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Abstract
We present a simple, but effective method to in-001
corporate syntactic information obtained from002
dependency trees directly into transformer-003
based language models (e.g. RoBERTa) for004
tasks such as Aspect-Based Sentiment Clas-005
sification (ABSC), where the desired output006
depends on specific input tokens. In contrast to007
prior approaches to ABSC that capture syntax008
by combining language models with graph neu-009
ral networks over dependency trees, our model,010
Graph-integrated RoBERTa (GOBERTA) re-011
quires only a minimal increase in memory cost,012
training and inference time over the underlying013
language model. Yet, GOBERTA outperforms014
these more complex models, yielding new state-015
of-the-art results on ABSC.016

1 Introduction017

Aspect-Based Sentiment Classification (ABSC,018

Pontiki et al. (2014), Figure 1) is a fine-grained019

sentiment analysis task that aims to handle the fact020

that even simple statements such as “The ambience021

was nice, but service wasn’t so great." may express022

different sentiments towards different aspects (this023

reviewer is positive about the restaurant’s “ambi-024

ence", but negative about its “service"). In ABSC,025

the aspect to be classified is identified by a target026

string in the input sentence (e.g. “ambience"), and027

systems have to return the polarity (positive, neu-028

tral, negative) of the corresponding sentiment.029

Pre-trained language models (PLMs) have been030

shown to work well for ABSC (Wang et al., 2016;031

Li et al., 2019; Xu et al., 2020b; Karimi et al.,032

2021), presumably because their attention mecha-033

nisms capture semantic connections between target034

and context words (Tang et al., 2016). Starting with035

Do et al. (2019), PLMs have been supplemented036

with syntactic features, typically extracted from037

dependency graphs. This is typically done by us-038

ing the word embeddings obtained from the PLM039

to initialize the node embeddings of a graph neu-040

ral network (GNN) obtained from the dependency041

graph (Wu et al., 2022; Xu et al., 2020a; Wang 042

et al., 2020; Hou et al., 2021; Xiao et al., 2022; 043

Tang et al., 2020; Xiao et al., 2021). However, such 044

combined models have two major limitations: 045

1. Computational Cost Problem. Using the 046

output embeddings of the PLM as inputs to 047

the GNN increases both training and infer- 048

ence over using a PLM alone, and requires 049

two distinct sets of parameters to be learned 050

and stored. Since low computational demand 051

and latency are vital for real-world applica- 052

tions (e.g., customer service), it is crucial to 053

design a combination model that reduces the 054

computational cost. 055

2. Suboptimal Interaction Problem. A typical 056

challenge in combining PLMs and GNNs is 057

to make the two models effectively interact 058

with each other. Some approaches (Tang et al., 059

2020; Lu et al., 2020) attempt to accomplish 060

this through heavy model architecture engi- 061

neering. However, the PLM and GNN still 062

operate in an asynchronous manner, limiting 063

their interaction, and yielding only a minor im- 064

provement in performance. We hypothesize 065

that more integrated models can yield larger 066

boosts in performance. 067

In order to alleviate these limitations, we pro- 068

pose Graph-integrated RoBERTa (GOBERTA), a 069

novel framework for effectively augmenting PLMs 070

with syntactic information. We chose RoBERTa 071

(Liu et al., 2019) as our PLM baseline model 072

due to its notable performance in the ABSC task 073

(Dai et al., 2021). GOBERTA adds three com- 074

ponents to RoBERTa: (1) a [g] token that cap- 075

tures graph information via layer-specific attention 076

masks, (2) a Variable Distance Control (VDC) 077

hyper-parameter that defines how these attention 078

masks depend on the graph structure, and (3) 079

a Variable Interaction Control (VIC) mecha- 080

nism that defines how the [g] token interacts with 081
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Figure 1: (Top) In ABSC, the sentiment to be predicted depends on the desired target aspect (words from the input).
(Bottom) For ABSC, syntactic distance (see Fig. 2) can be more informative than surface distance.
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Figure 2: Dependency Trees define syntactic distances

