
SUP-NeRF: A Streamlined Unification of Pose
Estimation and NeRF for Monocular 3D Object

Reconstruction

Yuliang Guo1⋆ Abhinav Kumar1,2 Cheng Zhao1
Ruoyu Wang1 Xinyu Huang1 Liu Ren1

1Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI)
2Michigan State University

1[yuliang.guo2,cheng.zhao,ruoyu.wang,xingyu.huang,liu.ren]@us.bosch.com
2kumarab6@msu.edu

https://yuliangguo.github.io/supnerf

Image & Occ Mask

SUP-NeRF

Texture

Pose

Shape

New Domain Test

Training Dataset

…

Fig. 1: Teaser. SUP-NeRF is a unified solution that predicts an object’s pose, shape,
and texture using a single network. SUP-NeRF is trained on real driving scenes with
imprecise labels, and it adapts robustly to new cross-dataset scenarios.

Abstract. Monocular 3D reconstruction for categorical objects heavily
relies on accurately perceiving each object’s pose. While gradient-based
optimization in a NeRF framework updates the initial pose, this paper
highlights that scale-depth ambiguity in monocular object reconstruction
causes failures when the initial pose deviates moderately from the true
pose. Consequently, existing methods often depend on a third-party 3D
object to provide an initial object pose, leading to increased complexity
and generalization issues. To address these challenges, we present SUP-
NeRF, a Streamlined Unification of object Pose estimation and NeRF-
based object reconstruction. SUP-NeRF decouples the object’s dimen-
sion estimation and pose refinement to resolve the scale-depth ambigu-
ity, and introduces a camera-invariant projected-box representation that
generalizes cross different domains. While using a dedicated pose estima-
tor that smoothly integrates into an object-centric NeRF, SUP-NeRF is
free from external 3D detectors. SUP-NeRF achieves state-of-the-art re-
sults in both reconstruction and pose estimation tasks on the nuScenes
dataset. Furthermore, SUP-NeRF exhibits exceptional cross-dataset gen-
eralization on the KITTI and Waymo datasets, surpassing prior methods
with up to 50% reduction in rotation and translation error.

⋆ Project Lead

ar
X

iv
:2

40
3.

15
70

5v
2

 [
cs

.C
V

]
 1

4
Ju

l 2
02

4

https://yuliangguo.github.io/supnerf

2 Y. Guo et al.

1 Introduction

Monocular 3D object reconstruction [8,9,13,19,49] is a critical technology with
broad applications in autonomous driving [18, 29, 49], AR/VR, robotics [43],
and embodied AI [1,40,51]. Its impact is particularly significant in autonomous
driving, where it plays a vital role in tasks like auto-labeling [49] and world-model
construction [18, 29]. This technology is essential for reconstructing 3D models
from typical driving scenarios, where single-view observations are common. This
paper focuses explicitly on the problem of recovering an object’s pose, shape, and
texture from a single image under real driving scenarios, see Fig. 1. Our aim is
to devise an efficient solution, thereby unlocking the full potential of monocular
reconstruction for active tasks such as planning and control.

Neural Radiance Field (NeRF) technology [27, 30, 48] has revolutionized the
field of 3D reconstruction. It excels at capturing fine details in a scene and gen-
erating novel views from existing reconstructions. An exciting branch, Object-
centric NeRF [11, 12, 18, 29, 34, 45, 46], takes things further, allowing for flexible
data creation and tackling reconstruction challenges from limited number of
views by incorporating category-specific prior knowledge. Earlier object-centric
NeRF methods [8, 12, 13, 19, 46, 48, 49] require densely overlapping views and
precise poses, limiting their use to synthetic data. Later advances [18,29] enable
monocular training with imperfect masks.

Although promising, object NeRFs show limitations in correcting erroneous
object poses. First, the well-known scale-depth ambiguity [16,25,36] also affects
the object NeRF optimization. Fig. 2 shows the optimization failure of a monoc-
ular NeRF method under longitudinal translation error when it is given complete
freedom in adjusting the scale within the normalized space. Secondly, NeRF also
struggles with large rotation errors. Appendix A6.1 shows that NeRF typically
requires the initial rotation error to be below 25◦, and the pose optimization
cannot go lower than 7◦.

Recent papers [18,29] use an external monocular 3D detector to provide ini-
tial poses to NeRF. However, monocular 3D detectors suffer from generalization
issues [16,17] and increased complexity, ultimately affecting the NeRF pipeline.
BootInv [34], a more recent method, tackles pose estimation, shape, and appear-
ance reconstruction in a single framework but requires additional pre-training of
dense field generator and struggles with handling moderate occlusions.

To resolve the scale-depth ambiguity and achieve greater generalization, this
paper proposes SUP-NeRF, a Streamlined Unification of Pose estimation and
NeRF. SUP-NeRF uses an image encoder to output the object dimensions and
then refines for object pose using an iterative process while keeping its size
fixed. Besides decoupling of an object’s dimension and pose to resolve the scale-
depth ambiguity, the introduction of a novel projected-box representation in
the iterative update refinement also enhances the generalization to novel data
since the representation makes the deep pose refiner independent from camera
intrinsic parameters. In addition, SUP-NeRF tackles the complexity challenge
by sharing the NeRF image encoder with the pose estimation, making the pose
estimation module a seamless fit for object NeRFs.

SUP-NeRF 3

R err: 0.00, T err: 6.85 R err: 0.06, T err: 6.35

Fig. 2: Scale-depth ambiguity in NeRF. Given the input image (left), joint op-
timization of pose, shape, and texture in NeRF has full freedom to rescale the shape
within the normalized shape space (blue box) or move the 3D box. Such phenomenon
is observed from the evolution of the rendered objects from iteration 0 (middle) to
iteration 50 (right).

In our experiments, we first comprehensively benchmark and conduct abla-
tions on SUP-NeRF on the nuScenes [3] dataset. SUP-NeRF outperforms state-
of-the-art (SoTA) methods and achieves SoTA object reconstruction and pose
performance on this dataset. We next conduct cross-dataset object reconstruc-
tion and pose estimation experiments of the nuScenes models on the KITTI
and Waymo datasets to test SUP-NeRF’s generalization capability. SUP-NeRF
shows more significant improvements over SoTA in such cross-dataset settings.

In summary, our main contributions include:
• We introduce SUP-NeRF, an streamlined method unifying object pose esti-

mation and monocular object-centric neural reconstruction.
• We identify depth-scale ambiguities as the key barrier to object NeRF’s pose

optimization and craft a module to overcome this effectively, while also inte-
grating seamlessly with existing object NeRF frameworks.

• We introduce a novel projected box representation for the pose estimation
module, enabling the deep refiner to operate in a space invariant to camera
intrinsic parameters, thereby enhancing SUP-NeRF’s generalization capability.

• SUP-NeRF achieves SoTA object reconstruction and pose estimation results,
outperforming other methods on the nuScenes dataset, and in challenging
cross-dataset experiments on both KITTI and Waymo datasets.

2 Related Work

Object-centric NeRF. Object-centric NeRF [11, 12, 18, 29, 34, 45, 46] is a spe-
cialized NeRF variant for modeling specific object categories. Its pipeline feeds
a NeRF decoder with shape and texture codes, generating occupancy and color
values at 3D positions, followed by volumetric rendering to produce a rendered
image. The entire process is differentiable, allowing back-propagation of the pho-
tometric loss to update shape codes, texture codes, network weights, and object
poses. Early object-centric NeRFs [8, 12, 13, 19, 45, 46, 48, 49] required accurate
object poses, full visibility, and dense multi-view observations to reconstruct a
categorical model, making them inaccessible for real-world applications. Some
approaches [12,23] claim successful object pose recovery through gradient-based

4 Y. Guo et al.

Table 1: Literature Summary. SUP-NeRF sets a benchmark for minimal require-
ments, eliminating the need for external 3D detectors, CAD models, or dense NOCS
generators. It is dedicated to the reconstruction of object shapes and pose estimation
directly from a single image of driving scenes, employing an object-centric framework.

Methods Indoor Outdoor Views Scope CAD wt. Det3D wt. NeRF NOCS Gen.
6DoF Pose [21,26] ✓ ✕ single object ✓ ✓ ✕ ✕

3D Detector [16,42] ✕ ✓ single image ✕ ✓ ✕ ✕

NeRF [27] ✓ ✓ multi scene ✕ ✕ ✓ ✕

Object-NeRF [18,29] ✕ ✓ single object ✕ ✕ ✓ ✕

BootInv [34] ✕ ✓ single object ✕ ✓ ✓ ✓
SUP-NeRF ✕ ✓ single object ✕ ✓ ✓ ✕

pose refinement from monocular images. However these successes are still lim-
ited to synthetic dataset, and oversimplified object/camera poses. Recent meth-
ods [18,29] investigate more practical pipelines demonstrating the object-NeRF’s
potential to train and test on driving scenes with limited views and occluded ob-
ject data. However, both methods require relatively accurate poses from heavy
third-party 3D detectors [32,36]. Other recent works [2,5] try freeing NeRF from
external camera poses; however, solving camera poses from densely overlapping
views is a different problem than recovering an object’s pose from a single im-
age. Compared to these methods, SUP-NeRF recovers object pose from a single
image without a 3D detector in the pipeline. A more recent work [34] also unifies
pose estimation and NeRF in a single network, and enables high-fidelity object
generation. However, its training requires additional NOCS dense generator and
it is highly sensitive to moderate occlusions compared to our method.

Monocular 3D Object Pose Estimation. Advancements in deep learning
and the availability of 3D-labeled datasets [3, 6, 10] enable many monocular
3D object detection [?, 16, 24, 25, 33, 36, 47] and 6DoF pose estimation meth-
ods [14, 21, 22, 26, 28, 39, 44, 50]. Although estimating 3D information from a
single image is ill-posed due to depth-scale ambiguity, leveraging constraints
like CAD models or sizes enables accurate object pose recovery via PnP pro-
cesses [35, 39, 41] or iterative optimization [14, 21]. These indoor 6DoF pose es-
timation mostly follow an object-centric design which aims to estimate highly
accurate object pose within the 2D image patches out of a previous 2D object
detector. Recent studies [4, 20] use the NeRF pipeline to reconstruct 3D mod-
els or to train model-based keypoint detectors to estimate object poses during
inference. However, none of these model-based methods is ideal for outdoor driv-
ing scenarios, as pre-reconstruction of models is often impossible in new scenes.
Fortunately, inferring the 3D dimensions of objects from an image is feasible
when its appearance is tightly bounded to its fine-grained class [28], which keeps
an outdoor 3D detector from being fully ill-posed. Nowadays, reliable outdoor
3D detectors usually favors a image-centric design to direct detect many 3D
objects captured within the whole image, which usually requires a large back-
bone network [16, 42]. However, the performance of SoTA detectors drops sig-
nificantly when applied to datasets with distribution different from the training
data [16,25,42].

SUP-NeRF 5

Shape code

Texture code

Pose code

Image
Encoder

NeRF
Decoder

Image & Occ Mask

!!"#$
(&) Box code

Pose Refiner

[##()* |	&#()(*)]

[##()+* |	&#()(+*)] ("+,
(#))

[##()& |	&#()(&)]
!!"#$
(*) (!#-.(*)

!!"#$
(/0".)*)

(!#-.(/0".)*)

Training Pass

Box Encoder

MLP

!!"# 	 #!"#]

#)(#	 &)(#]

Inference PassOpt. at Inference Common PassPose Est. Module

[&$,($,)$]	

Fig. 3: SUP-NeRF Overview. SUP-NeRF unifies pose estimation and NeRF. The
pose estimation module enables SUP-NeRF to work for objects in diverse poses with-
out external 3D detectors. The increase of complexity only constitutes a few MLP
layers.

