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Abstract
We show that low-rank adaptation of large-scale
models suffers from a low stable rank that is
well below the linear algebraic rank of the sub-
space, degrading fine-tuning performance. To
mitigate the underutilization of the allocated sub-
space, we propose PoLAR, a parameterization in-
spired by the polar decomposition that factorizes
the low-rank update into two direction matrices
constrained to Stiefel manifolds and an uncon-
strained scale matrix. Our theory shows that Po-
LAR yields an exponentially faster convergence
rate on a canonical low-rank adaptation problem.
Pairing the parameterization with Riemannian op-
timization leads to consistent gains on a common-
sense reasoning benchmark with Llama-2-7B.

1. Introduction
Recent work attempts to overcome the low-rank constraint
imposed by LoRA (Hu et al., 2022) while preserving its
parameter-efficiency (Xia et al., 2024; Lialin et al., 2024;
Zhao et al., 2024; Huang et al., 2025; Jiang et al., 2024).
The underlying premise is that the low-rank nature of the
adapter limits its expressiveness. However, this premise is
at odds with recent theoretical results that LoRA can ap-
proximate any target transformer model reasonably well
under mild assumptions (Zeng & Lee, 2024). Additionally,
(Kalajdzievski, 2023) shows that raising the nominal rank
does little to improve performance. Taken together, these
findings suggest that the low-rank space offers sufficient ex-
pressiveness, but the classical low-rank adapter formulation
struggles to fully utilize this potential.

Indeed, we observe comprehensive empirical evidence for
this underutilization: when fine-tuning Llama-2-7B with
LoRA, we find that the stable rank, a robust analogue of the
matrix rank and measure of expressiveness, of the resulting
update remains well below the linear algebraic rank. For
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some learned LoRA updates ∆W, the stable rank, defined
as sr(∆W) := ∥∆W∥2F/∥∆W∥22 (Rudelson & Vershynin,
2006), is as low as 1.06. This reveals that approximately a
rank 1 subspace is utilized even if the LoRA rank is chosen
as 32. Similar behaviors of low stable rank are consistently
observed across layers and datasets; see Fig. 1a. Such defi-
ciency results in a diversity collapse in the update directions
among different neurons, where in extreme cases the updates
for all neurons strongly align along a single direction (up to
a sign flip); see Fig. 1b for an illustration and Fig. 1c for the
directional diversity collapse when fine-tuning Llama-2-7B.

To address this pathology, we put forth PoLAR, a co-design
of architecture and optimizer that mitigates the directional
diversity collapse, as shown in Fig. 1d. On the architec-
ture side, PoLAR facilitates effective exploitation of the
linear algebraic rank by expressing the low-rank update as
the product of two column-orthogonal direction matrices
and a r × r scale matrix. On the optimizer side, we apply
methods from Riemannian optimization (Boumal, 2023).
Theoretically, we demonstrate that our co-design enables
exponentially faster convergence than vanilla LoRA on a
canonical problem. Our contribution is four-fold:

• Our empirical analysis demonstrates that the update
matrices learned by LoRA have a stable rank far below
their full linear algebraic rank, leading to a collapse
in directional diversity and, in turn, preventing the
adapters from fully realizing their expressiveness.

• We introduce PoLAR, an architecture-optimizer co-
design that ensures diverse update directions by fac-
toring the low-rank updates into column-orthogonal
direction matrices and an arbitrary scale matrix. Rie-
mannian optimization is then adopted for our PoLAR
parameterization.

• On a matrix factorization prototype problem, we prove
that our PoLAR parameterization achieves an exponen-
tially faster convergence rate than vanilla LoRA.

• We evaluate PoLAR on a commonsense reasoning
benchmark using Llama-2-7B and observe consistent
performance gains.

Notation. Bold capital (lowercase) letters denote matrices
(vectors); (·)⊤ and ∥ · ∥F refer to transpose and Frobenius
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norm of a matrix; ∥ · ∥ is the ℓ2 (spectral) norm of a vector
(matrix); σi(·) and λi(·) denote the i-th largest singular
value and eigenvalue, respectively. For a matrix X ∈ Rr×r,
let Skew(X) = 1

2 (X − X⊤) be its skew-symmetric part.
The set of matrices with orthonormal columns, i.e., the
Stiefel manifold, is denoted as St(m, r) := {X ∈ Rm×r :
X⊤X = Ir}. The set of r × r positive semi-definite (PSD)
matrices is denoted as Sr⪰0 := {X ∈ Rr×r : X ⪰ 0}.

2. PoLAR: A Co-Design of Architecture and
Optimizer

2.1. Overcoming Low Stable Rank with PoLAR

Given the pretrained weight (of a linear layer) W0 ∈ Rm×n,
LoRA learns an additive low-rank update ∆W ∈ Rm×n

with rank(∆W) ≤ r. The adapted weight is thus given
by W0 +∆W. In (Hu et al., 2022), the parameterization
∆W = Z1Z

⊤
2 with Z1 ∈ Rm×r and Z2 ∈ Rn×r is used.

While LoRA significantly enhances parameter efficiency
as (m + n)r ≪ mn, it turns out that it struggles to fully
utilize the expressiveness of its parameterization. In particu-
lar, when fine-tuning Llama-2-7B with LoRA, we find that
the stable rank sr(∆W) remains small on various datasets,
oftentimes approaching 1 for many layers even with a rea-
sonably large choice of r = 32; see Fig. 1a. Such a low
stable rank translates to a loss in directional diversity of the
neural updates. The directional diversity of an update matrix
is measured by the average pairwise Euclidean distance of
neurons when projected to the unit sphere. Note that this
distance is within [0, 2] with the lower and upper bounds
attained by a pair of collinear neurons, pointing in the same
or opposite directions, respectively. Consequently, a dis-
tribution of pairwise distances with most mass at the ends
of the interval can be interpreted as evidence for low direc-
tional diversity. As observed in Fig. 1c, the LoRA update
closely aligns along a single direction, with most neural
updates being nearly collinear. Using the compact SVD
∆W = UΣV⊤, it is possible to explain this observation
and identify a low stable rank as a driver behind the lack
of directional diversity. Here, U = [u1, . . . ,ur] ∈ Rm×r

and V = [v1, . . . ,vr] ∈ Rn×r have orthonormal columns
and Σ = diag(σ1, . . . , σr) ∈ Rr×r contains the singular
values on its diagonal. Also, let wi denote the i-th row of
∆W. With this notation, we can see that the direction of
the LoRA update for the i-th neuron is approximated by:

wi

∥wi∥
=

1√∑r
j′=1 σ

2
j′U

2
ij′

r∑
j=1

σjUijv
⊤
j

(a)≈ sign(σ1Ui1)v
⊤
1 ,∀i ∈ {1, 2, . . . ,m}

(1)

where (a) comes from sr(∆W) ≈ 1. Equation (1) suggests

that the weight update of all neurons tends to strongly align
with the direction of the leading right singular vector up
to a sign flip, causing the two-cluster pattern in Fig. 1c.
Moreover, Fig. 1a demonstrates the wide applicability of
this finding, as the LoRA updates across several datasets
suffer from a very low stable rank. This pathology suggests
that LoRA does not fully utilize its rank capacity, and we
conjecture that a parameterization addressing this pathology
increases the performance of LoRA. These insights lead to
the following desiderata: we wish to learn O(r) roughly
orthogonal directions whose contributions to the unit-norm
neural update are roughly balanced, avoiding the collapse
of directional diversity encountered in vanilla LoRA.

To this end, we advocate to incorporate orthogonality di-
rectly into the architecture. This can be achieved with
the polar decomposition; see Appendix A.1 for a brief
review. Applied to each low-rank factor, this decompo-
sition yields Z1 = XΘ1 and Z2 = YΘ2, separating them
into PSD scale and column-orthogonal direction compo-
nents with X ∈ St(m, r), Y ∈ St(n, r) and Θi ∈ Sr⪰0

for i ∈ {1, 2}. The desirable orthogonality is thus nat-
urally enforced through the manifold structure of X and
Y. Moreover, rather than relying on two individual scale
matrices, it is more convenient to learn a joint Θ ∈ Rr×r

matrix for the overall update, which amounts to merging the
product Θ1Θ

⊤
2 . These considerations give rise to our Polar-

decomposed Low-rank Adapter Representation (PoLAR):

∆W = XΘY⊤ (2)

with X ∈ St(m, r), Y ∈ St(n, r), and Θ ∈ Rr×r. As a
byproduct, PoLAR admits a natural interpretation in terms
of a direction–magnitude decomposition. However, unlike
alternative decompositions, such as the column-wise weight
normalization used in DoRA (Salimans & Kingma, 2016;
Liu et al., 2024), PoLAR enforces orthogonality, substan-
tially increasing the stable rank (see Fig. 1a) and generating
low-rank updates with more competitive performance.

