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Abstract

We present SynthCLIP, a novel framework for training
CLIP models with entirely synthetic text-image pairs, sig-
nificantly departing from previous methods relying on real
data. Leveraging recent text-to-image (TTI) generative net-
works and large language models (LLM), we are able to
generate synthetic datasets of images and corresponding
captions at any scale, with no human intervention. With
training at scale, SynthCLIP achieves performance compa-
rable to CLIP models trained on real datasets. We also
introduce SynthCI-30M, a purely synthetic dataset com-
prising 30 million captioned images. Our code, trained
models, and generated data will be released as open
source on https://github.com/hammoudhasan/
SynthCLIP.

1. Introduction
Self-supervised training techniques [3, 5, 17] are funda-
mental for all recently released foundation models, since
they make use of vast amount of data without incurring a
large annotation cost. In particular, contrastive representa-
tion learning [55] has been successfully employed to extract
joint embeddings for heterogeneous data modalities. By
harnessing multi-modal training data, CLIP [46] provides a
common representation that effectively links visual and lin-
guistic information. Today, CLIP encoders are included in a
wide range of applications, spanning from zero-shot image
understanding [37, 47], to style transfer [27], and robotics
control [60], among others.

However, training CLIP requires large-scale text-image
datasets, that are often collected from the web. Un-
fortunately, retrieving captioned images from the internet
presents notable challenges. Firstly, web data is often noisy;
a mismatch between images and their textual descriptions
may impact the quality of the learned representations [29].
Secondly, the frequency of certain visual and textual ele-
ments varies naturally, leading to the emergence of long-
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Figure 1. Advantages of SynthCLIP. Collecting text-image pairs
from the internet often presents challenges: captions may not ac-
curately match the images, specific classes may have limited repre-
sentation due to scarcity, and there is a risk of encountering harm-
ful content. We propose SynthCLIP, an approach for generating
text-image pairs, effectively to overcome these issues. It ensures
that the generated images have corresponding descriptive captions,
and it enforces a balanced representation of classes. Moreover, we
can benefit from safety checks in state-of-the-art LLM and TTI.
Our approach is automatically scalable, allowing to match perfor-
mance of real data with no human intervention in the data genera-
tion process.

tail distributions. Lastly, despite safety measures, gather-
ing images from the web in large numbers poses difficulties
in filtering out inappropriate or copyrighted content, which
raises safety concerns1. All these, together, make scaling
web-crawled text-image datasets surprisingly difficult, due
to the required control on the collected data [24, 31, 44]. On
the other hand, synthetic data can resolve these issues na-
tively. While there have been attempts to train CLIP models
with either synthetic images [64] or captions [11, 29], they
always relied on at least one real data modality, limiting the

1We report a recent article in mainstream news on the topic.

https://github.com/hammoudhasan/SynthCLIP
https://github.com/hammoudhasan/SynthCLIP
https://www.telegraph.co.uk/business/2023/12/20/fears-ai-trained-child-abuse-images-thousands-discovered/


scalability of the training dataset to the number of either real
images or captions.

In this paper, we investigate whether it is possible to
train CLIP models on fully generated text-image data, in
the form of captioned images, and match the performances
of CLIP trained on real data. To achieve this goal, we
introduce SynthCLIP, a novel approach for training CLIP
models using exclusively large-scale synthetic data. We
propose a pipeline that jointly leverages existing text-to-
image models (TTI) and large language models (LLM)
to produce text-image pairs. The captioned images are
generated in an end-to-end fashion, starting from a large
list of concepts necessary to guarantee variability of the
synthesized data. We use the LLM to produce captions
starting from sampled concepts, and then synthesize their
corresponding images using TTI models. This brings a
significant novel advantage, unprecedented in literature: we
can generate data at any scale, arbitrarily increasing the size
of training data depending only on computational power,
with no human intervention. Moreover, compared with
training on real data, our pipeline ensures that captions are
well associated with the corresponding images, allowing
for singificant performance gains on vision-language tasks,
such as image or text retrieval. Furthermore, sampling
from a large pool of concepts enables us to avoid long-tail
distributions in the synthesized dataset. Finally, we benefit
from the included security checks in state-of-the-art LLM
and TTI to filter out potentially harmful content from the
generated training data. A visual comparison between CLIP
and SynthCLIP is shown in Figure 1. Our contributions in
this paper are threefold:
1. We propose SynthCLIP, a novel approach for end-to-

end generation of synthetic language and vision data
for CLIP training, automatically scalable to any desired
dataset size.

2. We show that when running our data generation at scale,
we are able to match the performance of CLIP pre-
trained on real text-image pair datasets.

3. We release SynCI-30M, an entirely synthetic dataset
produced using our generation pipeline, composed of 30
million pairs of images and corresponding captions. We
also release models trained on different synthetic dataset
scales, and the code to generate the dataset.

2. Related Work
Representation Learning. Early works in self supervised
representation learning on images used pre-text tasks such
as inpainting, jigsaw puzzle solving, and image rotation pre-
diction [15, 41, 43]. More recent works such as masked au-
toencoder (MAE) [17] uses a masked image patch predic-
tion task to learn visual representations. Instead, SimCLR
[5] leverages contrastive learning to maximize the similarity
between two augmented views of the same image. On the

other hand, CLIP [45] and other similar works [39, 75] use
contrastive learning to learn joint visual and textual repre-
sentations. Language-image pre-training necessitates high
quality text-image pairs. Its core idea is to maximize the
similarity between encoded textual and image representa-
tion. In this work, we study the possibility of generating
end-to-end synthetic text-image pairs for training CLIP like
models starting from simple concepts only.

