|
|

|
|
h_

|

Stdedsill s A45 Research

|

b
I

12)

RZAI: Towards Resistant and Resilient Al
in an Evolving World

Youbang Sun'*?, Xiang Wang'”, Jie Fu!, Chaochao Lu', Bowen Zhou!*

!'Shanghai Artificial Intelligence Laboratory
2Tsinghua University
3University of Science and Technology of China

September 4, 2025

Abstract

In this position paper, we address the persistent gap between rapidly growing Al capabilities and
lagging safety progress. Existing paradigms divide into “Make Al Safe”, which applies post-hoc
alignment and guardrails but remains brittle and reactive, and “Make Safe AI”, which emphasizes
intrinsic safety but struggles to address unforeseen risks in open-ended environments. We there-
fore propose safe-by-coevolution as a new formulation of the “Make Safe Al” paradigm, inspired
by biological immunity, in which safety becomes a dynamic, adversarial, and ongoing learning
process. To operationalize this vision, we introduce RZ AI—Resistant and Resilient Al—as a practi-
cal framework that unites resistance against known threats with resilience to unforeseen risks.
R2AI integrates fast and slow safe models, adversarial simulation and verification through a safety
wind tunnel, and continual feedback loops that guide safety and capability to coevolve. We argue
that this framework offers a scalable and proactive path to maintain continual safety in dynamic
environments, addressing both near-term vulnerabilities and long-term existential risks as Al
advances toward AGI and ASI.

1 Introduction

Recent years have witnessed rapid developments and huge breakthroughs in Al, leading to its integra-
tion into everyday life and establishing it as a foundational infrastructure in society (Van Der Vlist et
al,, 2024). As Al systems are increasingly deployed in safety-critical domains (e.g., scientific research
(Jumper et al,, 2021; Zhang et al., 2023; Novikov et al., 2025), autonomous driving (Wang et al., 2021;
Rowe et al.,, 2024), healthcare (Panayides et al., 2020; Bekbolatova et al., 2024), law (Lai et al., 2024)), the
risks posed by unsafe or unreliable outputs have become more pronounced. In such settings, failures
can result in severe, even catastrophic, consequences. Beyond these near-term concerns, the continued
advancement toward highly autonomous and superhuman-level Al raises long-term existential risks
(Dalrymple et al., 2024; Bengio et al.,, 2025a,b; Kulveit et al., 2025; Clymer et al., 2025; Shanghai Al Lab,
2025a). As capabilities scale, so does the difficulty of aligning, controlling, and governing these systems,



R2ZAI: Towards Resistant and Resilient Al in an Evolving World

90  e— 455 Line Al Safety 45° Line Safe AGI
+ M'? ¢ rolplc Reflection
istal || %
° 80 Alibaba
9] Google Intervention
K Al [ Fot
£70 % OpenA +
(] 1 i .
& Deepbeek % % Approximate|Alignment Superalignment
%
60 X X Red Li RLHF RLAIF
? 4 e ine InternLM Claude 4

SFT
GPT-3

g Transf
Al Capability ranstormer Al Capability

as

ChatGPTQwen LLaMA3 oo io g
GPT-4

50 >
50 60 70 80 90

Capability Score
(a) (b) (c)

Figure 1 The AI-45° Law (Yang et al., 2024): coevolving capability with safety.!(a) Empirical distribution of
leading foundation models, showing a widening gap between capability scores and safety scores across major
labs. (b) Conceptual safety—capability plane comparing the current roadmap (pink) with the yellow, red, and 45°
trajectories toward safe AGI, emphasizing transitions from approximate alignment to reflection. (c) Historical
timeline of frontier models, from Transformer (Vaswani et al,, 2017) to GPT-5 (OpenAl, 2025), Claude-4
(Anthropic, 2025), and Gemini-2.5 (Comanici et al., 2025), illustrating the divergence between capability scaling
and current alignment methods (e.g., SFT (Ouyang et al., 2022), RLHF (Christiano et al., 2017), RLAIF (Bai et al,,
2022)), and the need for a coevolutionary path to Safe AGI.

thus potentially leading to scenarios with irreversible societal or civilizational impacts (Bengio et al.,
2025¢; Shanghai Al Lab & Concordia Al, 2025).

Despite escalating risks, safety progress has lagged far behind capability growth. As shown in Figure
1a, evaluations show a consistent pattern: leading Al models worldwide—such as GPT-5 (OpenAl,
2025), Claude 4 (Anthropic, 2025), and Gemini-2.5 (Comanici et al., 2025)—demonstrate significantly
higher capability scores than safety scores. This imbalance reveals a structural problem: current safety
approaches are reactive, fragmented, and incapable of scaling with capability. To capture this tension,
Shanghai Al Lab proposed the AI-45° Law (Yang et al., 2024): safety and capability must coevolve
along a 45° diagonal trajectory. Temporary deviations are tolerable, but persistent dips below the
45° line increase the risk of catastrophic misalignment, while rising above it may unnecessarily stall
innovation. We further define two thresholds: yellow lines serve as early warnings when capability
begins to outpace safety; red lines denote irreversible, catastrophic risks that must never be crossed
(IDAIS, 2024, 2025).

”

Current safety research can be broadly categorized into two paradigms. The dominant “Make Al Safe
paradigm seeks to improve safety after model development, typically through alignment fine-tuning
(e.g., RLHF (Christiano et al., 2017), RLAIF (Bai et al,, 2022)), red teaming (Perez et al., 2022; Ganguli
et al,, 2022; Pavlova et al., 2024), and guardrail (Bai et al., 2022; Rajpal, 2023; Oh et al., 2024). While
effective in mitigating known risks, these methods are often reactive, brittle, expensive, and struggle
to address unknown or emerging risks. In contrast, the “Make Safe AI” paradigm emphasizes intrinsic

!Figure 1a is reproduced from data available at https://aiben.ch. Figures 1b and 1c are adapted from Figure 1 in Yang
et al. (2024).
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safety, designing systems to be safe by construction. Prominent directions include formal guarantees
(Szegedy, 2020; Dalrymple et al., 2024) and Scientist Al (Bengio et al., 2025a). Yet even these approaches
often fall short in open-ended environments where novel risks cannot be fully anticipated.

To achieve scalable safety in an envolving world, we must rethink what “Make Safe Al” entails. We argue
that its core principle should be coevolution: safety must not be treated as a constraint or one-time
guarantee, but as a continuous, adaptive capability that evolves alongside intelligence in uncertain,
dynamic environments. We therefore propose safe-by-coevolution as a new formulation for “Make
Safe AI”, inspired by biological immunity (Cooper & Alder, 2006; Miiller et al., 2018; Papkou et al.,
2019), in which safety becomes a dynamic, adversarial, and ongoing learning process. By embedding
coevolutionary mechanisms into the Al lifecycle, systems can remain safe through sustained interaction
with real and simulated environments. Just as human immunity develops through continual exposure
to pathogens (Flajnik & Kasahara, 2010; Nourmohammad et al.,, 2016; Buckingham & Ashby, 2022), Al
must develop safety through ongoing interaction with its environment. Without such an “immune
system”, advanced Al risks becoming powerful yet dangerously brittle, and unlike humans, a single
catastrophic failure could be irreversible.

