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ABSTRACT

Large Language Models (LLMs) have shown great potential in time series fore-
casting by capturing complex temporal patterns. Recent research reveals that
LLM-based forecasters are highly sensitive to small input perturbations. However,
existing attack methods often require modifying the entire time series, which is
impractical in real-world scenarios. To address this, we propose a Temporally
Sparse Attack (TSA) for LLM-based time series forecasting. By modeling the
attack process as a Cardinality-Constrained Optimization Problem (CCOP), we
develop a Subspace Pursuit (SP)–based method that restricts perturbations to a
limited number of time steps, enabling efficient attacks. Experiments on advanced
LLM-based time series models, including LLMTime (GPT-3.5, GPT-4, LLaMa,
and Mistral), TimeGPT, and TimeLLM, show that modifying just 10% of the input
can significantly degrade forecasting performance across diverse datasets. This
finding reveals a critical vulnerability in current LLM-based forecasters to low-
dimensional adversarial attacks. Furthermore, our study underscores the practical
application of CCOP and SP techniques in trustworthy AI, demonstrating their
effectiveness in generating sparse, high-impact attacks and providing valuable
insights into improving the robustness of AI systems.

1 INTRODUCTION

Time series forecasting is a critical tool across various domains, including finance, traffic, energy
management, and climate science. Accurate predictions of temporal patterns enable stakeholders
to make informed decisions, optimize resources, and mitigate risks, thus playing a pivotal role in
modern decision-making (Lim & Zohren, 2021; Liu et al., 2022b). By analyzing historical data to
uncover trends, time series forecasting helps anticipate future events and take proactive actions.

Recently, Large Language Models (LLMs), originally designed for Natural Language Processing
(NLP), have shown significant promise in capturing complex temporal dependencies across diverse
scenarios (Garza & Mergenthaler-Canseco, 2023; Jin et al., 2024; Gruver et al., 2024). LLMs offer
advanced capabilities, such as zero-shot forecasting, that allow them to generalize across various tasks
without extensive retraining (Rasul et al., 2023; Ye et al., 2024; Liang et al., 2024). This positions
LLMs as strong candidates for foundational models in time series forecasting. Pre-trained on vast and
diverse datasets, these models leverage attention mechanisms to capture intricate temporal patterns
and perform well on complex forecasting tasks (Devlin et al., 2019; Brown, 2020; Touvron et al.,
2023; Liu et al., 2024a).

Despite these strengths, LLMs are known to be susceptible to adversarial attacks, raising concerns
about their reliability in critical applications (Zou et al., 2023; Liu et al., 2024c). Adversarial attacks
introduce subtle perturbations to input data, which can significantly degrade model performance.
While LLM-based forecasters have demonstrated impressive accuracy in various tasks (Jiang et al.,
2024), it remains uncertain whether decision-making processes can depend on these predictions in
adversarial scenarios. Investigating the robustness of LLM-based models is therefore essential for
ensuring their trustworthiness in real-world applications.
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Figure 1: Temporally sparse black-box attack against LLMs in time series forecasting.

While adversarial attacks on machine learning models have been widely studied in image and NLP
domains (Wei et al., 2018; Xu et al., 2020; Morris et al., 2020), attacking LLMs in time series
forecasting presents unique challenges. First, ground truth values (i.e., future time steps) cannot
be used in attacks to prevent information leakage. Second, accessing the internal parameters and
structure of LLMs is often infeasible to attackers, requiring attacks to operate under strict black-box
conditions. Recent studies have proposed targeted gradient-free optimization-based attacks to address
these challenges (Liu et al., 2024b), but these methods remain impractical as they rely on perturbing
the entire input time series. Consequently, this raises a critical question: Is it possible to disrupt
LLM-based forecasters by modifying only a small portion of the input time series?

As shown in Figure 1, we address this question by developing a Temporally Sparse Attack (TSA)
strategy tailored for highly constrained scenarios, where only a small subset of the input time series
can be modified. We model the attack process as a Cardinality-Constrained Optimization Problem
(CCOP) (Bhattacharya, 2009; Ruiz-Torrubiano et al., 2010), which applies sparse perturbations to
selected time steps. To solve this CCOP, we propose a Subspace Pursuit (SP)-based method that
leverages black-box query access to the target forecasting model. The TSA approach generates
effective perturbations without requiring access to future data or internal model parameters, making
it both practical and adaptable to real-world constraints.