2.2. Faster Optimization with PoLAR Parameterization

We now compare the convergence of PoLAR and LoRA on
the problem of learning a low-rank adapter for a single layer
with whitened data. As discussed in (Arora et al., 2018;
Zhang & Pilanci, 2024; Li et al., 2024) and Appendix A.4,
applying LoRA in this case is equivalent to a matrix factor-
ization under the asymmetric Burer-Monteiro (BM) param-
eterization (Burer & Monteiro, 2003):

min
Z1∈Rm×r,Z2∈Rn×r

1

2
∥Z1Z

⊤
2 −A∥2F. (3)

In problem (3), the matrix to be factorized (or the target
matrix of LoRA) is denoted as A ∈ Rm×n, and Z1,Z2

represent the LoRA weights. In light of the low-rank setting,
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(c) DC in LoRA
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(d) PoLAR solves DC

Figure 1: (a) sr(∆W) of Llama-2-7B low-rank updates fine-tuned on commonsense tasks with rank 32. (b) Illustration of
directional diversity collapse (DC) of w̃i = wi/∥wi∥2 where wi denotes the i-th row of low-rank update ∆W. (c) and
(d) Diversity of update directions of LoRA and PoLAR for a Llama-2-7B down-projection layer on dataset Social-IQA,
respectively. Each pixel shows ∥w̃i − w̃j∥2; rows and columns are rearranged to reveal cluster patterns in both plots.
Emergence of a cluster pattern is evidence for DC. The algebraic rank is 32 for both methods, yet the stable rank is 1.06 and
5.49 for LoRA and PoLAR, respectively. See also Section 2.1.

r ≪ min{m,n} is assumed. Problem (3) has been widely
adopted as a testbed for developing optimization schemes
for LoRA; e.g., (Zhang & Pilanci, 2024) or (Li et al., 2024).

Our goal in this subsection is to understand the optimization
dynamics of our PoLAR parameterization applied to the
same one-layer setting, yielding the problem below

min
X,Y,Θ

1

2
∥XΘY⊤ −A∥2F,

s.t. X ∈ St(m, r), Y ∈ St(n, r), Θ ∈ Rr×r.

(4)

Considering the sufficient expressiveness of LoRA (Zeng
& Lee, 2024), we focus on the overparameterized regime
for both (3) and (4), where r > rA := rank(A). In this
setting, zero loss is attainable. Let the compact SVD of A be
UΣV⊤ with U ∈ Rm×rA , V ∈ Rn×rA and diagonal Σ ∈
RrA×rA . Without loss of generality, we assume σ1(Σ) = 1
and σrA(Σ) = 1/κ where κ is the condition number. We
also assume m ≥ n, as one can transpose A if necessary.

Note that the semi-orthogonal low-rank factors live on
Stiefel manifolds, requiring a treatment with Riemannian
gradient descent (RGD). For technical simplicity, we con-
sider a procedure that alternates between updating Θt and
(Xt,Yt). At iteration t, it starts by finding Θt with gradient
descent (GD) using learning rate γ > 0, i.e.,

Θt = (1− γ)Θt−1 + γX⊤
t AYt. (5a)

Setting γ = 1 significantly simplifies our analysis. With this
value and the updated matrix Θt, the Riemannian gradient
of Xt can be obtained via Et = −(Im −XtX

⊤
t )AYtΘ

⊤
t .

Further involving polar retraction to remain on the manifold,
the RGD update on Xt is given by

Xt+1 = (Xt − ηEt)(Ir + η2E⊤
t Et)

−1/2. (5b)

We summarize the resulting RGD procedure in Alg. 2 (in
Appendix) and establish its global convergence:

Theorem 2.1 (Global Convergence). Suppose that rA ≤
n
2 . Let ρ := min{ 1

m ,
(r−rA)2

rm }. W.h.p. over the random
initialization of X0 and Y0, choosing the learning rates
η = O( (r−rA)2ρ

r2κ2m ) and γ = 1, The update procedure ensures
1
2∥XTΘTY

⊤
T − A∥2F ≤ ϵ for all T ≥ O

(
m2r3rAκ4

ρ2(r−rA)4 +
m2r3κ4

ρ(r−rA)4 log
1
ϵ

)
.

Our rate compares favorably to previous results of
GD in the overparameterized regime. In particular,
(Xiong et al., 2024) show that overparameterization slows
down GD, leading to an undesirable κ dependence with
O
(
max{κ15, κκ} log(1/ϵ)

)
. Our rates in Theorem 2.1 ex-

ponentially improve the κ dependence to a quartic one.

Our choice of an unconstrained Θ ∈ Rr×r plays a crucial
role for convergence. Empirical evidence in (Mishra et al.,
2013) shows that substituting Θ by a diagonal matrix Θd,
as done in AdaLoRA (Zhang et al., 2023), can adversely
affect convergence, potentially because of the presence of
non-strict saddles in the loss landscape (Levin et al., 2024).
These spurious stationary points can be removed by a pa-
rameterization with positive-definite Θs (Levin et al., 2024).
Our PoLAR parameterization poses no constraints on Θ. It
thus avoids computational overheads associated with enforc-
ing positive-definiteness (e.g., matrix exponentials), yet still
ensures global convergence.

3. Practical PoLAR for Scalable Fine-Tuning
Although PoLAR increases expressiveness and accelerates
convergence, optimizing under the manifold constraint of (2)
with standard feasible methods does not scale to tasks such
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Table 1: Performance on commonsense reasoning tasks with Llama-2-7B using PoLAR for different ranks in a single-task
setup. HeSw refers to HellaSwag and WiGr to WinoGrande.

Rank Adapter BoolQ PIQA SIQA HeSw WiGr ARC-e ARC-c OBQA Avg.

4
LoRA 87.16 81.01 58.85 82.36 74.35 81.90 57.68 56.80 72.51
DoRA 87.22 80.30 58.96 82.39 75.22 81.69 57.85 56.80 72.55
PoLAR 87.49 82.59 59.31 81.23 81.77 81.61 56.31 55.80 73.26

32
LoRA 87.89 81.56 59.06 82.51 72.61 82.37 56.83 54.60 72.18
DoRA 87.61 81.45 58.70 82.50 74.43 82.28 57.17 55.60 72.47
PoLAR 88.13 82.64 60.03 83.12 82.00 81.99 56.14 55.60 73.71

Algorithm 1 PoLAR Fine-tuning

Input: Parameterize via (2); Initialize X0,Y0 uniformly
random from Stiefel manifolds, set Θ0 = 0, and denote
λ regularization strength, ρt stateful gradient transforma-
tion (e.g., Adam)
for t = 0, . . . , T − 1 do
Γ(Xt)← ψ(Xt)Xt + λ∇N (Xt)
Γ(Yt)← ψ(Yt)Yt + λ∇N (Yt)
Xt+1 ← Xt − ηtρt(Γ(Xt))
Yt+1 ← Yt − ηtρt(Γ(Yt))
Θt+1 ← Θt − ηtρt(∇ΘtL(Xt,Θt,Yt))

end for

as LLM fine-tuning. Every retraction back onto the Stiefel
manifold requires a matrix inversion or SVD (see (5b)), op-
erations whose sequential nature limits GPU parallelism and
becomes a runtime bottleneck (Sun et al., 2024). To sidestep
these issues, we take inspiration from the recently proposed
landing algorithm which completely eschews retractions,
producing iterates that are not necessarily on the manifold,
but provably land on it as training proceeds (Ablin & Peyré,
2022; Gao et al., 2022). At iteration t, we update Xt and
Yt with the landing field. Taking the update on Xt as an
example, we use

Γ(Xt) := ψ(Xt)Xt︸ ︷︷ ︸
Riemannian grad.

+ λ∇N (Xt)︸ ︷︷ ︸
Infeasibility penalty

(6)

as a drop-in replacement for the Riemannian update de-
scribed in Section 2.2. The first component in (6) is the
standard Riemannian gradient for matrices on the Stiefel
manifold with ψ(X) := Skew(∇XL(X,Θ,Y)X⊤). The
second component in (6) is given by the gradient of the infea-
sibility penalty,N (X) := ∥X⊤X−Ir∥2F, which attracts the
iterate towards the Stiefel manifold, making retraction ob-
solete. The landing field computation involves only matrix
multiplications, eliminating the need for sequential retrac-
tion routines that do not map well to GPU parallelism. The
complete PoLAR fine-tuning procedure is summarized in

Alg. 1 where λ > 0 is a tunable hyperparameter.