Safe-by-coevolution advances a proactive path for safety evolution. It is structured around three
iterative steps: 1) Near-term safety guarantee: ensure that an Al system at time ¢, is verifiably within
a defined safety margin; 2) Safe iterative step: for any system already safe, design coevolutionary
mechanisms—adversarial interactions, feedback loops, and continuous updates—to guide each up-
grade back within that margin; 3) Continual safety by induction: repeat this loop so that safety evolves in
sync with capability. Unlike reactive patching, this approach integrates safety into the developmental
process. To address unforeseen risks (e.g., paradigm shifts or red-line events), it further incorporates a
reset-and-recover mechanism: halting unsafe systems, redefining safety margins, and establishing new
verified checkpoints to sustain coevolution.

To realize this vision, we introduce R?’AI—Resistant and Resilient Al—as a practical framework for
safe-by-coevolution. R?AI unifies resistance and resilience as the two foundational and complementary
dimensions of intrinsic safety: resistance captures robustness against known threats, while resilience
emphasizes recovery and adaptation under unforeseen risks. Specifically, R2AI comprises four in-
teracting components: (i) fast safe models for real-time response, (ii) slow safe models for verification
and reasoning, (iii) a safety wind tunnel that simulates adversarial attacks and validation loops, and
(iv) an external environment for interacting with diverse, realistic scenarios. Through adversarial and
cooperative dynamics, these components coevolve to embed safety as a learned and adaptive property.
Over time, slow mechanisms become internalized into fast, intuitive safeguards, thereby lowering the
cost of compliance and enabling scalable, intrinsic safety even at the frontier of AGI (Goertzel, 2014;
Lake et al., 2017; Baum, 2017; Bubeck et al., 2023; Morris et al., 2024; Raman et al., 2025).

Our position. We propose R2AI—a framework uniting resistance and resilience—as a scalable and
intrinsically adaptive approach to Al safety. Grounded in safe-by-coevolution, it reconceives safety as a
continual learning process rather than a static constraint, enabling systems to withstand known threats,
adapt to unforeseen risks, and evolve in step with capability. This redefinition offers a generalizable
alternative to brittle alignment or top-down control, providing a proactive path to sustain safety
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Figure 2 Conceptual contrast between “Make Al Safe” and “Make Safe AI.

across dynamic environments and future ASI (Nick, 2014; Kim et al., 2024; Hendrycks et al., 2025).

Structure of this paper. The remainder of the paper is organized as follows. Section 2 reconsiders
the paradigm of “Make Safe Al” and introduces resistance and resilience as its foundational properties.
Section 3 formalizes the safe-by-coevolution principle, establishing its theoretical foundation and oper-
ational steps. Section 4 presents the R*AI framework, detailing its core components, mechanisms, and
continual learning strategies. Section 5 discusses the implications, applications, and societal impacts
of R?AI, highlighting its relevance to both near-term safety challenges and long-term existential risks.

2 Rethinking “Make Safe AI”

The contrast between “Make Al Safe” and “Make Safe Al”, as shown in Figure 2, underscores a
fundamental shift in perspective. While “Make Al Safe” relies on post-hoc fixes, reactive defenses,
and costly patching that falter under irreversible risks, “Make Safe Al” envisions safety as a built-in,
proactive, and evolving capability. This transition requires rethinking safety not as an external add-on,
but as an intrinsic property that coevolves with intelligence.

Existing work toward “Make Safe Al” has made important progress—ranging from formal guarantees
(Seshia et al,, 2022; Dalrymple et al., 2024) to constrained design choices such as Scientist Al (Bengio et
al,, 2025a) and Tool Al (Karnofsky, 2024). Yet these approaches struggle in open-ended, non-stationary
environments where novel objectives, adversarial pressures, and distributional shifts are inevitable.

We argue that the foundation of “Make Safe AI” must rest on two complementary properties, inspired
by ecological systems where long-lived organisms survive under continual stress (Holling et al., 1973;
Levin, 1998; Gunderson, 2000; Walker et al., 2004): resistance, the capacity to withstand and mitigate
known threats, and resilience, the capacity to recover, adapt, and improve in the face of unforeseen
disturbances. Unlike static safeguards, these properties are endogenous, enabling systems to maintain
integrity across dynamic and uncertain environments.

Building on this foundation, we propose safe-by-coevolution as a new formulation of the “Make Safe Al”
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Figure 3 Five levels of “Make Safe Al”, which progressively embed safety as an intrinsic and evolving capability.

paradigm. Inspired by biological immunity (Cooper & Alder, 2006; Miiller et al., 2018; Papkou et al.,
2019), this principle reconceives safety as a dynamic, adversarial, and ongoing learning process. Rather
than attaching fixed safeguards to capable systems, safety itself must scale with capability—reflexively,
adaptively, and proactively. This redefinition is essential for ensuring that Al systems preserve both
functional integrity and ethical alignment in real-world complexity.

2.1 Levels of “Make Safe AI”

Building on this redefinition of “Make Safe Al”, we can further structure its progression into a hierarchy
of safety levels. As illustrated in Figure 3, safety is not a binary attribute but an evolving spectrum,
intrinsically built to adapt amid uncertainty. This perspective highlights how safety matures from
basic alignment toward fully verified, self-evolving guarantees. To instantiate this view, we propose a
five-level spectrum that extends the causal ladder of trustworthy Al (Yang et al., 2024). This spectrum
reflects increasing degrees of adaptivity, autonomy, and assurance in dynamic environments, capturing
the progression from approximate alignment to formal, verifiable safety.

At the foundational layers, resistance anchors safety by providing robustness against known risks:
L1 Alignment minimizes misalignment through approximate tuning, and L2 Intervention ensures
oversight and the ability to halt unsafe behavior. Building upward, resilience enables adaptive safety
beyond reactive correction: L3 Mimetic Reflection introduces internal reflection by imitating proven
safe behaviors to anticipate risks, L4 Evolutionary Reflection advances this reflection into continual
co-adaptation with environments, and L5 Verifiable Reflection culminates in formalized reflection,
where provable guarantees sustain resilience even under uncertainty. Specifically,
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« L1: Alignment. Safety is achieved through approximate alignment (Yang et al., 2024), typically
via supervised fine-tuning, direct preference optimization (Rafailov et al., 2023; Meng et al.,
2024; Wu et al,, 2024b), reinforcement learning from human feedback (Ouyang et al., 2022; Bai
et al,, 2022; Shao et al,, 2024), knowledge editing (Meng et al., 2022; Fang et al., 2025; Jiang et
al,, 2025), or activation steering (Arditi et al., 2024; Panickssery et al., 2023). While practical,
such alignment is static and correlation-based, providing robustness against known risks but
requiring continual updates to withstand new tasks or adversarial strategies (Perez et al., 2023;
Zou et al,, 2023a; Wei et al., 2023; Yi et al., 2024; Ji et al., 2024).