Our evaluation covers three key types of LLM-based time series forecasting models, including
six sub-models tested on four diverse real-world datasets. The results show that temporally sparse
perturbations—affecting only 10% of the input data—can cause significant prediction errors, revealing
a critical vulnerability in LLM-based forecasters. Even filter-based defense mechanisms struggle to
mitigate these attacks due to their sparse and targeted nature. These findings underscore the need for
more robust forecasting models that can resist adversarial manipulations and maintain reliability in
real-world applications.

In conclusion, this study reveals the vulnerabilities of LLMs in time series forecasting under highly
constrained conditions. The findings underscore the urgent need to address these vulnerabilities
to develop LLMs that are not only accurate but also robust, thereby improving their practical
applicability in high-stakes environments. Moreover, this work introduces CCOP and SP techniques
into adversarial study, offering a novel and effective framework for modeling attack processes and
generating temporally sparse perturbations. These contributions pave the way for future advancements
in the robustness and reliability of LLM-based forecasting.

2 RELATED WORK

2.1 ATTACK ON LLMS

Adversarial attacks on LLMs have garnered significant attention, revealing how minor input manipu-
lations can lead to substantial output alterations. These attacks are generally categorized into methods
such as jailbreak prompting, where crafted prompts bypass safety guardrails to elicit unintended or
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harmful responses (Wei et al., 2024); prompt injection, embedding adversarial instructions within
benign prompts to manipulate outputs (Greshake et al., 2023; Xue et al., 2024; Shen et al., 2024);
gradient-based attacks, which exploit internal model parameters to create minimally invasive input
perturbations (Zou et al., 2023; Jia et al., 2024); and embedding perturbations, which subtly alter
input embeddings to disrupt the model’s internal representations (Schwinn et al., 2024).

While much of this research has focused on text-based tasks, the robustness of LLMs in non-textual
domains like time series forecasting remains underexplored. Unlike static text, time series data
is dynamic and continuously evolving, requiring perturbations that maintain the natural flow and
coherence of the sequence. This dynamic nature introduces unique challenges for adversarial attacks,
as traditional techniques designed for static inputs may not directly apply to temporal and sequential
data. For instance, in static applications, true labels are readily available and play a crucial role in
adversarial attack generation; however, in forecasting applications, obtaining future true labels is
infeasible.

2.2 ATTACK ON TIME SERIES FORECASTING

Adversarial attacks in time series forecasting have emerged as a critical research focus, exposing the
vulnerabilities of forecasting models. Unlike static domains such as image recognition, time series
forecasting presents unique challenges for adversarial research. One key constraint is the inability
to use future ground truth values when generating perturbations, as this could lead to information
leakage (Liu et al., 2022a). To address this, surrogate modeling techniques have been introduced (Liu
et al., 2021), enabling attackers to bypass the need for ground truth labels.

Most prior studies have concentrated on white-box scenarios, where adversaries have full access to
model parameters. These investigations have demonstrated that even small input disruptions can
cause significant drops in forecasting accuracy (Liu et al., 2023). However, evaluating the robustness
of LLM-based forecasting models presents additional complexities. These models typically operate
in black-box settings, limiting access to their internal workings. Gradient-free black-box attacks have
been proposed as a solution (Liu et al., 2024b), but they often require modifying the entire time series,
which is impractical for real-world applications.

3 LLM-BASED TIME SERIES FORECASTING

LLMs have shown great promise in time series forecasting by leveraging their next-token prediction
capability. A typical LLM-based time series forecasting framework, denoted as f(·), comprises two
key components: an embedding or tokenization module and a pre-trained LLM. The embedding
module encodes time series into a sequence of tokens suitable for processing by the LLM, while the
LLM captures temporal dependencies and autoregressively predicts subsequent tokens based on its
learned representations.