4. Experiments
We now evaluate the PoLAR fine-tuning procedure on com-
monsense reasoning tasks which test how well LLMs can
mimic human-like understanding. We report the accuracy
based on multiple-choice log-likelihood evaluation. PoLAR
delivers the highest mean accuracy across tasks, outperform-
ing both LoRA and DoRA (Table 1). Whereas the gains
of DoRA and LoRA appear to be mostly flat going from
r = 4 to r = 32, PoLAR’s accuracy increases with larger
rank. This is consistent with our conjecture that PoLAR
counteracts directional-diversity collapse by exploiting the
allocated rank more effectively. In Table 2 of the Appendix,
we compare our method PoLAR with a procedure that brings
our method closer to AdaLoRA (Zhang et al., 2023), which
uses a SVD-type parameterization. We observe that the
PoLAR parameterization based on the Riemannian gradi-
ent outperforms the diagonal parameterization based on the
Euclidean gradient.

5. Conclusion
Low-rank adaptation has become the workhorse for efficient
fine-tuning, yet our analysis revealed that the classical BM
parameterization in LoRA often underutilizes its allocated
subspace: the stable rank of the learned updates collapses,
limiting expressive power. Building on this empirical find-
ing, as well as theoretical insights from a canonical low-rank
optimization problem, we introduced PoLAR, a reparameter-
ization inspired by the polar decomposition that is coupled
with a landing field optimization procedure. We empiri-
cally show that PoLAR delivers superior performance on
a commonsense reasoning benchmark with Llama-2-7B,
providing evidence that maintaining a higher stable rank
translates into richer, more task-aligned updates. In practice,
PoLAR’s reliance on nothing more than matrix multipli-
cations implies that it maps cleanly onto GPU hardware,
offering a drop-in replacement for existing LoRA pipelines.
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A. Useful Facts
A.1. Polar Decomposition

We provide the definition for the polar decomposition below and refer the interested reader to Section 9.4.3 of (Golub &
Van Loan, 2013) for further details.

Definition A.1 (Polar Decomposition). The (right) polar decomposition of a matrix X ∈ Rm×r with m ≥ r is defined as
X = UP where U ∈ Rm×r has orthonormal columns and P ∈ Rr×r is positive semi-definite.

When r = 1, the polar decomposition in Definition A.1 reduces to the familiar magnitude-direction decomposition of
vectors. In general, the polar decomposition can be viewed as an extension to matrices, where U represents the directional
component and P captures the magnitude.

A.2. Angles Between Subspaces

Angles between two subspaces are known as principal angles. Suppose that n ≥ p and n ≥ q, and let U and V be two linear
subspaces of dimension n× p and n× q. Then the principle angles θi ∈ [0, π2 ],∀i ≤ min{p, q} is defined as

θ1 = max
{
arccos

⟨u,v⟩
∥u∥∥v∥

∣∣u ∈ U ,v ∈ V}
θi = max

{
arccos

⟨u,v⟩
∥u∥∥v∥

∣∣u ∈ U ,v ∈ V,u ⊥ uj ,v ⊥ vj ,∀j ∈ 1, . . . , i− 1
}
,∀i ̸= 1.

There is a well-known relation between principal angles and SVD. Let U and V be basis of U and V respectively. It can
be seen that all the singular values of U⊤V belong to [0, 1]. Moreover, the principle angles defined above are just the
arc-cosine of these singular values (Björck & Golub, 1973). For convenience of this work, we refer to the singular values of
U⊤V as principal angles (instead of the arc-cosine of them). If the basis U and V are both from St(m, r), we sometimes
use the term “alignment”, where we say U and V are aligned if all the singular values of U⊤V are 1; or in other words,
they share the same column space.

The principal angles are also related to the geodesic distance on Grassmann manifolds. Oftentimes, people use the term

chordal distance to refer to d(U,V) =
√∑

i sin
2 θi, where θi are principal angles between two subspaces spanned by U

and V. The square of the chordal distance coincides with our notation Tr(I−ΦtΦ
⊤
t ), where Φt is defined in Section 2.2.

A.3. Other Useful Lemmas

Lemma A.2. Given a PSD matrix A, we have that (I+A)−1 ⪰ I−A.

Proof. Simply diagonalizing the LHS and RHS, and using 1/(1 + λ) ≥ 1− λ,∀λ ≥ 0 gives the result.

Lemma A.3. Suppose that X ∈ St(m, r), U ∈ St(m, rA) and rA ≤ r. Let U⊥ ∈ Rm×(m−rA) be the orthogonal
complement of U. Denote Φ = U⊤X and Ω = U⊤

⊥X. It is guaranteed that σ2
i (Φ)+σ2

i (Ω) = 1 holds for i ∈ {1, 2, . . . , r}.

Proof. We have that

Ir = X⊤X = X⊤ImX = X⊤[U,U⊥]

[
U⊤

U⊤
⊥

]
X (7)

= Φ⊤Φ+Ω⊤Ω.

Equation (7) indicates that Ψ⊤Ψ and Φ⊤Φ commute, i.e.,

(Φ⊤Φ)(Ω⊤Ω) = (Φ⊤Φ)(Ir −Φ⊤Φ) = Φ⊤Φ−Φ⊤ΦΦ⊤Φ

= (Ir −Φ⊤Φ)(Φ⊤Φ) = (Ω⊤Ω)(Φ⊤Φ).

The commutativity shows that the eigenspaces of Φ⊤Φ and Ω⊤Ω coincide. As a result, we have again from (7) that
σ2
i (Φ) + σ2

i (Ω) = 1 for i ∈ {1, 2, . . . , r}. The proof is thus completed.
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Lemma A.4. Suppose that P and Q are m×m diagonal matrices, and their diagonal entries are non-negative. Let S be a
PD matrix of m×m with smallest eigenvalue λmin, then we have that

Tr(PSQ) ≥ λminTr(PQ).

Proof. Let pi and qi be the (i, i)-th entry of P and Q, respectively. Then we have that

Tr(PSQ) =
∑
i

piSi,iqi ≥ λmin

∑
i

piqi = λminTr(PQ) (8)

where the inequality above comes from the positive definiteness of S, i.e., Si,i = e⊤i Sei ≥ λmin,∀i.
Lemma A.5. Let A ∈ Rm×n be a matrix with full column rank and B ∈ Rn×p be a non-zero matrix. Let σmin(·) be the
smallest non-zero singular value. Then it holds that σmin(AB) ≥ σmin(A)σmin(B).

Proof. Using the min-max principle for singular values,

σmin(AB) = min
∥x∥=1,x∈ColSpan(B)

∥ABx∥

= min
∥x∥=1,x∈ColSpan(B)

∥∥∥A Bx

∥Bx∥
∥∥∥ · ∥Bx∥

(a)
= min

∥x∥=1,∥y∥=1,x∈ColSpan(B),y∈ColSpan(B)
∥Ay∥ · ∥Bx∥

≥ min
∥y∥=1,y∈ColSpan(B)

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

≥ min
∥y∥=1

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

= σmin(A)σmin(B)

where (a) is by changing of variables, i.e., y = Bx/∥Bx∥.
Lemma A.6 (Theorem 2.2.1 of (Chikuse, 2012)). If Z ∈ Rm×r has entries drawn iid from Gaussian distribution N (0, 1),
then X = Z(Z⊤Z)−1/2 is a random matrix uniformly distributed on St(m, r).

Lemma A.7 ((Vershynin, 2010)). ] If Z ∈ Rm×r is a matrix whose entries are independently drawn from N (0, 1). Then
for every τ ≥ 0, with probability at least 1− exp(−τ2/2), we have

σ1(Z) ≤
√
m+

√
r + τ.

Lemma A.8 ((Rudelson & Vershynin, 2009)). If Z ∈ Rm×r is a matrix whose entries are independently drawn from
N (0, 1). Suppose that m ≥ r. Then for every τ ≥ 0, we have for some universal constants C1 > 0 and C2 > 0 that

P
(
σr(Z) ≤ τ(

√
m−

√
r − 1)

)
≤ (C1τ)

m−r+1 + exp(−C2r).

Lemma A.9. If U ∈ St(m, rA) is a fixed matrix, X ∈ St(m, r) is uniformly sampled from St(m, r) using methods described
in Lemma A.6, and r > rA, then we have that with probability at least 1− exp(−m/2)− (C1τ)

r−rA+1 − exp(−C2d),

σrA(U
⊤X) ≥ τ(r − rA + 1)

6
√
mr

.