Synthetic Data Synthetic data has been used in many
machine learning fields ranging from audio [51] to language
[32, 70] and vision [21, 66, 76]. In computer vision, syn-
thetic data have been used to improve models’ performance
on several downstream tasks such as semantic segmentation
[6, 48, 50], object detection [23], and image classification
[59, 74]. Recent works have explored the use of synthetic
data from from text-to-image models, to augment training
on real data [1, 18, 53]. Yu et al. [73] uses a framework
to generate synthetic images, increasing the diversity of ex-
isting datasets. All these assume knowledge about object
classes in the downstream task, and work with images only.
Most recently, StableRep [64] showed that synthetic images
generated from Stable Diffusion can be used to train self su-
pervised methods and match the performance of training on
real images. This uses real captions of common datasets
used to train language-vision models as prompts for Sta-
ble Diffusion, which limits the scalability of the generated
dataset.

Synthetic Captions. Recent works emphasize the im-
portance of high quality and aligned text-image pairs when
training CLIP models, and propose synthetic caption gener-
ation pipeline for improving it. VeCLIP [29] and CapsFu-
sion [72] propose pipelines to produce better aligned cap-
tions. Both start with a captioning model such as BLIP
[33] or LLaVA [36], to produce a semantically and visu-
ally enriched synthetic caption. However, captioning mod-
els suffer from over-simplification and lack world knowl-
edge, hence they can be effectively compensated by the us-
age of an LLM [29, 72]. LaCLIP [11] propose to improve
the text branch of CLIP by leveraging an LLM to provide
multiple rewrites of the same caption to use in contrastive
learning. While this improves CLIP performance on down-
stream tasks, it may not reflect the content of the image due
to hallucinations [11]. All the reported works assume avail-
ability of real data, instead we introduces a fully synthetic
pipeline for data generation, allowing arbitrary scalability.

3. Methodology
In this section, we present SynthCLIP, the first approach
for CLIP training where both textual and image modali-
ties are generated synthetically. In Figure 2, we summarize
SynthCLIP synthetic data generation and training pipeline.
First, we start with a concept bank that contains many raw
visual concepts, i.e. words that can be associated to their
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corresponding representations in images. This broad def-
inition covers either common objects, items, and animals
(e.g. “cat”), proper nouns and specific elements (e.g. “Eiffel
Tower”) and intangible items associated to specific visual
characteristics (e.g. “love”, that is often represented with
stylized representations of hearts). A large language model
is then prompted to generate captions for all the concepts in
the concept bank, leading to a set of synthetically generat-
ing captions describing a variety of concepts (Section 3.1).
The generated captions are then filtered to a smaller corpus
of captions for improved performance (Section 3.2). The
filtered captions are then passed to a text-to-image model to
generate corresponding images (Section 3.3). After obtain-
ing our synthetic {caption, image} pairs, a standard CLIP
training is carried on the generated data, obtaining the lan-
guage and text encoders that can be used for downstream
tasks (Section 3.4). We next describe each step in details.

3.1. Step 1: Concept-based Captions Generation

The first stage of our pipeline involves the generation of
synthetic image captions, that we later aim to use as prompt
for text-to-image generators. To achieve this, we utilize
an LLM conditioned on our concept bank. The model is
prompted to generate captions that describe a scene related
to a chosen concept. In our process of generating these cap-
tions, we experimented with various prompting techniques,
discovering that conditioning the LLM to focus on a partic-
ular concept leads to more diverse captions. Indeed, concept
conditioning ensures that the LLM does not just repeatedly
produce captions about a limited set of concepts that are

over represented in the training dataset. In other words, this
approach helps prevent the model from becoming biased to-
wards certain concepts and encourages a broader spectrum
of caption generation. Limited concept diversity would
hinder the CLIP training, since contrastive learning highly
benefit from variability and more concept coverage [69].
Hence, diversity is a requirement for the scalability of Syn-
thCLIP.

We start by introducing our concept bank C composed
by NC concepts. We observe that NC deeply influences
CLIP performance, and we investigate this effect in Sec-
tion 4.3. Unless otherwise stated, we use the MetaCLIP
concept bank [69], that contains over 500,000 concepts
drawn from WordNet Synsets and Wikipedia common un-
igrams, bigrams, and titles. We then focus on prompt en-
gineering, a critical aspect for generating effective captions
for text-to-image generation. Image generators are known
to be sensitive to the quality of the input prompt [16], which
is often a brief text description capturing the characteristics
of the desired image. So, we set specific requirements to en-
sure that the prompts generated by the LLM are well-suited
for the subsequent image generation:

(1) Focus on a Single Concept: Each generated caption
should center around a single concept, presented in a clear
and coherent context.
(2) Brevity and Clarity: The prompts need to be concise
yet grammatically correct. The goal is to avoid overly com-
plex or vague inputs that could lead to ambiguous or incor-
rect images.
(3) Prompt-Only Generation: Our aim is to have the LLM
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Figure 3. Generation samples. We show generated captions and
images pairs for the concepts “cat” and “Paris”. Our genera-
tion pipeline provides both high variability and realistic contextual
placement of input concepts.

generate prompts without engaging in further reasoning or
elaboration. This approach not only saves computational
resources but also simplifies the parsing process.

Assuming c ∈ C, our designed prompt is:

Your task is to write me an image caption that in-
cludes and visually describes a scene around a con-
cept. Your concept is c. Output one single gram-
matically correct caption that is no longer than 15
words. Do not output any notes, word counts, facts,
etc. Output one single sentence only.

