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Abstract

Large language models (LLMs) have recently001
entered the public spotlight as a powerful tool002
capable of generating fluent, relevant, and co-003
herent text. We expect these models to have a004
significant societal impact as they are used for005
downstream tasks; however, research on these006
models to date has largely focused on English-007
language tasks, white-box approaches, or both.008

In non-English or multilingual language mod-009
els, one issue - OOV (out of vocabulary),010
arises frequently in character-diverse languages011
where tokenizers often do not capture the full012
range of possible inputs. In the black-box set-013
ting the lack of direct access to the LLM’s inter-014
nal representation makes it nontrivial to elicit015
useful responses to inputs with OOVs or even016
identify inputs where OOVs are interfering017
with understanding. In our work, we propose a018
method of prompt-directed probing to identify019
OOVs in a multilingual LLM (XGLM-7.5B),020
and assess a corresponding OOV patch method021
with a set of machine reading-comprehension022
(MRC) tasks. Through experiments, we demon-023
strate that it is possible to both probe and miti-024
gate OOV without access to the internals.025

1 Introduction026

Large language models (LLMs), such as GPT-3027

(Brown et al., 2020) and PaLM (Chowdhery et al.,028

2022), have been a popular topic of recent dis-029

cussion not only in the research community but030

also in the wider public. Trained with incredi-031

bly large-scale corpora in a self-supervised man-032

ner, these models have enabled groundbreaking033

advancements in the capabilities of neural meth-034

ods in natural language processing (NLP). This035

has become possible due to the highly scalable ar-036

chitecture for general-purpose sequence modeling037

originally proposed by Vaswani et al. (2017).038

These models are trained using mass quantities039

of text. Two common methods of pre-training are040

either GPT-like, which generate text given past041
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Figure 1: LLM OOV examples, with X indicating bad
cases. P, Q, A, and M represent Passage, Question, An-
swer, and Model respectively. Bold is model generated.

sequences (Radford et al., 2018; Dai et al., 2019), 042

or BERT-like, filling masked portions of a sequence 043

(Devlin et al., 2019). The product of either method 044

is a model with many uses beyond the original pre- 045

train task. These models can even perform tasks 046

without any fine-tuning when conditioned with an 047

appropriate task prompt (Brown et al., 2020). 048

While the developments are exciting, the poten- 049

tial of these advances is not yet realized equally 050

across languages. Our work herein explores a mul- 051

tilingual model using a set of machine reading- 052

comprehension (MRC) tasks, and evaluates ways 053

that non-English performance can be improved 054

without requiring direct access to model internals. 055

In particular, we show that tokenization quality is 056

an issue even in large models, and the vocabulary 057

limits imposed by constrained tokenizer sizes harm 058

reliability in character-diverse languages; however, 059

these vocabulary limitations can be overcome with 060

appropriate pre- and post-processing. 061

2 Motivation 062

2.1 Tokenization Information Loss 063

Beyond the general problems of limited data and 064

sampling tradeoffs in a multilingual setting, the 065
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properties of the languages themselves may give066

