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Abstract

Symbolic Regression (SR) is a task of recovering mathematical expressions from
given data and has been attracting attention from the research community to discuss
its potential for scientific discovery. However, the community lacks datasets
of symbolic regression for scientific discovery (SRSD) to discuss the potential
of SR. To address the critical issue, we revisit datasets of SRSD to discuss the
potential of symbolic regression for scientific discovery. Focused on a set of
formulas used in the existing datasets based on Feynman Lectures on Physics, we
recreate 120 datasets to discuss the performance of SRSD. For each of the 120
SRSD datasets, we carefully review the properties of the formula and its variables
to design reasonably realistic sampling ranges of values so that our new SRSD
datasets can be used for evaluating the potential of SRSD such as whether or not
an SR method can (re)discover physical laws from such datasets. We conduct
experiments on our new SRSD datasets using five state-of-the-art SR methods in
SRBench, and the results show that the new SRSD datasets are more challenging
than the original ones. Our datasets 123 and code repository 4 are publicly available.

1 Introduction

Recent advances in machine learning (ML), especially deep learning (DL), have led to the proposal
of many methods that can reproduce the given data and make appropriate inferences on new inputs.
Such methods are, however, often black-box, which makes it difficult for humans to understand how
they made predictions for given inputs. This property will be more critical especially when non-ML
experts apply ML to problems in their research domains such as physics and chemistry.

Symbolic regression (SR) is the task of producing a mathematical expression (symbolic expression)
that fits a given dataset. SR has been studied in the genetic programming (GP) community [1–6], and
DL-based SR has been attracting more attention from the ML/DL community [7–12]. Because of
its interpretability, various scientific communities apply SR to advance research in their scientific
fields e.g., Physics [13–19], Applied Mechanics [20], Climatology [21], Materials [22–25], and
Chemistry [26].

∗This work was mainly done while the first author was a research intern at OMRON SINIC X Corporation.
1https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy
2https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium
3https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard
4https://github.com/omron-sinicx/srsd-benchmark
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Given that SR has been studied in various communities, La Cava et al. [11] propose SRBench, a unified
benchmark framework for symbolic regression methods. In the benchmark study, they combine
the Feynman Symbolic Regression Database (FSRD) [14] and the ODE-Strogatz repository [27] to
compare a number of SR methods, using a large-scale heterogeneous computing cluster.5

To discuss the potential of symbolic regression for scientific discovery (SRSD), there still remain
some issues to be addressed: oversimplified datasets and lack of evaluation metric towards SRSD.
For symbolic regression tasks, existing datasets consist of values sampled from limited domains such
as in range of 1 to 5, and there are no large-scale datasets with reasonably realistic values that capture
the properties of the formula and its variables. Thus, it is difficult to discuss the potential of symbolic
regression for scientific discovery with such existing datasets. For instance, the FSRD consists of 120
formulas selected mostly from Feynman Lectures Series6 [32–34] and are core benchmark datasets
used in SRBench [11]. While the formulas indicate physical laws, variables and constants used in
each dataset have no physical meanings and sampling processes are oversimplified since the datasets
in the benchmark study are not designed to discover the physical laws from the observed data in the
real world. (See Section 3.1.)

To address these issues, we propose new SRSD datasets and conduct benchmark experiments using
representative SR methods. We carefully review and design annotation policies for the new datasets,
considering the properties of the physics formulas. Using the proposed SRSD datasets, we perform
benchmark experiments with a set of symbolic regression baselines and find that even state of the art
symbolic regression methods still need improvements to be used for scientific discovery.

2 Related Studies

In this section, we briefly introduce related studies focused on 1) symbolic regression for scientific
discovery and 2) symbolic regression dataset and evaluation.

2.1 SRSD: Symbolic Regression for Scientific Discovery

A pioneer study on symbolic regression for scientific discovery is conducted by Schmidt and Lipson
[35], who propose a data-driven scientific discovery method. They collect data from standard
experimental systems like those used in undergrad physics education: an air-track oscillator and a
double pendulum. Their proposed algorithm detects different types of laws from the data such as
position manifolds, energy laws, and equations of motion and sum of forces laws.

Following the study, data-driven scientific discovery has been attracting attention from research
communities and been applied to various domains such as Physics [13–19], Applied Mechanics [20],
Climatology [21], Materials [22–25], and Chemistry [26].

These studies leverage symbolic regression in different fields. While general symbolic regression
tasks use synthetic datasets with limited sampling domains for benchmarks, many of the SRSD
studies collect data from the real world and discuss how we could leverage symbolic regression
toward scientific discovery.

While SRSD tasks share the same input-output interface with general symbolic regression (SR) tasks
(i.e., input: dataset, output: symbolic expression), we differentiate SRSD tasks in this study from
general SR tasks by whether or not the datasets including true symbolic expressions are created with
reasonably realistic assumptions for scientific discovery such as meaning of true symbolic expressions
(whether or not they have physical meanings) and sampling domains for input variables.

2.2 Dataset and Evaluation

For symbolic regression methods, there exist several benchmark datasets and empirical studies. The
Feynman Symbolic Regression Database [14] is one of the largest symbolic regression datasets,
which consists of 100 physics-inspired equations based on Feynman Lectures on Physics [32–34].
By randomly sampling from small ranges of value, they generate the corresponding tabular datasets
for the 100 equations. Inspired by [1, 2, 4], Uy et al. [5] suggest 10 different real-valued symbolic

5Hosts with 24-28 core Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz processors and 250 GB of RAM [11]
6Udrescu and Tegmark [14] extract 20 of the 120 equations as “bonus” from other seminal books [28–31].
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regression problems (functions) and create the corresponding dataset (a.k.a. Nguyen dataset). The
suggested functions consist of either 1 or 2 variables e.g., f(x) = x6 + x5 + x4 + x3 + x2 + x and
f(x, y) = sin(x) + sin(y2). They generate each dataset by randomly sampling 20 - 100 data points.

La Cava et al. [11] design a symbolic regression benchmark, named SRBench, and conduct a
comprehensive benchmark experiment, using existing symbolic regression datasets such as the
Feynman Symbolic Regression Database [14] and ODE-Strogatz repository [36]. In SRBench,
symbolic regression methods are assessed by 1) an error metric based on squared error between
target and estimated values, and 2) solution rate that shows a percentage of the estimated symbolic
regression models that match the true models (equations).

However, these datasets and evaluations are not necessarily designed to discuss symbolic regression
for scientific discovery. In Sections 3.1 and 4.1, we will further describe potential issues in such
existing studies.

3 Datasets

In this section, we summarize issues we found in the existing symbolic regression datasets, and then
propose new datasets to address them towards symbolic regression for scientific discovery (SRSD).

3.1 Issues in Existing Datasets

As introduced in Section 2.2, there are many symbolic regression datasets. However, we consider
that novel datasets are required to discuss SRSD for the following reasons:

1. No physical meaning: Many of the existing symbolic regression datasets [1, 2, 4, 5] are not
necessarily physics-inspired, but instead randomly generated e.g., f(x) = log(x), f(x, y) =
xy+sin((x−1)(y−1)). To discuss the potential of symbolic regression for scientific discovery,
we need to further elaborate datasets, considering how we would leverage symbolic regression
in practice.

2. Oversimplified sampling process: While some of the datasets are physics-inspired such as
the Feynman Symbolic Regression Database (FSRD) [14] and ODE-Strogatz repository [36],
their sampling strategies are very simplified. Specifically, the strategies do not distinguish
between constants and variables e.g., speed of light7 is treated as a variable and randomly
sampled in range of 1 to 5. Besides, most of the sampling domains are far from values we
could observe in the real world e.g, II.4.23 in Table S1 (the vacuum permittivity values are
sampled from range of 1 to 5). When sampled ranges of the distributions are narrow, we cannot
distinguish Lorentz transformation from Galilean transformation e.g. I.15.10 and I.16.6 in
Table S3, I.48.2 in Table S5, I.15.3t, I.15.3x, and I.34.14 in Table S7, or the black body radiation
can be misestimated to Stephan-Boltzmann law or the Wien displacement law e.g. I.41.16 in
Table S8.

3. Duplicate equations: Due to the two issues above, many of the equations in existing datasets
turn out to be duplicate. e.g., as shown in Table 1, F = µNn (I.12.1) and F = q2E (I.12.5)
in the original Feynman Symbolic Regression Database are considered identical since both
the equations are multiplicative and consists of two variables, and their sampling domains
(Distributions in Table 1) are exactly the same. For instance, approximately 25% of the symbolic
regression problems in the original FSRD have 1 - 5 duplicates in that regard.