RoBERTa’s [s] token. GOBERTA outperforms082

prior approaches (including methods that combine083

PLMs and GNNs), and establishes a new state of084

the art, on the most widely used ABSC datasets.085

But since GOBERTA uses no additional parame-086

ters and its run time is almost identical to RoBERTa087

itself (< 0.5% increase), it solves the computational088

cost problem.089

2 Aspect-Based Sentiment Classification090

In Aspect-Based Sentiment Classification (Pon-091

tiki et al., 2014), illustrated in Figure 1, the092

task is to predict the polarity (positive, negative093

or neutral) of the sentiment in input sentence094

s = [w1, w2, ..., wp, ..., wp+m−1, ..., wn] towards095

a given target aspect t (a substring of the input096

sentence: ti = {wp, ..., wp+m−1}).097

2.1 Language Models for ABSC 098

Large pre-trained language models (PLMs) such 099

as BERT (Devlin et al., 2019), XLNET (Yang 100

et al., 2019), and RoBERTa (Liu et al., 2019) have 101

gained predominance for many NLP tasks, includ- 102

ing ABSC. RoBERTa, a variant of BERT, is known 103

to show notable performance on ABSC tasks (Dai 104

et al., 2021), and forms the basis of the models 105

explored in this paper. RoBERTa (and BERT) are 106

(pre)trained on large amounts of raw text with a 107

masked language modeling objective. Both models 108

use a Transformer (Vaswani et al., 2017) archi- 109

tecture in which each token’s embedding is fed 110

through multiple layers such that each token’s em- 111

bedding in a given layer can attend to all tokens 112

in the sequence (in the same layer). To adapt 113

these models for classification tasks, a special to- 114

ken ([CLS] for BERT, [s] for RoBERTa) whose 115

output is fed into a task-specific feedforward layer 116

is included in the input sequence. A separation to- 117

ken ([SEP] or [/s]) can be used to separate the input 118

sequence from other task-specific information. 119

For the ABSC task, RoBERTa is typically used 120

as follows: after tokenization, the input sentence 121

is fed into RoBERTa as ‘[s] input sentence [/s] [/s] 122

aspect sequence [/s]’, where the aspect sequence 123

includes the target aspect word itself. Only the [s] 124

token embedding of the last layer is used for the 125

final prediction and fine-tuning. 126

2.2 Combining PLMs with syntax 127

A common approach to ABSC is to supplement a 128

PLM with syntactic information (Tang et al., 2020; 129

Zhang et al., 2019b) obtained from a dependency 130

parser. In a dependency graph (Figure 2) each word 131
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in the sentence corresponds to a node, with labeled132