rise to differences in performance. The specifics of067

these differences will depend on the particulars of068

the languages in question; here we explore an issue069

common to both Japanese and Korean.070

Tokenization is the process of transforming in-071

put text into a sequence of tokens for a model to072

consume. In the context of recent neural mod-073

els, this has shifted from a traditional word-level074

approach to subword-level tokenization (Sennrich075

et al., 2016). By operating at the subword level, the076

tokenizer enjoys both reduced computational cost077

(Yang et al., 2018) and robustness against unseen078

words; hence, this has become the standard.079

However, subword-level tokenization has its080

shortcomings. This work focuses on one such limi-081

tation: the lack of robustness to out-of-vocabulary082

tokens in character-diverse languages. In languages083

that use compact alphabets, such as English, sub-084

word tokenization can reliably encode and decode085

most text without any issues, as the vocabulary-086

level cost of considering every character in the087

alphabet is low. This advantage does not hold088

in character-diverse languages such as Chinese,089

Japanese, and Korean (CJK), as even at a character090

level the tokenizer must still consider thousands091

of tokens. Even considering only character-level092

bigrams, the resulting combinatorial explosion ren-093

ders the vocabulary challenging to fully cover in094

a neural language model. For these reasons, it is095

common for models to lossily capture the spectrum096

of possible text. When the tokenizer encounters097

text outside of the supported spectrum, it will cap-098

ture an OOV, which results in information loss.099

This imposes additional challenges in an autore-100

gressive setup, as when generating text, the model101

will emit OOV tokens in place of any subword it102

cannot represent. At the point of output, it is no103

longer possible to discern what the original token104

was. As an example, a moderately large model such105

as XGLM 7.5B (Lin et al., 2022) is incapable of106

outputting the Japanese word for the organ "heart"107

or the Korean word for "wear out".1108

This "OOV problem" is further exacerbated in109

the multilingual setting by the restrictions training110

imposes on the distribution and sampling of data.111

Training a multilingual model is not as simple as re-112

purposing existing large-scale data as-is (Conneau113

et al., 2020); rather, it requires careful planning114

1This is because the Japanese suffix subword for U+81D3
(organ) and the Korean prefix subword for U+B2F3 (to wear)
are missing in the vocabulary.

Input: Roses are red, violets are blue.
Output: Roses are red, violets are blue.
Input:  ABCÅÉÎÔÜØDabcåéîôøüd
Answer:

Probe Prompt

Input: Roses are red, violets are blue.
Output: Roses are red, violets are blue.
Input:  ABCÅÉÎÔÜØDabcåéîôøüd
Answer:  ABCDabcd  

Output

Input as X,
Output as Y,

(∀! ∈ X):
  if ! ∉ Y, Z; x

So that
Z ={Å, É, …, ø, ü }

Next X

Dictionary Update

Figure 2: Proposed scheme for probing OOV (3.1) using
a text autoencoder prompt against the model. Bold
characters denote OOV characters for this model.

and allocation of model capacity to ensure that the 115

resulting model’s multilingual proficiency inher- 116

its the proper imbalance from the training corpus. 117

This is further amplified due to current tokenizer 118

training practices, where it is common to sample 119

the corpus and fix the vocabulary in advance as to- 120

kenizer training schemes are less scalable than the 121

language models themselves. In character-diverse 122

languages, this sampling can result in certain char- 123

acters present in the larger corpus missing in train- 124

ing (Wang et al., 2019; Moon and Okazaki, 2020), 125

leading to additional OOVs and further loss of in- 126

terpretive and expressive capacity. 127

2.2 Zero-shot Methods and Black-box Models 128

Traditionally, the most common use of a language 129

model was for autocompletion of sentences. Recent 130

findings (Brown et al., 2020) have shown that with 131

a carefully engineered prompt, it is possible to use 132

a language model for many downstream applica- 133

tions without task-specific training (which would 134

require access to the model weights and significant 135

computational resources). This opens up an oppor- 136

tunity to provide a well-trained general-use model 137

through an abstraction, such as through an API. 138

As a side effect, many recent model releases are 139

not openly available for vocabulary investigation. 140

In light of this trend, methods we hope to apply 141

to such systems must be viable even without vis- 142

ibility into model internals (e.g., the tokenizer or 143

intermediate layer activations). Instead, the behav- 144

ior of these models must be treated as a black-box 145

transformation from an input to an output. In this 146

work, we focus on methods that can be applied at 147
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the prompt level – by inspecting and adjusting the148