Formally, we define our LLM generator as GLLM and
the prompt as p. Hence, the set of generated captions is
T = {tc,n ∼ GLLM(p, c)},∀c ∈ C,∀n ∈ {1, 2, ..., N}
where N is the number of desired captions for each con-
cept. By looking at the captions in Figure 3, we show how
this mechanism results in highly variable contextual place-
ment of each concept.

3.2. Step 2: Captions filtering

When generating captions conditioned on a specific con-
cept c, it is typical for other concepts c′ ̸= c, c′ ∈ C to ap-
pear within the same caption. This is expected, since even
when a sentence is focused on a single concept, other related
concepts often emerge within the context of the described
scene. For example, if c = “bird”, a generated caption
might be “a bird is resting on a tree”, intro-
ducing an additional concept c′ = “tree”. This LLM-
specific behavior may create imbalances in the generated

data for CLIP training, which instead benefits from the us-
age of a balanced amount of concepts [69].

To address this, we propose creating a balanced ensem-
ble of captions, T ∗, applying the balancing method pro-
posed in MetaCLIP [69] to our setting. It consists of two
stages, substring matching and balanced sampling. Sub-
string matching determines which concepts from C appear
in each caption within T . This enables us to measure the
real frequency of each described concept across the synthe-
sized captions. Balanced sampling is then employed to sub-
sample captions T ∗ from T . It increases the probability of
selecting captions with long tail concepts, and thresholds
that of sampling captions with frequently occurring con-
cepts. This yields a subset of captions where both frequent
and long tail concepts are adequately represented. There-
fore, this approach ensures a diverse and task-agnostic cap-
tions set suitable for foundation model pre-training. By siz-
ing the parameters of balanced sampling, we are able to
choose the size of the subset T ∗. For more details, we refer
to [69].

3.3. Step 3: Image Generation

Having successfully created a balanced set of synthetic cap-
tions T ∗, our next step is to generate the corresponding im-
ages. For this, we utilize a text-to-image generator GTTI.
We choose Stable Diffusion [49] for this purpose, due to its
open-source availability and relatively lower computational
demands. For each caption in our set T ∗, we generate a
corresponding image. This process results in a collection
of images, I∗ = {xk ∼ GTTI(tk)}, where each xk is an
image synthesized from the caption tk ∈ T ∗. In Figure 3,
we show how we generate highly aligned images which cor-
rectly capture the described scene and complement it with
related realistic information. This proves the efficacy of our
caption generation pipeline, leading to appropriate image
generation.

3.4. Step 4: CLIP Training

Finally, we use the synthetic text-image pairs to train a CLIP
model, exploring how effectively a model can learn from
entirely synthetic data. We train two encoders, each one
dedicated to either the image or text modality, defined as
Eimage and Etext, respectively. We follow the standard CLIP
training pipeline [45], by applying a contrastive loss on the
image and text representations through the encoders. For-
mally, we extract representations h = Eimage(xk), xk ∈ I∗

and z = Etext(tk), tk ∈ T ∗, and train by minimizing the
CLIP loss LCLIP(h, z).

Safety considerations for CLIP training. SynthCLIP
is trained exclusively on synthetic data, which will increase
the safety standard of vision-language encoders. Indeed,
data collection from the web is exposed to unsafe or offend-
ing concepts [56], which are difficult to filter. Contrarily,



our generation pipeline natively exploits an aligned LLM
for safe captions generation [58]. Moreover, text-to-image
generators often include unsafe content detectors [61], that
are triggered in presence of unwanted sexual or violent gen-
erated images.

4. Experiments
In this section, we evaluate the performance of SynthCLIP.
We start by introducing the experimental setup in Sec-
tion 4.1, including details about datasets, generation mod-
els, and downstream tasks. Section 4.2 benchmarks Syn-
thCLIP against baselines trained on real data on multiple
tasks. Finally, Section 4.3 encompasses complementary ex-
periments on the impact of the size of the concept bank, C,
as well as several ablations that test various components of
SynthCLIP.

4.1. Experimental Setup

Downstream Tasks We use five different downstream tasks
to assess performance. For ease of evaluation, we catego-
rize the downstream tasks into two categories; (1) Vision
Tasks and (2) Vision-Language Tasks. The former focuses
on evaluating the capabilities of the frozen vision encoder
Eimage only, i.e., linear probing and few-shot classification.
The latter evaluates the synergy between the image encoder
Eimage and text Etext together. The tasks used for evalua-
tion vary from image retrieval , text retrieval, and vision-
language zero-shot classification tasks following the orig-
inal CLIP evaluation [45]. Since our evaluation pipeline
consists of several tasks whose metrics can behave differ-
enty with scaling, we aggregate performance across all tasks
using the ∆MTL metric [65], where a model with positive
∆MTL indicates an overall better performance compared to
a reference baseline.

Datasets We use the real datasets CC3M [57] (3 × 106

samples) and CC12M [4] (8.8×106 samples2). Real images
come at different resolutions, so we resize the shorter edge
of the images to 256px. For SynthCLIP, we generate an
entirely synthetic dataset, that we call SynthCI (Synthetic
Captions-Images) at different scales (number of samples).
We refer to SynthCI-3M for a version of SynthCI where
T ∗ and I∗ include 3 × 106 captions and images, respec-
tively. For zero-shot evaluation we use ImageNet [52], for
linear probing and few shot we use CIFAR10 [25], CI-
FAR100 [26], Aircraft [38], DTD [8], Flowers [40], Pets
[42], SUN397 [68], Caltech-101 [12] and Food-101 [2], and
for image and text retrieval we use MSCoco [35], Flickr8K
[20] and Flickr30K [71].