Proof. Since X ∈ St(m, r) is uniformly sampled from St(m, r) using methods described in Lemma A.6, we can write
X = Z(Z⊤Z)−1/2, where Z ∈ Rm×r has entries iid sampled from N (0, 1). We thus have

σrA(U
⊤X) = σrA

(
U⊤Z(Z⊤Z)−1/2

)
.

Now consider U⊤Z ∈ RrA×r. It is clear that entries of U⊤Z are also iid Gaussian random variables N (0, 1). As a
consequence of Lemma A.8, we have that w.p. at least 1− (C1τ)

r−rA+1 − exp(−C2r),

σrA
(
U⊤Z

)
≥ τ(√r −

√
rA − 1).
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We also have from Lemma A.7 that with probability at least 1− exp(−m/2)

σ1(Z
⊤Z) = σ2

1(Z) ≤ (2
√
m+

√
r)2.

Taking union bound, we have with probability at least 1− exp(−m/2)− (C1τ)
r−rA+1 − exp(−C2r),

σrA(U
⊤X)

(a)

≥ σrA
(
U⊤Z)

σ1(Z)
=
τ(
√
r −√rA − 1)

2
√
m+

√
r

≥ τ(r − rA + 1)

3
√
m · 2√r =

τ(r − rA + 1)

6
√
mr

(9)

where (a) comes from Lemma A.5.

Lemma A.10. If V ∈ St(n, rA) is a fixed matrix, and Y ∈ St(n, r) is uniformly sampled from St(n, r) using methods
described in Lemma A.6. Suppose r > rA. Then we have that with probability at least 1− exp(−n/2)− (C1τ)

r−rA+1 −
exp(−C2r),

σrA(V
⊤Y) ≥ τ(r − rA + 1)

6
√
nr

.

Proof. The proof is omitted since it follows the same steps of Lemma A.9.

A.4. Equivalence of Matrix Factorization and LoRA

Whitening data refers to transforming the data such that the empirical uncentered covariance matrix of the features is identity.
Suppose D ∈ Rn×N holds N training examples in its columns with n features each, then whitened data refers to having
DD⊤ = In. We follow standard arguments laid out in (Arora et al., 2018; Li et al., 2024) to show that low-rank adaptation
on a linear model with whitened data and squared loss can be written as a matrix factorization problem. Consider the
minimization of

L(X,Y) = ∥(W0 +XY⊤)D−A∥2F

where A ∈ Rm×N holds m labels for each example, W0 ∈ Rm×n is the pre-trained weight, and X ∈ Rm×r, Y ∈ Rn×r

are the weights of LoRA. Rewriting L(X,Y) yields

L(X,Y) = ∥(W0 +XY⊤)D−A∥2F
= Tr(((W0 +XY⊤)D−A)((W0 +XY⊤)D−A)⊤)

= Tr((W0 +XY⊤)DD⊤(W0 +XY⊤)⊤)− Tr((W0 +XY⊤)DA⊤)

− Tr(AD⊤(W0 +XY⊤)⊤) + Tr(AA⊤)

(a)
= Tr((W0 +XY⊤)(W0 +XY⊤)⊤)− Tr((W0 +XY⊤)DA⊤)

− Tr(AD⊤(W0 +XY⊤)⊤) + Tr(AA⊤)

(b)
= Tr(((W0 +XY⊤)−Λ)((W0 +XY⊤)−Λ)⊤)− Tr(ΛΛ⊤) + Tr(AA⊤)

where (a) uses the fact that the data is whitened and (b) defines Λ = AD⊤ ∈ Rm×n, i.e., the matrix to be factorized. Thus,
we can write

L(X,Y) = ∥(W0 +XY⊤)−Λ∥2F + c

= ∥XY⊤ −Λ′∥2F + c

for Λ′ := W0 − Λ and constant c := −Tr(ΛΛ⊤) + Tr(AA⊤). Using the same arguments, one can frame low-rank
adaptation of a linear model with the PoLAR parameterization as the matrix factorization problem given in (4).
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Algorithm 2 RGD for PoLAR parameterized (4)

Input: Learning rates η, γ; sample X0 and Y0 uniformly from St(m, r) and St(n, r), respectively.
for t = 0, . . . , T − 1 do

Find Θt via (5a)
Obtain Riemannian gradients Et and Ft

Xt+1 = (Xt − ηEt)(Ir + η2E⊤
t Et)

−1/2

Yt+1 = (Yt − ηFt)(Ir + η2F⊤
t Ft)

−1/2

end for

B. Proof of Theorem 2.1
For ease of reference, we summarize the procedure described in Section 2.2 in Alg. 2. We update

Xt+1 = (Xt − ηEt)(Ir + η2E⊤
t Et)

−1/2. (10)

Likewise, the Riemannian gradient of Yt is Ft = −(In −YtY
⊤
t )A

⊤XtΘt, leading to the update

Yt+1 = (Yt − ηFt)(Ir + η2F⊤
t Ft)

−1/2. (11)

B.1. Riemannian Gradients of (4)

One can start with the Euclidean gradient with respect to Xt as Ẽt = (XtΘtY
⊤
t −A)YtΘ

⊤
t = (XtX

⊤
t − Im)AYtΘ

⊤
t .

Note that for Θt = X⊤
t AYt (i.e., γ = 1) the Euclidean gradient is skew-symmetric such that it is already contained in the

tangent space of St(m, r) at Xt (i.e., X⊤
t Ẽt + Ẽ⊤

t Xt = 0), yielding equality between the Riemannian gradient Et and
Euclidean gradient Ẽt. This equivalence holds regardless of whether the Euclidean or canonical metric is used. In other
words, the Riemmanian gradient for Xt at iteration t is given by

Et = −(Im −XtX
⊤
t )AYtΘ

⊤
t .

Similarly, one can obtain the Riemannian gradient for Yt via

Ft = −(In −YtY
⊤
t )A

⊤XtΘt.

B.2. General Dynamics

Here we derive several equations that are useful throughout this section. Note that the choice of learning rate γ = 1 will be
leveraged in some equations.

Dynamics on Xt, Et, and Φt. From the updates in Alg. 2, it is straightforward to arrive

RrA×r ∋ U⊤Et = −U⊤(Im −XtX
⊤
t )AYtΘ

⊤
t

= −U⊤(Im −XtX
⊤
t )UΣV⊤YtΘ

⊤
t

= −(IrA −ΦtΦ
⊤
t )ΣΨtΘ

⊤
t .

Similarly, we also have

Rr×r ∋ E⊤
t Et = ΘtY

⊤
t A

⊤(Im −XtX
⊤
t )

2AYtΘ
⊤
t

= ΘtY
⊤
t A

⊤(Im −XtX
⊤
t )AYtΘ

⊤
t

= ΘtΨ
⊤
t Σ(IrA −ΦtΦ

⊤
t )ΣΨtΘ

⊤
t .
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Applying σ1(Ψt) ≤ 1 and σ1(A) = σ1(Σ) = 1 to the equation above, and leveraging γ = 1 in the update of Θt (i.e.,
Θt = X⊤

t AYt = Φ⊤
t ΣΨt), we have that

σ1(E
⊤
t Et) ≤ σ4

1(Σ)σ1(IrA −ΦtΦ
⊤
t ) = σ1(IrA −ΦtΦ

⊤
t ). (12)

And the dynamics on the alignment Φt ∈ RrA×r can be written as

Φt+1 =
[
Φt + η(IrA −ΦtΦ

⊤
t )ΣΨtΘ

⊤
t

](
Ir + η2E⊤

t Et

)−1/2

(a)
=

[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t Σ

]
Φt

(
Ir + η2E⊤

t Et

)−1/2

where (a) uses Θt = X⊤
t AYt = Φ⊤

t ΣΨt. Hence, we have that

Φt+1Φ
⊤
t+1 (13)

=
[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t Σ

]
Φt

(
Ir + η2E⊤

t Et

)−1
Φ⊤

t

[
IrA + ηΣΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t )

]
.

Dynamics on Yt, Ft, and Ψt. From the updates in Alg. 2 and similar to the derivation above, we arrive at

RrA×r ∋ V⊤Ft = −V⊤(In −YtY
⊤
t )A

⊤XtΘt

= −V⊤(In −YtY
⊤
t )VΣU⊤XtΘt

= −(IrA −ΨtΨ
⊤
t )ΣΦtΘt.