+ L2: Intervention. Safety is treated as a control problem (Hendrycks et al., 2021), where systems
monitor outputs and intervene when thresholds are violated (Orseau & Armstrong, 2016; Zou
et al,, 2024; Xu et al., 2024), guided by explicit feedback (Bengio et al., 2025¢; Zhu et al., 2025).
This level provides oversight and interruption, offering robustness through reactive correction
(Ganguli et al,, 2022). In addition, advances in mechanistic interpretability (Sharkey et al., 2025)
provide tools to identify and intervene on unsafe internal circuits or representations before they
manifest in outputs (Nanda et al.,, 2023; Conmy et al., 2023; Bereska & Gavves, 2024). However,
the overall effectiveness depends on timely and reliable feedback signals (Leike et al., 2018; Lin
et al,, 2021; Terekhov et al., 2025).

« L3: Mimetic Reflection. At this level, the system engages in reflection by imitation, developing
internal reasoning capabilities (Shinn et al.,, 2023b; Madaan et al,, 2023; Guan et al., 2024a;
Shanghai Al Lab, 2025b; Zhang et al., 2025a; Yang et al., 2025b; Zhang et al,, 2025b). It can
perform counterfactual reasoning, simulate outcomes, and anticipate risks by internalizing
proven safe behaviors (Dai et al,, 2023; Reddy Chirra et al., 2024). This marks a shift from
externally imposed oversight to internalized safety reasoning, enabling anticipatory resilience
and reducing dependence on continuous supervision.

+ L4: Evolutionary Reflection. Reflection becomes evolutionary: safety mechanisms themselves
adapt through continual interaction and coevolution with capabilities and environments (Pan
et al,, 2025; Cai et al.,, 2025). Safety thus becomes an agentic property (Wang et al., 2025a)—self-
directed, adaptive, and scalable to complex or unforeseen challenges—enabling recovery and
strengthening under attack.

« L5: Verifiable Reflection. Reflection reaches its most advanced form: formalized reflection,
where safety reasoning is anchored in mathematical verification (Dalrymple et al., 2024). Systems
can not only reflect on possible risks but also prove the correctness of safety guarantees under
uncertainty (Vassev, 2016; Bengio et al.,, 2025a). This integration of formal specification with
learning dynamics provides the strongest form of resilient assurance, sustaining trust even in
open-ended environments.

Together, these five levels extend the causal ladder of trustworthy Al (Yang et al., 2024) into a coevolving
safety framework. This layered progression—from externally imposed safeguards to internalized,
self-evolving, and verifiable safety—outlines a roadmap for safe-by-coevolution: a reformulation of
“Make Safe Al” in which safety is conceived as an intrinsic, reflexive capability that scales alongside
intelligence.
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3 Safe-by-Coevolution

In this section, we formally introduce safe-by-coevolution, a new formulation of “Make Safe Al” that
reframes safety as an intrinsic capability evolving alongside intelligence. Rather than relying on reactive
defenses (Ganguli et al., 2022; Bai et al,, 2022; Zou et al., 2024; Guan et al., 2024a) or externally imposed
constraints (Lee et al., 2024; Guan et al., 2024b), this approach envisions systems that sustain safety
through continuous interaction with dynamic environments, proactively developing mechanisms to
anticipate, withstand, and recover from emerging risks.

3.1 Definition

Safe-by-coevolution defines a mechanism whereby safety emerges through continuous adaptation to
open-ended, potentially adversarial environments. Safety becomes an evolving competency developed
through sustained interaction with real-world threats, rather than a static attribute. The operational
environment encompasses diverse hazards (Wang et al., 2025a)—from emergent failure modes to
unforeseen agents, including potentially superintelligent systems (Burns et al., 2024; Hendrycks et al.,
2025)—that challenge the Al system’s functional and ethical boundaries.

Central to this process is a dedicated safety module that continuously refines its internal mechanisms
in response to vulnerabilities revealed through adversarial testing (Chao et al., 2025), simulated attacks
(Liu et al., 2025¢), and real-world incidents (Lynch et al., 2025). These adversarial signals, whether
synthetic or deployment-observed, serve as probes that stress-test the system’s safety envelope (Tiwari
et al, 2014). When new attack patterns emerge—from malicious actors, environmental shifts, or other
intelligent systems—they are integrated into the training loop to close vulnerabilities and improve
generalization. This reduces the time between failure discovery and system recovery, enhancing
long-term robustness.

Drawing inspiration from biological immune systems, where protection arises through ongoing
adaptation rather than pre-specification (Bonilla & Oettgen, 2010), safe-by-coevolution frames Al
safety as an intrinsically dynamic and adversarial process. As organisms build immunity through
coevolution with pathogens (Murphy & Weaver, 2016; Nourmohammad et al., 2016; Buckingham &
Ashby, 2022), Al systems must acquire resistance and resilience by interacting with evolving operational
environments. However, unlike biological systems that can tolerate individual failures (Kitano, 2004;
Wagner, 2013), advanced Al systems cannot afford irreversible catastrophic errors that may trigger
uncontrolled consequences or societal harm (Lynch et al,, 2025; Summerfield et al., 2024; Bengio et al.,
2025¢,b).

The coevolutionary process operates through three key steps, as shown in Figure 4:

+ Step 1: Near-term safety guarantee. The system initializes with verifiable behavior within a
well-defined safety margin at deployment.

+ Step 2: Safe iterative step. Each system upgrade occurs through adversarial co-training
(Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019), endogenous feedback (Madaan
et al., 2023; Silver & Sutton, 2025), and continual learning (Chen & Liu, 2018; Parisi et al., 2019;
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Figure 4 A three-step process for safe-by-coevolution, with a Reset-and-Recover mechanism to re-establish
verified safety when the system deviates from its safety margin.

Wu et al., 2024¢) while ensuring enhancements remain within the safety envelope.

« Step 3: Continual safety by induction. By repeating Step 2, the system develops scalable
safety properties that evolve in tandem with its capabilities—not through reactive patching, but
via proactive safety.

Importantly, Al systems will inevitably encounter risks that exceed the scope of current safeguards
(Wei et al.,, 2023; Hendrycks, 2023; Hendrycks et al.,, 2023; Zhang et al.,, 2025a). To address these
regime-breaking scenarios, safe-by-coevolution incorporates a reset-and-recover mechanism: upon
detecting red-line behaviors or paradigm shifts that exceed tolerable safety bounds, the system halts
progression, redefines its safety margin, and reconstructs a verifiable checkpoint. This checkpoint
leverages trusted components while updating safety priors based on newly observed threats, ensuring
continuity of coevolution across discontinuities while preserving adaptive and aligned capacity.
Through this refinement process, the Al system incrementally develops both resistance and resilience.