Caption & Image Generation Models For caption gen-
eration, we use Mistral-7B-Instruct V0.2 [22] with temper-
ature 0.7 and top-p set to 0.95. We also set the presence

2The original CC12M is composed of 12M samples. In December
2023, only 8.8M images were available at the linked URLs.

and frequency penalties at 1. For image synthesis, we use
Stable Diffusion v1.5 [49] with classifier-free guidance set
to 2 and 50 Denoising Diffusion Implicit Models (DDIM)
steps following Tian et al. [64]. The images are generated at
512×512px and then stored to disk at 256×256px. It takes
0.9 seconds to generate and save one image on NVIDIA
A100 GPU. Image generation was performed on a 48 A100-
80GB GPUs cluster.

Model Architecture & Training Parameters All
trained CLIP models use a ViT-B/16 [9] as Eimage and the
default text encoder from CLIP [45] as Etext. Eimage and
Etext are trained for 40 epochs with a global batch size of
4096, a learning rate of 5× 10−4, weight decay of 0.5, co-
sine scheduler, and 1 warmup epoch. We use random re-
sized crop with scale 0.5 − 1.0 as data augmentation. We
use the codebase of SLIP [39] as is to train all the CLIP
models on 16 NVIDIA-V100-32GB GPUs.

4.2. Benchmark Evaluation

Performance on the same data scale We evaluate the
effectiveness of our entirely synthetic data generation
pipeline for training CLIP models compared to training on
real data. We use CLIP [45] trained on CC3M and CC12M
as baselines. We first train SynthCLIP on two versions
of SynthCI each matching the data scale of CC3M and
CC12M, which we call SynthCI-3M and SynthCI-8.8M,
respectively. We report the performance on vision tasks in
Table 1a and vision-language tasks in Table 1b, aggregating
all metrics with ∆MTL [65] in Table 1c. As visible in
Table 1c, we obtain lower performance when both datasets
are composed by 3 × 106 samples (-5.60%) and 8.8 × 106

samples (-15.0%), compared to the corresponding real data
training with the same dataset size (CC3M and CC12M, re-
spectively). This is expected: considering that real and syn-
thetic data differ in distribution, while training on synthetic
samples and testing on real ones, we incur in a distribution
shift, which ultimately harms performance [10, 76].

Scaling SynthCLIP Our objective now is to compensate
the effects of the distribution shift, to match performance
obtainable by training CLIP on real data. We plan to do so
by scaling the size of SynthCI, since it is well known that
bigger training datasets help to increase performance [46].
However, while scaling real datasets necessitates custom
collection pipelines from different sources and data cura-
tion, we exploit the great advantage of our data synthesis
pipeline, i.e. the capability to scale the size of the training
data with no human intervention. In practice, we simply
let our generation script run for longer, and re-train Synth-
CLIP on the larger SynthCI version obtained doing so. In
particular, we report performance for SynthCLIP trained on
{10 × 106, 20 × 106, 30 × 106} SynthCI samples, finally
matching with 30 million samples the performance of the
biggest model we trained on real data (CLIP on CC12M),
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SynthCLIP setup Baseline CLIP

Data Samples
CC3M CC12M

(×106)

SynthCI-3M 3 -5.60% -36.0%
SynthCI-8.8M 8.8 +31.3% -15.0%

SynthCI-10M 10 +36.4% -12.3%
SynthCI-20M 20 +53.9% -3.10%
SynthCI-30M 30 +60.1% +0.20%

(c) ∆MTL evaluation

Table 1. Benchmark. We compare against CLIP models trained on real datasets (CC3M and CC12M). We train SynthCLIP on our synthetic
datasets, SynthCI, at various scales. We observe a consistent improvement in performance in both vision ((a)) and vision-language ((b))
tasks, as the scale of SynthCI dataset increase. This demonstrates the scalability advantage of SynthCLIP. In (c) we aggregate multi-task
performance with ∆MTL across all trained networks.

against which we achieve ∆MTL = +0.20%. This is supris-
ing, since it shows that with multiple synthetic examples it
is possible to fill the distribution gap between real and syn-
thetic data, paving new ways for fully synthetic trainings.
The generation script ran for a total of 6.45 days. We also
report a significant increase with respect to CLIP trained on
CC3M (∆MTL = +60.1%). From a single task perspective,
we outperform CLIP trained on CC12 on image and text
retrieval (+2.8% and +5.4%, respectively), while perform-
ing competitively with linear probing (-1.7%) and few-shot
(+0.00%). While we still underperform in zero-shot evalua-
tion (-3.1%), we attribute this also to additional bias effects
that we study in Section 4.3.