4. Incorrect/Inappropriate formulas: The Feynman Symbolic Regression Database [14] treat
every variables as float whereas they should be integer to be physically meaningful. For example,
the number of phase difference in Bragg’s law should be integer but sampled as real number
(I.30.5 in Table S1). Furthermore, they don’t even give special treatment of angle variables
(I.18.12, I.18.16, and I.26.2 in Table 1). Physically some variables can be negative whereas the
original Feynman Symbolic Regression Database [14] only samples positive values (e.g. I.8.14
and I.11.19 in Table S3). We also avoid using arcsin/arccos in the equations since the use of
arcsin/arccos in the Feynman Symbolic Regression Database [14] just to obtain angle variable
is not experimentally meaningful (I.26.2 in Table 1, I.30.5 in Table S1, and B10 in Table S11).
Equations using arcsin and arccos in the original annotation are I.26.2 (Snell’s law), I.30.5

7We treat speed of light as a constant (2.998× 108m/s) in this study.
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(Bragg’s law), and B10 (Relativistic aberration). These are all describing physical phenomena
related to two angles, and it is an unnatural deformation to describe only one of them with an
inverse function. Additionally, inverse function use implicitly limits the range of angles, but
there is no such limitation in the actual physical phenomena.

3.2 Proposed SRSD Datasets

We address the issues in existing datasets above by proposing new SRSD datasets based on the
equations used in the FSRD [14]. i.e., Section 3.1 summarizes the differences between the FSRD
and our SRSD datasets. Our annotation policy is carefully designed to simulate typical physics
experiments so that the SRSD datasets can engage studies on symbolic regression for scientific
discovery in the research community.

3.2.1 Annotation policy

We thoroughly revised the sampling range for each variable from the annotations in the FSRD [14].
First, we reviewed the properties of each variable and treated physical constants (e.g., light speed,
gravitational constant) as constants while such constants are treated as variables in the original FSRD
datasets. Next, variable ranges were defined to correspond to each typical physics experiment to
confirm the physical phenomenon for each equation. We also used [37] as a reference. In cases where
a specific experiment is difficult to be assumed, ranges were set within which the corresponding
physical phenomenon can be seen. Generally, the ranges are set to be sampled on log scales within
their orders as 102 in order to take both large and small changes in value as the order changes.
Variables such as angles, for which a linear distribution is expected are set to be sampled uniformly.
In addition, variables that take a specific sign were set to be sampled within that range. Tables 1
and S1 – S11 show the detailed comparisons between the original FSRD and our proposed SRSD
datasets.

3.2.2 Complexity-aware Dataset Categories

While the proposed datasets consist of 120 different problems, there will be non-trivial training cost
required to train a symbolic regression model for all the problems individually [11] i.e., there will be
120 separate training sessions to assess the symbolic regression approach. To allow more flexibility in
assessing symbolic regression models for scientific discovery, we define three clusters of the proposed
datasets based on their complexity: Easy, Medium, and Hard sets, which consist of 30, 40, and 50
different problems respectively.

We define the complexity of problem, using the number of operations to represent the true equation
tree and range of the sampling domains. The former measures how many mathematical operations
compose the true equation such as add, mul, pow, exp, and log operations. The latter considers
magnitude of sampling distributions (Distributions column in Tables 1 and S1 – S11) and increases
the complexity when sampling values from wide range of distributions. We define the domain range
as follows:

frange (S) =
∣∣∣∣log10 ∣∣∣∣max

s∈S
s−min

s∈S
s

∣∣∣∣∣∣∣∣ , (1)

where S indicates a set of sampling domains (distributions) for a given symbolic regression problem.

As we will show in Section 5.3, these clusters represent problem difficulties at high level. For
instance, these subsets will help the research community to shortly tune and/or perform sanity-check
new approaches on the Easy set (30 problems) instead of using the whole datasets (120 problems).
Figure 1 shows the three different distribution maps of our proposed datasets. Easy, Medium, and
Hard sets consist of 30, 40, and 50 individual symbolic regression problems, respectively.

4 Benchmark

Besides the conventional metrics, we propose a new metric to discuss the performance of symbolic
regression for scientific discovery in Section 4.1. Following the set of metrics, we design an evaluation
framework of symbolic regression for scientific discovery.
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Table 1: Easy set of our proposed datasets (part 1). C: Constant, V: Variable, F: Float, I: Integer, P:
Positive, N: Negative, NN: Non-Negative, U : Uniform distribution, Ulog: Log-Uniform distribution.

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.12.1 F = µNn

F Force of friction V, F V, F, P N/A N/A
µ Coefficient of friction V, F V, F, P U(1, 5) Ulog(10

−2, 100)

Nn Normal force V, F V, F, P U(1, 5) Ulog(10
−2, 100)

I.12.4 E =
q1

4πϵr2

E Magnitude of electric field V, F V, F N/A N/A
q1 Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

r Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

I.12.5 F = q2E

F Force V, F V, F N/A N/A
q2 Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

E Electric field V, F V, F U(1, 5) Ulog(10
1, 103)

I.14.3 U = mgz

U Potential energy V, F V, F, P N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−2, 100)

g Gravitational acceleration V, F C, F, P U(1, 5) 9.807 × 100

z Height V, F V, F U(1, 5) Ulog(10
−2, 100)

I.14.4 U =
kspringx

2

2

U Elastic energy V, F V, F, P N/A N/A
kspring Spring constant V, F V, F, P U(1, 5) Ulog(10

2, 104)

x Position V, F V, F U(1, 5) Ulog(10
−2, 100)

I.18.12 τ = rF sin θ

τ Torque V, F V, F N/A N/A
r Distance V, F V, F, P U(1, 5) Ulog(10

−1, 101)

F Force V, F V, F U(1, 5) Ulog(10
−1, 101)

θ Angle V, F V, F, NN U(0, 5) U(0, 2π)

I.18.16 L = mrv sin θ

L Angular momentum V, F V, F N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−1, 101)

r Distance V, F V, F, P U(1, 5) Ulog(10
−1, 101)

v Velocity V, F V, F, P U(1, 5) Ulog(10
−1, 101)

θ Angle V, F V, F, NN U(1, 5) U(0, 2π)

I.25.13 V = q
C

V Voltage V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−5, 10−3)

C Electrostatic Capacitance V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.26.2 n =
sin θ1
sin θ2

n Relative refractive index V, F V, F, P U(0, 1) N/A
θ1 Refraction angle 1 V, F V, F N/A U(0, π

2 )

θ2 Refraction angle 2 V, F V, F U(1, 5) U(0, π
2 )

I.27.6 f = 1
1
d1

+ n
d2

f Focal length V, F V, F N/A N/A
d1 Distance V, F V, F, P U(1, 5) Ulog(10

−3, 10−1)

n Refractive index V, F V, F, P, U(1, 5) Ulog(10
−1, 101)

d2 Distance V, F V, F, P U(1, 5) Ulog(10
−3, 10−1)

4.1 Metrics

In general, it would be difficult to define “accuracy” of symbolic regression models since we will
compare its estimated equation to the ground truth equation and need criteria to determine whether or
not it is “correct”. La Cava et al. [11] suggested a reasonable definition of symbolic solution, which
is designed to capture symbolic regression models that differ from the true model by a constant or
scalar. Using R2 score (Eq. (2)), they also defined as accuracy the percentage of symbolic regression
problems that a model meets R2 > τ , where τ is a threshold e.g., τ = 0.999 in [11].

R2 =

∑N
j (fpred (Xj)− ftrue (Xj))

2∑N
k (ftrue (Xk)− ȳ)

2
, (2)

where N indicates the number of test samples (i.e., the number of rows in the test dataset), and ȳ is
a mean of target outputs produced by ftrue. fpred and ftrue are a trained SR model and a true model,
respectively.
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Figure 1: Distribution map of our proposed datasets based on three different subsets with respect to
our complexity metrics. Data points at top right/bottom left indicate more/less complex problems.

4.2 Model Selection

For real datasets (assuming observed datasets), only tabular data are available for training and
validation. (In practice, a test dataset does not include the true equation). For benchmark purposes,
true equations are provided as test data besides test tabular data.

For each problem, we use the validation tabular dataset and choose the best trained SR model f∗
pred

from F , a set of the trained models by a given method respect to Eq. (3)

f∗
pred = argmin

fpred∈F

1

n

n∑
i=1

∣∣∣∣fpred(Xi)− ftrue(Xi)

ftrue(Xi)

∣∣∣∣2 , (3)

where Xi indicates the i-th row of the validation tabular dataset X .

We use the geometrical distance between predicted values against a validation tabular dataset to
choose the best model obtained through hyperparameter tuning. Using the best model per method,
we compute R2 score to assess the method.

5 Experiments

5.1 Baseline Methods

For baselines, we use the five best symbolic regression methods in SRBench [11]. Specifically, we
choose gplearn [3], AFP [38], AFP-FE [35], AI Feynman [15], and DSR [7], referring to the rankings
of solution rate for the FSRD datasets in their study.

1. gplearn [3]: a genetic programming based symbolic regression method published as a Python
package gplearn.