Moreover, we also have

Rr×r ∋ F⊤
t Ft = Θ⊤

t X
⊤
t A(In −YtY

⊤
t )

2A⊤XtΘt

= Θ⊤
t X

⊤
t A(In −YtY

⊤
t )A

⊤XtΘt

= Θ⊤
t Φ

⊤
t Σ(IrA −ΨtΨ

⊤
t )ΣΦtΘt.

Applying σ1(Φt) ≤ 1 and σ1(A) = 1 to the equation above, we have that

σ1(F
⊤
t Ft) ≤ σ4

1(Σ)σ1(IrA −ΨtΨ
⊤
t ) = σ1(IrA −ΨtΨ

⊤
t ). (14)

The alignment Ψt = V⊤Yt ∈ RrA×r can be tracked via

Ψt+1 =
[
Ψt + η(IrA −ΨtΨ

⊤
t )ΣΦtΘt

](
Ir + η2F⊤

t Ft

)−1/2

(b)
=

[
IrA + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Ψt

(
Ir + η2F⊤

t Ft

)−1/2

where (b) uses Θt = X⊤
t AYt = Φ⊤

t ΣΨt. Finally, we have that

Ψt+1Ψ
⊤
t+1 (15)

=
[
IrA + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Ψt

(
Ir + η2F⊤

t Ft

)−1
Ψ⊤

t

[
IrA + ηΣΦtΦ

⊤
t Σ(IrA −ΨtΨ

⊤
t )

]
.

With these preparations, we are ready to prove our main results.

B.3. Initialization

Lemma B.1. Suppose that X0 and Y0 are uniformly sampled from St(m, r) and St(n, r), respectively, using methods
described in Lemma A.6. There exist universal constants c1 and c2 such that whp the following holds

σrA(Φ0) = σrA(U
⊤X0) ≥

r − rA + 1√
c1mr

≥ r − rA√
c1mr

σrA(Ψ0) = σrA(V
⊤Y0) ≥

r − rA + 1√
c2nr

≥ r − rA√
c2nr

.

Proof. The proofs, the constants c1 and c2, as well as the exact probability follow directly from Lemma A.9 and Lemma
A.10.
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B.4. Increasing Alignment

The Lemma below that the alignment between Xt and U is non-decreasing over iterations. This geometric observation
bears resemblance to the descent lemma in standard GD.

Lemma B.2 (Increasing Alignment). Let βt := σ1(IrA − ΦtΦ
⊤
t ) and δt := σ1(IrA − ΨtΨ

⊤
t ), and suppose that the

learning rates are chosen as η < 1 and γ = 1. If the following conditions are met,

2(1− η2βt)σ2
rA(Ψt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
≥ ηβtTr

(
ΦtΦ

⊤
t

)
2(1− η2δt)σ2

rA(Φt)

κ2
Tr
(
(IrA −ΨtΨ

⊤
t )ΨtΨ

⊤
t

)
≥ ηδtTr

(
ΨtΨ

⊤
t

)
Alg. 2 guarantees that Tr(Φt+1Φ

⊤
t+1) ≥ Tr(ΦtΦ

⊤
t ) and Tr(Ψt+1Ψ

⊤
t+1) ≥ Tr(ΨtΨ

⊤
t ).

Lemma B.2 is proved in this subsection, where the detailed proof is divided into two parts.

B.4.1. INCREASING ALIGNMENT BETWEEN Xt AND U

Lemma B.3. Consider Alg. 2 with η < 1 and γ = 1. Let βt := σ1(IrA −ΦtΦ
⊤
t ). If it holds that

2(1− η2βt)σ2
rA(Ψt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
≥ ηβtTr

(
ΦtΦ

⊤
t

)
,

we have Tr(Φt+1Φ
⊤
t+1) ≥ Tr(ΦtΦ

⊤
t ).

Proof. From (13), we have that

Φt+1Φ
⊤
t+1 (16)

=
[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t Σ

]
Φt

(
Ir + η2E⊤

t Et

)−1
Φ⊤

t

[
IrA + ηΣΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t )

]
(a)

⪰
[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t Σ

]
Φt

(
Ir − η2E⊤

t Et

)
Φ⊤

t

[
IrA + ηΣΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t )

]
(b)

⪰ (1− η2βt)
[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t Σ

]
ΦtΦ

⊤
t

[
IrA + ηΣΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t )

]
⪰ (1− η2βt)

{
ΦtΦ

⊤
t + η(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t ΣΦtΦ

⊤
t + ηΦtΦ

⊤
t ΣΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t )

}
where (a) is by Lemma A.2; and (b) is by

(
Ir − η2E⊤

t Et

)
⪰ (1 − η2σ1(IrA − ΦtΦ

⊤
t ))Ir as a result

of (12), and we write βt := σ1(IrA − ΦtΦ
⊤
t ) for convenience. We also dropped the fourth term (IrA −

ΦtΦ
⊤
t )ΣΨtΨ

⊤
t ΣΦtΦ

⊤
t ΣtΨtΨ

⊤
t Σ(IrA −ΦtΦ

⊤
t ) given its PSDness. Note that βt ∈ [0, 1].

Now let the EVD of ΦtΦ
⊤
t = QtΛtQ

⊤
t , where both Qt and Λt are rA × rA matrices. Note that 0 ⪯ Λt ⪯ IrA . Then we

have that

Tr
(
(IrA −ΦtΦ

⊤
t )ΣΨtΨ

⊤
t ΣΦtΦ

⊤
t

)
(17)

= Tr
(
Qt(IrA −Λt)Q

⊤
t ΣΨtΨ

⊤
t ΣQtΛtQ

⊤
t

)
= Tr

(
(IrA −Λt)Q

⊤
t ΣΨtΨ

⊤
t ΣQtΛt

)
(c)

⪰ σ2
rA(Ψt)

κ2
Tr
(
(IrA −Λt)Λt

)
=
σ2
rA(Ψt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
where (c) is by Lemma A.4 and Lemma A.5. More precisely, the PSDness of Q⊤

t ΣΨtΨ
⊤
t ΣQt justifies the prerequisites

for Lemma A.4, and then we use σrA(Q
⊤
t ΣΨtΨ

⊤
t ΣQt) ≥ σ2

rA(Σ)σ2
rA(Ψt) = σ2

rA(Ψt)/κ
2.

12
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Taking trace on both sides of (16) and plugging (17) in, we arrive at

Tr(Φt+1Φ
⊤
t+1)

1− η2βt
≥ Tr(ΦtΦ

⊤
t ) +

2ησ2
rA(Ψt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
. (18)

Simplifying this inequality gives the results.

B.4.2. INCREASING ALIGNMENT BETWEEN Yt AND V

We proceed by proving the analogue of Lemma B.3 for the alignment between Yt and V by following the same steps.

Lemma B.4. Consider Alg. 2 with η < 1 and γ = 1. Let δt := σ1(IrA −ΨtΨ
⊤
t ). If it holds that

2(1− η2δt)σ2
rA(Φt)

κ2
Tr
(
(IrA −ΨtΨ

⊤
t )ΨtΨ

⊤
t

)
≥ ηδtTr

(
ΨtΨ

⊤
t

)
,

we have Tr(Ψt+1Ψ
⊤
t+1) ≥ Tr(ΨtΨ

⊤
t ).

Proof. From (15), we have that

Ψt+1Ψ
⊤
t+1 (19)

=
[
IrA + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Ψt

(
Ir + η2F⊤

t Ft

)−1
Ψ⊤

t

[
IrA + ηΣΦtΦ

⊤
t Σ(IrA −ΨtΨ

⊤
t )

]
(a)

⪰
[
IrA + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Ψt

(
Ir − η2F⊤

t Ft

)
Ψ⊤

t

[
IrA + ηΣΦtΦ

⊤
t Σ(IrA −ΨtΨ

⊤
t )

]
(b)

⪰ (1− η2δt)
[
IrA + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t Σ

]
ΨtΨ

⊤
t

[
IrA + ηΣΦtΦ

⊤
t Σ(IrA −ΨtΨ

⊤
t )

]
⪰ (1− η2δt)

{
ΨtΨ

⊤
t + η(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t ΣΨtΨ

⊤
t + ηΨtΨ

⊤
t ΣΦtΦ

⊤
t Σ(IrA −ΨtΨ

⊤
t )

}
where (a) is by Lemma A.2; and (b) is by

(
Ir − η2F⊤

t Ft

)
⪰ (1− η2σ1(IrA −ΨtΨ

⊤
t ))Ir as a result of (14), and we write

δt := σ1(IrA −ΨtΨ
⊤
t ) for convenience. Note that δt ∈ [0, 1].