Scaling trends To ease understanding to which extent
scaling training data influences each task, we plot percent-
age improvements for each task in Figure 4, assuming as
reference the performance achieved with SynthCLIP trained
on SynthCI-3M. As visible from the plot, vision-language
tasks (green, red, purple curves) tend to achieve more sig-
nificant performance increase with respect to vision (blue,
orange). We attribute this to the good quality of our cap-
tions, that thanks to our two-step generation pipeline are
always fairly aligned with the corresponding image. This
further helps to mitigate the distribution shift at scale.
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to SynthCLIP trained on SynthCI-3M. Vision-language tasks ex-
hibit better absolute improvements and less saturation with respect
to vision ones.
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CLIP ✗ ✗ 63.6 74.2 33.7 42.9 14.9
CLIP + Text-to-image ✓ ✗ 65.1 74.2 41.2 51.7 15.4
CLIP + Captioning ✗ ✓ 70.1 78.1 46.0 62.4 12.4

SynthCLIP ✓ ✓ 63.7 73.8 33.9 46.0 9.5
SynthCLIP + Captioning ✓ ✓ 66.5 74.3 43.5 57.1 8.5

(a) Quantitative evaluation

A dog patiently 
waits for its 
owner in a 
serene park 
setting.

A loyal dog 
waits by a park 
bench, watching 
the world go by.

Generate Caption

(b) Captioning examples on SynthCI data

Figure 5. Which synthetic data modality matters more?
We assess which synthetic modality impacts performance more
by experimenting with combinations of real/synthetic cap-
tions/images ((a)). Real captions refers to taking the original cap-
tions from CC3M. Synthetic captions refers to either captions gen-
erated by LLaVA [36] (“Captioning”) or an LLM (SynthCLIP).
Synthetic images refers to generated images from Stable Diffu-
sion. The source of prompts can be either real (CLIP + Text-
to-image) or synthetic (SynthCLIP). Captioning with LLAVA im-
proves performance even in SynthCLIP, due to corrections ((b)),
where elements in the prompt missing in generated images are un-
derlined in red.

4.3. Analysis

In this section, we conduct some analysis and ablation stud-
ies to examine key aspects of SynthCLIP. Specifically, we
analyze the importance of textual and visual data modal-
ities, ablate pipeline components (data filtering technique
and LLM used for captions generation) , and quantify the

effects of the concept bank size. For all experiments, we
train on 3 million samples, i.e., a similar scale to CC3M, due
to the high computational cost of the larger experiments.

Do synthetic captions or synthetic images matter
more? SynthCLIP uses entirely synthetic text-image pairs.
A key question arises: which has a greater impact on the
model’s performance in downstream tasks – synthetic im-
ages or synthetic captions? In Table 5a, we compare the
standard CLIP model trained on CC3M, SynthCLIP, and
two hybrid CLIP variants. One hybrid uses real captions
with synthetic images (CLIP + Text-to-Image), generated
using Stable Diffusion v1.5, while the other pairs real im-
ages with synthetic captions (CLIP + Captioning), created
with the LLaVA [36] model. Note that these hybrids, which
require one real modality, are less scalable than SynthCLIP.

Our comparison reveals that CLIP + Captioning signif-
icantly outperforms standard CLIP in several benchmarks,
indicating the effectiveness of synthetic captions in CLIP
training. For instance, this approach improves linear prob-
ing by 6.5% and text retrieval by 19.5%, though it slightly
decreases zero-shot performance by 2.5%. On the other
hand, CLIP + Text-to-Image shows less marked improve-
ments and no gains in few-shot performance. This suggests
that keeping images real and recaptioning them is more ad-
vantageous than generating images for real captions, possi-
bly due to domain shifts and content generation mismatches
in synthetic images as noted in Gani et al. [13], Wu et al.
[67].

Following this observation, we introduce Synth-
CLIP+Captioning as an extra baseline. Given that text-to-
image models could miss details in text prompts, recaption-
ing post-image generation can be beneficial. This is evident
in Figure 5b, where recaptioning corrects alignment issues
from the image generation process (e.g. the missing bench
in the generated image). Comparing SynthCLIP and Syn-
thCLIP+Captioning in Table 5a (rows 4 and 5) shows sig-
nificant gains with captioning, such as a 9.6% improve-
ment in image retrieval. These results open future direc-
tions for combining SynthCLIP with caption enhancement
techniques like VeCLIP [29] and CapsFusion [72] for better
performance.

Data Filtering Ablation In creating our SynthCI-X
datasets in Section 4.2, we utilized balanced sampling to
select a desired number of captions from a larger set of gen-
erated ones. In this section we want to assess how different
data sampling strategies affect SynthCLIP’s performance.
We focus on the impact of substituting balanced sampling
with a more straightforward random sampling approach.
For this, we randomly choose a subset of 3 × 106 captions
from T . The corresponding images for these randomly se-
lected captions are generated using Stable Diffusion v1.5,
following the same procedure presented in Section 4.1.

We then proceed to train SynthCLIP on this newly



Method Lin. Prob. Few-shot Img Ret. Text Ret. IN 0-shot

SynthCLIP 63.7 73.8 33.9 46.0 9.5
w/ rand. sampling 61.5 (-2.2) 72.0 (-1.8) 31.2 (-2.7) 43.3 (-2.7) 9.4 (-0.1)

(a) Balanced Sampling vs Random Sampling

LLM Lin. Prob. Few-shot Img Ret. Text Ret. IN 0-shot

Mistral 7B 63.7 73.8 33.9 46.0 9.5
Vicuna 33B 61.4 (-2.3) 69.4 (-4.4) 26.1 (-7.8) 36.5 (-9.5) 8.2 (-1.3)

(b) Results with a different LLM for captions

Table 2. Ablating Captions Generation Components. Table
((a)) compares balanced and random sampling methods, revealing
balanced sampling’s superiority in enhancing task performance,
while random sampling notably reduces effectiveness. Table ((b))
contrasts language models Mistral-7B and Vicuna-33B for data
generation, showing Mistral-7B’s consistent advantage across var-
ious tasks.