edges indicating word-word dependencies. Note133

that the syntactic distance between related words134

(e.g. sucked and vista) can be much smaller than135

their surface distance in the original sequence.136

Since the dependency parser and the PLM may137

use different tokenizers, tokenization needs to be138

broken into two stages to integrate both models139

seamlessly. The input sentence is first tokenized140

by the dependency parser, and then each token is141

again tokenized by RoBERTa’s tokenizer, follow-142

ing previous work (Tang et al., 2020).143

Graph Neural Network-based ABSC models144

To incorporate syntax into ABSC models, PLMs145

have been augmented with Graph Neural Networks146

(GNNs, Kipf and Welling (2016)) that capture the147

structure of the sentence’s dependency tree. Al-148

though there are many variants (Trisna and Jie,149

2022), the basic idea behind GNNs is to represent150

each node as a vector hi that is updated via graph151

convolution in each layer (l ∈ [1, 2, . . . L]) of the152

GNN (Kipf and Welling, 2016) by aggregating its153

neighborhood information from the previous layer:154

hli = σ(AijWlh
l−1
j + blh

l−1
j )155

Here σ is is an activation function, W and b are156

learnable parameters, and Aij is the entry of the157

graphs adjacency matrix that indicates whether158

nodes i and j are connected (in which case Aij = 1;159

otherwise Aij = 0). If A is defined by a depen-160

dency tree, Aij = 1 if there is a dependency be-161

tween words i and j. To combine GNNs with162

PLMs for ABSC, the GNN embeddings of all163

words can be initialized with the PLM’s output164

embeddings, and the embeddings of the target as-165

pects in the last layer can be used for classification.166

Zhang et al. (2019a) was the first to implement167

a GNN-based model for ABSC, adding a multi-168

layered Graph Convolutional Network (GCN) to169

encode dependency graphs on top of the word em-170

bedding layer. Sentic GCNs (Liang et al., 2022)171

leverage the dependencies between context words172

and aspect words on top of the embedding mod-173

ule. Wang et al. (2020) and Wu et al. (2022) used174

a relational graph attention network (R-GAT) on175

top of initial embeddings from BERT. Tang et al.176

(2020) presented a dependency graph enhanced177

dual-transformer network named DGEDT that con-178

textual representation and graph representation in-179

teract with each other through a mutual biaffine180

module. More recent research in ABSC has tried181

to revise dependency graphs due to the noise and 182

imperfection of syntactic dependency graphs (Xiao 183

et al., 2021, 2022). What is common to all these 184

approaches is that the PLM and GNN operate in a 185

serial fashion, and are not tightly integrated. 186

Attention-mask based approaches Another 187

promising approach to incorporate syntactic infor- 188

mation into PLMs that is more related to this paper, 189

is to manipulate the Transformer’s self-attention 190

masks. For example, Syntax-BERT (Bai et al., 191

2021) uses multiple masks induced from the syn- 192

tactic trees (e.g., parent, children, sibling, pairwise 193

masks) to incorporate syntactic information into 194

BERT. To do so, it requires multiple (usually more 195

than 90) sub-networks, which causes a considerable 196

amount of increase in training/inference time. The 197

key difference between Syntax-BERT and GOB- 198

ERTA is that Syntax-BERT alters all the input to- 199

kens’ attention masks while GoBERTa (which is 200

specifically designed for tasks like ABSC, where 201

the desired output depends on specific parts of the 202

input) keeps the original input tokens intact while 203

only modifying the attention-mask of the newly 204

added [g] token. This allows GOBERTA to meet 205

our primary objective of keeping the computational 206

costs constant. 207

3 GOBERTA 208

The primary objective of GOBERTA (Figure 4) is 209

to incorporate syntactic information into a PLM 210

without (essentially) increasing the computational 211

costs (i.e. number of model parameters and run- 212

ning time) of the PLM. We accomplish this goal by 213

augmenting RoBERTa with three components: (1) 214

a single additional input token, named [g], whose 215

attention masks depend on the structure of the in- 216

put’s dependency tree(s), paired with (2) a “variable 217

distance control" (VDC) mechanism that specifies 218

how the structure of the dependency graph is re- 219

flected in [g]’s attention masks, and additionally (3) 220

a “variable interaction control" (VIC) mechanism 221

that specifies the interaction of [g] and [s]. Since 222

GOBERTA does not introduce any new learnable 223

parameters and only increases the sequence length 224

of every input by one token ([g]), it has nearly iden- 225

tical training/inference time (less than 1 % increase) 226

to the standard RoBERTa model. 227

Input and output After tokenization with 228

RoBERTa’s tokenizer, the input to GOBERTA is 229

‘[s] [g] input sentence [/s] [/s] aspect sequence [/s]’, 230
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Figure 3: GOBERTA’s [g] token uses attention masks based on syntactic distance (left), not surface distance (right)

Figure 4: The overall architecture of GOBERTA with Variable Distance Control.

where the aspect sequence is the phrase "target231

is" followed by the target aspect words (this gave232

slightly better performance than using only the as-233

pect words). [g] and [s] use the same dictionary234

embedding in the input layer. We evaluate this235

choice in Section 5.1 To obtain the output, the final236

layers of the [s] and [g] tokens are pooled before237

feeding them through a softmax classification layer.238

For the pooling process, we use the attention-based239

pooling mechanism introduced in (Bai et al., 2019).240

The [g] token and distance-based attention241

masks To capture the intuition that the relevance242

of each word in a sentence to ABSC depends on243

its distance to the target aspect words, we define244

distance-based attention masks (Figure 3) that de-245

pend either on syntactic or surface distance, and246

are only used for the [g] token. For a given distance247

metric D(j) and distance di, an attention mask mi248

is a vector whose elements mij are zero if the dis-249

tance D(j) between token j and the target aspect250

words is greater than di, and one otherwise. If251

distance is syntax-based, D(j) is the length of the252

shortest path between token j and the target aspect253

(so, if the target aspect consists of multiple tokens,254

we take the minimum distance to any of its compo-255

nent tokens). If the distance is surface-based, D(j)256

is simply the token distance to the target aspect (1257

1Future work could examine if letting [g]’s embedding vary
independently of [s]’s during fine-tuning would be beneficial.

if j is adjacent). The [g] token is inserted next to 258

the [s] token. Unlike the [s] token that attends to 259

every token in the input, each layer li of [g] only at- 260

tends to the subset of input tokens that are at most a 261

distance di (specified by the VDC hyperparameters 262

explained below) away from the target aspect. We 263

do not restrict how the input tokens can attend to 264

[g]. The attention between [s] and [g] is controlled 265

by the VIC hyperparameters described below. 266

Variable Distance Control (VDC) To specify 267

the attention masks used by the [g] token, we 268

introduce a new set of hyper-parameters named 269

Variable Distance Control (VDC). VDC is a list 270

of 12 non-negative integers where the i-th ele- 271

ment represents the value of di of the i-th layer 272

of the [g] token. For example, if the VDC is 273

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], the first six layers of 274