Now let the SVD of ΨtΨ
⊤
t = PtΛ̃tP

⊤
t , where both Pt and Λ̃t are rA × rA matrices. Note that 0 ⪯ Λ̃t ⪯ IrA . Then we

have that

Tr
(
(IrA −ΨtΨ

⊤
t )ΣΦtΦ

⊤
t ΣΨtΨ

⊤
t

)
(20)

= Tr
(
Pt(IrA − Λ̃t)P

⊤
t ΣΦtΦ

⊤
t ΣPtΛ̃tP

⊤
t

)
= Tr

(
(IrA − Λ̃t)P

⊤
t ΣΦtΦ

⊤
t ΣPtΛ̃t

)
(c)

⪰ σ2
rA(Φt)

κ2
Tr
(
(IrA − Λ̃t)Λ̃t

)
=
σ2
rA(Φt)

κ2
Tr
(
(IrA −ΨtΨ

⊤
t )ΨtΨ

⊤
t

)
where (c) is by Lemma A.4 and Lemma A.5. More precisely, we use the PSDness of P⊤

t ΣΦtΦ
⊤
t ΣPt for applying Lemma

A.4, and then employ σrA(P
⊤
t ΣΦtΦ

⊤
t ΣPt) ≥ σ2

rA(Σ)σ2
rA(Φt) = σ2

rA(Φt)/κ
2.

Taking trace on both sides of (19) and plugging (20) in, we arrive at

Tr(Ψt+1Ψ
⊤
t+1)

1− η2δt
≥ Tr(ΨtΨ

⊤
t ) +

2ησ2
rA(Φt)

κ2
Tr
(
(IrA −ΨtΨ

⊤
t )ΨtΨ

⊤
t

)
. (21)

Simplifying this inequality gives the results.

B.5. Non-Increasing Misalignment

Misalignment of Xt refers to the principal angles between Xt and the basis of the orthogonal complement of U. Similarly,
one can define the misalignment of Yt.

13
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B.5.1. NON-INCREASING MISALIGNMENT OF Xt

Lemma B.5. Denote the orthogonal complement of U as U⊥ ∈ Rm×(m−rA). Define the (m−rA)×r matrix Ωt := U⊤
⊥Xt

to characterize the alignment of Xt and U⊥. Under the same setting of Lemma B.3, we have that Ωt+1Ω
⊤
t+1 ⪯ ΩtΩ

⊤
t .

Moreover, if rA ≤ m
2 , it is guaranteed to have σ2

rA(Φt+1) ≥ σ2
rA(Φt).

Proof. From update (5b), we have that

Ωt+1 = U⊤
⊥(Xt − ηEt)(Ir + η2E⊤

t Et)
−1/2

=
(
Ωt + ηU⊤

⊥(Im −XtX
⊤
t )AYtΘ

⊤
t

)
(Ir + η2E⊤

t Et)
−1/2

(a)
=

(
Ωt − ηU⊤

⊥XtΘtΘ
⊤
t

)
(Ir + η2E⊤

t Et)
−1/2

= Ωt

(
Ir − ηΘtΘ

⊤
t

)
(Ir + η2E⊤

t Et)
−1/2.

where in (a) we have used U⊤
⊥A = 0 and Θt = X⊤

t AYt. With this, we can see that

Ωt+1Ω
⊤
t+1 = Ωt

(
Ir − ηΘtΘ

⊤
t

)
(Ir + η2E⊤

t Et)
−1

(
Ir − ηΘtΘ

⊤
t

)
Ω⊤

t

⪯ ΩtΩ
⊤
t

where the last inequality comes from the fact that the three matrices in between are all PSD and their largest eigenvalues are
smaller than 1 given our choices of η. This gives the proof for the first part of this Lemma.

To show σ2
rA(Φt+1) ≥ σ2

rA(Φt), notice that given 2rA ≤ m, we have from Lemma A.3 that σ2
rA(Φt) = 1− σ2

rA(Ωt) and
σ2
rA(Φt+1) = 1− σ2

rA(Ωt+1). The conclusion is straightforward.

B.5.2. NON-INCREASING MISALIGNMENT OF Yt

Lemma B.6. Denote the orthogonal complement of V as V⊥ ∈ Rn×(n−rA). Define the (n− rA)× r matrix Ω̃t := V⊤
⊥Yt

to characterize the alignment of Yt and V⊥. Under the same setting of Lemma B.4, we have that Ω̃t+1Ω̃
⊤
t+1 ⪯ Ω̃tΩ̃

⊤
t .

Moreover, if rA ≤ n
2 , it is guaranteed to have σ2

rA(Ψt+1) ≥ σ2
rA(Ψt).

Proof. From update (11), we have that

Ω̃t+1 = V⊤
⊥(Yt − ηFt)(Ir + η2F⊤

t Ft)
−1/2

=
(
Ω̃t + ηV⊤

⊥(In −YtY
⊤
t )A

⊤XtΘt

)
(Ir + η2F⊤

t Ft)
−1/2

=
(
Ω̃t − ηV⊤

⊥YtΘ
⊤
t Θt

)
(Ir + η2F⊤

t Ft)
−1/2

= Ω̃t

(
Ir − ηΘ⊤

t Θt

)
(Ir + η2F⊤

t Ft)
−1/2.

With this, we can see that

Ω̃t+1Ω̃
⊤
t+1 = Ω̃t

(
Ir − ηΘ⊤

t Θt

)
(Ir + η2F⊤

t Ft)
−1

(
Ir − ηΘ⊤

t Θt

)
Ω̃⊤

t

⪯ Ω̃tΩ̃
⊤
t

where the last inequality comes from the fact that the three matrices in between are all PSD and their largest eigenvalues are
smaller than 1 given our choice of η.

To show σ2
rA(Ψt+1) ≥ σ2

rA(Ψt), notice that given 2rA ≤ m, we have from Lemma A.3 that σ2
rA(Ψt) = 1− σ2

rA(Ω̃t) and
σ2
rA(Ψt+1) = 1− σ2

rA(Ω̃t+1). The conclusion is straightforward.

B.6. Convergence of Tr(ΦtΦ
⊤
t ) and Tr(ΨtΨ

⊤
t )

B.6.1. DYNAMICS OF Tr(ΦtΦ
⊤
t )

Lemma B.7. Suppose that rA ≤ n
2 , and let ρ := min{ 1

m ,
(r−rA)2

mr }. Choosing η = O
(ρ(r−rA)2

r2κ2m

)
and γ = 1, Alg. 2

guarantees that after at most T = O
(
rAr3κ4m2

ρ2(r−rA)4 + m2r3κ4

ρ(r−rA)4 log
1
ϵ

)
steps Tr(IrA −ΦtΦ

⊤
t ) ≤ ϵ.

14



PoLAR: Polar-Decomposed Low-Rank Adapter Representation

Proof. By rewriting (18), we arrive at

Tr(Φt+1Φ
⊤
t+1)− Tr(ΦtΦ

⊤
t ) (22)

≥ 2ησ2
rA(Ψt)

κ2
(1− η2βt)Tr

(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− η2βtTr(ΦtΦ

⊤
t ).

Based on (22), we discuss the convergence in three different regimes.

Phase I. Tr(IrA −ΦtΦ
⊤
t ) ≥ rA − 0.5. This is the initial phase, and the condition is equivalent to Tr(ΦtΦ

⊤
t ) ≤ 0.5. For

notational convenience, let the SVD of ΦtΦ
⊤
t = QtΛtQ

⊤
t . Given these conditions, it can be seen that σrA(IrA−ΦtΦ

⊤
t ) =

σrA(IrA −Λt) ≥ 0.5. Recalling that βt = σ1(IrA −ΦtΦ
⊤
t ) ≤ 1, we can simplify (22) as

Tr(Φt+1Φ
⊤
t+1)− Tr(ΦtΦ

⊤
t ) ≥

2ησ2
rA(Ψt)

κ2
(1− η2)Tr

(
(IrA −Λt)Λt

)
− η2Tr(ΦtΦ

⊤
t )

(a)

≥ ησ2
rA(Ψt)

κ2
(1− η2)Tr(Λt)− η2Tr(ΦtΦ

⊤
t )

(b)

≥ η(r − rA)2
κ2c2nr

(1− η2)Tr(ΦtΦ
⊤
t )− η2Tr(ΦtΦ

⊤
t )

where (a) uses σrA(IrA − Λt) ≥ 0.5; (b) uses Lemmas B.6 and B.1, which jointly imply that σ2
rA(Ψt) ≥ σ2

rA(Ψ0) ≥
(r − rA)2/(c2nr) for some universal constant c2 defined in Lemma B.1. Rearranging the terms, we arrive at

Tr(Φt+1Φ
⊤
t+1) ≥

(
1 +

η(r − rA)2
κ2c2nr

(1− η2)− η2
)
Tr(ΦtΦ

⊤
t )

which is linearly increasing once the term in parentheses is greater than 1. This amounts to choosing a small enough η, i.e.,
η ≤ O

( (r−rA)2

κ2nr

)
.