Tab. 1 outline the differences in methodologies. Unlike existing approaches,
SUP-NeRF unifies pose estimation and object NeRF in a streamlined manner,
adopting a straightforward object-centric design akin to indoor techniques. With-
out the need for CAD models, SUP-NeRF is suitable for outdoor driving sce-
narios. Despite its focused scope on object-centric pose estimation, SUP-NeRF
showcases enhanced cross-domain generalization capabilities compared to more
complex image-centric 3D detectors within this realm.

3 SUP-NeRF

Our goal is to create a NeRF framework that bypasses NeRF’s limitations with-
out external 3D detectors. Fig. 3 shows the overall pipeline of SUP-NeRF, a
streamlined unified network that predicts object pose, shape, and texture from
a single image. SUP-NeRF consists of three modules: a Resnet-based encoder, a
pose estimation module, and a NeRF decoder. SUP-NeRF processes an image
and its occlusion mask, with the encoder turning the masked image into shape,
texture, and pose codes and predicted object dimensions. The pose code, object
dimensions and a box code, are passed to the pose estimation module to itera-
tively refine the object pose [Ro2c|To2c]. After a few iterations, the estimated pose
is converted to the camera pose [Rc2o|Tc2o] and passed to the NeRF decoder. In
the NeRF phase, the decoder uses the shape, texture codes, and camera pose for
volumetric rendering, creating both RGB and occupancy images.
Pose Estimation Module. The key component of SUP-NeRF is the pose es-
timation module, which we show in Fig. 4. It aims to provide reliable object
poses for targets at all ranges and orientations. Our pose estimation module it-
erative updates the input pose, based on the visual difference between the input
pose and the observed object in the image. Given predicted object dimensions
[HB ,WB , LB], camera intrinsic K, and current pose R(t), T (t), image projections

6 Y. Guo et al.

Pose code

!!"#$
(&)

Box code
Pose Refiner

[##()& |	&#()(&)]

Δ	#(&)	Δ	&(&)

Box Encoder

…

(, [** ,+* , ,*]	

…

[##()&+, |	&#()(&+,)]

Image
Encoder

Fig. 4: SUP-NeRF Pose Estimation Module. The pose estimation module of
SUP-NeRF iteratively updates the object’s pose while preserving scale. It takes the
projection of 3D box corners as a visual representation of the input pose and estimate
the pose update via comparing it to observed image in a latent embedding space.
These designs handle scale-depth ambiguity and make the deep refiner independent
from camera intrinsic parameters for better cross-domain generalization.

of the 3D box corners B
(t)
proj is computed, which can be interpolated as a visual

representation of current pose. After encoding the 8 corners into a higher di-
mensional box code, SUP-NeRF feeds into the pose refiner along with a pose
code from the image encoder to predict the desired pose update ∆R(t), ∆T (t).
SUP-NeRF then composes the pose changes with current pose to compute the
next pose state, R(t+1), T (t+1). This updating process starts from a fully ran-
dom object pose within the viewing frustum of the image patch, and takes a few
iterations such that the final pose approaches the true pose even from a random
initial pose.

The pose estimation module incorporates the following unique designs:
• SUP-NeRF preserves the object dimensions to ensure unambiguous pose up-

dates. Our implementation, using projected 3D boxes on the image plane,
leads to a concise encoding of shape and pose, reducing computation in image
rendering and encoding per iteration, as opposed to previous methods [21,29]
relying on full CAD models. Since this representation makes the deep pose
refiner’s task independent from camera intrinsic parameters, it leads to better
generalization to different testing domains, as evidenced in Tabs. 3 and 4.

• SUP-NeRF updates the object pose iteratively rather than conduct a direct
pose estimation using a PnP-based [14] because the later is sensitive to missed
or swapped corners thus often produces far out-of-distribution poses. Our ab-
lation studies in Tab. 6 confirm this difference.

• SUP-NeRF represents the rotation update in axis-angle representation [37].
During rotation updating process, we convert the axis-angle space 3D rotation
∆R(t) back to SO(3), compose it with the previous rotation to compute the
new rotation state as R

(t+1)
o2c .

• SUP-NeRF represents the translation update in a relative space, indicated
as ∆T (t) : [v

(t)
x , v

(t)
y , ρ(t)], where v

(t)
x and v

(t)
y indicate the location change in

SUP-NeRF 7

image space, and ρ(t) indicates the ratio between the target depth and the
source depth. Specifically, SUP-NeRF updates the translation in image space
and depth as:

x(t+1) = x(t) + v(t)x

y(t+1) = y(t) + v(t)y (1)

Z(t+1) = ρ(t)Z(t)

where (x, y) represent the object’s 2D location in image space, Z indicates the
depth. The new 3D location T

(t+1)
o2c is then computed from the updated image

coordinates, depth and camera intrinsic matrix K. Compared to [21, 34], our
definition of ρ(t) leads to a more straight-forward update.

During the pose updating process indicated by ⊕, both the rotation and
translation are updated. Through such representation and updating scheme,
SUP-NeRF handles objects at varying distances with the same output space.
Further discusses the choice of an effective pose representation and the right
coordinate frame are included in Appendices A1 and A2.
Cross-task Shortcut. Simultaneously perceiving pose, shape, and texture, re-
quires an image encoder with shared initial layers but separate later stages. How-
ever, encoding shape, texture, and pose is a challenge as they require different
features, making it tough for a shared encoder to meet all needs effectively. Shape
and texture encoding demand a pose-invariant approach, as they correspond to
each object’s frame. On the other hand, pose encoding needs to capture suffi-
cient pose information for later use. This difference leads to conflicting learning
signals during joint training, potentially weakening the model’s performance.

SUP-NeRF proposes a straightforward one-step approach to resolve this con-
flict. After processing through the first four CNN layers separately, SUP-NeRF
introduces a cross-task shortcut that deducts pose features from the shape and
texture features. This design choice eliminates the shape and texture’s reliance
on pose, allowing the earlier layers to focus on pose-dependent features for all
tasks. This shortcut turns the conflict into a cooperative relationship, enhancing
the joint training of different modules, as demonstrated in Tab. 7. The details
of our image encoder is described in Appendix A3.
Training. SUP-NeRF closely follows the loss functions and occupancy mask
definitions from AutoRF [29]. The total loss during training is: Ltrain = Lrgb +

woccLocc + wpose(L
(direct)
pose +

∑K
t L

(t)
pose), where wocc and wpose indicate the cor-

responding weights.
We compare the RGB output to the input image to calculate photometric loss

Lrgb, and the occupancy values to the mask for occupancy loss Locc. SUP-NeRF
additionally compares the projected box corners from the integrative pose esti-
mator B(t)

proj with the ground-truth values to compute the pose losses L
(t)
pose.

We define the pose loss function as the mean distance between the matched

corners: L(∗)
pose =

1

8

8∑
i=1

√
(x

(∗)
i − x̂i)2 + (y

(∗)
i − ŷi)2, where (∗) indicates it com-

patible with both the direct pose loss and the iterative pose loss, (x
(∗)
i , y

(∗)
i)

denote a input corner position, and (x̂i, ŷi) indicates a ground-truth corner po-

8 Y. Guo et al.

sition. SUP-NeRF introduces an additional MLP layer for more accurate pose
estimation to directly supervise the 2D coordinates of box corners predicted from
the pose code.

In training, only the network weights are treated as the optimizable variables.
Moreover, the NeRF decoder uses ground-truth camera poses [Rgt

c2o|T
gt
c2o] instead

of predictions from the pose estimation module to ensure more reliable training.
Implementation Details. SUP-NeRF’s image encoder backbone is based on
ResNet50, with shared early layers and separated later layers for pose, shape, and
texture encoding. For more information on this, please refer to the Appendix A3.
To implement the NeRF decoder, we use CodeNeRF [12] for its simplicity and
ease of use. For the differentiable rendering based on NeRF, we set the latent
dimension to 256, use 64 samples along each ray, and normalize the shape space
by the diagonal length of the observed object’s 3D box. For the pose estimation
module, we also set the latent dimension to 256 for all MLP layers. Before feeding
the input image and occupancy mask into the image encoder, we pad them to
make them square and resize them to 128× 128 pixels. We then render 32× 32
images and occupancy maps to calculate losses.

To ensure effective iterative pose estimation without sacrificing generaliza-
tion, SUP-NeRF uses a heuristic to sample a random initial 3D object pose
across the entire pose space. For translation, we sample in the relative space. We
sample a random 2D location within the image ROI range as the initial projec-
tion of the object center, while setting the initial depth to Z = 20. For rotation,
we sample from the full range of yaw angles combined with a random rotation
angle within a (−20◦, 20◦) range around a random axis direction. This sampling
method covers almost the entire distribution of object poses in the camera frame
and is used consistently in both training and inference.

During training, we use 3 iterations of the pose estimator to generate cor-
responding pose losses, which allow for pose regression to handle highly diverse
poses. We jointly train the unified model for the pose estimation module, im-
age encoder, and NeRF decoder for 40 epochs on the nuScenes dataset using a
learning rate of 10−4 and loss weights of wocc = 0.1, wposs = 0.01 to compute
the total loss.
Inference. During inference, SUP-NeRF optimizes the shape code, texture code,
and object pose [Ro2c|To2c] keeping the network weights frozen. The total loss
Linfer is thus Linfer = Lrgb + woccLocc, where wocc balances the two. SUP-
NeRF minimizes the loss Linfer to update the variables. At inference, we run
3 iterations for the feed-forward pose estimation module without updating the
shape and color codes, and 50 iterations for the gradient-based joint optimization
of shape, texture, and pose. We use a step size of 0.02 for shape and texture code
updates and 0.01 for pose updates during joint optimization.

4 Experiments
Our experiments use three datasets: nuScenes [3], KITTI [6] and Waymo [38].
Our evaluation framework simultaneously measures rendering quality, shape re-
construction accuracy, and pose estimation precision.

SUP-NeRF 9

Data Splits. Since these datasets are not specifically for 3D reconstruction, we
sifted a subset for better evaluation. We chose daytime sequences and used Mask
R-CNN [7] to get instance masks, as nuScenes lacks 2D segmentation masks. We
matched these masks with 3D bounding box annotations, categorizing them into
foreground, background, and unknown, similar to AutoRF [29]. More details are
in Appendix A7. We use the following splits of these datasets:
• nuScenes Train Split : We collected 87,048 objects from the nuScenes Train

split for training.
• nuScenes Val Split : We collected 5,000 random objects from the nuScenes Val

split for evaluation.
• KITTI Val Split : We use 4,895 objects from KITTI Val split [6] for evaluation.
• Waymo Val Split : We randomly selected 5,000 objects from Waymo Val split

[16] for evaluation.
Evaluation metrics. Our evaluation framework differs from traditional NeRF
assessments as it simultaneously evaluates object reconstruction quality and pose
accuracy. We incorporate two monocular reconstruction metrics: (1) the PSNR
(Peak Signal-to-Noise Ratio) comparing the rendered and observed images; (2)
the Depth Error between the rendered depth map and sparse LiDAR data, de-
noted as DE. We also include two pose estimation metrics: (3) rotation error
denoted as RE ; (4) the translation error denoted as TE. To offer a thorough
evaluation, we compare various methods at different stages: post-feed-forward
(FF), and at the 50th iterations of NeRF joint optimization. Beyond monoc-
ular assessments, we also conduct cross-view evaluations for PSNR and depth
error metrics, denoted as (5) PSNR-C and (6) DE-C, focusing on objects ob-
served from novel views. As the nuScenes dataset provides object IDs that allows
tracking objects across various views, the cross-view evaluation is exclusively
conducted on the nuScenes dataset, as explained in Fig. 5.
Baselines. We compare SUP-NeRF with two baselines: AutoRF [29] and Au-
toRF [29]+FCOS3D [42](selected for its monocular capability, and availability
of model trained on the nuScenes dataset). Both AutoRF and SUP-NeRF use
the same NeRF decoder and image encoder to ensure a fair comparison. The dif-
ference lies in SUP-NeRF’s additional layers for pose encoding and refinement.
During testing, we apply the same random pose generation for both AutoRF
and SUP-NeRF methods, whereas the FCOS3D baseline begins with its own
pose prediction. We also compare with BootInv [34], which recovers pose, shape,
and appearance. Leveraging our flexible design, we developed SUP-BootInv by
integrating BootInv’s pretrained decoder with our encoder and pose estimator.