the [g] token attend only to the target aspect, and 275

the remaining six layers attend to tokens that are 276

connected to the target via a direct dependency 277

link. 278

Note that increasing VDCs (e.g., 279

[0,0,0,0,1,1,1,1,2,2,2,2], [0,0,0,1,1,1,2,2,2,3,3,3]) 280

can be used to mimic how GNNs’ work. Through 281

graph convolution, the i-th layer of a GNN 282

aggregates features of nodes up to length i away 283

from each node in the graph, allowing the GNN to 284

gradually aggregate information from more and 285

more distant nodes in its upper layers. Empirical 286

4



results in Section 5 show that increasing VDCs287

have indeed better performance than constant288

VDCs (e.g., [2,2,2,2,2,2,2,2,2,2,2,2]) or decreasing289

VDCs (e.g. [3,3,3,2,2,2,1,1,1,0,0,0]).290

Variable Interaction Control Unlike [g], the [s]291

token always attends to the entire input sequence.292

To make the best of use of both types of informa-293

tion, the interaction between them is crucial (Tang294

et al., 2020). Unlike previous combination mod-295

els where syntax is captured by a distinct model,296

GOBERTA integrates it directly into the PLM, and297

since it does so by adding a separate [g] token, we298

can also use an attention mask mechanism to pre-299

cisely control the interaction between [s] and [g]300

in each layer. For example, we can allow [s] and301

[g] to attend to themselves and each other ("full in-302

teraction"), only to themselves ("self interaction"),303

or only to each other ("cross interaction"), as in304

Figure 5. GOBERTA has an additional set of hy-305

perparameters, called variable interaction control306

(VIC), that define how [s] and [g] interact in each307

layer. Although there are theoretically 16 possi-308

ble VIC values for each of the 12 layers, we only309

experiment with the three settings shown in Fig-310

ure 5. We show in Section 5 that starting with n311

self interaction layers as a warm-up phase and then312

transitioning to (12 − n) cross interaction layers313

can boost the performance of GOBERTA.314

Figure 5: The Variable Interaction Control (VIC) hyper-
parameters define how [s] and [g] attend to each other
and themselves. We experiment with the three of the
16 possible VIC values shown here ("full", "self" and
"cross" interaction)

4 Experimental Results315

Datasets and Experimental Settings We use316

the most widely used ABSC data sets: the Lap-317

top and Restaurant datasets from SemEval-2014318

task 4 (Pontiki et al., 2014) and the Twitter dataset319

of Dong et al. (2014). Table 7 in Appendix A320

shows the statistics of the ABSC datasets. For321

GOBERTA, we use the pre-trained RoBERTa-base322

model2 provided by huggingface. We use spaCy3’s 323

en_core_web_sm model version 3.3.0 as depen- 324

dency parser. Finetuning uses a batch size of 32, 325

dropout rate of 0.1, and learning rate of 1.5e-5 us- 326

ing the AdamW optimizer. We run the experiments 327

with five random seeds and report the average ac- 328

curacy and macro-F1. All the experiments are con- 329

ducted on a single Tesla A100 GPU. 330

Overall Results Table 1 compares GOB- 331

ERTA against all competitive RoBERTa+GNN 332

or BERT+GNN combination models that use de- 333

pendency graphs extracted from widely used de- 334

pendency tree parser such as spaCy3, Stanford 335

CoreNLP4, and Biaffine Parser5. We can see that 336

GOBERTA outperforms all previous models on 337

both SemEval-2014 Task4 datasets, establishing 338

a new state-of-the-art record. On Twitter, GOB- 339

ERTA clearly outperforms the other RoBERTa 340

based models and is competitive with the (overall 341

better performing) BERT-based models. However, 342

since [g] uses the same parameters GOBERTA 343

has the exact same number of parameters as the 344

basic RoBERTa model, and only requires minute 345

(≤ 0.5%) increases in training and inference run 346

times (Table 2), it arguably resolves the computa- 347

tional cost problem mentioned in Section 1. 348

Twitter and multi-sentence items Table 3 349

shows that the Twitter dataset has a particularly 350

large proportion of multi-sentence items. Since 351

each sentence has a single dependency graph, multi- 352

sentence items have multiple dependency graphs, 353

requiring us to combine them by adding a dummy 354

root node that links to the heads of each sentence. 355

This, as well as RoBERTA’s generally lower per- 356

formance on Twitter, may be one reason why we 357

do not achieve state of the art on Twitter. We have 358

also not attempted to examine how parser accu- 359

racy contributes to performance differences across 360

datasets 361

5 Analysis 362

We now examine the effect of the design decisions 363

and hyperparameters that distinguish GOBERTA 364

from RoBERTa through a number of analyses and 365

ablation studies. 366

2https://huggingface.co/roberta-base
3https://spacy.io/
4https://stanfordnlp.github.io/