2. AFP [38]: Age-fitness pareto optimization.
3. AFP-FE [35]: AFP optimization with fitness estimates.
4. AI Feynman [15]: an iterative approach to generate symbolic regression to seek to fit data to

formulas that are Pareto-optimal.
5. DSR [7]: reinforcement learning based deep symbolic regression.

For the details of the baseline models, we refer readers to the corresponding papers [3, 7, 15, 35, 38].

5.2 Runtime Constraints

The implementations of the baseline methods in Section 5.1 do not use any GPUs. We run 600 high
performance computing (HPC) jobs in total, using “C.small” and “C.large” computing nodes, which
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Table 2: Baseline results: accuracy (R2 > 0.999) defined by La Cava et al. [11].

SRSD Datasets \ Method gplearn AFP AFP-FE AI Feynman DSR
Easy set (30 problems) 6.67% 20.0% 23.3% 33.3% 60.0%

Medium set (40 problems) 7.50% 5.00% 5.00% 5.00% 45.0%
Hard set (50 problems) 2.00% 4.00% 4.00% 8.00% 30.0%

Table 3: Baseline results: solution rate defined by La Cava et al. [11].

SRSD Datasets \ Method gplearn AFP AFP-FE AI Feynman DSR
Easy set (30 problems) 6.67% 20.0% 20.0% 30.0% 43.3%

Medium set (40 problems) 2.50% 2.50% 2.50% 2.50% 10.0%
Hard set (50 problems) 0.00% 0.00% 0.00% 2.00% 2.00%

Table 4: Solution rates of common baselines for FSRD and SRSD (Easy, Medium, Hard) datasets.

Dataset \ Method gplearn AFP AFP-FE AI Feynman DSR
FSRD [14] 15.5% 20.48% 26.23% 52.65% 19.71%

SRSD (Ours) 1.67% 5.83% 5.83% 9.17% 15.0%

have 5 - 20 assigned physical CPU cores, 30 - 120 GB RAM, and 720 GB local storage available in
AI Bridging Cloud Infrastructure (ABCI).8 Due to the properties of our HPC resource, we have some
runtime constraints:

1. Since each HPC job is designed to run for up to 24 hours due to the limited resource, we run a
job with a pair of a target tabular dataset and a symbolic regression method.

2. Given a pair of a dataset and a method, each of our HPC jobs runs up to 100 separate training
sessions with different hyperparameter values.

5.3 Results

In this section, we discuss the experimental results of our baseline methods, using the proposed SRSD
datasets. Tables 2 and 3 show the performance of the symbolic regression baseline methods in terms
of R2-driven accuracy (R2 > 0.999) and solution rate respectively, and both the metrics are used
in SRBench [11]. According to the metrics, DSR significantly outperforms all the other baselines
we considered. The DSR results also indicate difficulty levels of the three categories of our SRSD
datasets, which looks aligned with our complexity-aware dataset categorization (Section 3.2.2).

Table 4 compares the solution rates of the five common baselines for the FSRD and our SRSD
datasets. We can confirm that the overall solution rates for our SRSD are significantly degraded
compared to those for the FSRD reported in SRBench [11]. The results indicate that our SRSD
datasets are more challenging than the FSRD in terms of solution rate.

6 Limitations and Discussion

6.1 Implicit Functions

Symbolic regression generally has a limitation in inferring implicit functions, as the model infers a
trivial constant function if there are no restrictions on variables. For example, f(x, y) = 0 is inferred
as 0 = 0 ∀x, y. This problem can be solved by applying the constraint that an inferred function should
depend on at least two variables e.g., inferring f(x, y) = 0 with ∂f

∂x ̸= 0 and ∂f
∂y ̸= 0, or by converting

the function to an explicit form e.g., y = g(x). We converted some functions in the datasets into
explicit forms and avoided the inverse trigonometric functions as described in Section 3.1.

8https://abci.ai/en/how_to_use/tariffs.html
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6.2 Dummy Variables and Noise Injection

When applying machine learning to real-world problems, it is often true that 1) not all the observed
features (variables in symbolic regression) are necessary to solve the problems, and 2) the observed
values contain some noise. While we follow [11] and show experimental results for our SRSD
datasets with noise-injected target variables in the supplementary material, these aspects are not
thoroughly discussed in this study, such discussions can be a separate paper built on this work and
further engage studies of symbolic regression for scientific discovery.

6.3 Interpretability Evaluation

Though symbolic regression methods are popular for intrpretability in their behaviors/outputs, there
is a lack of appropriate metrics to evaluate these methods, taking into account the property. One of
the most common approaches would be to measure the prediction error or correlation between the
predicted values and the target values in the test data, as in standard regression problems. However,
low prediction errors could be achieved even by complex models that differ from the original law.

Some studies [11, 15] use complexity of the predicted expression as an evaluation metric (the simpler
the better). However, it is based on a big assumption that a simpler expression may be more likely
to be a hidden law in the data (scientific discovery such as physics law), which may not be true
for SRSD. SRBench [11] present the percentage of agreement between the target and the estimated
equations, using solution rate they defined. But in such cases, both 1) equations that do not match at
all and 2) that differ by only one term9 are equally treated as incorrect. As a result, it is considered
as a coarse-resolution evaluation method for accuracy in SRSD, which still needs more discussion
towards real-world SRSD applications.

7 Conclusion

In this work, we pointed out issues of existing datasets and benchmarks of symbolic regression for
scientific discovery (SRSD). To address the issues, we proposed 120 new SRSD datasets based on
a set of physics formulas in FSRD [14] and conducted benchmark experiments using the proposed
SRSD datasets. The results show the new SRSD datasets are significantly more challenging than
the original FSRD datasets in terms of solution rate. We also discussed the limitations in this study
and pointed out lack of evaluation metrics suitable for SRSD. Matsubara et al. [39] further discuss
the issue and propose a new evaluation metric for SRSD, performing benchmark experiments with
an additional baseline. To encourage the studies of SRSD, we publish our datasets1, 2, 3 and code
repository4 with MIT License.
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A Our SRSD Datasets: Additional Information

This section provides additional information regarding our SRSD datasets. We created the datasets to
discuss the performance of symbolic regression for scientific discovery (SRSD). We refer readers to
Section 3 for details of the datasets. Tables S1 – S11 comprehensively summarize the differences
between FSRD and our SRSD datasets. Note that the table of Easy set (part 1) is provided as Table 1
in Section 3.1. As described in Section 3.2.2, we categorized each of the 120 SRSD datasets into one
of Easy, Medium, and Hard sets. We published the three sets of the SRSD datasets with MIT License
at Hugging Face Dataset repositories. The dataset documentations are publicly available as Hugging
Face Dataset cards.1, 2, 3 These repositories are version-controlled with Git 10 so that users can track
the log of the changes. We bear all responsibility in case of violation of rights.

Table S1: Easy set of our proposed datasets (part 2).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.30.5 d = λ
n sin θ

d Interplanar distance V, F V, F, P U(2, 5) N/A
λ Wavelength of X-ray V, F V, F, P U(1, 2) Ulog(10

−11, 10−9)

n The number of phase difference V, F V, I,P U(1, 5) Ulog(10
0, 102)

θ Incidence/Reflection angle V, F V, F N/A U(−2π, 2π)

I.43.16 v = µq V
d

v Velocity V, F V, F N/A N/A
µ Ionic conductivity V, F V, F U(1, 5) Ulog(10

−6, 10−4)

q Electric charge of ions V, F V, F U(1, 5) Ulog(10
−11, 10−9)

V Voltage V, F V, F U(1, 5) Ulog(10
−1, 101)

d Distance V, F V, F, P U(1, 5) Ulog(10
−3, 10−1)

I.47.23 c =
√

γP
ρ

c Velocity of sound V, F V, F, P N/A N/A
γ Heat capacity ratio V, F V, F, P U(1, 5) U(1, 2)

P Atmospheric pressure V, F V, F, P U(1, 5) U(0.5 × 10−5, 1.5 × 10−5)

ρ Density of air V, F V, F, P U(1, 5) U(1, 2)

II.2.42 J = κ(T2 − T1)
A
d

J Energy difference V, F V, F N/A N/A
κ Thermal conductivity V, F V, F, P U(1, 5) Ulog(10

−1, 101)

T2 Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

T1 Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

A Area V, F V, F, P U(1, 5) Ulog(10
−4, 10−2)

d Length V, F V, F, P U(1, 5) Ulog(10
−2, 100)

II.3.24 h = W
4πr2

h Heat flux V, F V, F N/A N/A
W Work V, F V, F U(1, 5) Ulog(10

0, 102)

r Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

II.4.23 ϕ = q
4πϵr

ϕ Electric potential V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

r Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

II.8.31 u = ϵE2

2

u Energy V, F V, F N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

E Magnitude of electric field V, F V, F, P U(1, 5) Ulog(10
1, 103)

II.10.9 E =
σfree
ϵ

1
1+χ

E Electric field V, F V, F N/A N/A
σfree Surface charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