Concepts Nc Lin. Prob. Few-shot Img Ret. Text Ret. IN 0-shot(×103)

C 500 63.7 73.8 33.9 46.0 9.5

CCC3M 40 65.4 (+1.7) 74.8 (+1.0) 37.1 (+3.2) 49.9 (+3.9) 12.6 (+3.1)
Crand 40 63.1 (-0.6) 72.9 (-0.9) 31.8 (-2.1) 44.8 (-1.2) 9.2 (-0.3)

Table 3. Effect of Concept Bank Size. We compare SynthCLIP
model performance using different concept bank sizes: the full
500×103 concepts (C), a 40×103 subset from CC3M (CCC3M), and
a randomly selected 40×103 subset (Crand), with each trained on
3 million samples. Results show that models trained on CC3M-
specific concepts outperform those using the full concept list or a
random selection, when a limited number of samples is used. This
justifies scaling C and suggests a distribution bias in CC3M.

formed dataset. The results, presented in Table 2a, indicate
a noticeable decline in performance across various tasks
with random sampling, especially in retrieval tasks. Here,
we observe a drop of 2.7% in both image and text retrieval
compared to balanced sampling. These results underline the
critical role of balanced the concept distribution for Synth-
CLIP.

Evaluating Different Language Models for Caption
Generation In Table 2b, we study the effect of chang-
ing the language model from Mistral V0.2 7B model to
Vicuna 33B. We find that using Mistral V0.2 7B consis-
tently achieves better performance when compared to Vi-
cuna 33B. This might be attributed to Mistral’s superior per-
formance on instruction-following benchmarks such as Al-
pacaEval [34]. Indeed, we phrase caption generation as an
instruction-following task as previously described in Sec-
tion 3.1. This suggests that with increasingly performing
models in instruction following, it will be possible to fur-
ther improve performances of SynthCLIP training.

Concept Bank impact In this section, we explore how
the concept bank size C and the type of concepts it contains
affect the downstream performance of the model. For this,
we create two distinct subsets of C. The first subset, CCC3M,

is derived by identifying the concepts that appear in CC3M
captions, by performing substring matching with concepts
included in C. This results in 40 × 103 CC3M-related con-
cepts. The second, Crand, is formed by randomly selecting
the same number of concepts than in CCC3M from C.

We generate 3M images for each of CCC3M and Crand and
train SynthCLIP on the generated datasets. The results are
summarized in Table 3. Interestingly, we noticed that focus-
ing on CC3M-specific concepts (CCC3M) enhances perfor-
mance compared to training with the full C. For example,
using CCC3M yields a 3.9% improvement in text retrieval and
1.6% in linear probing. We hypothesize that this might be
because CCC3M’s concepts are more aligned with concepts
appearing in the downstream tasks, hence indicating a po-
tential distribution bias in CC3M towards concepts preva-
lent in downstream task images. In contrast, using Crand
leads to lower performance in all tasks compared to the full
C. For example, we observe a 1.2% decrease in text retrieval
and 0.8% in linear probing, likely because Crand’s concepts
are less relevant to the downstream tasks. Hence, when spe-
cific insights about downstream tasks are unavailable, it is
preferable to train on the widest possible range of concepts.

5. Conclusion
SynthCLIP represents a new approach to train CLIP mod-
els, addressing the limitations of web-sourced data through
the generation of synthetic text-image pairs. Our experi-
ments show SynthCLIP’s scalability and capability to match
the performance of models trained on real data. This paves
new ways for entirely synthetic training at scale, which
may further extend the capabilities of CLIP. The release of
the SynCI-30M dataset, a substantial collection of synthetic
image-caption pairs, along with the generation code, aims
to allow further exploration of this direction.
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In this supplementary material, we provide further de-
tails and evaluations of SynthCLIP. More specifically, in
Section A we prevent an analysis on the number of concepts
covered in real and synthetic datasets highlighting the gap
between both. In Section B we evaluate the performance of
training CLIP models on SynthCI and real datasets on OOD
downstream tasks, showing small gaps between training on
real and synthetic data. Section C shows the failed attempts
to generate synthetic captions. Finally, in Section D we fur-
ther discuss the importance of further studying end-to-end
synthetic approaches.

A. Concept Appearance

In this section, we examine the presence of concepts from
our extensive 500×103 concept bank within real text-image
datasets like CC3M and CC12M, as well as our SynthCI
synthetic datasets. Our method involves substring match-
ing, where we identify and count the occurrences of each
concept within the captions of these datasets. This count re-
veals how frequently different concepts appear, particularly
those occurring more than a specified number of times (k).

Table 4 summarizes these findings. Notably, even the
smallest SynthCI-3M dataset contains significantly more
concepts than the larger real CC12M dataset, surpassing
it by nearly 2.5 times in terms of concepts appearing at
least once (k = 1). This trend of broader concept cover-
age in SynthCI datasets persists even when increasing the
threshold to k = 25 or k = 50. An intriguing aspect is
the average number of samples per concept. The last col-
umn of Table 4 shows the average frequency of concept
occurrences, considering only those appearing at least 25
times. While CC3M and CC12M, with fewer overall con-
cepts, exhibit a higher average of samples per concept, our
SynthCI datasets generally show lower averages. However,
SynthCI-30M shows the same average as real datasets, par-
ticularly CC12M. This similarity in samples per concept at
30M scale could be a key factor in SynthCI-30M matching
the performance of CC12M.