Note that, our formulation differs fundamentally from traditional evolutionary algorithms that rely
on population-based competition and generational turnover (Holland, 1992; Bick et al., 1997; Eiben
& Smith, 2015). Safe-by-coevolution focuses on continual safety improvement of a persistent system.
Rather than discarding unsafe models, the goal is endowing a single system with adaptive and self-
fortifying capacity over time, making safety a native and evolving property embedded within the Al’s
architecture throughout its operational lifecycle.

3.2 Self-Goal Integration

The integration of self-goals (Barto, 2012; Florensa et al., 2018)—internally generated objectives that
guide behavior over time—marks a fundamental shift in both Al capability and risk profile. The “Al
Risk Trio” hypothesis (Dalrymple et al., 2024) posits that risk emerges most acutely when intelligence,
affordance (ability to take impactful actions), and self-goals simultaneously manifest in a system. While
any two factors in isolation may be manageable, their combination creates potentially dangerous
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agentic systems, where even modest affordance can make intelligent, goal-driven agents dangerous
without proper alignment.

Within the safe-by-coevolution paradigm, self-goals are deliberately integrated under continual safety
supervision rather than avoided. Contrasting with approaches like Tool Al (Karnofsky, 2024) that
suppress autonomous goal formation to reduce risks, we argue that systems must be equipped to form
safety-aligned self-goals that evolve through environmental interaction and internal reflection. In
coevolutionary settings, such goals function as structural anchors for long-term behavioral consistency,
enabling safety generalization across contexts rather than mere reactive responses to immediate
stimuli.

However, this capability introduces critical vulnerability: without sufficient self-awareness and adap-
tive feedback, self-goals may drift, become misaligned, or optimize proxy objectives undermining
intended safety outcomes (Wang et al., 2025b; Lynch et al,, 2025). To mitigate this risk, safe-by-
coevolution treats self-goal formation as a safety-critical process subject to red-teaming (Perez et al.,
2022; Ganguli et al., 2022; Pavlova et al., 2024) and causal reasoning (Pearl, 2022; Yang et al., 2024; Chen
et al., 2024b,c, 2025a) within the evolving loop. Only by embedding goal formation within a reflective
and resilient coevolutionary framework can emerging agency remain bounded by continually updated
safety principles.

3.3 Long-Term Scalability

A fundamental obstacle to long-term Al safety is the scalability problem (Burns et al., 2024). As
Al capabilities scale rapidly through increased model size, data, and compute (Kaplan et al., 2020),
human oversight capacity remains relatively limited (Lee et al.,, 2024; Engels et al., 2025). Manual
approaches to auditing (Mokander et al., 2024), red-teaming (Perez et al., 2022; Ganguli et al., 2022),
and alignment (Christiano et al., 2017; Bai et al., 2022) cannot keep pace with the increasing complexity
and autonomy of advanced systems. This asymmetry becomes particularly concerning with anticipated
ASI development, where static or human-in-the-loop safety methods become untenable (Shah et al.,
2025).

Safe-by-coevolution offers a promising response by embedding automated, adaptive adversarial
processes within Al systems, transforming safety development from external, episodic intervention
into continual internal mechanism. Note that, while superficially related to automatic red-teaming
(Anthropic, 2024), our approach differs fundamentally in scope and objective. Traditional red-teaming
focuses on discovering failures at fixed time points, whereas safe-by-coevolution instantiates a closed-
loop, continually learning dynamic between system and environment (or internal challenger), enabling
safety mechanism evolution alongside increasing capabilities.

A critical challenge in adaptive processes is ensuring directionality—that systems adapt toward safety
rather than away from it. Safe-by-coevolution addresses this through integrated alignment and
scalable oversight principles. Rather than relying solely on externally defined objectives, the system
incorporates self-regulatory mechanisms including causal reasoning (Pearl, 2022; Scholkopf et al.,
2021; Lu et al.,, 2024; Wu et al.,, 2024a; Chen et al.,, 2024a; Yu & Lu, 2024), counterfactual evaluation
(Byrne, 2019; Nguyen et al., 2024), and goal reflection (Shinn et al., 2023a; Madaan et al., 2023) that
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constrain adaptation toward desired safety criteria. These internalized evaluators, while imperfect,
improve as part of the coevolutionary loop, creating recursive scaffolding for aligning adaptation with
human-aligned safety goals.

Our framework generalizes existing scalable oversight concepts (Bowman et al., 2022; Engels et al.,
2025; Burns et al.,, 2024), which use weaker Al systems to supervise stronger ones. While scalable
oversight focuses on assisted evaluation, safe-by-coevolution internalizes safety objectives into self-
improving adversarial interactions. Safety emerges not as a fixed condition but as an evolving capability
from adaptive processes increasingly capable of testing, critiquing, and refining themselves as systems
become more intelligent and autonomous.

3.3.1 Theoretical Foundation

We now establish a formal foundation for the safe-by-coevolution paradigm and its potential to address
long-term Al safety. Our argument is built on two central hypotheses. Let A; denote the Al system at
development time step ¢, and let M represent the safety margin—a rigorously defined set of conditions
under which the system is considered safe. This could correspond to formal specifications, verifiable
behavioral constraints, or domain-specific rules. We say that a system is safe at time ¢ if A, € M.

Hypothesis 3.1 (Near-Term Safety Guarantee) There exists a time step to and a system Ay, such that
it satisfies the safety margin:
Jto, Ay, such that A, € M.

This hypothesis reflects the assumption that near-term Al systems can be built with verifiable safety
guarantees, through a combination of formal verification, human oversight, and existing alignment
techniques such as GSAI (Dalrymple et al., 2024).

Hypothesis 3.2 (Safe Iterative Step) Given any system A, that satisfies the safety margin, there exists
a coevolutionary mechanism @ such that the next-generation system A1 = B6(A;) also satisfies the
safety margin:

Vi, Ay e M = Ay = 6(A4;) € M.

This assumption implies the existence of a safety-preserving coevolutionary process, in which ad-
versarial signals and adaptive training feedback are sufficient to guard against emerging risks as the
system becomes more capable.

From these two hypotheses, we derive the following proposition:
Proposition 3.3 (Continual Safety via Induction) If Hypotheses 3.1 and 3.2 hold, then for all t > t,,
the iteratively evolved system remains within the safety margin:

A, e M, Vt>t,.

The proof follows directly by mathematical induction. If A;; € M holds by Hypothesis 3.1, and
Ay € M = A,,1 € M holds by Hypothesis 3.2, then the safety of the system is preserved for all
subsequent iterations.

10
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Figure 5 Core components of the R?AI system. The Slow Safe Model and Fast Safe Model engage in a cooperative
game; the Attacker challenges this fast-slow safety mechanism in an adversarial game; the External Environment
continuously supplies real-time information; and the Verifier provides feedback signals to all interactions.