χ Electric susceptibility V, F V, F, P U(1, 5) Ulog(10
0, 102)

II.13.17 B = 1
4πϵc2

2I
r

B The magnitude of the magnetic field V, F V, F N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

I Electric current V, F V, F U(1, 5) Ulog(10
−3, 10−1)

r Radius V, F V, F, P U(1, 5) Ulog(10
−3, 10−1)

II.15.4 U = −µB cos θ

U Energy from magnetic field V, F V, F N/A N/A
µ Magnetic dipole moment V, F V, F U(1, 5) Ulog(10

−25, 10−23)

B Magnetic field strength V, F V, F U(1, 5) Ulog(10
−3, 10−1)

θ Angle V, F V, F, NN U(1, 5) U(0, 2π)

10https://git-scm.com/
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Table S2: Easy set of our proposed datasets (part 3).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

II.15.5 U = −pE cos θ

U Energy V, F V, F N/A N/A
p Electric dipole moment V, F V, F U(1, 5) Ulog(10

−22, 10−20)

E Magnitude of electric field V, F V, F U(1, 5) Ulog(10
1, 103)

θ Angle V, F V, F U(1, 5) U(0, 2π)

II.27.16 S = ϵcE2

S Radiant intensity V, F V, F N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

E Magnitude of electric field V, F V, F, P U(1, 5) Ulog(10
−1, 101)

II.27.18 u = ϵE2

u Energy density V, F V, F, P N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

E Magnitude of electric field V, F V, F, P U(1, 5) Ulog(10
−1, 101)

II.34.11 ω = g qB
2m

ω Angular frequency V, F V, F N/A N/A
g g-factor V, F V, F U(1, 5) U(−1, 1)

q Electric charge V, F V, F U(1, 5) Ulog(10
−11, 10−9)

B Magnetic field strength V, F V, F U(1, 5) Ulog(10
−9, 10−7)

m Mass V, F V, F, P U(1, 5) Ulog(10
−30, 10−28)

II.34.29b U = 2πgµB Jz
h

U Energy V, F V, F, P N/A N/A
g g-factor V, F V, F U(1, 5) U(−1, 1)

µ Bohr magneton V, F C, F, P U(1, 5) 9.2740100783 × 10−24

B Magnetic field strength V, F V, F U(1, 5) Ulog(10
−3, 10−1)

Jz Element of angular momentum V, F V, F U(1, 5) Ulog(10
−26, 10−22)

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

II.38.3 F = Y A∆l
l

F Force V, F V, F N/A N/A
Y Young’s modulus V, F V, F, P U(1, 5) Ulog(10

−1, 101)

A Area V, F V, F, P U(1, 5) Ulog(10
−4, 10−2)

δl Displacement V, F V, F U(1, 5) Ulog(10
−3, 10−1)

l Length V, F V, F, P U(1, 5) Ulog(10
−2, 100)

II.38.14 µ = Y
2(1+σ)

µ Rigidity modulus V, F V, F, P N/A N/A
Y Young’s modulus V, F V, F, P U(1, 5) Ulog(10

−1, 101)

σ Poisson coefficient V, F V, F, P U(1, 5) Ulog(10
−2, 100)

III.7.38 ω = 4πµB
h

ω Precession frequency V, F V, F N/A N/A
µ Magnetic moment V, F V, F U(1, 5) Ulog(10

−11, 10−9)

B Magnetic flux density V, F V, F U(1, 5) Ulog(10
−3, 10−1)

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

III.12.43 J = mh
2π

J Variable V, F V, F N/A N/A
m Spin state V, F V, I,NN U(1, 5) Ulog(10

0, 102)

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

III.15.27 k = 2π
Nb s

k Wavenumber V, F V, F N/A N/A
s Parameter of state V, F V, I U(1, 5) Ulog(10

0, 102)

N Number of atoms V, F V, I,P U(1, 5) Ulog(10
0, 102)

b Lattice constant V, F V, F, P U(1, 5) Ulog(10
−10, 10−8)
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Table S3: Medium set of our proposed datasets (part 1). C: Constant, V: Variable, F: Float, I: Integer,
P: Positive, N: Negative, NN: Non-Negative, I⋆: Integer treated as float due to the capacity of 32-bit
integer.

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2

d Distance V, F V, F, NN N/A N/A
x2 Position V, F V, F U(1, 5) Ulog(10

−1, 101)

x1 Position V, F V, F U(1, 5) Ulog(10
−1, 101)

y2 Position V, F V, F U(1, 5) Ulog(10
−1, 101)

y1 Position V, F V, F U(1, 5) Ulog(10
−1, 101)

I.10.7 m =
m0√
1− v2

c2

m Mass V, F V, F, P N/A N/A
m0 Invariant mass V, F V, F, P U(1, 5) Ulog(10

−1, 101)

v Velocity V, F V, F, P U(1, 2) Ulog(10
5, 108)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

I.11.19 A = x1y1 + x2y2 + x3y3

A Inner product V, F V, F N/A N/A
x1 Element of a vector V, F V, F U(1, 5) Ulog(10

−1, 101)

y1 Element of a vector V, F V, F U(1, 5) Ulog(10
−1, 101)

x2 Element of a vector V, F V, F U(1, 5) Ulog(10
−1, 101)

y2 Element of a vector V, F V, F U(1, 5) Ulog(10
−1, 101)

x3 Element of a vector V, F V, F U(1, 5) Ulog(10
−1, 101)

y3 Element of a vector V, F V, F U(1, 5) Ulog(10
−1, 101)

I.12.2 F =
q1q2
4πϵr2

F Electrostatic force V, F V, F N/A N/A
q1 Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

q2 Electric charge V, F V, F U(1, 5) Ulog(10
−3, 10−1)

r Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

I.12.11 F = q (E + Bv sin (θ))

F Force V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−1, 101)

E Electric field V, F V, F U(1, 5) Ulog(10
−1, 101)

B Magnetic field strength V, F V, F, P U(1, 5) Ulog(10
−1, 101)

v Velocity V, F V, F, P U(1, 5) Ulog(10
−1, 101)

θ Angle V, F V, F, NN U(1, 5) U(0, 2π)

I.13.4 K = 1
2m(v2 + u2 + w2)

K Kinetic energy V, F V, F, P N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−2, 100)

v Element of velocity V, F V, F, P U(1, 5) Ulog(10
−1, 101)

u Element of velocity V, F V, F, P U(1, 5) Ulog(10
−1, 101)

w Element of velocity V, F V, F, P U(1, 5) Ulog(10
−1, 101)

I.13.12 U = Gm1m2

(
1
r2

− 1
r1

)
U Potential energy V, F V, F, P N/A N/A
G Gravitational constant V, F C, F, P U(1, 5) 6.674 × 10−11

m1 Mass (The Earth) V, F V, F, P U(1, 5) Ulog(10
−2, 100)

m2 Mass V, F V, F, P U(1, 5) Ulog(10
−2, 100)

r2 Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

r1 Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

I.15.10 p =
m0v√

1−v2/c2

p Relativistic mass V, F V, F, P N/A N/A
m0 Rest Mass V, F V, F, P U(1, 5) Ulog(10

−2, 100)

v Velocity V, F V, F U(1, 2) Ulog(10
5, 107)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

I.16.6 v1 = u+v

1+uv/c2

v1 Velocity V, F V, F N/A N/A
u Velocity V, F V, F U(1, 5) Ulog(10

6, 108)

v Velocity V, F V, F U(1, 5) Ulog(10
6, 108)

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

I.18.4 r =
m1r1+m2r2

m1+m2

r Center of gravity V, F V, F N/A N/A
m1 Mass V, F V, F, P U(1, 5) Ulog(10

−1, 101)

r1 Position V, F V, F U(1, 5) Ulog(10
−1, 101)

m2 Mass V, F V, F, P U(1, 5) Ulog(10
−1, 101)

r2 Position V, F V, F U(1, 5) Ulog(10
−1, 101)
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Table S4: Medium set of our proposed datasets (part 2).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.24.6 E = 1
4m(ω2 + ω2

0)x
2

E Energy V, F V, F, P N/A N/A
m Mass V, F V, F, P U(1, 3) Ulog(10

−1, 101)

ω Angular velocity V, F V, F U(1, 3) Ulog(10
−1, 101)

ω0 Angular velocity V, F V, F U(1, 3) Ulog(10
−1, 101)

x Position V, F V, F U(1, 3) Ulog(10
−1, 101)

I.29.4 k = ω
c

k Wavenumber V, F V, F, P N/A N/A
ω Frequency of electromagnetic waves V, F V, F, P U(1, 10) Ulog(10

9, 1011)

c Speed of light V, F C, F, P U(1, 10) 2.998 × 108

I.32.5 P = q2a2

6πϵc3

P Radiant energy V, F V, F, P N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

a Magnitude of direction vector V, F V, F, P U(1, 5) Ulog(10
5, 107)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