B. OOD Evaluation

We need something better for this concept appearance table
I think. Not priority but I’d like it to be more beautiful, it
looks like random stats thrown there. Can we have a small
plot maybe? this is not how you start a new paragraph. state
first what are you after. state what is the objective. or at
least what is the observation from before that prompted this
experiment Although a vast enough C ensures variability of
the generated content, SynthCI is composed mostly by cap-
tioned images representing single elements in context.not
clear .. given an example to ”single elements in context”
While this is expected due to the prompt used, which specif-
ically encourages single concept-centered scenes, one could

Dataset Concept Appearance Average Appearance
k ≥ 25k = 1 k = 25 k = 50

CC3M 3.9× 104 1.8× 104 1.4× 104 1.4× 103

SynthCI-3M 3.0× 105 3.6× 104 2.3× 104 1.0× 103

CC12M 1.3× 105 4.8× 104 3.7× 104 2.0× 103

SynthCI-8.8 3.4× 105 2.3× 105 5.6× 104 6.2× 102

SynthCI-10M 3.4× 105 2.3× 105 8.5× 104 7.0× 102

SynthCI-20M 3.4× 105 2.3× 105 1.9× 105 1.4× 103

SynthCI-30M 3.5× 105 2.4× 105 1.9× 105 2.0× 103

Table 4. Concept Appearance in Real vs. Synthetic Datasets.
This table compares the frequency of concept appearances in real
datasets (CC3M, CC12M) and their synthetic counterparts. It
shows the number of concepts that appear at least k times, along
with the average appearances for concepts occurring at least 25
times.

argue that this may impact the generalization capabilities of
SynthCLIP on out-of-distribution data. this needs clarifica-
tion terribly writtenahah my fault

We evaluate SynthCLIP on downstream tasks on datasets
that do not encompass object-centric scenes. This in-
cludes satellite landmark classification (EUROSAT [19] and
RESISC45 [7]), character (MNIST [30]) and sign (GT-
SRB [62]) recognition. Moreover, we compare on tasks
departing from object classification, to show generaliza-
tion capabilities to different tasks. These involve dis-
tance estimation in street scenarios (KITTI [14]), and geo-
localization (Country211 [46]). As shown in Table 5, Syn-
thCLIP exhibits a competitive performance with its CLIP
baseline counterpart trained on real text-image pairs. This
serves as a further confirmation that SynthCLIP learns to
extract representations transferable to various applications
from our fully synthetic SynthCI.

several problems with the above. (1) as usual you should
discuss a few numbers. you are not here to laundtry list ta-
bles and let people read it. might as well screenshot youre
excel sheets into the paper without any discussion. the re-
viewers want to be spoonfed into reading results (at least
one example) otherwise they will take the easy route out
2. i have no idea from the text above why that section is
important. you need to spend sometime on the observation
and motivation discussing set C. and also why do you think
these datasets, in particular, are actually out-of-distribution
can we do min distance clustering, pcs, tsnet, to show that
these datasets are sufficiently different 3. back again at the
general message, what is the point here? synthetic data
helps more on out of dist? or the gap to real data improves
at a faster rate on out of dist? or is it to do with the choice
of elements in the concept list?
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CLIP CC3M 3M ✗ 94.9 64.7 97.9 85.5 12.3 71.9
SynthCLIP SynthCI-3M 3M ✓ 95.3 61.4 98.2 86.8 12.6 72.5

CLIP CC12M 8.8M ✗ 96.3 73.7 98.8 90.3 17.4 72.1
SynthCLIP SynthCI-12M 8.8M ✓ 96.2 66.8 98.7 88.9 15.4 73.5

SynthCLIP SynthCI-30M 30M ✓ 96.8 68.0 98.5 89.2 17.9 74.3

Table 5. Generalization on out-of-distribution datasets. We
provide additional linear probing results on out-of-distribution
tasks such as satellite image classification (EUROSAT, RE-
SISC45), character (MNIST) and sign recognition (GTSRB),
country classification (Country211), and distance estimation
(KITTI). We achieve competitive results with baselines trained on
real data. This attests to the transferability of features learned on
synthetic data.i think we should add Delta metric everywhereHere
it’s only LP so it’s not needed. Also we won’t get good perf on
this

C. Failed Attempts for Synthetic Captions
Generation

In this section we showcase the failed attempts to generate
synthetic captions:

Attempt 1 - Generate Captions without Any Condition-
ing In our first attempt, we tried to let LLM generate any
topic it wants without any conditioning. This was done us-
ing the prompt shown in Figure 6. Unfortunately, the cap-
tions were overly descriptive and hard for the text-to-image
model to generate images for and they were always focused
on nature, resulting in low variability unsuitable for CLIP
training. Examples of generated captions are:

• A sunlit garden: vibrant roses bloom against a brick wall,
butterflies dance around, water droplets sparkle on leaves,
soft focus, balanced composition.

• Sunset over tranquil lake: A solitary kayaker paddles
through golden reflection, mountains in distance bathed
in warm light. Focus on kayaker’s determined face, bal-
anced composition. Soft toned, impressionistic brush-
strokes.

• A sunlit garden: vibrant roses bloom against a weathered
brick wall, butterflies dance around ripe strawberries on
a red table, children play nearby, laughter echoes softly.
Warmth radiates from every detail.

Attempt 2 - Generate Captions Using a Topics Bank
Instead of having a concept bank that we generate synthetic
captions for, our first attempt was to try having a broader list
of topics, i.e. a topic bank, used for conditional generation.
Particularly, we used the topics shown in Figure 7 and then
used the prompt shown in Figure 8 to generate the captions.