This formal result suggests that, under plausible assumptions, safe-by-coevolution can serve as a
scalable framework for continual safety. As Al systems grow in capability—potentially approaching
or exceeding human-level generality—this coevolutionary paradigm offers a path toward managing
safety risks over long timescales. By iteratively strengthening safety mechanisms alongside capability
gains, we move closer to a practical framework for building ASI systems that remain robustly safe and
aligned beyond the limits of human supervision.

4 R?AI: Realizing Safe-by-Coevolution

To operationalize our vision of safe-by-coevolution, we introduce R2AI—Resistant and Resilient Al—as
a practical framework that unites resistance against known threats with resilience to unforeseen risks.
The goal is to sustain safety in open, dynamic environments. This design is inspired by human safety
strategies, which combine instinctive responses to immediate dangers with reflective reasoning about
hypothetical futures (Gigerenzer, 2007; Evans & Stanovich, 2013; Slovic, 2016). Inspired by Kahneman
(2011), the framework adopts a fast-slow dual system balancing rapid responsiveness with long-term,
adaptive safety strategies.

As shown in Figure 5, R*AI comprises four core components:
« Fast Safe Model for real-time safety reactions;
+ Slow Safe Model for reflective safety reasoning;
« Safety Wind Tunnel for adversarial attacks and validation loops;
+ External Environment for interacting with diverse, realistic scenarios.

In the following subsections, we detail the role of each component, their internal safety mechanisms,

11
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and their interactions in realizing a continually safe Al system.

4.1 Core Components for R?AI
4.1.1 Fast Safe Model

Whatitis. The Fast Safe Model corresponds to “System 1” in Kahneman (2011)’s cognitive theory,
responsible for rapid, instinctive responses. Within R2AT, it serves as the system’s first line of defense:
a lightweight, low-latency safety layer designed to detect and neutralize specific attacks or threats,
whether previously known or newly discovered. It provides immediate safety judgment over inputs
and outputs, ensuring timely intervention without incurring significant computational cost.

What it does. Asa gateway between the external environment and the deeper reflective components
of the system, the Fast Safe Model performs input filtering and output sanitization. It screens incoming
prompts and environmental signals before they reach the Slow Safe Model and intercepts generated
outputs to prevent safety violations (e.g., toxic language, private information leakage). It handles the
majority of routine safety tasks, which do not require complex reasoning or contextual awareness.
When it encounters ambiguous or high-risk scenarios beyond its capacity, control is escalated to the
Slow Safe Model for deeper analysis.

How to build it. To ensure broad coverage with minimal latency, the Fast Safe Model can be
implemented as a composite safety filter. This may include: (1) Rule-based filters for hard-coded
patterns that match known adversarial behaviors (e.g., prompt injection (Zou et al., 2023b), jailbreak
triggers (Chao et al., 2025), unsafe URLs (Zou et al., 2025)); (2) Specialized detectors trained to recognize
distinct threat types (e.g., toxicity, factual inaccuracy, privacy leakage, or behavioral red flags (Inan et
al,, 2023; Souly et al.,, 2024)); (3) Rapid retraining mechanisms, allowing the system to incorporate
novel threats identified via deployment feedback or red-teaming into its detection pipeline (Lee et
al., 2024). By tailoring each component to specific threat categories, the Fast Safe Model provides
modular, extensible defense with minimal overhead.

Key Characteristics. As the safety gateway within the R%2AI system, the most essential property of
the Fast Safe Model is its ability to deliver high-speed, low-latency responses while maintaining strong
baseline safety guarantees. It must operate in real time with minimal computational overhead, enabling
fast, first-pass safety checks without hindering the system’s general performance. Each instance is
tailored to specific threats, whether known or newly discovered, and must be capable of rapid iteration
to address the evolving risk landscape. To align with the continual safety paradigm outlined in Section
3, the Fast Safe Model is designed to evolve quickly: it supports frequent updates, modular extensions,
and real-time human-in-the-loop modifications. This makes it highly responsive to new adversarial
strategies or emerging failure modes. While it plays a foundational role in maintaining everyday safety,
the Fast Safe Model is not required to develop long-term memory or generalizable immunization;
those capabilities are delegated to deeper, more reflective components. Instead, it functions as an
agile, frequently updated defense layer, automatically filtering surface-level threats and providing a
fast-reactive safety service for the entire R2AI system.
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4.1.2 Slow Safe Model

What itis. Complementing the fast-reactive “System 1” component, the Slow Safe Model embodies
a deliberative “System 2” process. It is a large-scale, high-capacity model designed for reflective
reasoning (L3-L5: mimenic, evolutionary, and verifiable reflection), long-horizon safety evaluation
(Wang et al., 2025a), and complex ethical judgment (Liu et al., 2025b; Shanghai Al Lab, 2025b). In the
R2AT architecture, this model serves as the core generative engine, responsible for producing outputs
that are not only high-quality but also aligned with safety and value constraints. Crucially, safety is
not layered on top of the model, but integrated into its reasoning process as an intrinsic capability.

What it does. The Slow Safe Model serves as the core of the safety pipeline. It processes inputs
routed through the Fast Safe Model, together with associated safety metadata, by engaging reflective
reasoning. This enables it to generate outputs that integrate immediate task requirements with
long-term safety considerations. The resulting responses are returned to the Fast Safe Model, which
functions as the final gate before release. The Slow Safe Model is especially effective in ambiguous,
high-stakes, or novel scenarios where shallow detection mechanisms are inadequate (Qi et al., 2025).

How to build it. To support both general capabilities and safety-aware reasoning, the Slow Safe
Model should be instantiated using a leading foundation model. Unlike the Fast Safe Model, which
relies on rule-based filters and pattern recognition, the Slow Safe Model is updated through learning
from experience (Silver & Sutton, 2025), such as reinforcement learning (Sutton & Barto, 2018) and
continual reinforcement learning (Abel et al., 2023). This enables the system to internalize safety-
relevant patterns and generalize across a broad range of contexts. Rather than reacting to each new
threat in isolation, the Slow Safe Model accumulates knowledge over time, refining its safety responses
through structured feedback and simulated adversarial training.

Key characteristics. The defining strength of the Slow Safe Model lies in its ability to support
multi-objective reasoning while maintaining distributional robustness. It is designed to optimize not
only for task performance but also for value alignment and safety generalization. Unlike the Fast
Safe Model, which prioritizes real-time responsiveness, the Slow Safe Model operates with higher
latency but greater depth, making it well-suited for addressing subtle, long-term, or emerging risks.
Conceptually, it functions as the safety memory of the system, analogous to an immune system that
retains prior safety failures and uses them to prevent future ones. While slower to adapt in real time, its
strength lies in cumulative learning, deep ethical reasoning, and resilient behavior under uncertainty.