4.1 nuScenes Monocular Reconstruction and Pose Estimation

Tab. 2 shows that SUP-NeRF outperforms two baselines, AutoRF and its com-
bination with FCOS3D on nuScenes Val set. AutoRF alone struggles to improve
pose from a random start, resulting in lower PSNR and depth error. SUP-NeRF
consistently reduces depth error by over 25%, rotation error by over 30%, and
translation error by over 13% compared to the FCOS3D and AutoRF com-

10 Y. Guo et al.

Table 2: nuScenes Monocular Reconstruction and Pose Estimation Results.
SUP-NeRF consistently improves AutoRF-based pipelines in all metrics, particularly
in the pose estimation metrics. SUP-BootInv also consistently improves BootInv in all
metrics. [Key: Best, Second Best, FF= Feed Forward, C= Cross-View]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�) PSNR-C (−�) DE-C (m) (

−
�)

FF|50it FF|50it FF|50it FF|50it FF|50it FF|50it
AutoRF [29] 3.6|10.6 11.21|10.09 87.52|88.07 6.04|5.95 10.0|8.8 1.31|1.41
AutoRF+FCOS 7.5|17.2 1.34|0.81 9.77|10.17 0.85|0.78 9.8|10.5 1.29|1.16
SUP-NeRF 10.5|18.8 0.69|0.60 7.01|7.07 0.68|0.73 10.6|10.9 1.22|1.14
BootInv [34] 9.4|14.3 5.01|3.56 28.40|28.00 2.59|2.91 10.9|11.8 1.37|1.35
SUP-BootInv 10.9|15.4 1.95|1.62 7.11|8.40 0.64|1.00 10.9|11.9 1.37|1.40

Fig. 5: nuScenes Cross-view Evaluation. Each row shows a set of images of the
same object from different angles. We use the example for both monocular pose esti-
mation and NeRF reconstruction. Other images in each row are used to evaluate the
reconstructed shape and texture in PSNR and Depth Error (DE).

bination. Our feed-forward stage also shows promising potential for real-time
applications, especially where rendering quality is less critical.

We next compare BootInv [34] as the baseline, although the performance of
original BootInv’s pose estimation was subpar on both the nuScenes and KITTI
datasets, integrating our robust pose module with this NeRF framework signifi-
cantly enhanced pose estimation accuracy. This underscores the adaptability of
our unified pipeline in augmenting various object NeRF frameworks for improved
pose estimation. Moreover, comparisons of BootInv [34] and SUP-BootInv in
terms of monocular PSNR and depth error suggest that SUP-BootInv’s superior
pose estimation contributes to its higher PSNR and lower depth error. More
detailed analysis upon BootInv-based pipelines is included in Appendix A5.

4.2 Cross-Dataset Evaluation

We next compare the generalization capability of all these NeRF models with
the cross-dataset experiments. For these experiments, we directly apply nuScenes
models to the KITTI and Waymo datasets and report the metrics.
KITTI. Tab. 3 shows the result of cross-dataset experiments on the KITTI
dataset. It shows that SUP-NeRF achieves SoTA performance across all evalu-
ation metrics. SUP-NeRF reduces depth error by about 16%, rotation error by

SUP-NeRF 11

Table 3: KITTI Cross-dataset Monocular Reconstruction and Pose Estima-
tion Results. We train all methods on nuScenes dataset, and test on KITTI dataset.
Our methods SUP-NeRF and SUP-BootInv consistently show superiority in all metrics
compared to the counterpart methods. [Key: Best, Second Best, FF= Feed Forward]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�)

FF|50it FF|50it FF|50it FF|50it
AutoRF [29] 0.4|7.6 9.89|8.83 89.67|90.42 6.16|6.07
AutoRF+FCOS 2.4|13.4 2.42|1.74 11.95|12.5 2.2|2.09
SUP-NeRF 4.0|14.1 2.19|1.54 6.79|6.89 1.06|1.01
BootInv [34] 7.0|12.3 6.11|4.38 15.52|15.76 3.97|3.90
SUP-BootInv 7.6|12.7 2.79| 2.21 9.16|8.84 1.15|1.67

FF: t=0 FF: t=3 … NeRF: t=50

SU
P-
N
eR

F
FC

O
S+

Au
to
RF

Fig. 6: KITTI (Cross-dataset) Qualitative Results. In the top panel, we demon-
strate SUP-NeRF executes pose estimation reliably, fast converging from a random
initial pose to the true one, and enables neural reconstruction under diverse object
poses, occlusion cases under this cross-dataset setup. In the bottom panel, SUP-NeRF
is visually compared to the other major competitor, demonstrates sharper rendered
image, higher accuracy in shape and pose.

as large as 50% and translation error also about 50%. Thus, SUP-NeRF shows
significantly better geometric performance in cross-dataset setting compared to
AutoRF+FCOS, which we attributes to our deep pose module’s independence
from camera intrinsic parameters. Meanwhile, compared to nuScenes evalua-
tion, all the methods’ PSNR and depth error performance drop, which means
the cross-dataset generalization of monocular NeRF remains an open challenge.

Fig. 6 presents the qualitative results on this experiment, demonstrating
how SUP-NeRF handles diverse poses and occlusions in pose refinement and
the visual comparisons between the two most competitive pipelines. Consistent
improvements upon integrating our design into BootInv baseline were also ob-
served. More visual comparisons are in Appendix A9.

12 Y. Guo et al.

Table 4: Waymo Cross-dataset Monocular Reconstruction and Pose Esti-
mation Results. We train all methods on nuScenes dataset, and test on Waymo
dataset. Our methods SUP-NeRF and SUP-BootInv consistently show superiority in
all metrics compared to the counterpart methods, the only exception is the comparison
to AutoRF+FCOS in Rotation Error. [Key: Best, Second Best, FF= Feed Forward]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�)

FF|50it FF|50it FF|50it FF|50it
AutoRF [29] 0.6|9.8 6.76|6.53 86.56|87.67 9.1|9.14
AutoRF+FCOS 6.2|16.5 2.43|2.32 6.65|7.2 3.22|3.31
SUP-NeRF 4.8|17.0 2.32|1.56 10.01|10.6 1.68|1.54
BootInv [34] 8.1|11.0 8.85|8.20 30.78|31.52 5.26|6.16
SUP-BootInv 8.6|11.9 5.36|4.38 10.24|11.04 1.67|2.53

Waymo. Tab. 4 shows the result of cross-dataset experiments on the Waymo
dataset. It shows that SUP-NeRF achieves SoTA performance across most eval-
uation metrics. The only exception is the superior rotation estimation achieved
by FCOS3D, which is likely due to leveraging larger context for heavily occluded
cases. However, our advantage in translation estimation is more significant.

4.3 Ablation Studies

The major ablation studies we conduct includes (i) the impact of pose estimation
module designs and (ii) the impact of different object NeRF networks. Other
ablation studies to analyze the impact of training with predicted 2D boxes, pose
refinement iterations, training epochs, as well as NeRF’s capability on handling
initial pose errors are included in Appendix A6, owing to lack of space.
Pose Estimation Module. We evaluate multiple pose estimation designs from
two main angles. First, we focus on object-centric pose estimation task alone
with evaluations on nuScenes, KITTI, and Waymo datasets. The prototypical
designs include: (i) Direct 6D pose regression using MLP layers; (ii) Pose estima-
tion from predicted box corners via Keypoint-based Perspective-n-Point (PnP);
(iii) NOCS-based pose estimation as implemented in BootInv [34]; (vi) Exter-
nal monocular 3D detection FCOS3D [42]; (v) Our iterative pose refinement
method, which uses projected boxes. For fairness, methods (1), (2), and (5)
share the same image encoder, pose encoding layers, differing only in their out-
put layers. Tab. 5 shows that SUP-NeRF consistently outperforms the others,
notably in cross-dataset translation estimation.

The second evaluation assesses the impact of different initial poses on object-
NeRF performance within the SUP-NeRF architecture. We additionally com-
pared (i) Ground-Truth (GT) pose; (ii) Random initial pose, to represent the
oracle and worst case in pose initialization, and exclude the NOCS method which
is part of a different NeRF framework. Given different initial poses, all meth-
ods undergo the same NeRF Gradient-based Pose Refinement (NGPR), eval-
uated immediately and after 50 iterations. Tab. 6 shows that our SUP-NeRF
method significantly surpasses other initial pose estimators in geometric accu-
racy, demonstrating its effectiveness in enhancing 3D model quality.

SUP-NeRF 13

Table 5: Pose Estimation Ablation Studies. We evaluate all the candidate pose
estimation methods with a focus on pose accuracy alone, on nuScenes, KITTI, and
Waymo validation sets. Our method shows outstanding robustness in all cases, partic-
ularly in translation accuracy in cross-dataset tests. [Key: Best]

Pose Module RE (deg.)(

−
�) TE (m) (

−
�)

nuScenes KITTI Waymo nuScenes KITTI Waymo
MLP Pose 31.96 37.58 30.89 5.53 5.31 10.1
Corners+PnP 24.79 35.10 93.76 2.82 3.55 18.68
NOCS +PnP(BootInv) 28.40 15.52 23.66 2.59 3.97 3.47
FCOS3D 9.77 11.95 6.65 0.85 2.2 3.22
SUP-NeRF 7.01 6.79 10.01 0.68 1.06 1.54

Table 6: Ablation studies of Pose Initialization in Object NeRF on nuScenes.
We compare different choices of initial poses under SUP-NeRF frameworks. As shown,
our SUP-NeRF presents superiors effectiveness in all the metrics. [Key: Best, FF=
Feed Forward, C= Cross-View]

Initial Pose PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�) PSNR-C (−�) DE-C (m) (

−
�)

FF|50it FF|50it FF|50it FF|50it FF|50it FF|50it
Random 3.6|10.6 11.21|10.09 87.52|88.07 6.04|5.95 9.1|7.4 1.42|1.82
MLP Pose 1.2|6.9 5.33|4.41 31.96|24.57 5.53|2.78 9.8|8.5 1.3|1.4
Corners+PnP 7.2|16.2 2.18|1.83 24.79|24.57 2.82|2.78 9.9|9.5 1.3|1.3
FCOS3D 7.5|17.2 1.34|0.81 9.77|10.17 0.85|0.78 9.8||10.5 1.29||1.16
SUP-NeRF 10.5|18.8 0.69|0.60 7.01|7.07 0.68|0.73 10.6|10.9 1.22|1.14
GT 10.0|18.8 0.66|0.53 0.|2.11 0.|0.13 10.9|11.1 1.19|1.14

Tab. 6 also confirms the role of NeRF Gradient-Based Pose Refinement
(NGPR). By comparing the difference between feed-forward results and the later
ones, one can find NGPR merely reduces rotation error or translation error. On
the contrary, it can even increase pose error when the initial pose error is small
enough, e.g. rotation error < 7◦, and translation error < 0.75m. On the other
hand, the improvements of PSNR and depth reconstruction over time indicate
that NeRF optimization mostly focuses on shape and texture optimization w.r.t.
the visible surface regardless the pose.
Impact of object NeRF framework. To demonstrate SUP-NeRF’s benefits,
we compared different network configurations using the same pose refinement
approach. For fairness, we used identical subnetwork modules across all config-
urations. These include a ResNet-based Image Encoder (E), a NeRF Decoder
(D), and our Pose Estimation Module (P). CodeNeRF [12] has just a Decoder
(D), AutoRF combines an Image Encoder and Decoder (E + D), and SUP-NeRF
uses all three (E + D + P). For CodeNeRF and AutoRF, we added a separately
trained Pose Network (PNet, composed of E + P) for initial pose refinement.
We also tested a SUP-NeRF version without the cross-task Short Cut (SC) to
assess its impact. Tab. 7 shows that SC consistently improves SUP-NeRF across
all metrics on nuScenes.