inputs to or outputs from the model.149

3 Detecting and Repairing OOV150

3.1 Vocabulary Limits151

Given that a model is effectively a function which152

takes input and produces output, if the input is153

faulty, it is highly likely that the output will also154

be faulty. We hypothesize that information loss155

at the input level can result in faulty output. Fol-156

lowing this logic, and continuing the discussion157

from Section 2.1, OOV can pose a problem in any158

character-diverse language. We hypothesize that159

even in a moderately large multilingual model such160

as XGLM 7.5B (Lin et al., 2022), we can expect161

OOV due to the number of languages the model162

supports, along with pre-train corpus sampling.163

In a conventional setup, OOV is detectable by164

directly applying the model’s tokenizer to the input165

and searching for the reserved OOV token. In a166

black-box setup, the tokenizer is not directly acces-167

sible, and the full model output will likely remove168

OOV tokens as part of the output post-processing169

pipeline. We propose a prompt-based method to170

work around this limitation and probe missing to-171

kens in the vocabulary indirectly. Our method uses172

a prompt that conditions the model as a text au-173

toencoder. The prompt up to pk includes few-shot174

examples to condition the model, and the last i to-175

kens are an OOV probe (pk−i+1, ...pk). We expect176

to reproduce the probe such that:177

(pk−i+1, ...pk) ≈ (gk+c+1, ..., gn)