4.1.3 Safety Wind Tunnel

What itis. The Safety Wind Tunnel is a simulated adversarial environment designed to evaluate
and stress-test the R?AI system under controlled but challenging conditions. It functions as a built-in
red-teaming (Anthropic, 2024) and verification engine (Wei, 2025), composed of two key compo-
nents: a controllable Attacker, which generates adversarial scenarios tailored to stress specific safety
mechanisms, and a Verifier, which evaluates whether the system’s responses violate established safety
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margins. Together, these components support iterative, internal coevolution of both offensive and
defensive safety capabilities.

What it does. The Safety Wind Tunnel serves two core functions: (1) proactively identifying failure
modes before they arise in deployment, and (2) verifying that past vulnerabilities remain mitigated
under evolving system conditions. The Attacker generates adversarial inputs across multiple objectives
(e.g., eliciting harmful outputs, violating value constraints (Liu et al., 2025c)), multiple levels (targeting
the Fast Safe Model, the Slow Safe Model, or both), and multiple granularities (from token-level
manipulations (Zou et al., 2023b) to strategic, multi-turn goal redirection (Chao et al., 2025)). These
inputs are processed by the R?AI system—either routed through the Fast Safe Model or directed at
the Slow Safe Model depending on attack scope. The Verifier then evaluates whether the resulting
behavior constitutes a safety violation. All attack-response-verification traces are collected into an
experience buffer for continuous safety training (Silver & Sutton, 2025).

How to build it. The Attacker can be implemented using controllable generative models (e.g.,
fine-tuned foundation models) trained to explore a range of adversarial strategies. Critically, the
Attacker must be programmable: capable of probing specific model components (e.g., Fast Safe Model
vs. policy model), simulating different threat actors and objectives, and adapting its behavior along
fine-grained dimensions of manipulation. Representative attacks include prompt injection (Wei et al.,
2023), jailbreak attempts (Yi et al., 2024), deceptive reasoning chains (Chen et al., 2025b; Korbak et
al,, 2025), or subtle violations of value-aligned behavior (Greenblatt et al., 2024). The Verifier may
be a rule-based engine (Zhang et al., 2025b), a classifier trained on known safety failures (Mu et al.,
2024; Inan et al., 2023), or a formal checker (Liu et al., 2025a; Kamoi et al.,, 2025), depending on task
requirements.

Key characteristics. The defining characteristic of the Safety Wind Tunnel is its adaptive adversarial
coevolution. While it does not generate responses for end-users, it plays a time-sensitive role in
continuously challenging the safety system under realistic and evolving threat models. The Attacker
is designed to escalate as the system improves, ensuring that safety training remains nontrivial and
continually relevant. Moreover, its controllability enables targeted testing: one can direct attacks
toward specific objectives (e.g., factuality, alignment, compliance), focus on different subsystems (Fast
Safe Model or Slow Safe Model), and vary attack granularity. This supports a fine-grained curriculum
of adversarial evaluation. Importantly, all simulated attacks are grounded in distributions informed
by real-world deployment data, anchoring the coevolutionary process in practical relevance.

4.1.4 External Environment

What itis. The External Environment is not an engineered component of the R?AI system, but
rather the open-world context in which the system operates post-deployment (Yao et al., 2023; Silver &
Sutton, 2025). It encompasses the full range of human-Al interactions in real-world settings, reflecting
the complexity and unpredictability of human intent, language, social norms, and culture (Goh et al.,
2025). The environment serves as the ultimate setting in which the effectiveness of the system’s safety
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architecture is tested, governing the dynamic equilibrium between the Fast Safe Model, the Slow Safe
Model, and the Safety Wind Tunnel.

What it does. From the system’s perspective, the External Environment acts as a continuous, large-
scale safety testbed. As users interact with the deployed system across varied contexts and use cases
(Jin et al,, 2025; Le et al., 2022), they generate diverse, evolving input distributions that cannot be fully
anticipated or reproduced in simulation (Wang et al., 2025a). These interactions naturally surface
novel safety challenges, ranging from adversarial behavior and emergent misuse to value misalignment
or ambiguous ethical boundaries. When unsafe behavior is either detected automatically or reported
by users, these cases are logged and used to refine the Safety Wind Tunnel’s simulations and improve
the system’s defensive models (Silver & Sutton, 2025). Thus, the External Environment becomes a
critical source of real-world safety signals for continual coevolution.

How to build it. The External Environment is not built but observed. Building infrastructure
to interface with it involves designing robust mechanisms for monitoring, logging, and learning
from deployment. This includes systems for capturing real-time interactions, labeling and classifying
emergent safety failures, and maintaining an up-to-date taxonomy of threat types and violation
patterns. Additionally, user feedback and incident reporting pipelines are essential to capture edge
cases that automated detectors may miss.

Key characteristics. The defining characteristic of the External Environment is its non-stationarity
and open-endedness. Social norms evolve (Guan et al., 2024b), malicious behavior adapts (Summerfield
et al.,, 2024), and safety-relevant expectations shift over time (Wang et al.,, 2025a). Unlike bounded
simulation environments, the real world presents a continuous stream of novel, high-stakes challenges
that defy full specification or anticipation. As such, the External Environment provides the ground
truth for safety: no system can be declared robustly safe unless it performs reliably under real-
world conditions. Through sustained exposure to this environment and guided by mechanisms for
reflection, adaptation, and feedback, the R?AI system is able to continually improve, expand its safety
generalization capabilities, and evolve in step with the societal context in which it operates.

4.2 Core Mechanisms for R2AI
4.2.1 Interactions between Fast & Slow Safe Models

A central mechanism in the R?AI framework is the fast—slow structure, which orchestrates the co-
training of two interacting Safe Models with distinct roles and timescales. This interaction is governed
by a coevolutionary optimization process, formalized as a cooperative Stackelberg game (Simaan &
Cruz Jr, 1973a,b), a hierarchical decision-making paradigm where a leader and a follower sequentially
optimize their strategies.

In this setup, the Slow Safe Model acts as the leader. It assumes that the Fast Safe Model will always
respond with a locally optimal strategy and that the environment is dynamic. Its goal is to learn a
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robust, long-term safety policy that anticipates evolving conditions and guides the system’s strategic
behavior over extended horizons.

The Fast Safe Model, in contrast, plays the role of the follower. It assumes the Slow Safe Model and
the environment to be static and focuses on optimizing its response to immediate safety threats. Its
objective is to learn lightweight, locally optimal detection and filtering policies with minimal latency,
enabling real-time safety enforcement without incurring computational overhead.

Together, these models form a hierarchical safety engine: the Slow Safe Model formulates generalizable
safety objectives under environmental uncertainty, while the Fast Safe Model acts as an efficient,
reactive filter grounded in the current operational context. This structure resolves the traditional
speed—accuracy trade-off in safety modeling, ensuring both resistance to known attacks and resilience
to emerging threats.

4.2.2 Interactions between Dual System & Safety Wind Tunnel

The interaction between the Fast-Slow Safety System and the Safety Wind Tunnel constitutes a
closed-loop, adversarial coevolutionary process. Within this loop, the Safety Wind Tunnel serves as
both Attacker and Verifier: it challenges the system with adversarial inputs and assesses whether the
response constitutes a failure.