SUP-NeRF, with joint training, outperforms separate training setups Au-
toRF + PNet and CodeNeRF + PNet in monocular metrics. Interestingly, while

14 Y. Guo et al.

Table 7: Object NeRF Framework Ablations on nuScenes. We used the same
subnetwork architectures - the image encoder (E), NeRF decoder (D), and pose esti-
mation module (P) - to create various model configurations. For SUP-NeRF, we also
included a version without the cross-task Short Cut (SC) for comparison. [Key: Best,
FF= Feed Forward, C= Cross-View]

Model Training PSNR(−�) DE (m)(

−
�) RE (deg.)(

−
�) TE (m)(

−
�) PSNR-C(−�) DE-C (m)(

−
�)

FF|50it FF|50it FF|50it FF|50it FF|50it FF|50it
CodeNeRF (D)+PNet(E+P) 7.6|16.0 0.87|0.69 10.57|9.75 0.72|0.76 11.0|11.2 1.01|1.04
AutoRF (E+D)+PNet(E+P) 9.7|17.5 0.79|0.66 8.26|7.87 0.7|0.74 5.6|10.1 1.24|1.16
SUP-NeRF (E+D+P) w/o SC 8.7|18.0 0.94|0.73 10.12|9.22 0.75|0.74 10.8|10.9 1.23|1.11
SUP-NeRF (E+D+P) 10.5|18.8 0.69|0.60 7.01|7.07 0.68|0.73 10.6|10.9 1.22|1.14

Table 8: Model Size and Running Time Comparison in feed-forward scenarios,
and with 20 and 50 iterations of NeRF optimization. SUP-NeRF gets the smallest
running time. [Key: Best, FF= Feed Forward]

Method Params (M) (

−
�) FF (s) (

−
�) FF+20it (s) (

−
�) FF+50it (s) (

−
�)

AutoRF+FCOS [29] 91.116 0.123 0.714 1.599
(36.166+54.950) (0.114+0.009) (0.114+0.600) (0.114+1.485)

SUP-NeRF 49.816 0.018 0.608 1.493

BootInv [34] 182.616 0.156 3.534 8.601
SUP-BootInv 57.580 0.018 3.396 8.463

CodeNeRF lags in monocular, it excels in cross-view evaluations. This implies
that using mean shape codes, rather than current image encodings, might reduce
overfitting to current view.

4.4 Running Speed Analysis

Tab. 8 compares the model size and running speed on a single A5000 Graphics
card. Detailed setup and analysis details are in Appendix A8. Tab. 8 shows that
SUP-NeRF needs about half or one third as many parameters as others and is
6-8 times faster in the feed-forward (FF) stage. Meanwhile, a significant portion
of the run time is consumed by the NeRF optimization step, whether for 20
iterations (20it) or 50 iterations (50it). However, speed limitation of NeRF can
been effectively tackled by recent advances in neural rendering [15,31], which we
consider as orthogonal to our contribution to the feed-forward stage.

5 Conclusion

This paper introduces SUP-NeRF: a unified network that seamlessly integrates
pose estimation and object reconstruction. SUP-NeRF includes a novel pose
estimation module to handle scale-depth ambiguity and a new representation
invariant to camera changes. Consequently, SUP-NeRF greatly improves the
robustness of object pose estimation compared to the standard NeRF baseline.
SUP-NeRF outperforms previous methods in both monocular reconstruction and
pose estimation tasks, especially in challenging cross-dataset applications.

SUP-NeRF 15

References

1. Batra, D., Chang, A.X., Chernova, S., Davison, A.J., Deng, J., Koltun, V., Levine,
S., Malik, J., Mordatch, I., Mottaghi, R., Savva, M., Su, H.: Rearrangement: A
challenge for embodied AI. CoRR (2020) 2

2. Bian, W., Wang, Z., Li, K., Bian, J.: Nope-nerf: Optimising neural radiance field
with no pose prior. In: CVPR (2023) 4

3. Caesar, H., Bankiti, V., Lang, A., Vora, S., Liong, V., Xu, Q., Krishnan, A., Pan,
Y., Baldan, G., Beijbom, O.: nuScenes: A multimodal dataset for autonomous
driving. In: CVPR (2020) 3, 4, 8, 19

4. Chen, H., Manhardt, F., Navab, N., Busam, B.: Texpose: Neural texture learning
for self-supervised 6d object pose estimation. In: CVPR (2023) 4

5. Chen, Y., Lee, G.H.: DBARF: deep bundle-adjusting generalizable neural radiance
fields. In: CVPR (2023) 4

6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI
vision benchmark suite. In: CVPR (2012) 4, 8, 9

7. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron. https:
//github.com/facebookresearch/detectron (2018) 9, 27, 30

8. Gkioxari, G., Johnson, J., Malik, J.: Mesh R-CNN. In: ICCV (2019) 2, 3
9. Henderson, P., Tsiminaki, V., Lampert, C.H.: Leveraging 2d data to learn textured

3d mesh generation. In: CVPR (2020) 2
10. Hodaň, T., Michel, F., Brachmann, E., Kehl, W., Glent Buch, A., Kraft, D., Drost,

B., Vidal, J., Ihrke, S., Zabulis, X., Sahin, C., Manhardt, F., Tombari, F., Kim,
T.K., Matas, J., Rother, C.: BOP: Benchmark for 6D object pose estimation.
ECCV (2018) 4

11. Insafutdinov, E., Campbell, D., Henriques, J.F., Vedaldi, A.: Snes: Learning proba-
bly symmetric neural surfaces from incomplete data. In: Avidan, S., Brostow, G.J.,
Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. pp. 367–383 (2022) 2, 3

12. Jang, W., Agapito, L.: Codenerf: Disentangled neural radiance fields for object
categories. In: ICCV (2021) 2, 3, 8, 13

13. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh
reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV (2018) 2, 3

14. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making rgb-
based 3d detection and 6d pose estimation great again. In: ICCV (2017) 4, 6

15. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Trans. Graph. (2023) 14, 32

16. Kumar, A., Brazil, G., Corona, E., Parchami, A., Liu, X.: DEVIANT: depth equiv-
ariant network for monocular 3d object detection. In: ECCV (2022) 2, 4, 9

17. Kumar, A., Guo, Y., Huang, X., Ren, L., Liu, X.: SeaBird: Segmentation in Bird’s
View with Dice Loss Improves Monocular 3D Detection of Large Objects. In:
CVPR (2024) 2

18. Kundu, A., Genova, K., Yin, X., Fathi, A., Pantofaru, C., Guibas, L.J., Tagliasac-
chi, A., Dellaert, F., Funkhouser, T.A.: Panoptic neural fields: A semantic object-
aware neural scene representation. In: CVPR (2022) 2, 3, 4

19. Kundu, A., Li, Y., Rehg, J.M.: 3d-rcnn: Instance-level 3d object reconstruction via
render-and-compare. In: CVPR (2018) 2, 3

20. Li, F., Yu, H., Shugurov, I., Busam, B., Yang, S., Ilic, S.: Nerf-pose: A first-
reconstruct-then-regress approach for weakly-supervised 6d object pose estimation.
CoRR (2022) 4

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

16 Y. Guo et al.

21. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for
6d pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV (2018) 4, 6, 7, 18

22. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for
6d pose estimation. In: ECCV (2018) 4

23. Lin, Y., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.: inerf: Inverting
neural radiance fields for pose estimation. In: IROS (2021) 3

24. Lipson, L., Teed, Z., Goyal, A., Deng, J.: Coupled iterative refinement for 6d multi-
object pose estimation. In: CVPR (2022) 4

25. Lu, Y., Ma, X., Yang, L., Zhang, T., Liu, Y., Chu, Q., Yan, J., Ouyang, W.:
Geometry uncertainty projection network for monocular 3d object detection. In:
ICCV (2021) 2, 4

26. Merrill, N., Guo, Y., Zuo, X., Huang, X., Leutenegger, S., Peng, X., Ren, L.,
Huang, G.: Symmetry and uncertainty-aware object SLAM for 6dof object pose
estimation. In: CVPR (2022) 4

27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM pp. 99–106 (2021) 2, 4

28. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation
using deep learning and geometry. In: CVPR (2017) 4

29. Müller, N., Simonelli, A., Porzi, L., Bulò, S.R., Nießner, M., Kontschieder, P.:
Autorf: Learning 3d object radiance fields from single view observations. In: CVPR
(2022) 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 24, 31, 32

30. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Trans. Graph. pp. 102:1–102:15 (2022) 2

31. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. (2022) 14, 32

32. Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for
monocular 3d object detection? In: ICCV (2021) 4

33. Park, K., Patten, T., Vincze, M.: Pix2pose: Pix2pose: Pixel-wise coordinate regres-
sion of objects for 6d pose estimation. In: ICCV (2019) 4

34. Pavllo, D., Tan, D.J., Rakotosaona, M.J., Tombari, F.: Shape, pose, and appear-
ance from a single image via bootstrapped radiance field inversion. In: CVPR
(2023) 2, 3, 4, 7, 9, 10, 11, 12, 14, 18, 22, 32

35. Rad, M., Lepetit, V.: Bb8: A scalable, accurate, robust to partial occlusion method
for predicting the 3d poses of challenging objects without using depth. ICCV (2017)
4

36. Simonelli, A., Bulò, S.R., Porzi, L., Lopez-Antequera, M., Kontschieder, P.: Dis-
entangling monocular 3d object detection. In: ICCV (2019) 2, 4

37. Solà, J., Deray, J., Atchuthan, D.: A micro lie theory for state estimation in
robotics. CoRR (2018) 6, 18, 19

38. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J.,
Chen, Z., Anguelov, D.: Scalability in perception for autonomous driving: Waymo
open dataset. In: CVPR (2020) 8

39. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6d object pose
prediction. In: CVPR (2018) 4