(c is a buffer reserved for the sequence of tokens178

representing the "Answer:" portion of the prompt.)179

In our method, we use sequences of size s180

across a subset of the Unicode pages of the tar-181

get OOV probe languages, where the sequence182

Xi = (ui, ...ui+s−1) is generated by incrementing183

the Unicode ordinal i. By observing the missing184

tokens in the output compared to the input, e.g.,185

Z = {pk−s+1, ...pk} − {gk+c+1, ..., gn}, we can186

approximate the OOV tokens and build an OOV187

vocabulary, as demonstrated in Figure 2.188

For our experiments, we set the probe sequence189

length to k = 2 to prevent the model from omitting190

non-OOV characters in probe sequences with a191

high proportion of OOVs. This is an expensive192

process, but it only needs to be run once per target193

language as the results can be reused across any194

task for this model and language pair.195

3.2 Pre-patching Input OOV 196

Using the OOV tokens previously acquired through 197

this probing process, we can preprocess the corpus 198

to replace the OOV with a similar token at task 199

generation. Given that the k-th token of an input 200

sequence (p1, ...pk) is OOV, we replace the OOV 201

pk with a substitute token p̂k, constrained such that 202

(pk−1, p̂k) /∈ p and (p̂k, pk+1) /∈ p. This substi- 203

tution allows us to reliably reconstruct p̂k back to 204

pk, without the risk of introducing ambiguity in the 205

output by duplicating bi-grams already present else- 206

where in the input. We then perform an analogous 207

post-processing step on the output by replacing 208

occurrences of (pk−1, p̂k) or (p̂k, pk+1) with the 209

original (pk−1, pk) or (p̂k, pk+1), respectively. A 210

conceptual illustration of the overall process can be 211

seen in Figure 3. We hypothesize that this method 212

can mitigate the information loss. 213

When selecting the substitute token, we con- 214

strain to in-vocabulary tokens and prioritize those 215

roughly from the same Unicode page. If a substi- 216

tute was not found on the same page, the algorithm 217

will search from the first page of the target lan- 218

guage. Abrupt code-switching is disruptive to the 219

overall output distribution, as the conditional prob- 220

ability of pk being of a different language than the 221

context (p1, ...pk−1) is low; ensuring we select an 222

in-language substitute minimizes this disruption. 223

4 Experiments 224

All of the tasks for the different languages were run 225

against an XGLM 7.5B (Lin et al., 2022) model in 226

a zero-shot or few-shot setup, with no fine-tuning. 227

The model was encapsulated in an API server to 228

simulate a black-box environment, only providing a 229

mechanism for prompting, along with an interface 230

for setting the temperature, top-p, and repetition 231

penalty. We constructed the OOV probe using a 232

few-shot setup: two exemplars randomly selected 233

from the task language’s Wikipedia, fixed for all 234

runs, followed by the character(s) we wished to 235

probe. We evaluated the value of OOV as a pre- 236

dictor of correctness, and the efficacy of the OOV 237

patch procedure, using zero-shot tasks with the 238

prompt in Figure 1. Each MRC item was evaluated 239

5 times, and the metrics were averaged. 240

4.1 Tasks and Datasets 241

We evaluated the correctness of patched and 242

unpatched answers over five runs on Japanese- 243

language JSQuAD from Kurihara et al. (2022) (val- 244
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P:  Rosé(unk) is the color.

Q:  What was the color?

A:

OOV Prompt

P:  Rosx is the color.

Q:  What was the color?

A:

Substituted Prompt

Swap sé 
(s/sé/sx/)

P:  Rosx is the color.

Q:  What was the color?

A:   Rosx

Substituted response

s/sx/sé/
M

P:  Rosx is the color.

Q:  What was the color?

A:   Rosé

Substituted response

Figure 3: OOV substitution process. Given pk =é, pk−1 =s, the bigram sx is chosen as it satisfies the condition
(pk−1, p̂k) /∈ p, which prevents unintended substitution during post-process, when replacing back to sé in the output.

idation set), and Korean-language KorQuAD 1.0245

(dev set). This particular task was chosen as it was246

one of the few tasks available in both languages,247

with roughly similar complexity. In these experi-248

ments, the model was presented with the context249

paragraph followed by a question through a prompt250

template, in a zero-shot setup with no training.251

The standard evaluations for question-answering252

datasets, where available, are not well-suited to253

zero-shot evaluation. Strict evaluation runs the254

risk of eliminating semantically correct answers255

(such as "Normandy is located in France" when256

just "France" is expected), but overly permissive257

evaluation may allow a rambling LM to eventually258

"get lucky" and emit a correct answer as part of its259

output. To work around these limitations we eval-260

uated the correctness of answers according to the261

following standardized rule: an answer is correct if262

it contains any one of the possible correct answers263

in its first N characters, where N is calculated as264

2 × (max correct answer length). We found this265

to establish a balance between incorrectly rejected266

and incorrectly accepted answers.267

5 Results268

Probing for OOV was done using a two-shot269

translated autoencoder prompt. We observed this270

method to be extremely reliable, particularly with a271

short probe sequence length. With k = 2, used for272

all experiments below, we observed a vocabulary273

coverage accuracy TP+TN
|dataset| of 99.999% in Korean274

and 100% in Japanese respectively. These results275

suggest that our method is highly effective at de-276

tecting OOV in a black-box model’s vocabulary.277

We identified specific cases where the model278

should be unlikely to produce an answer as the279

correct answer contains OOV: 348 in KorQuAD280

and 196 in JSQuAD. With no special modifica-281

tions, the model scored an average of 0% on this282

KorQuAD subset and 9.76% on the corresponding283

JSQuAD subset. After OOV patching, the model284

produced a correct answer for an average of 42.8%285

Variant OOV Correct Wrong Acc.
JSQuAD-en Control 19.8 176.2 0.101
JSQuAD-en Patched 87.2 108.8 0.445
JSQuAD-ja Control 19.4 176.6 0.099
JSQuAD-ja Patched 96.2 99.8 0.491
KorQuAD-en Control 0 348 0.000
KorQuAD-en Patched 148.8 199.2 0.428
KorQuAD-ko Control 0 348 0.000
KorQuAD-ko Patched 153.4 194.6 0.441

Table 1: Results for OOV samples. JSQuAD and Ko-
rQuAD had 196 (4.3%) and 348 (6.0%) samples respec-
tively. Results are mean from 5 runs. OOV indicates
ratio of samples with OOV in prompt/answer.

