi. Benchmarking hierarchical script knowledge.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4077–4085, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1412. URL https://aclanthology.org/N19-1412.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement learning for
mapping instructions to actions. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pp. 82–90, Suntec, Singapore, 2009. Association for Computational Linguistics. URL
https://aclanthology.org/P09-1010.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

10

http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.html
https://aclanthology.org/N19-1412
https://aclanthology.org/P09-1010
https://arxiv.org/abs/1606.01540

Published as a conference paper at ICLR 2024

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards,
Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained
on code. ArXiv preprint, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.
03374.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=rc8o_j8I8PX.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and
Ali Farhadi. IQA: visual question answering in interactive environments. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pp. 4089–4098. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00430. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Gordon_IQA_Visual_Question_CVPR_2018_paper.html.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 9118–9147. PMLR, 2022. URL
https://proceedings.mlr.press/v162/huang22a.html.

Yacine Jernite, Kavya Srinet, Jonathan Gray, and Arthur Szlam. CraftAssist Instruction Parsing:
Semantic Parsing for a Minecraft Assistant. ArXiv preprint, abs/1905.01978, 2019. URL https:
//arxiv.org/abs/1905.01978.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
ArXiv preprint, abs/2303.17491, 2023. URL https://arxiv.org/abs/2303.17491.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
569ff987c643b4bedf504efda8f786c2-Abstract.html.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_IQA_Visual_Question_CVPR_2018_paper.html
https://proceedings.mlr.press/v162/huang22a.html
https://arxiv.org/abs/1905.01978
https://arxiv.org/abs/1905.01978
https://arxiv.org/abs/2303.17491
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://aclanthology.org/Q19-1026

Published as a conference paper at ICLR 2024

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62, 2022.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. In International Conference on Machine
Learning, pp. 18893–18912. PMLR, 2023.

Xinze Li, Yixin Cao, Muhao Chen, and Aixin Sun. Take a break in the middle: Investigating
subgoals towards hierarchical script generation. ArXiv preprint, abs/2305.10907, 2023. URL
https://arxiv.org/abs/2305.10907.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural lan-
guage instructions to mobile UI action sequences. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 8198–8210, Online, 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.729. URL https:
//aclanthology.org/2020.acl-main.729.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
ryTp3f-0-.

Jieyi Long. Large language model guided tree-of-thought. ArXiv preprint, abs/2305.08291, 2023.
URL https://arxiv.org/abs/2305.08291.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 1384–1403, Abu Dhabi, United Arab Emirates,
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.emnlp-main.90.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-sensitive
grounding of natural language to manipulation instructions. The International Journal of Robotics
Research, 35(1-3):281–300, 2016.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAI. Chatgpt: Optimizing language models for dialogue. 2022.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio
Torralba. Virtualhome: Simulating household activities via programs. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 8494–8502. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00886. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html.

12

https://arxiv.org/abs/2305.10907
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2305.08291
https://aclanthology.org/2022.emnlp-main.90
https://aclanthology.org/2022.emnlp-main.90
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html

Published as a conference paper at ICLR 2024

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784–789, Melbourne, Australia, 2018. Association
for Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https://aclanthology.
org/P18-2124.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. arXiv preprint arXiv:2306.00245, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3135–
3144. PMLR, 2017. URL http://proceedings.mlr.press/v70/shi17a.html.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. ArXiv preprint, abs/2303.11366, 2023. URL https://arxiv.
org/abs/2303.11366.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 10737–10746. IEEE, 2020. doi: 10.
1109/CVPR42600.2020.01075. URL https://doi.org/10.1109/CVPR42600.2020.
01075.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTn.

Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting assists
large language model on web navigation. arXiv preprint arXiv:2305.14257, 2023.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning platform
for android. ArXiv preprint, abs/2105.13231, 2021. URL https://arxiv.org/abs/2105.
13231.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. ArXiv
preprint, abs/2305.16291, 2023. URL https://arxiv.org/abs/2305.16291.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. ArXiv preprint, abs/2212.10481, 2022. URL https://arxiv.
org/abs/2212.10481.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Monica
Lam. Grounding open-domain instructions to automate web support tasks. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1022–1032, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.80. URL https://aclanthology.org/
2021.naacl-main.80.