40. Tian, S., Cai, Y., Yu, H.X., Zakharov, S., Liu, K., Gaidon, A., Li, Y., Wu, J.:
Multi-object manipulation via object-centric neural scattering functions. In: CVPR
(2023) 2

SUP-NeRF 17

41. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized
object coordinate space for category-level 6d object pose and size estimation. In:
CVPR (2019) 4

42. Wang, T., Zhu, X., Pang, J., Lin, D.: FCOS3D: fully convolutional one-stage
monocular 3d object detection. In: ICCVW (2021) 4, 9, 12

43. Weihs, L., Deitke, M., Kembhavi, A., Mottaghi, R.: Visual room rearrangement.
In: CVPR (June 2021) 2

44. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A convolutional neural
network for 6D object pose estimation in cluttered scenes. In: RSS (2018) 4

45. Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang, G., Cui, Z.: Learning
object-compositional neural radiance field for editable scene rendering. In: ICCV
(2021) 2, 3

46. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images. In: CVPR (2021) 2, 3

47. Yu, H., Wu, J., Yi, L.: Rotationally equivariant 3d object detection. In: CVPR
(2022) 4

48. Zakharov, S., Ambrus, R.A., Guizilini, V., Park, D., Kehl, W., Durand, F., Tenen-
baum, J.B., Sitzmann, V., Wu, J., Gaidon, A.: Single-shot scene reconstruction.
In: CoRL (2021) 2, 3

49. Zakharov, S., Kehl, W., Bhargava, A., Gaidon, A.: Autolabeling 3d objects with
differentiable rendering of SDF shape priors. In: CVPR (2020) 2, 3

50. Zakharov, S., Shugurov, I., Ilic, S.: Dpod: 6d pose object detector and refiner. In:
ICCV (2019) 4

51. Zhou, A., Kim, M.J., Wang, L., Florence, P., Finn, C.: Nerf in the palm of your
hand: Corrective augmentation for robotics via novel-view synthesis. In: CVPR
(2023) 2

18 Y. Guo et al.

SUP-NeRF: A Streamlined Unification of Pose
Estimation and NeRF for Monocular 3D Object
Reconstruction

Appendix

For readers with a keen interest in extensive experiments, particularly for
the detailed interpretation of the results related to BootInv [34], we invite you
to explore Appendix A5. If you are looking for more comprehensive ablation
studies, you can find them in Appendix A6. Additionally, for further visual
comparisons with other methods and cross-view visualizations, please refer to
Appendix A9.

A1 Pose Representation

Choosing the appropriate pose representation is crucial for both object pose
estimation and NeRF’s optimization of object pose. For translation optimization,
using a 3D representation with a single step size may not suffice for objects
at varying distances. To address this, a relative space representation, inspired
by [21, 34], can be more effective. We demonstrate in Sec. 3 that a relative
representation benefits direct regression through a neural network by allowing
predictions within a more constrained space.

In contrast, in driving scenarios where rotation is mostly simplified to 1D, the
choice of rotation representation may not be as crucial. The Axis-angle represen-
tation can be a simple and effective choice to facilitate the optimization task, as
demonstrated in [37]. We also adopt this representation in our pose estimation
design.

A2 Coordinate Frame for NeRF Optimization

The success of pose optimization in a object-centric NeRF framework crucially
depends on the choice of the coordinate frame [34]. This section systematically
discusses the right choice of coordinate system to perform the NeRF optimization
for pose. Although a NeRF framework directly uses the camera pose in the object
system Pc2o for the rendering purpose, we will later show the right choice is the
object pose under camera coordinate frame Po2c.

A2.1 Definitions and problem formulation

Po2c and Pc2o are defined respectively w.r.t. the camera frame (C) and object
frame (O), as illustrated in Fig. 7. Po2c = [Ro2c|To2c] indicates the transforma-
tion from object coordinates to camera coordinates, where Ro2c, To2c indicate the

SUP-NeRF 19

Fig. 7: Illustration of coordinate systems. This illustration follows the nuScenes [3]
definition of camera coordinate frame (C) and object coordinate frame (O). The object
orientation and location in the camera frame is denoted as Ro2c, To2c. The camera
orientation and location in the object frame is denoted as Rc2o, Tc2o.

object orientation (three object basis axis) and translation (object center posi-
tion) in the camera frame respectively. Given Xo, Xc indicating a 3D point in
the object frame and camera frame respectively, we will have the transformation

Xc = Ro2cXo + To2c (2)

Similarly, Pc2o = [Rc2o|Tc2o] indicates the transformation from camera coor-
dinates to object coordinates, where Rc2o, Tc2o indicate the camera orientation
(three camera basis axis) and translation (camera center position) in the object
frame. We have

Xo = Rc2oXc + Tc2o (3)

We can also derive that the transformations between to two poses:

Rc2o = RT
o2c, Tc2o = −RT

o2cTo2c (4)

and reversely
Ro2c = RT

c2o, To2c = −RT
c2oTc2o (5)

Given an object NeRF optimization process w.r.t. [Ro2c|To2c] → [Rc2o|Tc2o] →
L where L : SE(3) → R denotes a loss function of Rc2o, Tc2o, the question can
be formulated as whether the directly optimized object pose [Ro2c|To2c] equals
to the optimized camera pose [Rc2o|Tc2o] transformed back to the object pose.

A2.2 Rotation representation

Because direct adding perturbation to the matrix might lead to a new matrix not
belonging to SO(3) group, the optimization is better to b executed in another
representation of rotation. An effective choice of such rotation representation
can be the Lie Algebra of SO(3), the axis-angle representation [37]. The trans-
formation between the Lie Algebra of the 3D rotation living in two coordinate
frames can be written as

q = log(R), R = exp(q)

q′ = log(RT) = log(exp(q)T) = log(exp(−q)) = −q
(6)

20 Y. Guo et al.

Given the axis-angle representation, the optimization can be conducted in an
extended chain from an O2C pose qo2c → [Ro2c|To2c] → [Rc2o|Tc2o] → L or a
extended chain from a C2O pose, qc2o → [Rc2o|Tc2o] → L.

A2.3 Equivalence in rotation updates?

The equivalence question can be answered just from the updates of rotations.
Since L is a function of both Rc2o and Tc2o, each is a function of Ro2c, the
updates of Ro2c will get mixed gradients from Rc2o and Tc2o in separate terms.
In NeRF context, given L = G(Xo), where Xo = Rc2oXc + Tc2o is an 3D point
in the object frame transformed from the sampled 3D point Xc from the camera
frame, the updates of qo2c can be written as:

qTo2c
(t+1)

= qTo2c
(t) − λ

∂L

∂qo2c

(t)

= qTo2c
(t) − λ

∂L

∂Xo

(t) ∂Xo

∂qo2c

(t)
(7)

where λ indicates the update step. Because Xo = Rc2oXc + Tc2o, we have

qTo2c
(t+1)

= qTo2c
(t) − λ(

∂L

∂Xo

(t) ∂Xo

∂Rc2o

(t) ∂Rc2o

∂qo2c

(t)

+
∂L

∂Xo

(t) ∂Xo

∂Tc2o

(t) ∂Tc2o

∂qo2c

(t)

)

= qTo2c
(t) − λ(

∂L

∂Rc2o

(t) ∂Rc2o

∂qo2c

(t)

+
∂L

∂Tc2o

(t) ∂Tc2o

∂qo2c

(t)

)

= qTo2c
(t) − λ

∂L

∂qo2c

(t)

− λ
∂L

∂Tc2o

(t) ∂Tc2o

∂qo2c

(t)

(8)

Suppose current rotation representations in two frames are still synchronized
(it might not be violated after the first iteration), that is qTo2c

(t)
= −qTc2o

(t), their
derivatives w.r.t. L are also each others’ negative, we have

qTo2c
(t+1)

= −(qTc2o
(t) − λ

∂L

∂qc2o

(t)

)− λ
∂L

∂Tc2o

(t) ∂Tc2o

∂qo2c

(t)

(9)

Since (qc2o
(t)−λ ∂L

∂qc2o

(t)
) is actually the updated orientation under C2O, we can

indicate it as qc2o
(t+1), therefore

qTo2c
(t+1)

= −qTc2o
(t+1) − λ

∂L

∂Tc2o

(t) ∂Tc2o

∂Ro2c

(t) ∂Ro2c

∂qo2c

(t)

= −qTc2o
(t+1)

+ λ
∂L

∂Tc2o

(t) ∂Ro2cTo2c

∂Ro2c

(t) ∂Ro2c

∂qo2c

(t)
(10)

Because the existence of an additional gradient term besides −qTc2o
(t+1), the

optimization of qo2c is not equal to the optimization of qc2o, which concludes
the first question.

SUP-NeRF 21

Fig. 8: Illustration of error difference under coordinate systems. A small error
in Po2c shown on the left can be significantly amplified in translation error in Pc2o.

A2.4 The right choice of coordinate frame

After understanding the optimization in the two coordinate frames are nonequiv-
alent, the next question is about the right choice for object NeRF optimization
task. One may think Po2c is not optimal because it is affected by a gradient en-
tangled with both rotation and translation terms. However, in practice, which is
also verified by our ablation study, Appendix A6.1, Po2c indeed performs better
than Pc2o. Through our analysis, we found the devils actually in the different
ranges of error to optimize within the two coordinate frames.

As seen from Fig. 8, if the pose error is originally generated from the cam-
era frame, in Po2c, the error transformed in Pc2o can be amplified significantly
because the involvement of translation term. In other words, a small pose error
in the original space can be significantly amplified in translation error when the
norm of the translation vector is large. This is particularly for the object NeRF
framework case where an object pose Ro2c, To2c estimated under camera frame
is usually imperfect. When converting to To2c, due to the rotation error and far
distance, the resulting error in Tc2o can be amplified significantly. As we dis-
cussed in the main text, because optimization the translation is rather ill-posed
under the joint optimization without constraining shape scale, the optimization
in Pc2o will mostly fail.

This analysis tells that whether the gradient from rotation or translation are
entangled is not the most critical factor, but the initial error range is. For a more
concrete example, if the translation error in Po2c was 0.01 meter, but with some
rotation error say 30 degree and the object is relatively far, the translation error
transformed to Pc2o could be over 10 meters. If a NeRF uses the later space to
conduct optimization, NeRF’s limitation in optimizing pose could be amplified
and lead to even worse results.

A2.5 Empirical result

We empirically confirm our analysis by comparing the two choices of coordinate
frame in the NeRF pose optimization process given only a moderate rotation
error but under perfect translation. As shown in Fig. 10, the first two curves

22 Y. Guo et al.

belong to this pair of comparison. Since the perfect translation is given, there
is no much difference in depth error and translation error between the two.
However, the huge advantage in the PSNR and Rotation error substantiate the
right choice of Po2c, the object pose under camera coordinate frame. Finally, we
emphasis this conclusion only apply to the monocular object pose optimization.
In a typical multi-view scene reconstruction, joint optimization camera poses and
reconstruction such like bundle adjustment technique is a very different setup.

A3 Encoder Details

Fig. 9 depicts our image encoder, which utilizes a ResNet50 backbone. The first
three layers are shared across all tasks, whereas task-specific processing begins
from the fourth layer onward. We introduce a feature subtraction step after
the fourth layer, which separates the pose-dependent features from the shape
and texture features. This separation helps to resolve conflicts between feature
dependencies and enhance the synergy between pose estimation and neural re-
construction. To aid in this process, we add an additional linear layer to the
pose code, which directly regresses projected corner locations during training.
Another linear layer is optionally added to regress the 3D object dimensions out
of the shape code and textures code.