Phase II. 0.5 < Tr(IrA − ΦtΦ
⊤
t ) < rA − 0.5. Suppose that Tr

(
(IrA − Λt)Λt

)
≥ ρ, for some ρ > 0 to be discussed

shortly. Let η = O
(ρ(r−rA)2

r2κ2m

)
and η ≤ 0.5, it is straightforward to have

Tr(Φt+1Φ
⊤
t+1)− Tr(ΦtΦ

⊤
t ) ≥

2η(r − rA)2
κ2c2nr

(1− η2)Tr
(
(IrA −Λt)Λt

)
− η2rA (23)

≥ 2η(r − rA)2
κ2c2mr

(1− η2)Tr
(
(IrA −Λt)Λt

)
− η2r

≥ O
(ρ2(r − rA)4

r3κ4m2

)
:= ∆1.

Note that the O(·) notation ignores the dependence on constants including c1 and c2. This means that per step, Tr(ΦtΦ
⊤
t )

increases at least by ∆1. Consequently, after at most (rA− 1)/∆1 = O
(
rAr

3κ4m2/(ρ2(r− rA)4)
)

iterations, RGD leaves
Phase II.

Next, we show that ρ ≥ O(min{ 1
m ,

(r−rA)2

mr }). Notice that Tr
(
(IrA − Λt)Λt

)
≥ ∑rA

i=1 σ
2
i (Φt)(1 − σ2

i (Φt)) ≥
σ2
rA(Φt)(1 − σ2

rA(Φt)) ≥ O(min{ 1
m ,

(r−rA)2

mr }), where the last inequality comes from the facts that i) for x ∈ [a, b]
with 0 < a < 0.5 < b < 1, the smallest value of x(1− x) is min{a(1− a), b(1− b)}; and, ii) σ2

rA(Φt) belongs to interval

[a, b] with a = O
( (r−rA)2

mr ) and b = rA−0.5
rA

= 1− 1
2rA
≤ 1− 1

m . Lemmas B.5 and B.1 are adopted to calculate a, that is,
σ2
rA(Φt) ≥ σ2

rA(Φ0) = O((r − rA)2/mr).
Phase III. Tr(IrA −ΦtΦ

⊤
t ) ≤ 0.5. This is a regime near the optimum. An implication of this phase is that Tr(ΦtΦ

⊤
t ) ≥

rA − 0.5. Given that the singular values of ΦtΦ
⊤
t belong to [0, 1], it can be seen that σrA(ΦtΦ

⊤
t ) = σrA(Λt) ≥ 0.5.
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Together with βt ≤ 0.5 in this scenario, we can simplify (22) as

Tr(Φt+1Φ
⊤
t+1)− Tr(ΦtΦ

⊤
t )

≥ 2ησ2
rA(Ψt)

κ2

(
1− η2

2

)
Tr
(
(IrA −Λt)Λt

)
− η2βtTr(ΦtΦ

⊤
t )

(c)

≥ η(r − rA)2
c2nrκ2

(
1− η2

2

)
Tr(IrA −Λt)− η2βtrA

=
η(r − rA)2
c2nrκ2

(
1− η2

2

)
Tr(IrA −ΦtΦ

⊤
t )− η2βtrA

(d)

≥ η(r − rA)2
c2nrκ2

(
1− η2

2

)
Tr(IrA −ΦtΦ

⊤
t )− η2rATr(IrA −ΦtΦ

⊤
t )

where (c) uses σrA(Λt) ≥ 0.5; and (d) comes from βt ≤ Tr(IrA −ΦtΦ
⊤
t ). This further implies that

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ −η(r − rA)
2

c2nrκ2

(
1− η2

2

)
Tr(IrA −ΦtΦ

⊤
t ) + η2rATr(IrA −ΦtΦ

⊤
t ).

Reorganizing the terms, we arrive at

Tr(IrA −Φt+1Φ
⊤
t+1) ≤

(
1− η(r − rA)2

c2nrκ2

(
1− η2

2

)
+ η2rA

)
Tr(IrA −ΦtΦ

⊤
t ). (24)

This indicates a linear rate until we achieve optimality once η is chosen sufficiently small.

Note that our choice of η ensures the conditions in Lemma B.3 are satisfied, indicating that an increase of Tr(ΦtΦ
⊤
t ) per

iteration is guaranteed. This means that Tr(ΦtΦ
⊤
t ) traverses Phase I, II, and III consecutively. Combining these three phases

together gives the claimed complexity bound.

B.6.2. DYNAMICS OF Tr(ΨtΨ
⊤
t )

Lemma B.8. Suppose that rA ≤ n
2 , and let ρ := min{ 1

m ,
(r−rA)2

mr }. Choosing η = O
(ρ(r−rA)2

r2κ2m

)
and γ = 1, Alg.2

guarantees that after at most T = O
(
rAr3κ4m2

ρ2(r−rA)4 + m2r3κ4

ρ(r−rA)4 log
1
ϵ

)
steps Tr(IrA −ΨtΨ

⊤
t ) ≤ ϵ.

Proof. By rewriting (21), we arrive at

Tr(Ψt+1Ψ
⊤
t+1)− Tr(ΨtΨ

⊤
t ) (25)

≥ 2ησ2
rA(Φt)

κ2
(1− η2δt)Tr

(
(IrA −ΨtΨ

⊤
t )ΨtΨ

⊤
t

)
− η2δtTr(ΨtΨ

⊤
t ).

Based on (25), we discuss the convergence in three different regimes.

Phase I. Tr(IrA −ΨtΨ
⊤
t ) ≥ rA − 0.5. This is the initial phase, and the condition is equivalent to Tr(ΨtΨ

⊤
t ) ≤ 0.5. For

notational convenience let the SVD of ΨtΨ
⊤
t = PtΛ̃tP

⊤
t . Given these conditions, it can be seen that σrA(IrA −ΨtΨ

⊤
t ) =

σrA(IrA − Λ̃t) ≥ 0.5. Together with δt ≤ 1 (recall that δt = σ1(IrA −ΨtΨ
⊤
t )), we can simplify (25) as

Tr(Ψt+1Ψ
⊤
t+1)− Tr(ΨtΨ

⊤
t ) ≥

2ησ2
rA(Φt)

κ2
(1− η2)Tr

(
(IrA − Λ̃t)Λ̃t

)
− η2Tr(ΨtΨ

⊤
t )

(a)

≥ ησ2
rA(Φt)

κ2
(1− η2)Tr(Λ̃t)− η2Tr(ΨtΨ

⊤
t )

(b)

≥ η(r − rA)2
κ2c1mr

(1− η2)Tr(ΨtΨ
⊤
t )− η2Tr(ΨtΨ

⊤
t )
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where (a) uses σrA(IrA − Λ̃t) ≥ 0.5; (b) uses Lemmas B.5 and B.1, which jointly imply that σ2
rA(Φt) ≥ σ2

rA(Φ0) ≥
(r − rA)2/(c1mr) for some universal constant c1 in defined in Lemma B.1. Rearranging the terms, we arrive at

Tr(Ψt+1Ψ
⊤
t+1) ≥

(
1 +

η(r − rA)2
κ2c1mr

(1− η2)− η2
)
Tr(ΨtΨ

⊤
t )

which is linearly increasing once the term in parentheses is greater than 1. This amounts to choosing a small enough η, i.e.,
η ≤ O

( (r−rA)2

κ2mr

)
.

Phase II. 0.5 < Tr(IrA −ΨtΨ
⊤
t ) < rA − 0.5. Suppose that Tr

(
(IrA −Λt)Λt

)
≥ ρ, for some ρ to be discussed shortly.

Choosing η ≤ 0.5, and η = O
(ρ(r−rA)2

r2κ2m

)
, it is straightforward to have

Tr(Ψt+1Ψ
⊤
t+1)− Tr(ΨtΨ

⊤
t ) ≥

2η(r − rA)2
κ2c1mr

(1− η2)Tr
(
(IrA − Λ̃t)Λ̃t

)
− η2rA (26)

≥ 2η(r − rA)2
κ2c1mr

(1− η2)Tr
(
(IrA − Λ̃t)Λ̃t

)
− η2r

≥ O
(ρ2(r − rA)4

r3κ4m2

)
:= ∆2.