I.34.8 ω = qvB
p

ω Angular velocity V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F V, F U(1, 5) Ulog(10
5, 107)

B Magnetic field V, F V, F U(1, 5) Ulog(10
1, 103)

p Angular momentum V, F V, F U(1, 5) Ulog(10
9, 1011)

I.34.10 ω =
ω0

1−v/c

ω Frequency of electromagnetic waves V, F V, F, P N/A N/A
ω0 Frequency of electromagnetic waves V, F V, F, P U(1, 5) Ulog(10

9, 1011)

v Velocity V, F V, F U(1, 2) Ulog(10
5, 107)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

I.34.27 W = h
2πω

W Energy V, F V, F, P N/A N/A
h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

ω Frequency of electromagnetic waves V, F V, F, P U(1, 5) Ulog(10
9, 1011)

I.38.12 r = 4πϵ
(h/(2π))2

mq2

r Bohr radius V, F V, F, P N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

m Mass V, F V, F, P U(1, 5) Ulog(10
−28, 10−26)

q Electric charge V, F V, F U(1, 5) Ulog(10
−11, 10−9)

I.39.10 U = 3
2PV

U Internal energy V, F V, F, P N/A N/A
P Pressure V, F V, F, P U(1, 5) Ulog(10

4, 106)

V Volume V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.39.11 U = PV
γ−1

U Energy V, F V, F N/A N/A
γ Heat capacity ratio V, F V, F, P U(2, 5) U(1, 2)

P Pressure V, F V, F, P U(1, 5) Ulog(10
4, 106)

V Volume V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.43.31 D = µkT

D Diffusion coefficient V, F V, F, P N/A N/A
µ Viscosity V, F V, F, P U(1, 5) Ulog(10

13, 1015)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)
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Table S5: Medium set of our proposed datasets (part 3).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.43.43 κ = 1
γ−1

kv
σc

κ Thermal conductivity V, F V, F, P N/A N/A
γ Heat capacity ratio V, F V, F, P U(2, 5) U(1, 2)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

v Velocity V, F V, F, P U(1, 5) Ulog(10
2, 104)

σc Molecular collision cross section V, F V, F, P U(1, 5) Ulog(10
−21, 10−19)

I.48.2 E = mc2√
1−v2/c2

E Energy V, F V, F, P N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−29, 10−27)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

v Velocity V, F V, F, P U(1, 2) Ulog(10
6, 108)

II.6.11 ϕ = 1
4πϵ

p cos θ

r2

ϕ Electric potential V, F V, F N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 3) 8.854 × 10−12

p Electric dipole moment V, F V, F U(1, 3) Ulog(10
−22, 10−20)

θ Angle V, F V, F, NN U(1, 3) U(0, 2π)

r Distance V, F V, F, P U(1, 3) Ulog(10
−10, 10−8)

II.8.7 U = 3
5

Q2

4πϵa

U Energy V, F V, F N/A N/A
Q Electric charge V, F V, F U(1, 5) Ulog(10

−11, 10−9)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

a Radius V, F V, F, P U(1, 5) Ulog(10
−12, 10−10)

II.11.3 x = qE

m(ω2
0−ω2)

x Position V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 3) Ulog(10

−11, 10−9)

E Magnitude of electric field V, F V, F, P U(1, 3) Ulog(10
−9, 10−7)

m Mass V, F V, F, P U(1, 3) Ulog(10
−28, 10−26)

ω0 Angular velocity V, F V, F U(3, 5) Ulog(10
9, 1011)

ω Angular velocity V, F V, F U(1, 2) Ulog(10
9, 1011)

II.21.32 ϕ = q
4πϵr(1−v/c)

ϕ Electric potential V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

r Distance V, F V, F, P U(1, 5) Ulog(10
0, 102)

v Velocity V, F V, F, P U(1, 2) Ulog(10
5, 107)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

II.34.2 µ = qvr
2

µ Magnetic moment V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F V, F U(1, 5) Ulog(10
5, 107)

r Radius V, F V, F, P U(1, 5) Ulog(10
−11, 10−9)

II.34.2a I = qv
2πr

I Electric Current V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F V, F U(1, 5) Ulog(10
5, 107)

r Radius V, F V, F, P U(1, 5) Ulog(10
−11, 10−9)

II.34.29a µ = qh
4πm

µ Bohr magneton V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−11, 10−9)

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

m Mass V, F V, F, P U(1, 5) Ulog(10
−30, 10−28)

II.37.1 E = µ(1 + χ)B

E Energy of magnetic field V, F V, F N/A N/A
µ Magnetic moment V, F V, F U(1, 5) Ulog(10

−25, 10−23)

χ Volume magnetic susceptibility V, F V, F U(1, 5) Ulog(10
4, 106)

B Magnetic field strength V, F V, F U(1, 5) Ulog(10
−3, 10−1)
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Table S6: Medium set of our proposed datasets (part 4).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

III.4.32 n = 1
exp(hω/2πkT )−1

n Average number of photons V, F V, F, P N/A N/A
h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

ω Frequency V, F V, F, P U(1, 5) Ulog(10
8, 1010)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

III.8.54 |C|2 = sin2
(
2πAt

h

) |C|2 Probability V, F V, F, NN N/A N/A
A Energy V, F V, F U(1, 2) Ulog(10

−18, 10−16)

t Time V, F V, F, NN U(1, 2) Ulog(10
−18, 10−16)

h Planck constant V, F C, F, P U(1, 4) 6.626 × 10−34

III.13.18 v = 4πAb2

h k

v Speed of the waves V, F V, F N/A N/A
A Energy V, F V, F U(1, 5) Ulog(10

−18, 10−16)

b Lattice constant V, F V, F, P U(1, 5) Ulog(10
−10, 10−8)

k Wavenumber V, F V, F, P U(1, 5) Ulog(10
−1, 101)

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

III.14.14 I = I0 (exp (q∆V/κT ) − 1)

I Electric Current V, F V, F N/A N/A
I0 Electric current V, F V, F U(1, 5) Ulog(10

−3, 10−1)

q Electric charge V, F V, F, P U(1, 2) Ulog(10
−22, 10−20)

∆V Voltage V, F V, F U(1, 2) Ulog(10
−1, 101)

κ Boltzmann constant V, F C, F, P U(1, 2) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 2) Ulog(10
1, 103)

III.15.12 E = 2A (1 − cos (kd))

E Energy V, F V, F, P N/A N/A
A Amplitude V, F V, F, P U(1, 5) Ulog(10

−18, 10−16)

k Propagation coefficient V, F V, F, P U(1, 5) Ulog(10
−1, 101)

d Lattice constant V, F V, F, P U(1, 5) Ulog(10
−10, 10−8)

III.15.14 m = h2

8π2Ab2

m Effective mass V, F V, F, P N/A N/A
h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

A Amplitude V, F V, F, P U(1, 5) Ulog(10
−18, 10−16)

b Lattice constant V, F V, F, P U(1, 5) Ulog(10
−10, 10−8)

III.17.37 f = β(1 + α cos θ)

f Distribution V, F V, F N/A N/A
β Variable V, F V, F, P U(1, 5) Ulog(10

−18, 10−16)

α Variable V, F V, F U(1, 5) Ulog(10
−18, 10−16)

θ Angle V, F V, F, NN U(1, 5) U(0, 2π)

III.19.51 E = − mq4

2(4πϵ)2(h/(2π))2n2

E Energy V, F V, F, P N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−30, 10−28)

q Electric charge V, F V, F U(1, 5) Ulog(10
−11, 10−9)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

n Number of protons V, F V, I,P U(1, 5) Ulog(10
0, 102)

B8 U = E

1+ E
mc2

(1−cos θ)

U Variable V, F V, F, P N/A N/A
E Electromagnetic energy V, F V, F, P U(1, 3) Ulog(10

−24, 10−22)

m Electron mass V, F C, F, P U(1, 3) 9.109 × 10−31

c Speed of light V, F C, F, P U(1, 3) 2.998 × 108

θ Incidence angle V, F V, F U(1, 3) U(−π, π)

B18 ρ = 3
8πG

(
c2kf
a2

f
+ H2

)
ρ Variable V, F V, F N/A N/A
G Gravitational constant V, F C, F, P U(1, 5) 6.674 × 10−11

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

kf Variable V, F V, F U(1, 5) Ulog(10
1, 103)

af Distance V, F V, F, P U(1, 5) Ulog(10
8, 1010)

H Variable V, F V, F U(1, 5) Ulog(10
0, 102)
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Table S7: Hard set of our proposed datasets (part 1).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.6.20 f = exp
(
− θ2

2σ2

)
/
√
2πσ2

f Probability density func-
tion

V, F V, F N/A N/A

θ Position V, F V, F U(1, 3) Ulog(10
−1, 101)

σ Standard deviation V, F V, F, P U(1, 3) Ulog(10
−1, 101)