13

https://aclanthology.org/D16-1264
https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
http://proceedings.mlr.press/v70/shi17a.html
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://arxiv.org/abs/2105.13231
https://arxiv.org/abs/2105.13231
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/2212.10481
https://aclanthology.org/2021.naacl-main.80
https://aclanthology.org/2021.naacl-main.80

Published as a conference paper at ICLR 2024

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, Brussels, Belgium, 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. volume abs/2207.01206, 2022a. URL
https://arxiv.org/abs/2207.01206.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv preprint, abs/2210.03629,
2022b. URL https://arxiv.org/abs/2210.03629.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. ArXiv
preprint, abs/2305.10601, 2023. URL https://arxiv.org/abs/2305.10601.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arxiv 2017. ArXiv preprint, abs/1709.00103, 2017.
URL https://arxiv.org/abs/1709.00103.

Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated agents through
natural language. In Proceedings of the Workshop on Structured and Unstructured Knowledge
Integration (SUKI), pp. 67–84, Seattle, USA, 2022a. Association for Computational Linguistics.
doi: 10.18653/v1/2022.suki-1.8. URL https://aclanthology.org/2022.suki-1.8.

Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-Burch, and Graham
Neubig. Show me more details: Discovering hierarchies of procedures from semi-structured web
data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2998–3012, Dublin, Ireland, 2022b. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.214. URL https://aclanthology.org/
2022.acl-long.214.

14

https://aclanthology.org/D18-1259
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/1709.00103
https://aclanthology.org/2022.suki-1.8
https://aclanthology.org/2022.acl-long.214
https://aclanthology.org/2022.acl-long.214

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 WEBSITE IMPLEMENTATION

Given the selected websites described in §2.2, we make the best attempt to reproduce the functionality
of commonly used sites in a reproducible way. To achieve this, we utilized open-source frameworks
for the development of the websites across various categories and imported data from their real-world
counterparts. For the E-commerce category, we constructed a shopping website with approximately
90k products, including the prices, options, detailed product descriptions, images, and reviews,
spanning over 300 product categories. This website is developed using Adobe Magento, an open-
source e-commerce platform4. Data resources were obtained from data from actual online sites, such
as that included in the Webshop data dumpYao et al. (2022a). As for the social forum platform, we
deployed an open-source software Postmill5, the open-sourced counterpart of Reddit6. We sampled
from the top 50 subreddits7. We then manually selected many subreddit for northeast US cities
as well as subreddit for machine learning and deep learning-related topics. This manual selection
encourages cross-website tasks such as seeking information related to the northeast US on both
Reddit and the map. In total, we have 95 subreddits, 127390 posts, and 661781 users. For the
collaborative software development platform, we choose GitLab8. We heuristically simulate the code
repository characteristics by sampling at least ten repositories for every programming language: 80%
of them are sampled from the set of top 90 percentile wrt stars repos using a discrete probability
distribution weighted proportional to their number of stars; the remaining are sampled from the
bottom ten percentile set using similar weighted distribution. This is done to ensure fair representation
of repos of all kinds, from popular projects with many issues and pull requests to small personal
projects. In total, we have 300 repositories and more than 1000 accounts with at least one commit
to a repository. For the content management system, we adapted Adobe Magento’s admin portal,
deploying the sample data provided in the official guide. We employ OpenStreetMap9 for map service
implementation, confining our focus to the northeast US region due to data storage constraints. We
implement a calculator and a scratchpad ourselves.

Lastly, we configure the knowledge resources as individual websites, complemented with search
functionality for efficient information retrieval. Specifically, we utilize Kiwix10 to host an offline
version of English Wikipedia with a knowledge cutoff of May 2023. The user manuals for GitLab
and Adobe Commerce Merchant documentation are scraped from the official websites.

A.2 ENVIRONMENT DELIVERY AND RESET

One goal for our evaluation environment is ease of use and reproducibility. As a result, we deploy our
websites in separate Docker images 11, one per website. The Docker images are fully self-contained
with all the code of the website, database, as well as any other software dependencies. They also
do not rely on external volume mounts to function, as the data of the websites are also part of the
docker image. This way, the image is easy to distribution containing all the pre-populated websites
for reproducible evaluation. End users can download our packaged Docker images and run them on
their systems and re-deploy the exact websites together with the data used in our benchmarks for
their local benchmarking.