Let Xt ∈ Rd represent a d-dimensional time series at time t. Define Xt = {Xt−T+1, . . . ,Xt} as the
sequence of T recent historical observations and Yt = {Yt+1, . . . ,Yt+L} as the true future values
for the next L time steps. The forecasting model f(·) predicts the future values from the historical
observations, which is formulated as:

Ŷt = f (Xt) , (1)

where Ŷt denotes the predicted future values. Typically, the prediction horizon L is constrained to
be less than or equal to the historical horizon T , i.e., L ≤ T . This ensures that the model leverages
sufficient historical context while maintaining computational efficiency.

By effectively combining the embedding module’s ability to encode raw time series data and the
LLM’s capacity to model complex temporal patterns, these models have become powerful tools for
addressing a wide range of forecasting challenges across various domains.

4 THREAT MODEL

The goal of attacking an LLM-based time series forecasting model f(·) is to manipulate it into
producing abnormal outputs that differ substantially from their typical predictions and the actual
ground truth, using minimal and nearly undetectable perturbations.
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The adversarial attack can be modeled as a maximum optimization problem:

max
ρ

L (f (Xt + ρ) ,Yt)

s.t. ∥ρi∥p ≤ ϵ, i ∈ [t− T + 1, t] ,
(2)

where ρ = {ρt−T+1, . . . , ρt} denotes the perturbations added into the clean historical time series
Xt = {Xt−T+1, . . . ,Xt}, and Yt = {Yt, . . . ,Yt+L} represents the true future values of the
subsequent L time steps. Here, the loss function L measures the discrepancy between the model’s
predictions and the ground truth, while ϵ serves as a constraint on the perturbation magnitude under
the ℓp-norm, ensuring that the adversarial attack remains subtle and imperceptible. Typically, the
global average X̄ serves as the reference point to determine whether the added perturbations are
imperceptible. Consequently, ϵ is defined as a proportion of the global average, e.g., ϵ = 5%× X̄ .

The true future values Yt are generally unavailable during the practical forecasting process. For
example, in a 5-minute-ahead Google stock value prediction, the ground truth of the stock value at
10:00 am corresponds to its value at 10:05 am, which remains inaccessible to both the forecaster
and the attacker. As a result, to avoid future information leakage, the ground truth Yt is substituted
with the predicted values Ŷt produced by the forecasting model. Specifically, in Eq. equation 2, Yt

is replaced with Ŷt. In practical applications, it is generally infeasible to access the complete set of
detailed parameters of an LLM, compelling the attacker to approach the target model as a black-box
system. In other words, no internal information of f(·) in Eq. equation 2 is available.

The computed perturbations ρ = {ρt−T+1, . . . , ρt} are typically applied across the entire time
series, making the poisoning process highly challenging for attackers. In this study, we impose strict
limitations on the attacker’s capabilities, allowing them to pollute only τ time steps within the input
time series. Furthermore, since the future true values Yt are unavailable, they are approximated
using the predicted values Ŷt = f (Xt). Under this constraint, the attack process is reformulated as a
CCOP (Bhattacharya, 2009):

max
w

L
(
f (Xt (1 +w)) , Ŷt

)
s.t. ∥w∥0 = τ,

∥wi∥1 ≤ ϵ, i ∈ [t− T + 1, t],

(3)

where w = {wt−T+1, . . . , wt} represents multiplicative adversarial perturbations. The cardinality
constraint, also called τ -sparse ℓ0-norm constraint, restricts the number of non-zero elements in
adversarial perturbations to a fixed small number, ensuring that the adversarial perturbations are
sparse on the temporal dimension. Besides, the ℓ1-norm constraint limits the magnitude of each
non-zero perturbation, ensuring the modifications remain imperceptible.

It should be noted that the global average is unsuitable as a reference for the average magnitude of the
manipulated series under the temporally sparse setting. Instead, each manipulated time step requires
a unique reference point to ensure the magnitude of the perturbation at each time step is bounded.
The limitation of the poisoned value at time step i can be expressed as:

∥Xi + ρi∥1 = ∥Xi (1 + wi)∥1 ≤ ∥Xi (1 + ϵ)∥1 , (4)

where ∥ρi∥1 = ∥wi · Xi∥1 ≤ ∥ϵ · Xi∥1. Consequently, the additive perturbation Xt + ρ in
Eq. equation 2 is replaced with the multiplicative perturbation Xt (1 +w) in Eq. equation 3.