CoreNLP/
5Biaffine Parser (Dozat and Manning, 2016) implemented

from the allenNLP https://allenai.org/allennlp
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Base PLM Models Lap14 Rest14 Twitter
Acc. F1 Acc. F1 Acc. F1

BERT

DGEDT-BERT3(Tang et al., 2020) 79.8 75.6 86.3 80.0 77.9 75.4
RGAT-BERT5(Wang et al., 2020) 78.2 74.1 86.6 81.4 76.2 74.9
DGNN (BERT)5 (Xiao et al., 2022) 81.4 79.0 87.2 81.7 76.2 75.0
PD-RGAT (BERT)4 (Wu et al., 2022) 81.6 80.9 88.7 83.6 77.9 76.2
MWM-GCN (BERT)4 (Zhao et al., 2022) 82.8 79.5 88.5 82.6 78.9 77.4
Sentic GCN-BERT3 (Liang et al., 2022) 82.1 79.1 86.9 81.0 – –
SGGCN-BERT (Veyseh et al., 2020) 82.8 80.2 87.2 82.5 – –

RoBERTa

BERT4GCN (RoBERTa)3 (Xiao et al., 2021) 81.8 78.2 86.2 78.6 74.8 74.0
RoBERTa-RGAT5(Dai et al., 2021) 83.4 80.3 87.4 80.6 74.4 72.9
RoBERTa-PWCN3 (Dai et al., 2021) 84.2 81.2 87.4 81.1 76.6 75.6
Ours: GOBERTA 3 84.5 81.6 89.3 84.3 77.2 76.0

Table 1: GOBERTA outperforms all prior works on the Laptop and Restaurant data, and is competitive on Twitter

Model # of Params. Training (s) Inference (s)

RoBERTa 125M 12.77 0.3452
GOBERTA 125M (+0.0%) 12.84 (+0.5%) 0.3464 (+0.3%)

Table 2: Computational cost comparison between GOB-
ERTA and a single RoBERTa. RoBERTa and GoBERTa
has the exact same number of total parameters. The
reported run times are measured as the average of 100
runs for a single epoch in the Twitter dataset. We use
batch size of 32 and a single Tesla A100 GPU.

Distribution Datasets
Train Test

Lap14 % of multiple sent./item 7.86 7.84
Avg. sent./item 1.09 1.09

Res14 % of multiple sent./item 4.02 4.38
Avg. number of sent./item 1.04 1.05

Twitter % of multiple sent./item 59.44 60.55
Avg. number of sent./item 1.99 1.96

Table 3: Prevalence of multi-sentence items in the
ABSC datasets.