I.6.20a f = exp
(
− θ2

2

)
/
√
2π

f Probability density func-
tion

V, F V, F N/A N/A

θ Position V, F V, F U(1, 3) Ulog(10
−1, 101)

I.6.20b f = exp

(
− (θ−θ1)2

2σ2

)
/
√
2πσ

f Probability density func-
tion

V, F V, F N/A N/A

θ Position V, F V, F U(1, 3) Ulog(10
−1, 101)

θ1 Position V, F V, F U(1, 3) Ulog(10
−1, 101)

σ Standard deviation V, F V, F, P U(1, 3) Ulog(10
−1, 101)

I.9.18
F =

Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

F Force of gravity V, F V, F N/A N/A
G Gravitational constant V, F C, F, P U(1, 2) 6.674 × 10−11

m1 Mass V, F V, F, P U(1, 2) Ulog(10
0, 103)

m2 Mass V, F V, F, P U(1, 2) Ulog(10
0, 103)

x2 Position V, F V, F U(1, 2) Ulog(10
0, 101)

x1 Position V, F V, F U(3, 4) Ulog(10
0, 101)

y2 Position V, F V, F U(1, 2) Ulog(10
0, 101)

y1 Position V, F V, F U(3, 4) Ulog(10
0, 101)

z2 Position V, F V, F U(1, 2) Ulog(10
0, 101)

z1 Position V, F V, F U(3, 4) Ulog(10
0, 101)

I.15.3t t1 =
t−ux/c2√
1−u2/c2

t1 Time V, F V, F N/A N/A
t Time V, F V, F, NN U(1, 5) Ulog(10

−6, 10−4)

u Velocity V, F V, F U(1, 2) Ulog(10
5, 107)

x Position V, F V, F U(1, 5) Ulog(10
0, 102)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

I.15.3x x1 = x−ut√
1−u2/c2

x1 Position V, F V, F N/A N/A
x Position V, F V, F U(5, 10) Ulog(10

0, 102)

u Velocity V, F V, F U(1, 2) Ulog(10
6, 108)

t Time V, F V, F U(1, 2) Ulog(10
−6, 10−4)

c Speed of light V, F C, F, P U(3, 20) 2.998 × 108

I.29.16
x =√

x2
1 + x2

2 + 2x1x2 cos (θ1 − θ2)

x Wavelength V, F V, F, P N/A N/A
x1 Wavelength V, F V, F, P U(1, 5) Ulog(10

−1, 101)

x2 Wavelength V, F V, F, P U(1, 5) Ulog(10
−1, 101)

θ1 Angle V, F V, F, NN U(1, 5) U(0, 2π)

θ2 Angle V, F V, F, NN U(1, 5) U(0, 2π)

I.30.3 I = I0
sin2(nθ/2)

sin2(θ/2)

I Amplitude of combined
wave

V, F V, F N/A N/A

I0 Amplitude of wave V, F V, F, P U(1, 5) Ulog(10
−3, 10−1)

n The number of waves V, F V, I,P U(1, 5) Ulog(10
1, 103)

θ Phase difference V, F V, F U(1, 5) U(−2π, 2π)

I.32.17 P =
(
1
2 ϵcE

2
) (

8πr2

3

)(
ω4

(ω2−ω2
0)

2

)
P Energy V, F V, F, P N/A N/A
ϵ Vacuum permittivity V, F C, F, P U(1, 2) 8.854 × 10−12

c Speed of light V, F C, F, P U(1, 2) 2.998 × 108

E Magnitude of electric
field

V, F V, F, P U(1, 2) Ulog(10
1, 103)

r Radius V, F V, F, P U(1, 2) Ulog(10
−2, 100)

ω Frequency of electromag-
netic waves

V, F V, F U(1, 2) Ulog(10
9, 1011)

ω0 Frequency of electromag-
netic waves

V, F V, F U(3, 5) Ulog(10
9, 1011)

I.34.14 ω =
1+v/c√
1−v2/c2

ω0

ω Frequency of electromag-
netic waves

V, F V, F N/A N/A

v Velocity V, F V, F U(1, 2) Ulog(10
6, 108)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

ω0 Frequency of electromag-
netic waves

V, F V, F, P U(1, 5) Ulog(10
9, 1011)
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Table S8: Hard set of our proposed datasets (part 2).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.37.4
I12 = I1 + I2

+ 2
√

I1I2 cos δ

I12 Amplitude of wave V, F V, F, P N/A N/A
I1 Amplitude of wave V, F V, F, P U(1, 5) Ulog(10

−1, 10−3)

I2 Amplitude of wave V, F V, F, P U(1, 5) Ulog(10
−1, 10−3)

δ Phase difference V, F V, F U(1, 5) U(0, π)

I.39.22 P = nkT
V

P Pressure V, F V, F, P N/A N/A
n Number of molecules V, F V, I⋆, P U(1, 5) Ulog(10

23, 1025)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

V Volume V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.40.1 n = n0 exp (−mgx/kT )

n Molecular density V, F V, F, P N/A N/A
n0 Molecular density V, F V, F, P U(1, 5) Ulog(10

25, 1027)

m Mass V, F V, F, P U(1, 5) Ulog(10
−24, 10−22)

g Gravitational acceleration V, F C, F, P U(1, 5) 9.807 × 100

x Height V, F V, F, P U(1, 5) Ulog(10
−2, 100)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

I.41.16
Lrad =

h

2π

ω3

π2c2(exp(hω/2πkT ) − 1)

Lrad Radiation per frequency V, F V, F, P N/A N/A
h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

ω Frequency of electromagnetic
wave

V, F V, F, P U(1, 5) Ulog(10
−1, 101)

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

I.44.4 Q = nkT ln(
V2
V1

)

Q Energy V, F V, F N/A N/A
n Number of molecules V, F V, I⋆, P U(1, 5) Ulog(10

23, 1025)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

V2 Volume V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

V1 Volume V, F V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.50.26 x = K
(
cosωt + ϵ cos2 ωt

)
x Amplitude V, F V, F N/A N/A
K Amplitude V, F V, F, P U(1, 3) Ulog(10

−1, 101)

ω Angular velocity V, F V, F U(1, 3) Ulog(10
1, 103)

t Time V, F V, F, NN U(1, 3) Ulog(10
−3, 10−1)

ϵ Variable V, F V, F U(1, 3) Ulog(10
−3, 10−1)

II.6.15a E = p
4πϵ

3z
r5

√
x2 + y2

E Electric field V, F V, F N/A N/A
p Electric dipole moment V, F V, F U(1, 3) Ulog(10

−22, 10−20)

ϵ Vacuum permittivity V, F C, F, P U(1, 3) 8.854 × 10−12

z Position V, F V, F U(1, 3) Ulog(10
−10, 10−8)

r Distance V, F V, F, P U(1, 3) Ulog(10
−10, 10−8)

x Position V, F V, F U(1, 3) Ulog(10
−10, 10−8)

y Position V, F V, F U(1, 3) Ulog(10
−10, 10−8)

II.6.15b E = p
4πϵ

3 cos θ sin θ
r3

E Electric field V, F V, F N/A N/A
p Electric dipole moment V, F V, F U(1, 3) Ulog(10

−22, 10−20)

ϵ Vacuum permittivity V, F C, F, P U(1, 3) 8.854 × 10−12

θ Angle V, F V, F U(1, 3) U(0, π)

r Distance V, F V, F, P U(1, 3) Ulog(10
−10, 10−8)

II.11.17 n = n0

(
1 +

p0E cos θ
kT

)
n Number of polar molecules

per angle per unit volume
V, F V, F N/A N/A

n0 Number of molecules per unit
volume

V, F V, F, P U(1, 3) Ulog(10
27, 1029)

p0 Electric dipole moment V, F V, F U(1, 3) Ulog(10
−22, 10−20)

E Magnitude of electric field V, F V, F U(1, 3) Ulog(10
1, 103)

θ Angle V, F V, F, NN U(1, 3) U(0, 2π)

k Boltzmann constant V, F C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 3) Ulog(10
1, 103)

II.11.20 P =
n0p20E

3kT

P Polarizability V, F V, F N/A N/A
n0 Number of atom V, F V, I⋆, P U(1, 5) Ulog(10

23, 1025)

p0 Electric dipole moment V, F V, F U(1, 5) Ulog(10
−22, 10−20)

E Magnitude of electric field V, F V, F U(1, 5) Ulog(10
1, 103)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)
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Table S9: Hard set of our proposed datasets (part 3).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

II.11.27 P = Nα
1−(nα/3)

ϵE

P Polarizability V, F V, F N/A N/A
N Number of atom V, F V, I⋆, P U(0, 1) Ulog(10

23, 1025)

α Molecular polarizability V, F V, F, P U(0, 1) Ulog(10
−33, 10−31)

ϵ Vacuum permittivity V, F C, F, P U(1, 2) 8.854 × 10−12

E Magnitude of electric
field

V, F V, F, P U(1, 2) Ulog(10
1, 103)