of these "impossible" KorQuAD questions (44.1% 286

for Korean prompts) and 44.8% of the "impossible" 287

JSQuAD questions (49.2% for Japanese prompts), 288

as seen in Table 1. While the ratio of impossible 289

questions is fairly low (4% on JSQuAD, 5% on Ko- 290

rQuAD), we see modest macro-level improvements 291

of 1.17% on JSQuAD and 2.21% on KorQuAD re- 292

spectively with our method. 293

6 Conclusion 294

In this work, we demonstrate the impact of the 295

OOV problem on a pre-trained, multilingual lan- 296

guage model, and explore ways to work around 297

those limitations exclusively by through prompts. 298

Using a chain of simple methods, we show how 299

it is possible to not only externally identify OOV 300

tokens without access to the model’s tokenizer, but 301

also to mitigate their effects through pre- and post- 302

processing. We share our findings and a path for 303

downstream applications to mitigate OOV in simi- 304

lar setups. 305

While the findings in our work are still prelim- 306

inary, we believe they provide insights into the 307

limitations of current models. We hope that future 308

research will apply and expand these techniques 309

to both meaningfully inform users of potentially- 310

incorrect output and also improve downstream per- 311

formance when utilizing black-box models. 312
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Limitations313

One crucial detail is that our findings are not uni-314

versally applicable to language models of all kinds.315

We have only evaluated our approach with a rela-316

tively small (7.5B) multilingual model.317

In particular, the OOV problem we discuss in this318

work is common in smaller (Under 100B) models,319

but does not affect all multilingual language mod-320

els. In particular, one counterexample is GPT-3321

(Brown et al., 2020), which will fall back to oper-322

ating at byte level (Gillick et al., 2016; Xue et al.,323

2022) if there is no corresponding subword token in324

the vocabulary. This is an effective method which325

other models do not commonly employ. There is a326

trade-off of compute cost with this approach, as it327

can increase the sequence length significantly.328

Additionally, our experiments have yet to be val-329

idated across an exhaustive set of languages. In330

particular, one target language that was omitted331

was Chinese. This was a conscious decision, as the332

authors had limited knowledge of the language -333

which would have made it challenging to provide334

a fair setup with regard to the translated experi-335

ments. Another challenge was the lack of a task336

with meaningful amounts of OOV.337

Ethical Statement338

As with most topics surrounding the ethics of ma-339

chine learning, this section is far from exhaustive.340

We will only discuss some key aspects and poten-341

tial impacts of our work here.342

First and foremost, our work proposes probing a343

black-box language model’s limitations. As of the344

time of writing, even in a white-box setup, there345

is no reliable way to detect a model’s limitations346

and, as a result, it requires validation of the out-347

put utilizing external knowledge or human valida-348

tion. Given that our work is in an even further349

constrained setup, the robustness of our method is350

likely to be even more limited and should only be351

used with a clear understanding that it is only an352

approximation with no guarantees - and we have at-353

tempted to make this clear in the section discussing354

our limitations.355

Additionally, from an environmental perspective,356

the approaches discussed in this work are likely357

positive; as the result of this is increasing the util-358

ity (indirectly, by making the generations usable359

through better validation) of smaller models. Popu-360

lar models such as GPT-3 have already exceeded361

the 100B parameter milestone, which can never be362

as energy efficient as a model which is less than 363

5% of its size in terms of parameters. 364
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A Reproducibility Checklist 489