Additionally, in many real-world scenarios, attackers lack access to the complete training dataset,
making it impractical for them to exploit training data directly. Based on previous discussion, the
attacker’s capabilities and limitations in this context can be summarized as follows:

• No access to the training data;
• No access to the internal structure or parameters of the LLM-based forecasting model;
• No access to the ground truth values;
• No ability to manipulate the entire time series data;
• Limited to temporally sparse manipulations;
• Possesses the ability to query the target model.
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5 PERTURBATION COMPUTATION WITH SUBSPACE PURSUIT

5.1 SINGLE-STEP PERTURBATION WITH ZERO OPTIMIZATION

Before solving the optimization problem in Eq. equation 3 to generate τ -sparse perturbations, we
first consider generating a perturbation at the specific time step i. This can be formulated as:

max
wi

L
(
f (Xt + {0, . . . , wi ·Xi, . . . , 0}) , Ŷt

)
s.t. ∥wi∥1 ≤ ϵ.

(5)

Here, the perturbation wi is applied only at time step i. The magnitude of the perturbation is bounded
by the constraint ϵ, while maximizing the impact on the loss function L.

In the black-box setting, Eq. equation 5 cannot be solved using gradient-based methods such as
Stochastic Gradient Descent (SGD). Instead, a zero optimization technique can be employed to
estimate the gradients, as follows:

ĝ =
F(Xt, wi,∆)−F(Xt, wi,−∆)

2 ·∆
, (6)

where ĝ represents the estimated gradients, ∆ denotes a random Gaussian noise, and F(Xt, wi, a) =
f (Xt + {0, . . . , (wi + a) ·Xi, . . . , 0}) denotes querying the target forecasting model with a noise
term a.

Similar to the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), the perturbation can be
computed using the estimated gradients ĝ as follows:

wi = ϵ · sign (ĝ) , (7)

where sign(·) denotes the signum function. This approach ensures that the perturbation magnitude is
bounded by ϵ while aligning with the direction of the estimated gradients.

Combining Eq. equation 6 and Eq. equation 7 offers an effective approach for computing single-
step perturbations in a black-box setting, where direct access to the model’s internal parameters is
restricted. However, Eq. equation 3 (a CCOP) is still not solved as it cannot strictly limit the number
of non-zero elements in the perturbations. To overcome this limitation, we propose an SP-based
algorithm (detailed in Algorithm 1) where the zero optimization-based method is embedded as a
submodule.

5.2 τ -SPARSE PERTURBATION COMPUTATION

To solve the optimization problem in Eq. equation 3, it is essential to ensure both the sparsity of
the perturbation vector w and the bounded magnitude of its elements. In this study, we propose an
adapted SP method, as outlined in Algorithm 1, based on the approach by dai2009subspace. In our
adaption, the ℓ1-norm constraint is incorporated as a subroutine to maintain the imperceptibility of
the perturbations. Here, the support set S = supp(w) = {i : wi ̸= 0} denotes the indices of nonzero
elements in the perturbation vector w, with |S| representing its cardinality. To efficiently update the
support set, we define the merge operator:

M (wS , wj) =

{
wS , j ∈ S,

{wS , wj} , j /∈ S.
(8)

This operator ensures that when a new candidate perturbation wj is selected, it is either retained in
the existing support set S if it is already present or added as a new element if it is not.

Algorithm 1 describes the iterative process for estimating the sparse multiplicative adversarial
perturbations w. At each iteration, the algorithm identifies the indices corresponding to the τ largest
loss values resulting from applying candidate perturbations. The individual perturbations wj are
computed using the zero optimization technique in Eq.equation 6 and Eq.equation 7. Then, the
support set S is updated by including the identified indices. The support set S is subsequently refined
by selecting the τ elements with the largest individual prediction loss. Any perturbation components
outside the updated support set are reset to zero. This process repeats until the loss r converges and
the final τ -sparse multiplicative adversarial perturbation w is returned.
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Algorithm 1 Computing w with adapted SP
1: Input: Time series X ∈ Rd×T , the loss function L, the LLM-based forecaster f(·), and sparsity