II.11.28 κ = 1 + Nα
1−(Nα/3)

κ Electric dipole moment
per unit volume

V, F V, F N/A N/A

N Number of electric
dipoles

V, F V, I⋆, P U(0, 1) Ulog(10
23, 1025)

α Molecular polarizability V, F V, F, P U(0, 1) Ulog(10
−33, 10−31)

II.13.23 ρ =
ρ0√

1−v2/c2

ρ Electric charge density V, F V, F, P N/A N/A
ρ0 Electric charge density V, F V, F, P U(1, 5) Ulog(10

27, 1029)

v Velocity V, F V, F, P U(1, 2) Ulog(10
6, 108)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

II.13.34 j =
ρ0v√

1−v2/c2

j Electric current V, F V, F N/A N/A
ρ0 Electric charge density V, F V, F, P U(1, 5) Ulog(10

27, 1029)

v Velocity V, F V, F, P U(1, 2) Ulog(10
6, 108)

c Speed of light V, F C, F, P U(3, 10) 2.998 × 108

II.24.17 k =
√

ω2/c2 − π2/a2

k Wavenumber V, F V, F, P N/A N/A
ω Angular velocity V, F V, F U(4, 6) Ulog(10

9, 1011)

c Speed of light V, F C, F, P U(1, 2) 2.998 × 108

a Length V, F V, F, P U(2, 4) Ulog(10
−3, 10−1)

II.35.18
a =

N

exp(µB/kT ) + exp(−µB/kT )

a Number of atoms with
the equivalent magnetic
moment

V, F V, I⋆, P N/A N/A

N Number of atoms per unit
volume

V, F V, I⋆, P U(1, 3) Ulog(10
23, 1025)

µ Magnetic moment V, F V, F, P U(1, 3) Ulog(10
−25, 10−23)

B Magnetic flux density V, F V, F, P U(1, 3) Ulog(10
−3, 10−1)

k Boltzmann constant V, F C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 3) Ulog(10
1, 103)

II.35.21 M = Nµ tanh
(

µB
kT

)
M Number of magnetized

atoms
V, F V, I⋆, P N/A N/A

N Number of atom V, F V, I⋆, P U(1, 5) Ulog(10
23, 1025)

µ Magnetic moment V, F V, F, P U(1, 5) Ulog(10
−25, 10−23)

B Magnetic flux density V, F V, F, P U(1, 5) Ulog(10
−3, 10−1)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

II.36.38 x = µH
kT + µλ

ϵc2kT
M

x Parameter of magnetiza-
tion

V, F V, F N/A N/A

µ Magnetic moment V, F V, F U(1, 3) Ulog(10
−25, 10−23)

H Magnetic field strength V, F V, F U(1, 3) Ulog(10
−3, 10−1)

k Boltzmann constant V, F C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 3) Ulog(10
1, 103)

λ Constant V, F V, F, NN U(1, 3) U(0, 1)

ϵ Vacuum permittivity V, F C, F, P U(1, 3) 8.854 × 10−12

c Speed of light V, F C, F, P U(1, 3) 2.998 × 108

M Number of magnetized
atoms

V, F V, I⋆, P U(1, 3) Ulog(10
23, 1025)

III.4.33 E = hω
2π(exp(hω/2πkT )−1)

E Energy V, F V, F, P N/A N/A
h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

ω Frequency V, F V, F, P U(1, 5) Ulog(10
8, 1010)

k Boltzmann constant V, F C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F V, F, P U(1, 5) Ulog(10
1, 103)

III.9.52

PI→II =(
2πµEt

h

)2 sin2 ((ω − ω0) t/2)

(ω − ω0) t/2)2

PI→II Probability V, F V, F, NN N/A N/A
µ Electric dipole moment V, F V, F U(1, 3) Ulog(10

−22, 10−20)

E Magnitude of electric
field

V, F V, F U(1, 3) Ulog(10
1, 103)

t Time V, F V, F, NN U(1, 3) Ulog(10
−18, 10−16)

h Planck constant V, F C, F, P U(1, 3) 6.626 × 10−34

ω Frequency V, F V, F, P U(1, 5) Ulog(10
8, 1010)

ω0 Resonant frequency V, F V, F, P U(1, 5) Ulog(10
8, 1010)
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Table S10: Hard set of our proposed datasets (part 4).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

III.10.19 E = µ
√

B2
x + B2

y + B2
z

E Energy V, F V, F N/A N/A
µ Magnetic moment V, F V, F U(1, 5) Ulog(10

−25, 10−23)

Bx Element of magnetic field V, F V, F U(1, 5) Ulog(10
−3, 10−1)

By Element of magnetic field V, F V, F U(1, 5) Ulog(10
−3, 10−1)

Bz Element of magnetic field V, F V, F U(1, 5) Ulog(10
−3, 10−1)

III.21.20 J = −ρ q
mA

J Electric Current V, F V, F N/A N/A
ρ Electric charge density V, F V, F, N U(1, 5) Ulog(10

27, 1029)

q Electric charge V, F V, F, N U(1, 5) Ulog(10
−11, 10−9)

A Magnetic vector potential V, F V, F U(1, 5) Ulog(10
−3, 10−1)

m Mass V, F V, F, P U(1, 5) Ulog(10
−30, 10−28)

B1 A =
(

Z1Z2αhc

4E sin2(θ/2)

)2

A Differential scattering cross section V, F V, F N/A N/A
Z1 Atomic number V, F V, I,P U(1, 2) Ulog(10

0, 101)

Z2 Atomic number V, F V, I,P U(1, 2) Ulog(10
0, 101)

α Fine structure constant V, F C, F, P U(1, 5) 7.297 × 10−3

h Dirac’s constant V, F C, F, P U(1, 2) 1.055 × 10−34

c Speed of light V, F C, F, P U(1, 2) 2.998 × 108

E Non-relativistic kinetic energy V, F V, F, P U(1, 3) Ulog(10
−18, 10−16)

θ Scattering angle V, F V, F, NN U(1, 3) U(0, 2π)

B2

k =
mkG

L2(
1 +

√
1 +

2EL2

mk2
G

cos (θ1 − θ2)

)
k Variable V, F V, F N/A N/A
m Mass (The Earth) V, F V, F, P U(1, 3) Ulog(10

23, 1025)

kG Variable V, F V, F, P U(1, 3) Ulog(10
9, 1011)

L Distance V, F V, F, P U(1, 3) Ulog(10
8, 1010)

E Energy V, F V, F, P U(1, 3) Ulog(10
25, 1027)

θ1 Angle V, F V, F, NN U(0, 6) U(0, 2π)

θ2 Angle V, F V, F, NN U(0, 6) U(0, 2π)

B3 r =
d(1−α2)

1+α cos(θ1−θ2)

r Distance V, F V, F, P N/A N/A
d Semimajor axis of elliptical orbit V, F V, F, P U(1, 3) Ulog(10

8, 1010)

α Orbital eccentricity V, F V, F, P U(2, 4) U(0, 1)

θ1 Angle V, F V, F, NN U(4, 5) U(0, 2π)

θ2 Angle V, F V, F, NN U(4, 5) U(0, 2π)

B4 v =

√
2
m

(
E − U − L2

2mr2

)
v Velocity V, F V, F, P N/A N/A
m Mass (The Earth) V, F V, F, P U(1, 3) Ulog(10

23, 1025)

E Energy V, F V, F, P U(8, 12) Ulog(10
25, 1027)

U Potential energy V, F V, F, P U(1, 3) Ulog(10
25, 1027)

L Angular momentum V, F V, F U(1, 3) Ulog(10
8, 1010)

r Distance V, F V, F, P U(1, 3) Ulog(10
8, 1010)

B5 t = 2πd3/2√
G(m1+m2)

t Orbital period V, F V, F, P N/A N/A
d Semimajor axis of elliptical orbit V, F V, F, P U(1, 3) Ulog(10

8, 1010)

G Gravitational constant V, F C, F, P U(1, 3) 6.674 × 10−11

m1 Mass (The Earth) V, F V, F, P U(1, 3) Ulog(10
23, 1025)

m2 Mass (The Earth) V, F V, F, P U(1, 3) Ulog(10
23, 1025)

B6 α =

√
1 + 2ϵ2EL2

m(Z1Z2q2)2

α Orbital eccentricity V, F V, F, P N/A N/A
ϵ Energy V, F V, F U(1, 3) Ulog(10

−18, 10−16)

E Energy V, F V, F, P U(1, 3) Ulog(10
−18, 10−16)

L Distance V, F V, F, P U(1, 3) Ulog(10
−10, 10−8)

m Mass V, F V, F, P U(1, 3) Ulog(10
−30, 10−28)

Z1 Atomic number V, F V, I,P U(1, 3) Ulog(10
0, 101)

Z2 Atomic number V, F V, I,P U(1, 3) Ulog(10
0, 101)

q Electric charge V, F V, F U(1, 3) Ulog(10
−11, 10−9)