A4 Outline of Additional Experiments

In the upcoming sections, we conduct further experiments to comprehensively
evaluate SUP-NeRF’s capabilities and limitations, alongside those of existing
approaches. In Appendix A5, we extend our analysis of the BootInv-related
pipeline ([34]) to include the KITTI dataset. We also address a correction in
our PSNR and depth evaluations from the main paper, which initially did not
adequately cater to occluded objects. Appendix A6 presents additional ablation
studies, focusing on various configurations of SUP-NeRF and examining NeRF’s
constraints in pose optimization. Appendix A7 delves into the specifics of dataset
preparation, offering detailed statistics on object perception distances across
both datasets. Insights into our methodology for analyzing running speed are
detailed in Appendix A8. Finally, Appendix A9 showcases extra visual results,
further substantiating our quantitative analyses.

A5 Extended Main Experiments

In this section, we includes more detailed analysis in the comparisons with Boot-
Inv [34]. The integrated pipeline NPNeRF-Boot uses our pose module’s output
pose as the initial pose and proceeds with joint optimization of pose, shape and
appearance in the same way as the original BootInv pipeline. Moreover, the
original pipeline of BootInv requires specific adaptations to enable the evalua-
tion on the interested datasets correctly. The major modifications are around

SUP-NeRF 23

Input: 128x128 3ch

ResNet50 before layer 4

8x8 256ch

layer 4 (shape) layer 4 (texture) layer 4 (pose)

4x4 512ch 4x4 512ch 4x4 512ch

AvgPool, Linear 256ch
(shape)

AvgPool, Linear 256ch
(Texture)

AvgPool, Linear 256ch
(Pose)

1x256ch (shape code) 1x256ch (texture code) 1x256ch (pose code)

Linear 16ch (corner)

1x16ch (corners)
Linear 3 (wlh)

1x3ch (wlh)

Net Layer(s)

output

Feat Subtract

C Feat Concat

C

Fig. 9: Image Encoder Architecture. Compared to the standard image encoder
implemented in AutoRF, our image add layers to regress pose code and projected
corners’ coordinates. We also introduces cross-task feature subtraction to solve the
conflict between feature’s dependency to object pose.

properly using the accurate camera intrinsic parameters provided by the testing
dataset, and adjusting the pre-trained model’s scene range properly to the test-
ing dataset. Besides the two pipelines, we also examined BootInv’s performance
given ground-truth poses. Specifically, in the combination of ground-truth pose
with BootInv NeRF, we tested pipelines with frozen pose and jointly optimized
pose separately to uncover the impact of joint optimizing of pose. Furthermore,
all the candidates are additionally evaluated at the 20th iteration after gradient-
based updates to better examine the trends.

As evidenced by Tabs. 9 to 11, the performance of BootInv’s pose estima-
tion was subpar on all the nuScenes, KITTI and Waymo datasets, However,
integrating our robust pose module with this NeRF framework significantly en-
hanced pose estimation accuracy. This underscores the adaptability of our uni-
fied pipeline in augmenting various object NeRF frameworks for improved pose
estimation. Moreover, comparisons of BootInv and SUP-BootInv in terms of
monocular PSNR and depth error suggest that SUP-BootInv’s superior pose
estimation contributes to its higher PSNR and lower depth error. Additionally,
our extensive analysis spanning multiple NeRF frameworks and diverse initial
pose settings has revealed a critical shortcoming in NeRF’s gradient-based pose

24 Y. Guo et al.

optimization. It has become evident that NeRF’s optimization is ineffectual for
enhancing poses that are either extremely poor or overly precise. This observa-
tion corroborates our earlier discussion of NeRF’s limitations in pose optimiza-
tion, as outlined in Section Sec. 3, and motivates the introduction of a separate
pose estimation module.

In the comparison between BootInv-based and AutoRF-based pipelines, sev-
eral key observations emerge. Firstly, despite BootInv’s decoder producing highly
realistic renderings of objects (as seen in Fig. 18 and Fig. 19), its monocu-
lar PSNR often falls short of the simpler AutoRF-based pipelines. However,
BootInv-based pipelines excel in achieving higher cross-view PSNR compared to
their AutoRF counterparts. This disparity stems from the distinct focuses of the
two frameworks: AutoRF aims to reconstruct objects closely resembling current-
view observations, leading to higher PSNR scores, whereas BootInv incorporates
more robust prior knowledge to ensure the completeness of reconstructed objects,
evident in its superior cross-view PSNR. These findings highlight the ongoing
research challenge of striking an optimal balance between reconstruction preci-
sion and the completeness of objects informed by prior knowledge. Additionally,
it was noted that BootInv-based pipelines exhibit higher depth errors, pointing
to a potential limitation in BootInv’s decoder in accurately perceiving scale. The
difficulty in capturing the physical scales of objects with pre-trained generative
models, especially in complex real-world datasets, remains a relatively uncharted
area in research, underscoring the need for further exploration in this domain.

Table 9: nuScenes Monocular Reconstruction and Pose Estimation Results.
SUP-NeRF consistently improves AutoRF-based pipelines in all metrics, particularly
in the pose estimation metrics. SUP-BootInv also consistently improves BootInv in all
metrics. [Key: Best, FF = Feed Forward]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�) PSNR-C (−�) DE-C (m) (

−
�)

FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it
GT(Frz)+BootInv 10.9|12.3|14.1 1.42|1.26|1.10 0.00|0.00|0.00 0.00|0.00|0.00 10.9|11.5|11.7 1.37|1.43|1.63
GT+BootInv 10.9|13.0|15.4 1.42|1.39|1.42 0.00|3.29|4.07 0.00|0.50|0.88 10.9|11.6|11.9 1.37|1.29|1.34
BootInv 9.4|11.8|14.3 5.01|4.06|3.56 28.40|28.41|28.00 2.59|2.78|2.91 10.9|11.6|11.8 1.37|1.27|1.35
SUP-BootInv 10.9|13.0|15.4 1.95|1.79|1.62 7.11|8.06|8.40 0.64|0.77|1.00 10.9|11.6|11.9 1.37|1.34|1.40
AutoRF [29] 3.6|7.9|10.6 11.21|10.61|10.09 87.52|87.9|88.07 6.04|5.99|5.95 10.0|9.4|8.8 1.31|1.36|1.41
AutoRF+FCOS 7.5|15.0|17.2 1.34|0.87|0.81 9.77|10.00|10.17 0.85|0.81|0.78 9.8|10.5|10.5 1.29|1.19|1.16
SUP-NeRF 10.5|16.4|18.8 0.69|0.61|0.6 7.01|7.01|7.07 0.68|0.70|0.73 10.6|10.9|10.9 1.22|1.16|1.14

A6 Additional Ablation Study

We conducted a comprehensive ablation study to showcase the efficacy of our
model design. First we presents an empirical analysis of NeRF-based optimiza-
tion alone under varying initial errors, pose representations, as well two coor-
dinate frames. After this, the study focuses on other possible alternatives of
SUP-NeRF, analyzing the impact of freezing pose updates in NeRF phase, the

SUP-NeRF 25

Table 10: KITTI Cross-dataset Monocular Reconstruction and Pose Es-
timation Results. We train all methods on nuScenes dataset, and test on KITTI
dataset. Our methods SUP-NeRF and SUP-BootInv consistently show superior gener-
alization in all metrics compared to the counterpart methods. [Key: Best, FF = Feed
Forward]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�)

FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it
GT (Freeze)+BootInv 8.3|11.0|13.1 1.33|1.09|0.82 0.00|0.00|0.00 0.00|0.00|0.00
GT+BootInv 8.3|11.4|13.5 1.33|1.10|1.22 0.00|3.24|4.02 0.00|0.48|0.89
BootInv 7.0|10.0|12.3 6.11|4.96|4.38 15.52|15.86|15.76 3.97|3.91|3.90
SUP-BootInv 7.6|10.4|12.7 2.79|2.34|2,21 9.16|8.99|8.84 1.15|1.40|1.67
AutoRF 0.4|4.6|7.6 9.89|9.28|8.83 89.67|90.18|90.42 6.16|6.11|6.07
AutoRF+FCOS 2.4|11.2|13.4 2.42|1.81|1.74 11.95|12.48|12.5 2.2|2.14|2.09
SUP-NeRF 4.0|12.1|14.1 2.19|1.6|1.54 6.79|6.78|6.89 1.06|1.04|1.01

Table 11: Waymo Cross-dataset Monocular Reconstruction and Pose Es-
timation Results. We train all methods on nuScenes dataset, and test on Waymo
dataset. [Key: Best, FF = Feed Forward]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�)

FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it
GT(Frz)+BootInv 9.2|10.4|11.4 3.16|2.94|2.44 0.00|0.00|0.00 0.00|0.00|0.00
GT+BootInv 9.2|10.9|12.2 3.16|3.15|3.16 0.00|3.65|4.56 0.00|0.69|1.34
BootInv 8.1|9.8|11.0 8.85|8.26|8.20 30.78|31.08|31.52 5.26|5.63|6.16
SUP-BootInv 8.6|10.4|11.9 5.36|4.84|4.38 10.24|10.41|11.04 1.67|2.03|2.53
AutoRF 0.6|6.6|9.8 6.76|6.71|6.53 86.56|87.39|87.67 9.1|9.11|9.14
AutoRF+FCOS 6.2|14.2|16.5 2.43|2.30|2.32 6.65|7.27|7.2 3.22|3.25|3.31
SUP-NeRF 4.8|14.4|17.0 2.32|1.67|1.56 10.01|10.84|10.6 1.68|1.62|1.54

impact of training with predicted 2D boxes. Additionally, we explored the in-
fluence of pose refinement iterations and training epochs. It worth to mention
that we count feed-forward iterations together with NeRF iterations together to
make a total of 100 iterations for better visual comparison.

A6.1 Impact of initial error and pose representation to NeRF

This ablation study focuses solely on the NeRF component to analyze its limi-
tations under different initial errors and pose representations. From the results
shown in Fig. 10, five setups are evaluated on specific purpose: (i) To verify our
claim on the coordinate frame choice, we conduct a NeRF pose optimization in
C2O using an initial rotation error of 0.2 radians. As expected, the rotation does
not show any improvement. (ii) We perform the same experiment as in (i), but
using the default O2C pose choice. The rotation exhibits some improvement, but
not beyond < 8◦. (iii) We test the rotation error at 0.4 radians, and while the
rotation does improve, it appears to be unsatisfyingly slow, and the final error
is still large when considering 8◦ as the limit it could reach. (iv) Applying a
longitudinal distance error with a ratio of 0.3, where To2c is randomly multiplied
by a ratio of 0.7 or 1.3, does not effectively optimize the pose. This is due to the

26 Y. Guo et al.

0 20 40 60 80 100
Iters

6

8

10

12

14

16

18
PS

NR

PSNR

R err 0.2, T err ratio 0.0 (C2O)
R err 0.2, T err ratio 0.0
R err 0.4, T err ratio 0.0
R err 0.0, T err ratio 0.3
R err 0.0, T err ratio 0.3 (Rel)
R err 0.2, T err ratio 0.3 (Rel)

0 20 40 60 80 100
Iters

1

2

3

4

M
et

er
s

Depth Err
R err 0.2, T err ratio 0.0 (C2O)
R err 0.2, T err ratio 0.0
R err 0.4, T err ratio 0.0
R err 0.0, T err ratio 0.3
R err 0.0, T err ratio 0.3 (Rel)
R err 0.2, T err ratio 0.3 (Rel)

0 20 40 60 80 100
Iters

0

5

10

15

20

De
gr

ee

Rot Err
R err 0.2, T err ratio 0.0 (C2O)
R err 0.2, T err ratio 0.0
R err 0.4, T err ratio 0.0
R err 0.0, T err ratio 0.3
R err 0.0, T err ratio 0.3 (Rel)
R err 0.2, T err ratio 0.3 (Rel)

0 20 40 60 80 100
Iters

0

1

2

3

4

5

6
M

et
er

s

Trans Err
R err 0.2, T err ratio 0.0 (C2O)
R err 0.2, T err ratio 0.0
R err 0.4, T err ratio 0.0
R err 0.0, T err ratio 0.3
R err 0.0, T err ratio 0.3 (Rel)
R err 0.2, T err ratio 0.3 (Rel)

Fig. 10: Impact of Initial Pose Error and Pose Representation to gradient-
based NeRF pose optimization.

scale-depth ambiguity and difficulty in setting the 3D translation step size at
all distances. (v) We conduct the same test as in (iv) using relative translation,
which yields a certain amount of improvement in the translation, but it is still
not satisfying since the scale-depth ambiguity remains unaddressed. (vi) Finally,
we combine a rotation error of 0.2 radians and a translation error ratio of 0.3,
and optimize the relative pose space. This experiment also demonstrates very
limited optimization of the pose.