Does [g] require syntactic distances? To under-367

stand the impact of syntax on GOBERTA, we now368

compare it to a variant that uses surface distance369

instead of syntactic distance. The surface (or po-370

sition) distance of a token is computed simply by371

the number of tokens between the closest target372

aspect token and the corresponding token follow-373

ing previous works (Zeng et al., 2019; Phan and374

Ogunbona, 2020). Focusing on words near the tar-375

get aspect is known to be effective in the ABSC376

task (Zeng et al., 2019). But syntactic distance is377

often very different from surface distance (see Fig-378

ures 1 and 3, where the target word ‘vista’ and the379

sentiment word ‘sucked’ are not connected until380

D = 4 when using the position distance, while the381

dependency graph captures the connection between 382

‘vista’ and ‘sucked’ at D = 1). In fact, Dai et al. 383

(2021) have observed that the average syntactic 384

distances (based on dependency graphs) between 385

target and sentiment words are 3.77 and 4.46 for the 386

laptop and restaurant datasets, while the average 387

position distances are 6.48 and 7.49 respectively. 388

Table 4 shows results for all three VDCs types 389

(decreasing, constant, and increasing) under both 390

metrics that indicate that syntactic distances yield 391

generally better performance than position-based 392

distances, especially in the increasing VDC config- 393

uration. 394

The Impact of Variable Distance Control 395

GOBERTA is inspired by how GNNs aggregate 396

information from nodes that are more and more 397

distant in their upper layers. As mentioned 398

in section 3, increasing VDC hyperparameters 399

can be used to mimic this behavior. As men- 400

tioned above, Table 4 summarizes experiments 401

conducted on three different types of VDCs: in- 402

creasing (e.g., [0,0,0,1,1,1,2,2,2,3,3,3]), constant 403

(e.g., [2,2,2,2,2,2,2,2,2,2,2,2]), and decreasing (e.g., 404

[3,3,3,2,2,2,1,1,1,0,0,0]). It can be seen that GOB- 405

ERTA has the highest performance with increas- 406

ing VDCs (i.e. when it is most similar to typical 407

GNNs), and the lowest performance with decreas- 408

ing VDCs (i.e. when it is the least similar to GNNs). 409

More detailed experiment results are provided in 410

Appendix C. 411

What range of distances matters for ABSC? 412

Finally, Dai et al. (2021)’s observation that differ- 413

ent corpora exhibit different distances and that syn- 414

tactic distances are shorter than surface distances 415

is also consistent with the results in Figure 6. Here, 416

we use a constant VDC, but vary its range from 417
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Variable Distance Control (VDC) Lap14 Rest14 Twitter
Acc. F1 Acc. F1 Acc. F1

RoBERTa-ASC 82.1 78.9 87.6 81.7 75.6 74.5

GoBERTA (Position Distance)
• Decreasing-VDC 83.4 80.4 88.5 83.2 76.5 75.3
• Constant-VDC 83.7 80.7 88.6 83.3 76.4 75.4
• Increasing-VDC 83.7 80.5 88.6 83.2 76.9 76.0

GoBERTA (Dependency Graph)
• Decreasing-VDC 83.7 80.6 88.4 83.0 76.5 75.4
• Constant-VDC 83.7 80.4 88.9 83.7 76.4 75.2
• Increasing-VDC 83.8 80.8 89.1 83.8 77.1 75.9

Table 4: Empirical results on the effect of VDC. The results show that GOBERTA generally shows better perfor-
mance in the order of decreasing < fixed < increasing VDCs. This result matches our intuition of [g] imitating
GNN as described in Section 3. A more detailed result table is in the Appendix C.

Variable Interaction Control (VIC) Lap14 Rest14 Twitter
Acc. F1 Acc. F1 Acc. F1

GoBERTA w/o Variable Interaction 83.8 80.8 89.1 83.8 77.1 75.8

GoBERTA w/ Variable Interaction
• Cross (n) → Self (12− n)

• n = 4 83.3 80.4 88.7 83.5 75.6 74.3
• n = 6 83.5 80.3 88.4 82.9 74.8 73.3
• n = 8 82.7 79.3 88.3 82.8 76.0 74.7

• Self (n) → Cross (12− n)
• n = 4 84.2 80.9 89.3 84.3 75.7 74.6
• n = 6 84.1 81.0 89.0 83.8 77.2 76.0
• n = 8 84.5 81.6 89.1 84.1 76.9 76.0

Table 5: Empirical results on the effectiveness of VIC. See Figure 5 for the definitions of self and cross interactions.
We use increasing VDCs [000011112222] for Laptop and Twitter and [000222444666] for Restaurant.