Since some evaluation cases may require the agent to modify the data contained in the website,
e.g., creating a new user, deleting a post, etc., it is crucial to be able to easily reset the website
environment to its initial state. With Docker images, the users could stop and delete the currently
running containers for that website and start the container from our original image again to fully
reset the environment to the initial state. Depending on the website, this process may take from a
few seconds to one minute. However, not all evaluation cases would require an environment reset, as

4https://github.com/magento/magento2
5https://postmill.xyz/
6https://www.reddit.com/
7https://redditlist.com/sfw.html
8https://gitlab.com/gitlab-org/gitlab
9https://www.openstreetmap.org/

10https://www.kiwix.org/en/
11https://www.docker.com/

15

https://github.com/magento/magento2
https://postmill.xyz/
https://www.reddit.com/
https://redditlist.com/sfw.html
https://gitlab.com/gitlab-org/gitlab
https://www.openstreetmap.org/
https://www.kiwix.org/en/
https://www.docker.com/

Published as a conference paper at ICLR 2024

CMS

22.4%

Map

13.4%

E-commerce
23.0%

Reddit

13.1%

Gitlab

22.2%
Cross Site

5.9%

Figure 6: The intent distribution across different websites. Cross-site intents necessitate interacting
with multiple websites. Notably, regardless of the website, all user intents require interactions with
multiple web pages.

many of the intents are information gathering and are read-only for the website data. Also, combined
with the inference time cost for the agent LLMs, we argue that this environment reset method, through
restarting Docker containers from the original images, will have a non-negligible but small impact on
evaluation time.

A.3 USER ROLES SIMULATION

Users of the same website often have disparate experiences due to their distinct roles, permissions,
and interaction histories. For instance, within an E-commerce CMS, a shop owner might possess
full read and write permissions across all content, whereas an employee might only be granted write
permissions for products but not for customer data. We aim to emulate this scenario by generating
unique user profiles on each platform.

On the shopping site, we created a customer profile that has over 35 orders within a span of two years.
On GitLab, we selected a user who maintains several popular open-source projects with numerous
merge requests and issues. This user also manages a handful of personal projects privately. On
Reddit, our chosen profile was a user who actively participates in discussions, with many posts and
comments. Lastly, on our E-commerce CMS, we set up a user profile for a shop owner who has full
read-and-write access to all system contents.

All users are automatically logged into their accounts using a pre-cached cookie. To our best
knowledge, this is the first publicly available agent evaluation environment to implement such a
characteristic. Existing literature typically operates under the assumption of universally identical user
roles Shi et al. (2017); Liu et al. (2018); Deng et al. (2023).

A.4 INTENT DISTRIBUTION

The distribution of intents across the websites are shown in Figure 6.

A.5 HUMAN PERFORMANCE

We acknowledge that there may be a difference in human performance when annotators with different
demographics are involved. In fact, many tasks in our dataset require domain-specific knowledge.
For instance, an average user may not know what a git merge request is; or how to create a product in
a complex content management system. We aim to design tasks that have easy-to-imagine outcomes
(e.g., a new product page is created) rather than those that are easily performed by an average user
without significant domain knowledge.

16

Published as a conference paper at ICLR 2024

CoT UA Hint Model SR
✓ ✗ GPT-3.5 6.28

Table 5: The task success rate (SR %) of GPT-3.5-TURBO-16K-0613 with temperature 0.0.

Dataset gpt-4-0613 gpt-4-1106-preview

Date (900 examples) 100 100
Time duration (900 examples) 100 100

Table 6: The accuracy (%) of two versions of GPT-4 on judging if dates and time duration of different
formats are equivalent.

A.6 EXPERIMENT CONFIGURATIONS

We experiment with GPT-3.5-TURBO-16K-0613, GPT-4-0613, and TEXT-BISON-001 with a
temperature of 1.0 and a top-p parameter of 0.9. The maximum number of state transitions is set to
30. We halt execution if the same action is repeated more than three times on the same observation
or if the agent generates three consecutive invalid actions. These situations typically indicate a
high likelihood of execution failure and hence warrant early termination. For TEXT-BISON-001, we
additionally allow ten retries until it generates a valid action.

Primarily, we use a high temperature of 1.0 to encourage the exploration. To aid replicating the
results, we provide the results of GPT-3.5-TURBO-16K-0613 with temperature 0.0 in Table 5 and
the execution trajectories in our code repository.

A.7 PROMPT FOR FUZZY_MATCH

Help a teacher to grade the answer of a student given a question. Keep in mind that the student may
use different phrasing or wording to answer the question. The goal is to evaluate whether the answer
is semantically equivalent to the reference answer.
question: {{intent}}
reference answer: {{reference answer}}
all the string ’N/A’ that you see is a special sequence that means ’not achievable’
student answer: {{prediction}}
Conclude the judgement by correct/incorrect/partially correct.