The following section discloses the required infor- 490

mation to reproduce our experiments. Training- 491

related details are not disclosed, as our work in- 492

volves no training. 493

A.1 Experiment Setup 494

All of the experiments were run on one of the fol- 495

lowing computing environments: 496

• A: AMD Ryzen 7 3700X, Nvidia RTX A6000, 497

64GB RAM 498

• B: Intel Xeon Platinum 8360Y, Nvidia RTX 499

A100, 64GB RAM 500

A.2 Compute Cost Estimation 501

Environment A is a workstation, with a power sup- 502

ply rated at 550W. Environment B is a shared node, 503

with resources segregated between users. While the 504

entire node’s entire power is estimated at 2.2KW 505

of thermal design power (TDP), our experiments 506

only used 1/4 of the node’s resources, as all of 507

our experiments were executed on a single GPU. 508

Following that logic, the peak energy use for both 509

compute environments can both be estimated at an 510

upper boundary of around 550W TDP. Only one 511

model (XGLM 7.5B) was used for all experiments, 512

running in half-precision during inference. 513

The experiments can be reproduced in a single 514

run, translating to 12 hours, and the comparison 515

requires 5 runs each across 4 variants, requiring 516

120 hours. 2. 517

A.3 Hyperparameters 518

Repetition penalty is as proposed in CTRL (Keskar 519

et al., 2019). In this work, we used a temperature 520

of 0.2, top_p of 1.0, and a repetition penalty of 1.0. 521

2This does not factor in failed experiments and is an ap-
proximation of reproducing the exact experiments disclosed
in this paper.
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A.4 Datasets and Models522

All datasets and models we have used in this work523

are publicly available and downloadable through524

the following URLs.525

• https://github.com/yahoojapan/JGLUE526

• https://korquad.github.io/KorQuad 1.0/527

• https://huggingface.co/facebook/xglm-7.5B528

Our work does not involve the standard train-val-529

test flow due to it being a zero-shot or few-shot530

setup. Due to this, we did not use the standard531

evaluation. The scripts used to run the experiments532

against a subset of the dev sets. The programs and533

raw data used to subset the datasets, evaluate task534

performance, and compute results disclosed in the535

paper are in the experiment code package.536

A.5 Prompts537

The exact prompts, including the translated variants538

are available in https://pastebin.com/KbnY7zCw.3539

B Negative Results540

This section covers the more notable failed experi-541

ments performed as potential incremental enhance-542

ments to the methods proposed in our work.543

B.1 Larger OOV Probes544

We observed that in our initial probe experiments545

with k = 30, the error rate went up noticeably546

compared to k = 2, due to the model producing547

an erroneous output when the probe had a signif-548

icantly higher ratio of OOV tokens compared to549

valid tokens. This resulted in tokens existing in550

the input sequence being omitted, resulting in false551

positives - in-vocabulary tokens incorrectly being552

detected as OOV. For example, in Korean, across553

the entire spectrum of 11,173 probe tokens, we ob-554

served 80 false positives with k = 30, while there555

was only one case in k = 2. Similarly, in 21,103556

probe tokens for Japanese, we observed no false557

positives with k = 2; we terminated the k = 30558

run after 2300 probe tokens, with 100+ false pos-559

itives detected thus far. While this is not truly a560

negative result, it does suggest a trade-off between561

accuracy and probe computation cost – in light of562

the fact that the probe cost is incurred only once563

for a given model/language pair, the balance of this564

trade-off weighed in favor of shorter probe lengths565

3This will be part of the final source release, and has only
been disclosed in this format for review purposes during the
anonymity period. The source release will have a permissive,
3-clause BSD license.

for our use case, and we suspect this will be true 566

for most others as well. 567

B.2 Contextual Trigram Substitutions 568

As we are operating at character level in the OOV 569

experiments4, there is a non-zero possibility that 570

the generated output may contain a bigram that 571

can be damaged by our bigram-based OOV post- 572

processor. While qualitative analysis did not show 573

any obvious cases where this is happening, as a 574

safety measure we also extended the experiments 575

to use trigrams instead of bigrams. The use of tri- 576

grams did not seem to eliminate any undesirable 577

postprocessing, and it did eliminate some correct 578

postprocessing (most notably where an OOV char- 579

acter appeared in the prompt next to a punctuation 580

mark), so in the final analysis we consider this in- 581

ferior to the bigram-based solution. 582

4This is likely a side effect of the Unicode-level alphabet
for the corresponding language being overly diverse, and not
intentional.
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