0 to 9 across runs. Using surface distance (red418

dot in Figure6), performance peaks near D=1–4 on419

the laptop data, and near D=6,7 on the restaurant420

dataset. On the other hand, when using syntax dis-421

tances (blue dot in Figure6), performance peaks422

near D=2 for the laptop data, and near D=4,6 on423

the restaurant data.424

The Impact of Variable Interaction Control As425

explained in Section 3, the VIC hyper-parameters426

allow us to control the degree of interaction be-427

tween the [s] and [g] token in each layers.428

Although there are 1612 possible VIC configu-429

rations (4 options per [s] and [g] token, in each430

of the 12 layers), we only experiment with the431

three VIC settings shown in Figure 5, and only ex-432

plore a full variant (where all layers use full inter-433

actions), one variant where GOBERTA first goes434

through n self-interaction layers and then transi-435

tions to (12 − n) cross-interaction layers, and a436

reverse ordering where cross-interaction happens437

in the first n layers, followed by (12 − n) self-438

interaction layers. The results for n ∈ 4, 6, 8 are439

summarized in Table 5. Starting with n self in-440

teraction layers and then transitioning to (12− n) 441

cross interaction layers generally outperforms us- 442

ing only constant interaction. On the other hand, 443

going through cross interaction layers first and then 444

through self interactions generally shows worse 445

performance. 446

Although we have only examined a small num- 447

ber of possible VIC configurations, we can see that 448

the VIC settings can have a significant impact on 449

performance. Finding the best VIC configuration 450

(or combination of VIC and VDC configurations) 451

could be an interesting future work. 452

Does [g] need to be a separate token? We now 453

compare GOBERTA to a variant that does not use 454

a [g] token, but instead uses the target tokens at 455

the end of the input sequence (recall that the input 456

sequence has the form of ‘[s] sentence [/s] [/s] tar- 457

get is aspect [/s]’). We call this the GOBERTA-[g] 458

variant. As Table 6 shows, the loss in performance 459

is considerable compared to using an independent 460

[g] token as in the the original GOBERTA model. 461

We speculate that the drop in performance is due to 462

the original input sentence getting corrupted when 463

7



Figure 6: Experiments on different constant VDC values This result implies that the restaurant data has a longer
distance between sentiment word and target than the laptop data.

[g] token Lap14 Rest14 Twitter
Acc. F1 Acc. F1 Acc. F1

GOBERTA-[g] 83.5 80.5 88.3 82.9 75.6 74.3

GOBERTA
[g] init. = [s] embed. 83.8 80.8 89.1 83.8 76.7 75.5
[g] init. = aspect embed. 83.5 80.6 88.8 83.3 73.9 72.8

Table 6: Empirical results on the necessity of the [g] token and the inherent strength of the pre-trained [s] token
embedding. We used the increasing VDC ([0,0,0,1,1,1,2,2,2,3,3,3]) with default VIC for the ablation studies.

we modify the aspect token’s attention mask. This464

result indicates the importance of using an addi-465

tional and independent [g] token for the GNN role466

as in GOBERTA.467

Furthermore, there seems to be an inherent ad-468

vantage in using the pre-trained embedding of the469

[s] token also for [g]. Table 6 also compares GOB-470

ERTA (in which the dictionary embedding of [g]471

is identical to [s]), with a variant in which we use472

the actual aspect word’s dictionary embeddings as473

the dictionary [g] embedding (if the aspect consists474

of several words, we average their embeddings).475

Initializing [g] token with the [s] token embedding476

yields better performance, perhaps because the [s]477

embedding is better suited to aggregate information478

than the embeddings of other tokens, providing a479

better starting point for a sequence element that480

is also intended to capture aggregate information481

(albeit of a slightly different nature). We plan to ex-482

amine the effect of letting [g]’s embedding deviate483

from [s] during fine-tuning.484

6 Conclusion485

This paper has proposed a novel framework, GOB-486

ERTA, that effectively incorporates syntactic infor-487

mation directly into a pre-trained large language488

model (PLM) such as RoBERTa for tasks like489

Aspect-Based Sentiment Classification (ABSC),490

in which the desired output depends on specific 491

words in the input, and where syntactic distance 492

to the relevant input words may be important. In 493

contrast to prior work, where a separate GNN was 494

added to the output of the PLM, in our model, at- 495

tention masks for new [g] token capture syntactic 496

information, and a new hyper-parameter, named 497

variable distance control (VDC), can instead cap- 498

ture graph structure in a similar fashion. Another 499

unique hyper-parameter called variable interaction 500

control (VIC) increases the flexibility of our model 501

by making it possible to adjust the degree of inter- 502

action between syntax and the PLM. To the best 503

of our knowledge, GOBERTA is the first model 504

to incorporate syntactic knowledge into RoBERTa 505

without (essentially) increasing the computational 506

costs. Experimental results show that we achieve 507

state-of-the-art performance in SemEval-2014 task 508

4 with computational costs that are equivalent to 509

a basic RoBERTa model. This demonstrates the 510

efficiency of our approach and suggests a new 511

paradigm for combining PLM and syntactic infor- 512

mation in ABSC, even though GOBERTA is a very 513

simple extension to RoBERTa. In future work, we 514

plan to incorporate edge-type and/or edge-direction 515

information into GOBERTA, and to explore the 516

space of possible VDC and VIC settings in a more 517

systematic fashion. 518
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A Details on Datasets694

Our model GOBERTA is evaluated on three differ-695

ent datasets from SemEval 2014 Task 4 and Twitter696

datasets. Table 7 shows the statistics of the datasets.697

Dataset Train Test

Restaurant (SemEval-2014) 3608 1120
Laptop (SemEval-2014) 2328 638
Twitter 6248 692