Based on these observations, it can be concluded that direct application of
the NeRF framework for pose optimization is very limited and may require
additional modules or third-party methods to provide a good initial pose.

SUP-NeRF 27

A6.2 Impact of freezing pose updating during NeRF

In this study, we conducted a comparative analysis between SUP-NeRF and its
alternative version, which lacks gradient-based pose updates, effectively keeping
the feed-forward pose static throughout the NeRF process. This comparison was
carried out across the validation splits of the nuScenes, KITTI, and Waymo
datasets to ensure a thorough evaluation. According to the results presented in
Tab. 12, omitting pose updates in the NeRF process generally results in a slight
decline in PSNR values. However, the overall performance remains relatively
similar across all evaluated metrics. Furthermore, we noticed that the integrated
optimization of pose and shape within the NeRF framework sometimes causes
deviations in the estimated pose from the actual pose, confirming our feed-
forward pose estimation have reached a high accuracy beyond NeRF’s capability
to refine. By halting the pose update mechanism within NeRF, we can avert such
decreases in pose accuracy.

Table 12: Ablation on Freezing Poses in NeRF. SUP-NeRF is evaluated on
three datasets comparing to the version with frozen pose in NeRF phase. As observed,
freezing NeRF pose leads to slightly lower PSNR but overall the two are very close in
all metrics. Freezing the pose updates in NeRF can avoid potential degradation in pose
accuracy in NeRF optimization stage. [Key: Best, FF = Feed Forward, PF = Pose
Freeze]

Method PSNR (−�) DE (m) (

−
�) RE (deg.) (

−
�) TE (m) (

−
�) PSNR-C (−�) DE-C (m) (

−
�)

FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it FF|20it|50it
nuScenes 10.5|16.4|18.8 0.69|0.61|0.6 7.01|7.01|7.07 0.68|0.70|0.73 10.6|10.9|10.9 1.22|1.16|1.14
nuScenes (PF) 10.5|16.1|18.3 0.69|0.64|0.63 7.01|7.01|7.01 0.68|0.68|0.68 10.6|10.8|10.8 1.22|1.18|1.14
KITTI 4.0|12.1|14.1 2.19|1.6|1.54 6.79|6.78|6.89 1.06|1.04|1.01 NA|NA|NA NA|NA|NA
KITTI (PF) 4.1|12.0|13.7 2.15|1.57|1.54 6.79|6.79|6.79 1.06|1.06|1.06 NA|NA|NA NA|NA|NA
Waymo 4.8|14.4|17.0 2.32|1.67|1.56 10.01|10.84|10.6 1.68|1.62|1.54 NA|NA|NA NA|NA|NA
Waymo (PF) 4.8|14.1|16.3 2.32|1.74|1.72 10.01|10.01|10.01 1.68|1.68|1.68 NA|NA|NA NA|NA|NA

A6.3 Impact of training with predicted 2D boxes

To avoid any potential distractions, the primary experiments utilized ground-
truth 2D boxes. Therefore, we conducted an ablation study to investigate the
impact of 2D boxes as the first step. We utilized predicted 2D boxes directly from
the pre-trained Mask R-CNN [7] for both training and testing. Additionally, we
augmented the predicted 2D boxes by randomly scaling them between 0.9 to 1.1
and introducing random jitters within 5 pixels during training to enhance the
robustness of the unified model against noisy predicted 2D boxes.

We evaluated the trained SUP-NeRF on the validation sets of both the
nuScenes dataset and KITTI dataset, as illustrated in Fig. 11. Our results indi-
cated that using predicted 2D boxes slightly lowered all scores for the nuScenes
test. However, it actually led to an improvement in the cross-dataset test on
KITTI. The discrepancy in the definition of 2D box ground-truth between the

28 Y. Guo et al.

0 20 40 60 80 100
Iters

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

PS
NR

PSNR

NuScenes GT box2D
NuScenes Pred box2D
KITTI GT box2D
KITTI Pred box2D

0 20 40 60 80 100
Iters

0.5

1.0

1.5

2.0

2.5

3.0

M
et

er
s

Depth Err
NuScenes GT box2D
NuScenes Pred box2D
KITTI GT box2D
KITTI Pred box2D

0 20 40 60 80 100
Iters

6

8

10

12

14

De
gr

ee

Rot Err
NuScenes GT box2D
NuScenes Pred box2D
KITTI GT box2D
KITTI Pred box2D

0 20 40 60 80 100
Iters

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
et

er
s

Trans Err
NuScenes GT box2D
NuScenes Pred box2D
KITTI GT box2D
KITTI Pred box2D

Fig. 11: Impact of Training with Predicted 2D Boxes on SUP-NeRF. Al-
though training with predicted 2D boxes leads to worse in-domain performance, it in
contrary improve the generalization in cross-domain test. Note that the degradation
of in-domain test of translation estimation from later NeRF gradient-based updates
indicate the feed-forward steps have reached a high pose accuracy beyond NeRF’s ca-
pability to refine.

two datasets is the primary reason for this observation. nuScenes uses a more
lenient definition of a projected ground-truth box, whereas KITTI’s definition
is tightly annotated in 2D. However, using the predicted 2D boxes from the
same Mask R-CNN removed this gap, resulting in a notable improvement in
cross-dataset testing.

A6.4 Impact of pose refine iterations

We conducted an analysis of the performance of SUP-NeRF on the nuScenes
dataset, comparing the effectiveness of different numbers of iterations for the pose
estimation module. As depicted in Fig. 12, our findings suggest that performance

SUP-NeRF 29

0 25 50 75 100
Iters

5

10

15

20

PS
NR

PSNR

PR iter 1
PR iter 2
PR iter 3
PR iter 4
PR iter 5

0 25 50 75 100
Iters

0.6

0.8

1.0

1.2

1.4

M
et

er
s

Depth Err
PR iter 1
PR iter 2
PR iter 3
PR iter 4
PR iter 5

0 25 50 75 100
Iters

6

8

10

12

14

De
gr

ee

Rot Err
PR iter 1
PR iter 2
PR iter 3
PR iter 4
PR iter 5

0 25 50 75 100
Iters

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
et

er
s

Trans Err
PR iter 1
PR iter 2
PR iter 3
PR iter 4
PR iter 5

Fig. 12: Impact of Number of Feed-forward Iterations in Pose Refinement.
We observe using 3-iterations of our feed-forward pose refinement leads to the optimal
performance. Note that the pose estimation performance achieves its peak at the end
of feed-forward iterations. The degradation of in-domain test of translation estimation
from later NeRF gradient-based updates indicate the feed-forward steps have reached
a high pose accuracy beyond NeRF’s capability to refine.

reaches its peak at iteration 3. This could be attributed to the optimal number
of iterations used in the training process. Moreover, as we observed that NeRF
optimization did not yield any further improvements in rotation or translation
beyond iteration 3, it is likely that this iteration count is sufficient for NeRF to
perform accurate neural reconstruction

A6.5 Impact of training epochs

We conducted a hyper-parameter study to determine the optimal number of
training epochs for our model on the nuScenes dataset. As shown in Fig. 13, the
performance of our model improves with the number of epochs, and it reaches
the peak at Epoch 40. However, we also observed a slight decline in translation
performance beyond Epoch 30. Therefore, we decided not to use more epochs to
avoid overfitting to the training dataset.

30 Y. Guo et al.

0 20 40 60 80 100
Iters

5.0

7.5

10.0

12.5

15.0

17.5

20.0

PS
NR

PSNR

Epoch 10
Epoch 20
Epoch 30
Epoch 40

0 20 40 60 80 100
Iters

0.6

0.8

1.0

1.2

1.4

M
et

er
s

Depth Err
Epoch 10
Epoch 20
Epoch 30
Epoch 40

0 20 40 60 80 100
Iters

6

8

10

12

14

De
gr

ee

Rot Err
Epoch 10
Epoch 20
Epoch 30
Epoch 40

0 20 40 60 80 100
Iters

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
et

er
s

Trans Err
Epoch 10
Epoch 20
Epoch 30
Epoch 40

Fig. 13: Impact of Training Epochs. We observe the more epoch SUP-NeRF got
trained, the better in-domain performance it got. We did not go beyond 40 epochs to
prevent overfitting to the training dataset. All the evaluation results are produced with
models trained for epochs on nuScenes. The degradation of in-domain test of translation
estimation from later NeRF gradient-based updates indicate the feed-forward steps
have reached a high pose accuracy beyond NeRF’s capability to refine.

A7 Dataset Preparation

In the data preparation process, we first filtered for sequences captured during
the daytime and utilized a pre-trained Mask R-CNN [7] to obtain instance masks
since nuScenes does not provide 2D segmentation masks. We then matched the
provided 3D bounding box annotations with the resulting instance masks and
categorized the instance masks into foreground, background, and unknown re-
gions, following the same occlusion mask preparation process as AutoRF. We
excluded severe image truncation cases and applied additional rules for object
selection. Specifically, we only considered objects having 2D regions of interest
(ROI) no less than 2500 pixels, an intersection-over-union (IOU) of no less than
0.5 between its mask outbox and the 2D box projected from 3D box, and within
40 meters distance. To ensure challenging and diverse test samples, we also used
5 Lidar points to select testing samples for nuScenes and 10 points for KITTI,

SUP-NeRF 31

5 10 15 20 25 30 35 40
Distance

0

50

100

150

200

250

300

Co
un

ts

Histogram of object distance

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Visibility (6 CAM)

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

ts

Histogram of visibility level

Fig. 14: Data Distribution of the Curated Subset for nuScenes.

10 15 20 25 30 35 40
Distance

0

50

100

150

200

250

300

Co
un

ts

Histogram of object distance

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Occlusion

0

500

1000

1500

2000

2500

Co
un

ts

Histogram of occlusion level

Fig. 15: Data Distribution of Curated Subset for KITTI.

removing the 10% at the bottom of the 3D object box before counting. Our se-
lection rule is expected to include more distant and occluded samples compared
to AutoRF [29] as we focus more on auto-labeling and joint optimization of pose
and NeRF.