Note that the O(·) notation ignores the dependence on constants including c1 and c2. This means that per step, Tr(ΨtΨ
⊤
t )

at least increases by ∆2. Consequently, after at most (rA − 1)/∆2 = O(rAr3κ4m2/ρ2(r − rA)4) iterations, RGD leaves
Phase II.

Next, we show that ρ ≥ O(min{ 1n ,
(r−rA)2

nr }) ≥ O(min{ 1
m ,

(r−rA)2

mr }). Notice that Tr
(
(IrA − Λ̃t)Λ̃t

)
≥∑rA

i=1 σ
2
i (Ψt)(1− σ2

i (Ψt)) ≥ σ2
rA(Ψt)(1− σ2

rA(Ψt)) ≥ O(min{ 1n ,
(r−rA)2

nr }), where the last inequality comes from the
facts that i) for x ∈ [a, b] with 0 < a < 0.5 < b < 1, the smallest value of x(1− x) is min{a(1− a), b(1− b)}; and, ii)
σ2
rA(Ψt) belongs to interval [a, b] with a = O( (r−rA)2

nr ) and b = rA−0.5
rA

= 1 − 1
2rA
≤ 1 − 1

n . Lemmas B.6 and B.1 are
adopted to calculate a, that is, a = σ2

rA(Ψt) ≥ σ2
rA(Ψ0) = O((r − rA)2/nr).

Phase III. Tr(IrA −ΨtΨ
⊤
t ) ≤ 0.5. This is a regime near the optimum. An implication of this phase is that Tr(ΨtΨ

⊤
t ) ≥

rA − 0.5. Given that the singular values of ΨtΨ
⊤
t belong to [0, 1], it can be seen that σrA(ΨtΨ

⊤
t ) = σrA(Λ̃t) ≥ 0.5.

Together with δt ≤ 0.5 in this scenario, we can simplify (22) as

Tr(Ψt+1Ψ
⊤
t+1)− Tr(ΨtΨ

⊤
t )

≥ 2ησ2
rA(Φt)

κ2

(
1− η2

2

)
Tr
(
(IrA − Λ̃t)Λ̃t

)
− η2δtTr(ΨtΨ

⊤
t )

(c)

≥ η(r − rA)2
c1mrκ2

(
1− η2

2

)
Tr(IrA − Λ̃t)− η2δtrA

=
η(r − rA)2
c1mrκ2

(
1− η2

2

)
Tr(IrA −ΨtΨ

⊤
t )− η2δtrA

(d)

≥ η(r − rA)2
c1mrκ2

(
1− η2

2

)
Tr(IrA −ΨtΨ

⊤
t )− η2rATr(IrA −ΨtΨ

⊤
t )

where (c) comes from σrA(Λ̃t) ≥ 0.5, as well as σ2
rA(Φt) ≥ σ2

rA(Φ0) ≥ (r − rA)
2/(c1mr); and (d) uses δt ≤

Tr(IrA −ΨtΨ
⊤
t ). This further implies that

Tr(IrA −Ψt+1Ψ
⊤
t+1)− Tr(IrA −ΨtΨ

⊤
t )

≤ −η(r − rA)
2

c1mrκ2

(
1− η2

2

)
Tr(IrA −ΨtΨ

⊤
t ) + η2rATr(IrA −ΨtΨ

⊤
t ).

Reorganizing the terms, we arrive at

Tr(IrA −Ψt+1Ψ
⊤
t+1) ≤

(
1− η(r − rA)2

c1mrκ2

(
1− η2

2

)
+ η2rA

)
Tr(IrA −ΨtΨ

⊤
t ).
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This indicates a linear rate until we achieve optimality once η is chosen sufficiently small.

Note that our choice of η ensures the conditions in Lemma B.4 are satisfied. In other words, increasing Tr(ΨtΨ
⊤
t ) across t

is guaranteed. This means that Tr(ΨtΨ
⊤
t ) will traverse Phase I, II, and III consecutively. Combining these three phases

together gives the claimed complexity bound.

B.7. Convergence of Θt

Lemma B.9. Suppose that at iteration t, Alg. 2 with γ = 1 satisfies Tr(IrA −ΦtΦ
⊤
t ) ≤ ρ1 and Tr(IrA −ΨtΨ

⊤
t ) ≤ ρ2. It

is guaranteed to have f(Xt,Yt,Θt) = O(ρ1 + ρ2).

Proof. Recall that γ = 1 implies Θt = X⊤
t AYt, we thus have that

∥XtΘtY
⊤
t −A∥F = ∥XtX

⊤
t AYtY

⊤
t −A∥F

= ∥XtX
⊤
t AYtY

⊤
t −AYtY

⊤
t +AYtY

⊤
t −A∥F

≤ ∥(XtX
⊤
t − Im)AYtY

⊤
t ∥F + ∥A(YtY

⊤
t − In)∥F

(a)

≤ ∥(XtX
⊤
t − Im)U∥F∥ΣV⊤YtY

⊤
t ∥+ ∥UΣ∥∥V⊤(YtY

⊤
t − In)∥F

≤ ∥Σ∥∥(Im −XtX
⊤
t )U∥F + ∥Σ∥∥V⊤(In −YtY

⊤
t )∥F

where (a) uses the compact SVD of A = UΣV⊤. Now we have that

∥(Im −XtX
⊤
t )U∥2F = Tr

(
U⊤(Im −XtX

⊤
t )(Im −XtX

⊤
t )U

)
= Tr(IrA −ΦtΦ

⊤
t ) ≤ ρ1.

Similarly, we also have

∥V⊤(In −YtY
⊤
t )∥2F = Tr

(
V⊤(In −YtY

⊤
t )(In −YtY

⊤
t )V

)
= Tr(IrA −ΨtΨ

⊤
t ) ≤ ρ2.

Combining these inequalities, we have that

∥XtΘtY
⊤
t −A∥2F

(b)

≤ 2∥Σ∥2∥(Im −XX⊤)U∥2F + 2∥Σ∥2∥V⊤(In −YtY
⊤
t )∥2F = O(ρ1 + ρ2)

where (b) uses (a+ b)2 ≤ 2a2 + 2b2. This finishes the proof.

B.8. Proof of Theorem 2.1

Proof. The proof is straightforward. We apply Lemma B.7 and Lemma B.8 to show that within O
(
m2r3rAκ4

ρ2(r−rA)4 +
m2r3κ4

ρ(r−rA)4 log
1
ϵ

)
iterations, we have Tr(IrA − ΨtΨ

⊤
t ) ≤ ϵ and Tr(IrA − ΦtΦ

⊤
t ) ≤ ϵ. Then, Lemma B.9 is adopted

to reach the conclusion.

C. Additional Experiments
In Table 2, we perform an ablation on the parameterization and the gradient type on Gemma-2-2B.

D. Experimental Details
Experiments are performed on NVIDIA GH200 GPUs using PyTorch (Paszke et al., 2019).

We consider the following tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC-e and ARC-c (Clark et al., 2018), and OpenbookQA
(Mihaylov et al., 2018). To facilitate reproducibility, we use Eleuther-AI’s lm-evaluation-harness (Biderman et al., 2024)
and report the accuracy based on multiple-choice log-likelihood evaluation, i.e., we select the answer choice with the highest
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Table 2: Accuracy of Gemma-2-2B with PoLAR on commonsense reasoning tasks for different gradient types and
parameterizations. Rie. (Eucl.) refers to Riemannian (Euclidean) gradient.

Rank Param. Θ Grad. BoolQ PIQA SIQA HeSw WiGr ARC-e ARC-c OBQA Avg.

4 Diag(r) Eucl. 86.24 81.50 58.70 79.88 78.69 78.75 52.39 56.80 71.62
Rr×r Rie. 86.48 81.66 58.90 79.69 80.03 81.78 54.69 56.40 72.45

32 Diag(r) Eucl. 87.03 81.39 60.08 81.73 77.51 79.21 55.29 56.60 72.35
Rr×r Rie. 87.28 81.61 59.72 81.40 77.74 81.78 54.86 57.80 72.77

conditional log-likelihood as the predicted answer. For datasets with answer choices of varying length (PIQA, ARC-e,
ARC-c, OpenbookQA, and Hellaswag), we perform byte-length normalization of the log-likelihood scores to remove any
bias due to the answer length.

For the results in Table 1, we train for 5 epochs on each task with batch size 128 and choose the learning rate within
{4× 10−4, 8× 10−4, 4× 10−3}. We tune λ ∈ {10−3, 5× 10−3} for PoLAR and set α = 32. We choose the combination
that performs best on average throughout all datasets and report these.
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