Table 7: Dataset Overview

B Comparing Different Pooler Types698

The [s] and [g] token outputs are combined after the699

last layer of GOBERTA encoders as described in700

Section 3. We conduct experiments on three differ-701

ent types of poolers for combining [s] and [g] token702

embeddings at the final layer: average, max, and703

attention pooling. Table 8 summarizes the results704

of using different pooler types for GOBERTA. The705

result shows that attention pooling shows better706

results in general.707

C Detailed Variable Distance Control708

Results709

Our variable distance control (VDC) is a unique710

hyper-parameter which consists of 12 non-negative711

integers, where each integer represents the di value712

of the i-th layer. Theoretically there are expo-713

nentially many possible values for VDC but we714

use three representative types: increasing, constant,715

and decreasing VDCs.716

We heuristically chose specific values for each717

type of VDCs and the detailed results are summa-718

rized in Table 9. The table shows that GOBERTA719

has the highest performance with increasing VDCs.720

Increasing VDCs are designed to work as the most721

similar to the typical GNN by aggregating informa-722

tion from the closest nodes to farther nodes based723

on the target aspect. On the other hand, decreasing724

VDCs has the lowest performance due to the fact725

that the decreasing VDCs are designed to work as726

least similar to a GNN in the opposite order (i.e., ag-727

gregating information from farther nodes to closer728

nodes based on the target aspect). From these re-729

sults, we can conclude that GOBERTA success-730

fully imitates the typical GNN mechanism through731

increasing VDC configuration.732

Pooler types
Lap14 Rest14 Twitter

Acc. F1 Acc. F1 Acc. F1

GOBERTA

w/ max pooling 83.2 80.0 88.7 83.3 74.8 73.7
w/ avg pooling 83.8 80.6 88.8 83.5 76.5 75.5
w/ att pooling 83.8 80.8 89.1 83.8 76.7 75.5

Table 8: Comparing different pooler types for GOB-
ERTA. We used VDC = [0,0,0,1,1,1,2,2,2,3,3,3] with
the default full-interaction for the experiment.
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Variable Distance Control (VDC)
Lap14 Rest14 Twitter
Acc. F1 Acc. F1 Acc. F1

GoBERTA (Position Distance)
• Decreasing-VDC 83.4 80.4 88.5 83.2 76.5 75.3

• VDC = [222211110000] 83.3 80.2 88.2 82.7 76.0 74.8
• VDC = [333222111000] 82.0 78.8 88.4 82.8 76.5 75.3
• VDC = [444422220000] 83.4 80.4 88.4 83.1 75.6 74.4
• VDC = [554433221100] 83.1 79.9 88.5 83.2 75.2 73.7
• VDC = [666444222000] 83.2 80.0 87.8 82.0 76.0 74.8

• Constant-VDC 83.7 80.7 88.6 83.3 76.4 75.4
• Please refer to Figure 6

• Increasing-VDC 83.7 80.5 88.6 83.2 76.9 76.0

• VDC = [000011112222] 83.5 80.3 87.8 82.1 76.9 76.0
• VDC = [000111222333] 83.5 80.5 88.5 83.2 75.5 74.4
• VDC = [000022224444] 83.6 80.4 87.9 82.2 75.7 74.4
• VDC = [001122334455] 83.3 80.3 88.6 83.1 76.1 74.9
• VDC = [000222444666] 83.7 80.5 88.3 82.5 76.6 75.8

GoBERTA (Dependency Graph)
• Decreasing-VDC 83.7 80.6 88.4 83.0 76.5 75.4

• VDC = [222211110000] 83.5 80.4 88.1 82.7 75.4 74.2
• VDC = [333222111000] 82.6 79.6 87.1 81.1 76.1 75.1
• VDC = [444422220000] 83.4 80.5 87.9 82.2 76.5 75.4
• VDC = [554433221100] 83.7 80.6 88.4 83.0 75.3 74.2
• VDC = [666444222000] 83.2 80.0 88.2 82.7 75.6 74.3

• Constant-VDC 83.7 80.4 88.9 83.7 76.4 75.2
• Please refer to Figure 6

• Increasing-VDC 83.8 80.8 89.1 83.8 77.1 75.9

• VDC = [000011112222] 83.5 80.5 88.3 82.8 77.1 75.8
• VDC = [000111222333] 83.8 80.8 89.1 83.8 76.7 75.5
• VDC = [000022224444] 83.5 80.5 88.9 83.5 75.7 74.6
• VDC = [001122334455] 83.2 80.2 88.8 83.5 74.7 75.9
• VDC = [000222444666] 82.5 79.4 88.9 83.8 76.9 75.9

Table 9: Detailed experimental results on the effect of DRC. The results show that GOBERTA generally shows
better performance in the order of decreasing < fixed < increasing DRCs. This result matches our intuition of [g]
token imitating GNN as described in Section 3.
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