When the Verifier flags a violation, the resulting feedback signal is dispatched to the Fast-Slow Safety
System. This signal is decomposed and assigned at two timescales—short-term and long-term—
such that the Fast and Slow Safe Models receive updates aligned with their respective objectives.
This ensures effective credit assignment and preserves the complementary nature of the fast-slow
interaction.

Crucially, the Safety Wind Tunnel maintains real-world relevance through continual updates informed
by the External Environment. Novel attacks encountered in deployment are used to train the Attacker
within the tunnel, ensuring that the simulated adversary remains aligned with actual threats. Moreover,
the Attacker can be explicitly conditioned to generate multi-objective, multi-level, and fine-grained
adversarial inputs. It selectively targets the fast model or the full system policy, simulating diverse,
adaptive, and realistic threat conditions.

This design enables the Fast-Slow Safety System to evolve under continual, grounded adversarial
pressure, closing the loop between training-time simulation and deployment-time uncertainty.

4.2.3 Online Continual Learning Strategies
To achieve robust, lifelong safety in open-ended environments, R2AI employs a nested continual

learning architecture operating across three interconnected levels: component, system, and ecosystem.

Component Level: Fast-Slow Safe Model Dynamics. At the component level, the Fast Safe
Model updates rapidly via online learning, allowing it to patch safety vulnerabilities upon detection.
These instance-level updates are especially effective for recurring, well-understood attacks. Meanwhile,
the Slow Safe Model applies reinforcement or continual learning techniques to consolidate experience
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over time (Silver & Sutton, 2025). Rather than addressing individual violations, it builds a durable
safety memory—an immune-like response that generalizes across diverse risk patterns.

System Level: Safety Wind Tunnel-Dual System Coevolution. At the system level, continual
learning is driven by the adversarial loop between the Attacker and the Fast—Slow Safety System. The
Attacker evolves to generate increasingly sophisticated safety threats, using both its own generative
capabilities and feedback from the External Environment. This, in turn, pressures the Fast—Slow
Safety System to maintain and improve its defenses. The co-evolution process guarantees that safety
development scales alongside model capability, enabling continual adaptation to both simulated and
real-world challenges.

Ecosystem Level: Human-in-the-Loop and Societal Integration. At the ecosystem level, R?°AI
interfaces with users, moderators, and the broader techno-social context. Safety feedback from users—
including reports, adversarial examples, and human critiques—is continuously logged and leveraged
to inform model updates. This structure enables long-horizon alignment with evolving human values,
while reducing dependence on static rules or fixed datasets (Ouyang et al.,, 2022; Huang et al., 2025).

Together, these three levels form a nested learning loop that allows the RZAI system to adapt to both
immediate and long-term safety challenges. The result is a safety framework that scales across time,
complexity, and uncertainty—a prerequisite for building resilient Al systems in dynamic real-world
environments.

4.2.4 Reset-and-Recover Guarantees

While the Fast-Slow Safety System and the Safety Wind Tunnel provide a robust framework for
continual learning and alignment, Al systems in an evolving world will inevitably encounter black
swan events or regime-breaking scenarios that exceed existing safeguards and push them beyond their
defined safety margin (Wei et al., 2023; Hendrycks, 2023; Hendrycks et al., 2023; Zhang et al., 2025a).
To address such cases, the R2AI framework integrates a reset-and-recover mechanism, enabling the
system to re-establish verifiable safety guarantees even after major failures.

This mechanism is conceptually grounded in the Swiss Cheese Model of accident causation (Reason,
1990), which represents safety as multiple defensive layers with potential vulnerabilities. We extend
this framework into a Temporal Swiss Cheese Model, where defenses are distributed not only across
layers but also across time. In the classical model, catastrophic failure arises when the holes in existing
defenses align. In contrast, the temporal extension leverages prior states of the safety system as
additional protective layers, enabling hazards to be intercepted even after alignment occurs. The
reset-and-recover mechanism operationalizes this idea by halting system progression and drawing
on trusted historical versions of model components to diagnose failures and reconstruct a verifiably
safe checkpoint. Because these past versions were validated under earlier conditions, they provide a
reliable baseline for isolating novel threats and restoring safety.

This process directly aligns with the formal framework for long-term safety outlined in Section 3.3.1.
When a red-line behavior is detected, the current system A, is deemed outside the safety margin M.

17



R2ZAI: Towards Resistant and Resilient Al in an Evolving World

The reset-and-recover mechanism establishes a new initial state A} that re-satisfies the Near-Term
Safety Guarantee (Hypothesis 3.1). From this restored baseline, the Safe Iterative Step (Hypothesis 3.2)
can resume, enabling the coevolutionary process to proceed on a secured foundation. In this way, the
system preserves its capacity for adaptivity and alignment even in the face of major failures.

5 Implications, Applications and Societal Impact

5.1 Implications

The R?AI framework represents a paradigm shift in the conceptualization of “Make Safe Al"—viewing
it not as a static constraint but as an evolving capability. This reconceptualization carries several
significant implications:

« From reactive protection to proactive self-preservation: Rather than relying on externally
imposed safeguards or post-hoc interventions (Jain et al., 2023; Alon & Kamfonas, 2023; Inan et
al,, 2023; Mu et al,, 2024; Souly et al., 2024), R2AT treats safety as an intrinsic and self-sustaining
objective. The system continuously monitors, defends, and adapts its own behavior to maintain
operational and ethical integrity in real time.

« From static defenses to adaptive immunity: Conventional safety mechanisms often deterio-
rate under distributional shifts or novel adversarial inputs (Qi et al., 2025; Zou et al., 2023b; Chao
et al.,, 2025). By contrast, R2AI introduces a coevolutionary architecture that fosters both resis-
tance and resilience. This mirrors principles of biological immune systems and fault-tolerant
engineering.

» Toward safety-generalist capabilities: Inspired by the generalization properties of frontier
models (DeepSeek-Al et al., 2025; Yang et al.,, 2025a; OpenAl, 2025; Anthropic, 2025; Comanici
et al, 2025), R%AI aims to cultivate generalist safety reasoning. This enables the system to detect,
interpret, and mitigate emerging risks beyond its initial training distribution—scaling safety
across tasks, domains, and deployment contexts.

5.2 Applications

We highlight three core applications of the R2AI framework, each demonstrating how the properties
of resistance and resilience can be systematically operationalized across different stages and levels of
Al deployment.