B7 H =

√
8πGρ

3 − kfc
2

a2
f

H Hubble’s constant V, F V, F, P N/A N/A
G Gravitational constant V, F C, F, P U(1, 3) 6.674 × 10−11

ρ Density of the Universe V, F V, F, P U(1, 3) Ulog(10
−27, 10−25)

kf Spacetime curvature V, F V, I U(1, 2) U(−1, 1)

c Speed of light V, F C, F, P U(1, 2) 2.998 × 108

af Radius V, F V, F, P U(1, 3) Ulog(10
8, 1010)

B9
P =

−
32

5

G4

c5
(m1m2)

2(m1 + m2)

r5

P Gravitational wave energy V, F V, F N/A N/A
G Gravitational constant V, F C, F, P U(1, 2) 6.674 × 10−11

c Speed of light V, F C, F, P U(1, 2) 2.998 × 108

m1 Mass V, F V, F, P U(1, 5) Ulog(10
23, 1025)

m2 Mass V, F V, F, P U(1, 5) Ulog(10
23, 1025)

r Distance V, F V, F, P U(1, 2) Ulog(10
8, 1010)
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Table S11: Hard set of our proposed datasets (part 5).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

B10 cos θ1 =
cos θ2−v/c

(1−v/c) cos θ2

cos θ1 Value V, F V, F N/A N/A
θ2 Angle V, F V, F U(1, 3) U(0, 2π)

v Velocity V, F V, F U(1, 3) Ulog(10
5, 107)

c Speed of light V, F C, F, P U(4, 6) 2.998 × 108

B11 I = I0
(

sin(α/2)
α/2

sin(Nδ/2)
sin(δ/2)

)2

I Wave intensity V, F V, F, P N/A N/A
I0 Amplitude of wave V, F V, F, P U(1, 3) Ulog(10

−3, 10−1)

α Wavelength of X-ray V, F V, F, P U(1, 3) Ulog(10
−11, 10−9)

N Number of phase difference V, F V, I,P U(1, 2) Ulog(10
0, 102)

δ Wavelength of X-ray V, F V, F, P U(1, 3) Ulog(10
−11, 10−9)

B12

F =
q

4πϵy2(
4πϵVed −

qdy3

(y2 − d2)2

)
F Force V, F V, F N/A N/A
q Electric charge V, F V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F C, F, P U(1, 5) 8.854 × 10−12

y Distance V, F V, F, P U(1, 3) Ulog(10
−2, 100)

Ve Voltage V, F V, F U(1, 5) Ulog(10
−1, 101)

d Distance V, F V, F, P U(4, 6) Ulog(10
−2, 100)

B13 Ve = q

4πϵ
√

r2+d2−2dr cosα

Ve Potential V, F V, F N/A N/A
ϵ permittivity V, F V, F, P U(1, 5) Ulog(10

−12, 10−10)

q Electric charge V, F V, F U(1, 5) Ulog(10
−3, 10−1)

r Distance V, F V, F, P U(1, 3) Ulog(10
−2, 100)

d Distance between dipoles V, F V, F, P U(4, 6) Ulog(10
−2, 100)

α Angle V, F V, F U(0, 6) U(0, 2π)

B14 Ve = Ef cos θ
(

α−1
α+2

d3

r2
− r
)

Ve Potential (out) V, F V, F N/A N/A
Ef Magnitude of electric field V, F V, F U(1, 5) Ulog(10

1, 103)

θ Angle V, F V, F U(0, 6) U(0, 2π)

r Distance V, F V, F, P U(1, 5) Ulog(10
−2, 100)

d Radius of dielectric sphere V, F V, F, P U(1, 5) Ulog(10
−2, 100)

α Polarizability V, F V, F U(1, 5) Ulog(10
−1, 101)

B15 ω0 =

√
1− v2

c2

1+ v
c

cos θ
ω

ω0 Frequency of electromagnetic waves V, F V, F N/A N/A
v Velocity V, F V, F, P U(1, 3) Ulog(10

5, 107)

c Speed of light V, F C, F, PU(5, 20) 2.998 × 108

ω Frequency of electromagnetic waves V, F V, F, P U(1, 5) Ulog(10
9, 1011)

θ Angle V, F V, F U(0, 6) U(0, 2π)

B16
E = qVe

+
√

(p − qA)2c2 + m2c4

E Energy V, F V, F N/A N/A
p Momentum V, F V, F U(1, 5) Ulog(10

−9, 10−7)

q Electric charge V, F V, F U(1, 5) Ulog(10
−11, 10−9)

A Vector potential V, F V, F U(1, 5) Ulog(10
1, 103)

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

m Mass V, F V, F, P U(1, 5) Ulog(10
−30, 10−28)

Ve Voltage V, F V, F U(1, 5) Ulog(10
−1, 101)

B17
E =

1

2m(
p
2
+ m

2
ω

2
x
2

(
1 + α

x

y

))
E Energy V, F V, F N/A N/A
m Mass V, F V, F, P U(1, 5) Ulog(10

−30, 10−28)

p Momentum V, F V, F U(1, 5) Ulog(10
−9, 10−7)

ω Frequency of electromagnetic waves V, F V, F, P U(1, 5) Ulog(10
9, 1011)

x Position V, F V, F U(1, 5) Ulog(10
−11, 10−9)

α Deviation from the harmonic oscillator V, F V, F U(1, 5) Ulog(10
−1, 101)

y Distance V, F V, F, P U(1, 5) Ulog(10
−11, 10−9)

B19

pf = −
1

8πG(
c4kf

a2
f

+ c
2
H

2
(1 − 2α)

)
pf Pressure V, F V, F N/A N/A
G Gravitational constant V, F C, F, P U(1, 5) 6.674 × 10−11

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

kf Variable V, F V, F U(1, 5) Ulog(10
1, 103)

af Distance V, F V, F, P U(1, 5) Ulog(10
8, 1010)

H Variable V, F V, F, P U(1, 5) Ulog(10
0, 102)

α Variable V, F V, F U(1, 5) U(−10, 10)

B20
A =

α2h2

4πm2c2

(
ω0

ω

)2

(
ω0

ω
+

ω

ω0

− sin
2
θ

)

A Differential cross section V, F V, F N/A N/A
α Fine structure constant V, F C, F, P U(1, 5) 7.297 × 10−3

h Planck constant V, F C, F, P U(1, 5) 6.626 × 10−34

m Electron mass V, F C, F, P U(1, 5) 9.109 × 10−31

c Speed of light V, F C, F, P U(1, 5) 2.998 × 108

ω0 Frequency V, F V, F, P U(1, 5) Ulog(10
9, 1011)

ω Frequency V, F V, F, P U(1, 5) Ulog(10
9, 1011)

θ Scattering angle V, F V, F U(0, 6) U(0, 2π)
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B Hyperparameters for Five Existing SR Baselines

Table S12 shows the hyperparameter space for the five existing symbolic regression baselines. The
hyperparameters of gplearn [3] 11, AFP [38], and AFP-FE [35] 12 are optimized by Optuna [40], a
hyperparameter optimization framework.

Table S12: Hyperparameter sets for the five existing symbolic regression baselines.

Method Hyperparameter sets

gplearn 100 trials with random combinations of the following hyperparameter spaces:
population_size: U(102, 103), generations: U(10, 102),
stopping_criteria: U(10−10, 10−2), warm_start: {True, False},
const_range: {None, (−1.0, 1.0), (−10, 10), (−102, 102), (−103, 103), (−104, 104)},
max_samples: U(0.9, 1.0), parsimony_coefficient: U(10−3, 10−2)

AFP 100 trials with random combinations of the following hyperparameter spaces:
popsize: U(100, 1000), g: U(250, 2500), stop_threshold: U(10−10, 10−2),
op_list: {[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’],
[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’, ’sin’, ’cos’]}

AFP-FE 100 trials with random combinations of the following hyperparameter spaces:
popsize: U(100, 1000), g: U(250, 2500), stop_threshold: U(10−10, 10−2),
op_list: {[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’],
[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’, ’sin’, ’cos’]}

AI Feynman {bftt: 60, epoch: 300, op: ’7ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 300, op: ’10ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 300, op: ’14ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 300, op: ’19ops.txt’, poly_deg: 3},
{bftt: 120, epoch: 300, op: ’14ops.txt’, poly_deg: 4},
{bftt: 120, epoch: 300, op: ’19ops.txt’, poly_deg: 4},
{bftt: 60, epoch: 500, op: ’7ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 500, op: ’10ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 500, op: ’14ops.txt’, poly_deg: 3},
{bftt: 60, epoch: 500, op: ’19ops.txt’, poly_deg: 3}

DSR {seed: 1, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed: 2, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed: 3, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed: 4, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed: 5, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed: 1, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed: 2, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed: 3, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed: 4, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed: 5, function_set: [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]}

11https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-regressor
12https://github.com/cavalab/ellyn
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