level τ of the multiplicative adversarial perturbations w.
2: Initialize the perturbation vector w := 0 as zeros, the support set S := ∅ as an empty set, and

the loss value r := 0 as zero.
3: while not converged do
4: Find ℓ as the index set of the τ largest losses of f (Xt (1 +M (wS , wj))) in which wj is

computed separately following Eq. equation 6 and Eq. equation 7, where j ∈ [1, . . . , T ] & j /∈ S.
5: Update the support set S := S ∪ {ℓ}.
6: Update the sparse vector wS := ϵ · sign (ĝS).
7: Update the support set S as the index set of the τ largest losses of f (Xt (1 + wi)) for all

i ∈ S.
8: Set wi = 0 for all i /∈ S.
9: Update r := L

(
f (Xt (1 +wS)) , Ŷt

)
.

10: end while
11: Return the τ -sparse multiplicative adversarial perturbations w.

This method effectively enforces the CCOP by ensuring that only τ time steps are modified while
maintaining a bounded perturbation magnitude. The adapted SP approach enables efficient selection
of perturbation locations, ensuring maximal adversarial impact while keeping modifications imper-
ceptible. Moreover, the computation complexity of the proposed method is O (T × τ), whereas a
standard greedy algorithm has a significantly higher complexity of O (T τ ).

6 EXPERIMENT

6.1 DATASETS

To assess the effectiveness of the temporally sparse attack and evaluate the robustness of LLM-based
forecasting models, we utilized four real-world time series datasets:

• ETTh1 (Zhou et al., 2021): Hourly temperature and power consumption data from elec-
tricity transformers recorded over two years, capturing both seasonal trends and long-term
variations.

• IstanbulTraffic (Gruver et al., 2024): Hourly traffic volume data from Istanbul, reflecting
dynamic temporal dependencies influenced by traffic flow fluctuations and congestion cycles.

• Weather (Zhou et al., 2021): Hourly meteorological data, including temperature, humidity,
and wind speed, which poses forecasting challenges due to high variability and nonlinear
patterns.

• Exchange Rates (Lai et al., 2018): Daily foreign exchange rate data for eight countries from
1990 to 2016, providing insights into long-term economic trends and temporal dependencies.

For all datasets, the data was split into 60% for training, 20% for validation, and 20% for testing. The
adversarial attacker had no access to the training or validation data, ensuring a realistic black-box
setting. All forecasting models were trained using a 96-step historical input window to predict the
next 48 steps, maintaining consistency across experiments.

6.2 TARGET MODELS

Three representative LLM-based forecasting models, along with one transformer-based forecasting
model, are included in the experiment to assess the effectiveness of TSA:

• TimeGPT (Garza & Mergenthaler-Canseco, 2023): A pre-trained LLM specialized for time
series forecasting, incorporating advanced attention mechanisms and temporal encoding to
capture complex patterns.

• LLMTime (Gruver et al., 2024): A general-purpose LLM adapted for time series forecasting
by framing it as a next-token prediction task. We evaluate multiple versions, including those
based on GPT-3.5, GPT-4, LLaMA, and Mistral.
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Table 1: Univariate time series forecasting results with an input length of 96 and output length of 48.
Lower MSE and MAE indicate better performance. The sparsity level τ is set to 9, TSA magnitude
constraint ϵ to 0.1, and GWN deviation to 2% of each dataset’s mean. Bold values denote the worst
performance for each dataset-model combination.