You are an expert image descriptions generator.
Your task is to write an image caption to describe
a scene that can be used with text-to-image genera-
tion model such as DALL-E.
Your description should vividly and descriptively
detail the scene to guide the image generator in pro-
ducing its visualizations of the caption depiction.
Use simple words, and the rewrite has to be less than
15 words.
Use modifiers such as lighting, focus, balance, com-
position, angle, reflections, textures, color palette,
style, tone, effects, lens type, mood, artist or pho-
tographer name, and more.

Figure 6. Attempt 1 - Captions Generation Prompt

The observed issue is that for each topic the LLM had
some kind of favourable instance. For example for ”Wild
Animals”, most generated captions were about Leopards:
• In the desert, a leopard is dragging its kill.
• A leopard carries its prey through the arid desert land-

scape.
• The majestic snow leopard roams high within Himalayas

mountain range territory.
This issue was not resolvable by adjusting the prompt

or parameters of the LLM including the seed, temperature
and top-p value. Interestingly, this signals that biases in
concept-oriented generations in LLM are significant regard-
less the amount of data they are trained on. Since we were
mostly interested in maximizing the variability of gener-
ated concepts, we opted for the concept-based generation
pipeline presented in Section 3.1.

D. Further Discussions
In this section, we delve into the significance of using
an end-to-end synthetic training methods for model train-
ing. Recent advancements in text-to-image and large lan-
guage models have not only enhanced generation quality
but also accelerated inference speeds [28, 54]. Our gen-
eration process currently takes approximately 6.5 days us-
ing a 48-A100-80GB GPU cluster, equivalent to 313 GPU
days. However, with continual technological advance-
ments, we anticipate a reduction in the time required for
generation, leading to more efficient and scalable end-to-
end approaches. A related recent concurrent work [63]
utilizing a similar pipeline to ours, but focused on vision-
only tasks, demonstrates that such methods can scale up
to 600 million samples, requiring around 6260 GPU days
on A100-80GB GPUs. Future research should include fur-
ther experimentation with various language models, text-to-



Space, Celestial Bodies, Nature, Natural Land-
scapes, Plants, Trees, Flowers, Domestic Ani-
mals, Wild Animals, Gadgets and Electronics, His-
torical Landmarks and Monuments, Oceans, Ma-
rine Life, Underwater Scenery, Mountains, Geo-
graphical Features, Urban Landscapes, Cityscapes,
Art, Sculptures, Visual Arts, Festivals ,Cultural
Events, Celebrations, Vehicles and Transporta-
tion, Sports ,Recreational Activities, Architec-
ture,Buildings, Fashion, Clothing, Accessories,
Food, Cuisine, Culinary Arts, Weather and Atmo-
spheric Phenomena, Astronomy ,Astrophysics, Mu-
sical Instruments, Performances, Traditional and
Folk Crafts, Books, Literature, Written Works,
Films, Movies, Theater, Dance and Performing
Arts, Educational and Scientific Concepts, Health,
Medicine, Wellness, Fantasy, Mythology, and Folk-
lore, Video Games and Virtual Worlds, Histori-
cal Eras and Civilizations, Celebrities,Public Fig-
ures, Influencers, Insects, Microscopic Life, Small
Creatures, Tools, Machinery, Industrial Equipment,
Toys, Games, Children’s Entertainment, Work En-
vironments, Professions, and Occupations, Reli-
gious, Spiritual, and Mystical Symbols, Politi-
cal, Social, and Environmental Movements, Every-
day Household Objects and Utilities, Landscapes
of Other Planets and Moons, Dinosaurs, Prehis-
toric Life, Paleo-Scenery, Kitchen Utensils, Cook-
ing Tools, Home Accessories, Interior Decor, Of-
fice Furniture, Home Furniture, Gardens, Horticul-
ture, Landscaping, Pets and Companion Animals,
Aquatic and Water-based Activities, Educational
and Learning Materials, Traditional Clothing, Eth-
nic Clothing, Body Art and Tattoos, Streets Roads,
and Highways, Forests, Jungles, and Wilderness Ar-
eas, Planes, Boats, Photography, Robots, Futuristic

Figure 7. Attempt 2 - Topics Bank

image generators, and caption generation prompts to iden-
tify optimal configurations for improvement. Additionally,
exploring how to best leverage the generated data remains a
crucial area for future research.

Image captions are usually composed of four com-
ponents: (1) Subject: This is the main focus of the
sentence. (2) Action or State: This describes what
the subject is doing or the state they are in. (3) Set-
ting or Context: This provides additional informa-
tion about where the action is taking place or the
context surrounding the subject. (4) Additional De-
scriptors: These are adjectives or additional details
that provide more depth or description to the subject
or setting.
Your task is to write image captions as described
above. You are provided with a ”Concept List” be-
low which contains categories you can write cap-
tions for.
Concept List: {sampled topics string}
Rules:
(1) You are allowed a maximum of 15 words per
image caption.
(2) Select at random a subject from the concept list
or be creative and go beyond the list.
(3) Select a highly specific subject from the con-
cept list for your caption. Avoid general categories;
instead, choose a detailed and particular item, crea-
ture, or concept. The chosen subject should be a
distinct and unique example within its broader cat-
egory, reflecting your creativity and precision. This
means you will provide names, breeds, locations,
brands ... all of which ensure specificity.
(4) Write down the captions without specifying
what category it belongs to.
Rule (3) is very important.
Please provide me with 10 captions following all the
rules above.

Figure 8. Attempt 2 - Captions Generation Prompt
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