Predictions that are judged as “correct” will receive a score of one, while all other predictions will
receive a score of zero.

A.8 THE ACCURACY OF FUZZY MATCH FUNCTION

To evaluate this, we manually checked 40 examples and found that 39 of them are identical to our
human judgment. In addition, among the 82 examples that require using GPT-4 for evaluation, the
answer of 49 (60%) examples is a date (e.g., 10/23/2022) or time duration (e.g., 15 minutes). In these
cases, GPT-4 is only used to judge the different format of the answers. We quantitatively evaluate
the correctness of GPT-4 in this case by generating different formats of a date and time duration
programmatically. We randomly sample negative examples. For instance, Nov 3, 2022, November
3, 2022, 3rd November 2022, 3 Nov 2022, 2022-11-03, and 3rd of November, 2022 are all correct
variances of 2022/11/03. The accuracy of GPT-4 is shown in Table 6. We can see that two versions of
GPT-4 are extremely accurate, both achieving 100% accuracy.

A.9 THE PROMPTS OF THE BASELINE WEB AGENTS

The system message of the reasoning agent for both GPT-3.5 and GPT-4 is in Figure 7, and two
examples are in Figure 8. The system message of the direct agent for GPT-3.5 is in Figure 9 and
the two examples are in Figure 10. UA hint refers to the instruction of “ If you believe the task is

17

Published as a conference paper at ICLR 2024

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing
key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
`click [id]`: This action clicks on an element with a specific id on the webpage.
`type [id] [content] [press_enter_after=0|1]`: Use this to type the content into the field with id. By
default, the "Enter" key is pressed after typing unless press_enter_after is set to 0.
`hover [id]`: Hover over an element with id.
`press [key_comb]`: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
`scroll [direction=down|up]`: Scroll the page up or down.

Tab Management Actions:
`new_tab`: Open a new, empty browser tab.
`tab_focus [tab_index]`: Switch the browser’s focus to a specific tab using its index.
`close_tab`: Close the currently active tab.

URL Navigation Actions:
`goto [url]`: Navigate to a specific URL.
`go_back`: Navigate to the previously viewed page.
`go_forward`: Navigate to the next page (if a previous
`go_back` action was performed).

Completion Action:
`stop [answer]`: Issue this action when you believe the task is complete. If the objective is to find
a text-based answer, provide the answer in the bracket. If you believe the task is impossible to
complete, provide the answer as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of
websites you can visit.
http://homepage.com/password.html lists all the account names and passwords for the websites. You
can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I will perform
is“ phrase, followed by action inside ``````. For example, "In summary, the next action I will
perform is ```click [1234]```”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after
stop."""

Figure 7: The system message of the reasoning agent. This message has a general explanation of
the task, the available actions, and some notes on avoiding common failures.

impossible to complete, provide the answer as "N/A" in the bracket.”. We remove this sentence in our
ablation studies.

18

Published as a conference paper at ICLR 2024

example_user
OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’

[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None

example_assistant
Let’s think step-by-step. This page lists the information of HP Inkjet Fax Machine, which is the
product identified in the objective. Its price is $279.49. I think I have achieved the objective. I
will issue the stop action with the answer. In summary, the next action I will perform is ```stop
[$279.49]```

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’
[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None

example_assistant
Let’s think step-by-step. This page has a search box whose ID is [164]. According to the nominatim
rule of openstreetmap, I can search for the restaurants near a location by r̈estaurants near.̈ I can
submit my typing by pressing the Enter afterwards. In summary, the next action I will perform is
```type [164] [restaurants near ABC] [1]```

Figure 8: The two examples provided as example_user and example_assistant for the
reasoning agent. Before issuing the action, the agent first perform reasoning.

19



Published as a conference paper at ICLR 2024

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage, providing
key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:
Page Operation Actions
`click [id]`: This action clicks on an element with a specific id on the webpage.
`type [id] [content] [press_enter_after=0|1]`: Use this to type the content into the field with id. By
default, the "Enter" key is pressed after typing unless press_enter_after is set to 0.
`hover [id]`: Hover over an element with id.
`press [key_comb]`: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
`scroll [direction=down|up]`: Scroll the page up or down.

Tab Management Actions:
`new_tab`: Open a new, empty browser tab.
`tab_focus [tab_index]`: Switch the browser’s focus to a specific tab using its index.
`close_tab`: Close the currently active tab.

URL Navigation Actions:
`goto [url]`: Navigate to a specific URL.
`go_back`: Navigate to the previously viewed page.
`go_forward`: Navigate to the next page (if a previous
`go_back` action was performed).

Completion Action:
`stop [answer]`: Issue this action when you believe the task is complete. If the objective is to find
a text-based answer, provide the answer in the bracket. If you believe the task is impossible to
complete, provide the answer as "N/A" in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of
websites you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You
can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. Generate the action in the correct format. Always put the action inside a pair of ```. For example,
```click [1234]```
4. Issue stop action when you think you have achieved the objective. Don’t generate anything after
stop."""