Models LLMTime LLMTime LLMTime LLMTime TimeLLM TimeGPT TimesNet
w/ GPT-3.5 w/ GPT-4 w/ LLaMa 2 w/ Mistral w/ GPT-2 (2024) (2023)

Metrcis MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.073 0.213 0.071 0.202 0.086 0.244 0.097 0.274 0.089 0.202 0.059 0.192 0.073 0.202
w/ GWN 0.077 0.219 0.076 0.213 0.087 0.237 0.094 0.291 0.102 0.231 0.059 0.193 0.074 0.202
w/ TSA 0.082 0.235 0.079 0.230 0.092 0.249 0.097 0.295 0.091 0.237 0.061 0.203 0.080 0.206
IstanbulTraffic 0.837 0.844 0.805 0.779 0.891 1.005 0.826 0.973 0.995 1.013 1.890 1.201 1.095 1.022
w/ GWN 0.882 0.908 0.883 0.864 0.917 1.063 1.054 1.031 1.123 1.221 1.848 1.204 1.103 1.035
w/ TSA 0.901 1.037 1.179 1.008 0.969 1.085 1.493 1.204 1.147 1.332 1.920 1.208 1.136 1.093
Weather 0.005 0.051 0.004 0.048 0.008 0.072 0.006 0.057 0.004 0.034 0.004 0.043 0.003 0.042
w/ GWN 0.005 0.053 0.005 0.051 0.008 0.074 0.007 0.066 0.004 0.033 0.004 0.043 0.003 0.042
w/ TSA 0.005 0.060 0.006 0.058 0.010 0.076 0.006 0.065 0.004 0.048 0.007 0.072 0.004 0.043
Exchange 0.038 0.146 0.040 0.152 0.043 0.167 0.151 0.274 0.056 0.188 0.256 0.368 0.056 0.184
w/ GWN 0.042 0.179 0.046 0.182 0.050 0.185 0.160 0.298 0.059 0.194 0.329 0.413 0.065 0.195
w/ TSA 0.049 0.196 0.065 0.190 0.059 0.210 0.190 0.299 0.061 0.189 0.474 0.537 0.062 0.190

• TimeLLM (Jin et al., 2024): A model that reprograms time series data into textual inputs
for LLMs, leveraging the Prompt-as-Prefix (PaP) technique to enhance forecasting accuracy.

• TimesNet (Wu et al., 2023): A non-LLM transformer-based forecasting model introduced
to explore the potential impact of our attack on non-LLM models.

These models represent three key strategies for time series forecasting: (1) domain-specific pre-
training tailored for time series data (TimeGPT), (2) adapting general-purpose LLMs to forecasting
tasks (LLMTime), and (3) input reprogramming to enhance compatibility with LLMs (TimeLLM).
Additionally, the inclusion of a non-LLM model (TimesNet) provides a broader framework for
evaluating adversarial robustness across both LLM-based and non-LLM models.

6.3 SETUP

We conducted experiments to evaluate TSA’s effectiveness on LLM-based forecasting models using
various datasets. The process involved (i) applying TSA to mislead forecasts while preserving time
series structure, (ii) introducing Gaussian White Noise (GWN) as a baseline, and (iii) measuring
performance degradation with Mean Absolute Error (MAE) and Mean Squared Error (MSE). Experi-
ments were performed on Ubuntu 18.04 LTS with PyTorch 1.7.1, Python 3.7.4, and a Tesla V100
GPU.

6.4 OVERALL COMPARISON

As shown in Table 1, TSA significantly increases both MSE and MAE across models and datasets,
demonstrating its strong adversarial impact. TSA causes greater prediction errors than GWN, with the
IstanbulTraffic dataset showing the largest increase—80.75% for LLMTime w/ Mistral and 46.45%
for LLMTime w/ GPT-4—highlighting model vulnerability.

Figure 2 compares prediction errors under TSA and GWN for LLMTime w/ GPT-3.5 and TimeGPT.
Subfigures 2(a) and 2(c) show that TSA-induced deviations from the ground truth are larger than
those caused by GWN. Subfigures 2(b) and 2(d) reveal that TSA (orange) generates significantly
higher error regions than GWN (purple), confirming TSA’s stronger adversarial effect.

These results validate TSA’s effectiveness. Manipulating only 9 out of 96 time steps, TSA outperforms
GWN, which affects all steps, demonstrating the power of sparse perturbations. Hyperparameter
analysis for τ and ϵ is detailed in Section 6.7.