To better understand the difficulty of the datasets used in this study, we
plotted histograms of the object distance and level of visibility for the nuScenes
dataset in Fig. 14, and histograms of the object distance and level of occlusion
for the KITTI dataset in Fig. 15. For the nuScenes dataset, we used a pre-defined
visibility scale where 1 indicates 0-40% visibility, 2 indicates 40-60% visibility, 3
indicates 60-80% visibility, and 4 indicates 80-100% visibility across six cameras.
In contrast, for the KITTI dataset, we defined occlusion levels as 0 for fully
visible, 1 for partly occluded, 2 for largely occluded, and 3 for unknown. The
object distance distributions of the two datasets are similar, but nuScenes has
more visible objects overall. It is important to note that the nuScenes visibility
scale applies to all 6 cameras, so single-camera visibility may be much lower, but
this information is not available.

A8 Detailed Running Speed Analysis

Notably, the efficiency of image encoding depends on the resolution of image
input, which we set to 128 × 128 for all experiments. NeRF’s efficiency, on the

32 Y. Guo et al.

Table 13: Model Size and Running Time Comparison in feed-forward scenarios,
and with 20 and 50 iterations of NeRF optimization. SUP-NeRF gets the smallest
running time. [Key: Best, FF= Feed Forward]

Method Params (M) (

−
�) FF (s) (

−
�) FF+20it (s) (

−
�) FF+50it (s) (

−
�)

AutoRF+FCOS [29] 91.116 0.123 0.714 1.599
(36.166+54.950) (0.114+0.009) (0.114+0.600) (0.114+1.485)

SUP-NeRF 49.816 0.018 0.608 1.493

BootInv [34] 182.616 0.156 3.534 8.601
SUP-BootInv 57.580 0.018 3.396 8.463

FCOS3D +INGP(Virt) ∼100 0.123 ∼0.129 ∼0.138
SUP-INGP(Virt) ∼50 0.018 ∼0.024 ∼0.033

other hand, depends on the resolution of the rendered image patch during online
optimization as well as the total number of iterations. To ensure efficiency for
NeRF iterations, we use a patch resolution of 32×32 in online optimization. It’s
also worth noting that the last rendering stage can employ any resolution due
to the implicit representation of NeRF, and we do not include its cost in our
overall computational analysis. This set of analysis is all conducted on a single
Nvidia A5000 graphic card for fair comparison.

As we mentioned the speed limitation of NeRF can been effectively tackled
by recent advances in neural rendering [15,31], which we consider as orthogonal
to our contribution to the feed-forward stage. However, in hypothetical scenarios
where we substitute the original NeRF with the more efficient INGP [31], the
NeRF process could speed up by up to 100 times. Tab. 13 shows our adapted
framework SUP-INGP could then reach real-time performance with 50 iterations,
surpassing the FCOS3D-INGP pipeline significantly.

Our proposed unified method represents a minimum viable extension to the
existing NeRF pipeline. The majority of the computation is dedicated to the
iterative NeRF fitting to image pixels, while the image encoder (ResNet50) and
the 3-iteration pose estimator (implemented using a few MLP layers upon the
latent codes) are highly efficient. In particular, the average running time for the
image encoding is 0.009s, the 3-iteration pose estimation takes 0.009s, and the
remaining 50 iterations of NeRF take 1.475s, resulting in a total of 1.493s per
image patch. If to only count the feed-forward stage, it takes only 0.018s per
image patch. When we estimate the running time of the virtual pipeline SUP-
INGP(Virt), we keep the feed-forward time the same at 0.018s, but consider
the NeRF optimization 100 times faster, which leads to 1.475|100 = 0.015s.
Summing up the two leads to 0.033s as presented in Tab. 8, which could be con-
sidered a real-time pipeline. A similar way of calculation was done for FCOS3D
+INGP(Virt) as well.

SUP-NeRF 33

FF: t=0 FF: t=3 … NeRF: t=50

SU
P-
N
eR

F
FC

O
S+

Au
to
RF

Fig. 16: Qualitative Results on nuScenes Dataset. In the top panel, we demon-
strate SUP-NeRF executes pose estimation reliably, fast converging from a random
initial pose to the true one, and enables neural reconstruction under diverse object
poses, occlusion cases under this cross-dataset setup. In the bottom panel, SUP-NeRF
is visually compared to the FCOS3D +AutoRF, demonstrates sharper rendered image,
higher accuracy in shape and pose.

A9 Additional Visual Results

A9.1 Visual comparison of AutoRF-based pipelines

We present additional visual results of our AutoRF-based pipeline, SUP-NeRF,
on both nuScenes and KITTI datasets, comparing to AutoRF + FCOS3D. More
over, we also visualize the iterative progress of our joint estimation from feed-
forward pose estimation stage to NeRF optimization stage. For visualization
purposes, we normalize the depth image to better reflect the shape rather than
the actual depth.

As observed in the top panels in Figs. 16 and 17, SUP-NeRF effectively
estimates the right pose even under significant occlusion. The iterative NeRF
phase shows promising completion of occluded shapes to some extent. Although
SUP-NeRF appears superior to the other two in completing shapes (probably
due to better pose), we also observe that none of these AutoRF-based monocular
frameworks can always guarantee the success in completing the object shape from
such challenging monocular setup.

34 Y. Guo et al.

FF: t=0 FF: t=3 … NeRF: t=50

SU
P-
N
eR

F
FC

O
S+

Au
to
RF

Fig. 17: Qualitative Results on KITTI Dataset. The upper half includes visual-
ization of SUP-NeRF’s iterative process. The lower half includes visual comparison to
FCOS3D +AutoRF on three examples.

More specifically, comparing our unified model to the combination of sepa-
rately trained models AutoRF + FCOS3D, we observe that SUP-NeRF performs
better, particularly in NeRF encoding and decoding. This indicates that joint
training of pose benefits the NeRF more than the pose estimation. In contrast,
the improvement on the pose estimation side is less significant. When compared
to AutoRF + FCOS3D, our approach shows a significant improvement in pose
estimation in the Cross-dataset test on KITTI. Although the same AutoRF is
used, the lower performance of FCOS3D in pose estimation leads to weaker
NeRF reconstruction end result.

These visual results also highlight some limitations of the current approach.
First, occlusion handling still remains to be a major challenge, particularly in
completing missing shape information rather than over-fitting to the visible por-
tion. Secondly, domain gap is also observed to be active challenge: while SUP-
NeRF shows some Cross-dataset generalization from the pose regression aspect,
the performance of monocular reconstruction in a Cross-dataset setup showed a
notable downgrade.

SUP-NeRF 35

A9.2 Visual comparison of BootInv-based pipelines

In this section, we showcase additional visual results comparing BootInv and
our SUP-BootInv pipeline on the nuScenes dataset in Fig. 18, and on the KITTI
dataset in Fig. 19. We selected examples with varying degrees of occlusion to
demonstrate the resilience of both methods in handling such challenges. The
results are visually represented through single renderings of complete object
images, depth maps and normal maps. Furthermore, since nuScenes provides
views of objects from different angles, we randomly selected another view for
rendering the object images, depth maps, normal maps, based on the given pose.
The novel-view rendering results also reflect the cross-view evaluation presented
in Tab. 9. However, as the KITTI dataset does not have multi-view observations
of the same object, we randomly rotated the reconstructed objects to a different
orientation only for visualization purpose.

Across both datasets, we observed that the original BootInv struggles with
anything beyond minimal occlusion, while SUP-BootInv shows significantly bet-
ter robustness in pose estimation under occlusion. We also noted that inaccurate
pose estimation greatly impacts both shape and appearance reconstruction. The
primary reason for BootInv’s poor pose estimation performance with occluded
objects is due to its reliance on NOCS + PnP for initial pose estimation. We have
observed that NOCS predictions become noisy in occluded cases, leading to sig-
nificant errors in PnP pose estimation, both in terms of rotation and translation.
However, from a neural reconstruction perspective, the pre-trained decoder from
BootInv (integrated into our pipeline with frozen weights) demonstrates a strong
ability to maintain object completeness and capture accurate color themes, even
with incorrect poses and severe occlusions. This aligns with its superior cross-
view performance compared to AutoRF-based pipelines. Additionally, we noted
limitations in the shape and texture space of the decoder, particularly evident
in the last example from the nuScenes visualization, Fig. 18. When the observed
object’s shape and texture fall outside the pre-trained model’s distribution, the
reconstructed shape and appearance can deviate significantly from the actual ob-
ject. This highlights the ongoing research challenge of balancing prior knowledge
with precise current observation recovery, especially in occluded situations.

A9.3 Visualization on cross-view evaluation

To better illustrate the cross-view evaluation procedure, we provide additional
visual examples in Fig. 20 which is based on our model SUP-NeRF. Here, each
row showcases different views of a unique object, with the first sample in each
row serving as the basis for optimization and the remaining ones used for cross-
view assessment. In our practical experiments, we treat each view of an object
as the optimizing view in turn, creating a matrix-like array of sample sets for
comprehensive evaluation, as depicted in Fig. 21.

The visual outcomes reveal that the optimization quality is influenced by the
complexity of the optimizing image. Challenges such as inaccuracies in masks

36 Y. Guo et al.

BootInv

SUP
-BootInv

Image Pred NOCS Image-R Depth-R Normal-R N.V. Image N.V. Image-R N.V. Depth-R N.V. Normal-R

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

N \ A

N \ A

N \ A

N \ A

N \ A

Fig. 18: Visual Comparison of BootInv and SUP-BootInv on nuScenes
Dataset. The Novel View (N.V.) Rendering (-R) is based on the object pose from
a real image capturing the same object from another view.

and severe occlusions can significantly impair reconstruction quality and pose es-
timation accuracy. Moreover, factors like varying illumination, along with asym-
metric reconstruction, are identified as additional contributors to suboptimal
results. These observations highlight pivotal areas for future research, particu-
larly in contexts demanding certain efficiency standards.

SUP-NeRF 37

Image Pred NOCS Image-R Depth-R Normal-R N.V. Image-R N.V. Depth-R N.V. Normal-R

BootInv

SUP
-BootInv N \ A

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

BootInv

SUP
-BootInv

N \ A

N \ A

N \ A

N \ A

Fig. 19: Visual Comparison of BootInv and SUP-BootInv on KITTI
Dataset. The Novel View (N.V.) Rendering (-R) is based on random pose so that
the two methods may not be directly compared on the same second view.

38 Y. Guo et al.

Fig. 20: Visualization of the Cross-view Evaluation. Each row presents a series
of image samples capturing the same object from various perspectives. The orange-
highlighted sample serve as the basis for monocular pose estimation and NeRF re-
construction, while the remaining samples in each row exclusively employ the recon-
structed shape and texture codes for rendering and PSNR/depth error assessment. For
each sample, we display the rendered image, rendered depth map, and the original
image with an object mask and box, in that order. Notably, the boxes shown on the
optimization images are based on the predicted poses, whereas in the novel views, we
use ground-truth poses.

Fig. 21: Visualization of All Cross-View Pairs of One Object in Evaluation.
For a set of multi-view images, each sample take turns to be the optimization image
as shown in each row. The orange-highlighted example serves as the basis for monoc-
ular pose estimation and NeRF reconstruction, while the remaining samples in each
row exclusively employ the reconstructed shape and texture codes for rendering and
PSNR/depth error assessment. The cross-view evaluation is based on ground-truth
poses and focuses on the monocular reconstruction quality.

	SUP-NeRF: A Streamlined Unification of Pose Estimation and NeRF for Monocular 3D Object Reconstruction