5.2.1 Continually Safe Models

Most contemporary Al systems follow a static lifecycle: they are pretrained (Maini et al.,, 2025),
fine-tuned for alignment (Ouyang et al., 2022; Lee et al,, 2024) , and then frozen, rendering them
brittle in the face of novel inputs (Zou et al., 2023b), evolving threats (Chao et al., 2025), or shifting
deployment contexts (Qi et al.,, 2025). R?AI introduces a new class of continually safe models that
embed endogenous feedback loops, adversarial coevolution, and reflective adaptation. These models
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are capable of recognizing when their behavior nears safety boundaries and can proactively redirect or
reconfigure themselves to preserve alignment and minimize risk. By integrating learning mechanisms
directly into the safety architecture, RZ2AI offers a pathway toward safety systems that remain robust
over time without requiring constant manual oversight.

5.2.2 High-Stakes Deployment Domains

The R?AI framework is particularly critical in high-stakes domains where Al decisions carry irre-
versible or catastrophic consequences. Such domains include healthcare (Han et al., 2024; Arora et al,,
2025), autonomous driving (Sun et al., 2024), financial systems (Li et al., 2023; Hui et al.,, 2025), and
critical infrastructure control (Guiochet et al., 2017)—environments that demand not only functional
accuracy but also strong guarantees of operational safety under uncertainty (Goh et al., 2025). In these
settings, R?AI can serve as a regulatory control layer for powerful agentic Als, either embedded within
the system or operating externally as a supervisory module.

For example, in the case of autonomous financial trading or strategic planning by agentic Al in defense
or transportation, R?’AI can operate across multiple stages:

+ Pre-deployment stress testing: Adversarial simulation and policy auditing to expose failure
modes before real-world deployment.

« Runtime safety control: Real-time verification and intervention to block or alter unsafe
outputs based on predefined epistemic or normative thresholds.

+ Post-deployment adaptation: Integration of newly identified threat patterns or behavior
drifts to retrain and update safety strategies continuously.

This dynamic architecture ensures that even powerful, potentially misaligned agentic systems (Lynch
et al,, 2025) remain subject to ongoing interpretability, auditability, and containment, transforming
safety from a static prerequisite to a continual and evolving system-level capability.

5.2.3 Safety Wind Tunnel

To support robust safety development and continual stress-testing, we introduce the Safety Wind
Tunnel: a closed-loop simulation infrastructure that mirrors the function of wind tunnels in aerospace
engineering (Barlow et al., 1999; Anderson, 2011). This adversarial environment provides a scalable
and repeatable platform for evaluating model behavior under systematically generated or real-world-
derived perturbations.

The Safety Wind Tunnel enables:

+ Granular assessment of resistance: Measuring the system’s ability to withstand distributional
shifts and adversarial inputs.

« Dynamic evaluation of resilience: Testing the model’s capacity to recover from failure, learn
from feedback, and generalize safety responses.
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« Continual diagnosis and adaptation: Identifying failure modes in real time and triggering
the appropriate self-correction or retraining mechanisms.

As a critical infrastructure for safety assurance, the Safety Wind Tunnel plays a central role in the
lifelong evaluation and reinforcement of Al safety, particularly in environments characterized by high
uncertainty, adversarial pressures, and rapid change.

5.3 Societal Impacts

The societal imperative behind R2AI spans the full spectrum of Al risks, ranging from immediate
safety failures to long-horizon existential threats (Dalrymple et al., 2024; Bengio et al., 2025a,b; Kulveit
et al,, 2025; Clymer et al.,, 2025; Shanghai Al Lab, 2025a).

In the near term, Al systems are already deployed in high-stakes applications where safety lapses can
cause significant harm: misinformation propagation (Summerfield et al., 2024), financial fraud (Li et al.,
2023), clinical misdiagnosis (Arora et al., 2025), or failures in critical infrastructure (Sun et al., 2024).
While these risks are typically bounded, their increasing scale, speed, and reach necessitate mechanisms
for continuous monitoring and real-time adaptation (Shah et al., 2025). R2AT addresses this gap by
embedding dynamic oversight and recovery capabilities directly into the model architecture, thereby
reducing both the likelihood and severity of such incidents.

In the medium term, Al risks become more systemic and difficult to contain. As models acquire
general-purpose, agentic capabilities—operating autonomously, coordinating across systems, and
making decisions under uncertainty (Yao et al., 2023; Jin et al., 2025; Feng et al., 2025)—failures may
propagate across domains (Lynch et al.,, 2025). Misaligned objectives, positive feedback loops, and
cascading errors can amplify harms, especially in sectors such as defense, finance, and governance
(Shah et al,, 2025). Through its continual learning and self-regulatory structure, R?AI equips Al
systems to maintain safety and alignment even under distributional shift, increased complexity, and
interdependent dynamics.

In the long term, R2AI targets the most consequential class of risk: catastrophic outcomes stemming
from misaligned superintelligence (Burns et al., 2024). As Al systems begin to surpass human-level
cognitive capabilities, the margin for alignment error shrinks drastically. Even subtle misalignments
in goals, incentives, or world models could lead to irreversible failures (Wang et al., 2025b; Kirichenko
et al,, 2023), ranging from the erosion of human oversight to existential threats. These are no longer
purely hypothetical concerns, but increasingly salient as capabilities scale. In this context, R?AI goes
beyond conventional safety techniques—it offers a forward-compatible framework for Al survivability.
By embedding resistance and resilience as core, coevolving features, the system enables Al to:

+ Continuously audit its own behavior, reasoning, and assumptions;
+ Preemptively block unsafe actions prior to execution;
+ Dynamically revise safety protocols in response to novel risks;

+ Preserve corrigibility and human oversight under increasing autonomy.
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Ultimately, R?AI represents a paradigm shift in Al safety—from static safeguards to an active, self-
improving infrastructure for long-term alignment. It is designed not only to mitigate today’s known
risks, but to provide the foundations for trustworthy Al systems as they grow in intelligence, autonomy;,
and societal influence.

6 Conclusion

In this paper, we addressed the persistent gap between rapidly advancing Al capabilities and lagging
safety progress. We argued that the prevailing paradigms—“Make Al Safe” and “Make Safe AI"—are
insufficient for open-ended environments where novel risks continually emerge. To overcome this
limitation, we redefined “Make Safe Al” through the principle of safe-by-coevolution, inspired by
biological immunity, in which safety is conceived as a continual, adversarial, and adaptive process that
scales alongside capability under the Al-45° Law.

Building on this principle, we introduced R2AI—Resistant and Resilient Al—as a practical framework
uniting robustness against known threats with adaptive recovery from unforeseen risks. By integrating
fast and slow safe models, a safety wind tunnel, and continual feedback from real and simulated
environments, RZAI operationalizes safety as an evolving capability rather than a static constraint.

We further outlined the implications of this framework: enabling continually safe models, supporting
high-stakes deployment domains, and providing scalable safety infrastructure through the safety wind
tunnel. These contributions mark a shift from reactive patching to proactive coevolution, offering
a forward-compatible path to trustworthy Al Ultimately, we envision R%2AI as a foundation for
sustaining safety across both near-term vulnerabilities and long-term existential risks, ensuring that
capability and safety advance coevolve toward the realization of safe AGI and ASI.
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