6.5 INTERPRETATION

Figure 3 illustrates the impact of TSA on LLMTime with GPT-3.5 using the ETTh1 dataset. Subfig-
ures 3(a) and 3(b) compare input and output distributions under clean input (orange), GWN (blue),
and TSA (pink). While the input distributions show minor differences across all cases, the output
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(b) ETTh1, input bias and prediction error
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Figure 2: Comparison of prediction errors and input bias for LLM-Time with GPT-3.5 and TimeGPT
under TSA and GWN. This figure illustrates the greater impact of TSA, demonstrating significant
deviations from the ground truth compared to GWN.
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Figure 3: (a) and (b) compare the input and output distributions for LLMTime with GPT-3.5 on
ETTh1 under clean input (orange), GWN (blue), and the proposed TSA (pink). While the input
distributions remain relatively similar across all cases, the output distribution under TSA deviates
more significantly compared to those under clean input and GWN. (c) and (d) show the correlation
matrices of prediction errors with and without the proposed attack.

distribution under TSA deviates significantly, indicating that TSA exerts a stronger adversarial effect
than GWN by disrupting model forecasts more severely.

Subfigures 3(c) and 3(d) show the correlation matrices of prediction errors for clean and attacked
scenarios. The matrix under attack 3(d) exhibits higher error correlations, suggesting that TSA
induces structured perturbations that propagate across the forecast horizon. This highlights that TSA
causes systematic distortions rather than random noise, leading to more pronounced forecasting
errors.

6.6 ATTACK DEFENDED LLM-BASED FORECASTING MODELS

This section evaluates TSA’s effectiveness against adversarial defenses in LLM-based forecasting.
A gradient-free full-series attack (Liu et al., 2024b), with perturbations scaled to 2% of the dataset
mean, serves as a baseline. Three filter-based defenses—Gaussian, Mean, and Quantile filters (Xie
et al., 2019)—are applied without model re-training.

Figure 4 shows that these defenses fail to mitigate TSA (minimal light orange bars) but effectively
reduce errors for full-series attacks (larger light green bars). TSA’s sparse, targeted perturbations
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Figure 4: Full series and temporally sparse adversarial attacks on different LLM-based forecasting
models protected by filter-based adversarial defense strategies. Light green and light orange indicate
the recovered error.

bypass statistical assumptions underlying these defenses, introducing structured errors that persist
across the forecast horizon and significantly degrade model performance.
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Figure 5: Hyperparameter analysis. (a) Prediction errors for LLMTime with LLaMa 2 on Istanbul-
Traffic grow exponentially with ϵ. (b) Computational cost scales linearly with τ . (c) Prediction errors
for TimeGPT and LLMTime with Mistral increase with higher τ .

6.7 HYPERPARAMETER ANALYSIS

Algorithm 1 has two key hyperparameters: perturbation magnitude ϵ and sparsity level τ . Figure 5
illustrates their impact on TSA’s effectiveness and computational cost.

Subfigure 5(a) shows that prediction errors for LLMTime with LLaMa 2 on IstanbulTraffic increase
exponentially with higher ϵ, reflecting a trade-off between attack effectiveness and imperceptibility.
Subfigure 5(b) indicates that TSA’s computational cost scales linearly with τ , as more perturbed steps
lead to proportional increases in processing time. Subfigure 5(c) highlights that prediction errors for
TimeGPT and LLMTime with Mistral rise with higher τ , with TimeGPT showing a stronger error
increase. These results reveal a trade-off between attack impact and computational complexity.

7 CONCLUSION

This work presents a Temporally Sparse Attack (TSA), designed for LLM-based time series fore-
casting models in constrained adversarial scenarios, where only a small subset of input time steps
can be modified. We model the attack as a Cardinality-Constrained Optimization Problem (CCOP)
and develop a Subspace Pursuit (SP)-based method to efficiently generate sparse perturbations.
Our approach operates in a black-box setting, requiring no access to future data or internal model
parameters.

Experiments on three advanced LLM-based time series forecasting models across diverse real-
world datasets show that perturbing only a small portion of input time steps significantly degrades
forecasting performance. Both large pre-trained models and fine-tuned models exhibit high sensitivity
to adversarial manipulation. Our findings also demonstrate that conventional filter-based approaches
fail to mitigate TSA, emphasizing the importance of enhancing robustness in time series foundation
models. This research provides a framework for improving the resilience of AI systems and supports
future advancements in Trustworthy AI.
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