Figure 9: The system message of the direct agent. This message has the general explanation of the
task, the available actions and some notes on avoiding common failures.

20

Published as a conference paper at ICLR 2024

example_user
OBSERVATION:
[1744] link ’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’

[1749] StaticText ’$279.49’
[1757] button ’Add to Cart’
[1760] button ’Add to Wish List’
[1761] button ’Add to Compare’

URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine
PREVIOUS ACTION: None

example_assistant
```stop [$279.49]```

example_user
OBSERVATION:
[164] textbox ’Search’ focused: True required: False
[171] button ’Go’
[174] link ’Find directions between two points’
[212] heading ’Search Results’
[216] button ’Close’
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near ABC
PREVIOUS ACTION: None

example_assistant
```type [164] [restaurants near ABC] [1]```

Figure 10: The two examples provided as example_user and example_assistant for the
direct agent. The agent directly emits the next action given the observation.

21

Published as a conference paper at ICLR 2024

[2430] searchbox 'Search query'
 [5172] StaticText 'DMV area'

[2361] link 'Projects 0'
[2365] link 'Users 1'
[2070] heading " We couldn't
find any projects matching
Facebook"

Figure 11: Two examples where the GPT-4 agent failed, along with their screenshot and the
accessibility tree of the relevant sections (grey). On the left, the agent fails to proceed to the “Users”
section to accomplish the task of “Fork all Facebook repos”; on the right, the agent repeats entering
the same search query even though the observation indicates the input box is filled.

A.10 ADDITIONAL ERROR ANALYSIS

Observation Bias Realistic websites frequently present information on similar topics across various
sections to ensure optimal user accessibility. However, a GPT-4 agent often demonstrates a tendency
to latch onto the first related piece of information it encounters without sufficiently verifying its
relevance or accuracy. For instance, the homepage of the E-Commerce CMS displays the best-selling
items based on recent purchases, while historical best-seller data is typically accessed via a separate
report. Presented with the task of “What is the top-1 best-selling product in 2022”, the GPT-4 agent
defaults to leveraging the readily available information on the homepage, bypassing the necessary
step of generating the report to obtain the accurate data.

Failures in Observation Interpretation Interestingly, while GPT-4 is capable of summarizing the
observations, it occasionally overlooks more granular information, such as the previously entered
input. As in the right-hand example of Figure 11, [5172] StaticText indicates that the
search term “DMV area” has already been entered. However, the agent disregards this detail and
continuously issues the command type [2430] [DMV area] until it reaches the maximum
step limit. Furthermore, the agent often neglects the previous action information that is provided
alongside the observation.

We hypothesize that these observed failures are related to the current pretraining and supervised
fine-tuning on dialogues employed in GPT models Ouyang et al. (2022). These models are primarily
trained to execute instructions given immediate observations (i.e.,, the dialogue history); thereby,
they may exhibit a lack of explorations. Furthermore, in dialogue scenarios, subtle differences in
NL expressions often have less impact on the overall conversation. As a result, models may tend to
overlook minor variations in their observations.

22

	Introduction
	WebArena: Websites as an Environment for Autonomous Agents
	Controlling Agents through High-level Natural Language
	Website Selection
	Observation Space
	Action Space

	Benchmark Suite of Web-based Tasks
	Intent Collection
	Evaluation Annotation

	Baseline Web Agents
	Results
	Analysis

	Related Work
	Conclusion
	Appendix
	Website Implementation
	Environment Delivery and Reset
	User Roles Simulation
	Intent Distribution
	Human Performance
	Experiment Configurations
	Prompt for fuzzy_match
	The Accuracy of Fuzzy Match Function
	The Prompts of the Baseline Web Agents
	Additional Error Analysis

