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Abstract

We present a simple, but effective method to in-
corporate syntactic information obtained from
dependency trees directly into transformer-
based language models (e.g. RoBERTa) for
tasks such as Aspect-Based Sentiment Clas-
sification (ABSC), where the desired output
depends on specific input tokens. In contrast to
prior approaches to ABSC that capture syntax
by combining language models with graph neu-
ral networks over dependency trees, our model,
Graph-integrated ROBERTa (GOBERTA) re-
quires only a minimal increase in memory cost,
training and inference time over the underlying
language model. Yet, GOBERTA outperforms
these more complex models, yielding new state-
of-the-art results on ABSC.

1 Introduction

Aspect-Based Sentiment Classification (ABSC,
Pontiki et al. (2014), Figure 1) is a fine-grained
sentiment analysis task that aims to handle the fact
that even simple statements such as “The ambience
was nice, but service wasn’t so great.” may express
different sentiments towards different aspects (this
reviewer is positive about the restaurant’s “ambi-
ence”, but negative about its “service”). In ABSC,
the aspect to be classified is identified by a target
string in the input sentence (e.g. “ambience"), and
systems have to return the polarity (positive, neu-
tral, negative) of the corresponding sentiment.
Pre-trained language models (PLMs) have been
shown to work well for ABSC (Wang et al., 2016;
Li et al., 2019; Xu et al., 2020b; Karimi et al.,
2021), presumably because their attention mecha-
nisms capture semantic connections between target
and context words (Tang et al., 2016). Starting with
Do et al. (2019), PLMs have been supplemented
with syntactic features, typically extracted from
dependency graphs. This is typically done by us-
ing the word embeddings obtained from the PLM
to initialize the node embeddings of a graph neu-
ral network (GNN) obtained from the dependency

graph (Wu et al., 2022; Xu et al., 2020a; Wang
et al., 2020; Hou et al., 2021; Xiao et al., 2022;
Tang et al., 2020; Xiao et al., 2021). However, such
combined models have two major limitations:

1. Computational Cost Problem. Using the
output embeddings of the PLM as inputs to
the GNN increases both training and infer-
ence over using a PLM alone, and requires
two distinct sets of parameters to be learned
and stored. Since low computational demand
and latency are vital for real-world applica-
tions (e.g., customer service), it is crucial to
design a combination model that reduces the
computational cost.

2. Suboptimal Interaction Problem. A typical
challenge in combining PLMs and GNN:Ss is
to make the two models effectively interact
with each other. Some approaches (Tang et al.,
2020; Lu et al., 2020) attempt to accomplish
this through heavy model architecture engi-
neering. However, the PLM and GNN still
operate in an asynchronous manner, limiting
their interaction, and yielding only a minor im-
provement in performance. We hypothesize
that more integrated models can yield larger
boosts in performance.

In order to alleviate these limitations, we pro-
pose Graph-integrated ROBERTa (GOBERTA), a
novel framework for effectively augmenting PLMs
with syntactic information. We chose RoBERTa
(Liu et al., 2019) as our PLM baseline model
due to its notable performance in the ABSC task
(Dai et al., 2021). GOBERTA adds three com-
ponents to RoBERTa: (1) a [g] token that cap-
tures graph information via layer-specific attention
masks, (2) a Variable Distance Control (VDC)
hyper-parameter that defines how these attention
masks depend on the graph structure, and (3)
a Variable Interaction Control (VIC) mecha-
nism that defines how the [g] token interacts with
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Figure 2: Dependency Trees define syntactic distances

RoBERT2’s [s] token. GOBERTA outperforms
prior approaches (including methods that combine
PLMs and GNNs), and establishes a new state of
the art, on the most widely used ABSC datasets.
But since GOBERTA uses no additional parame-
ters and its run time is almost identical to ROBERTa
itself (< 0.5% increase), it solves the computational
cost problem.

2 Aspect-Based Sentiment Classification

In Aspect-Based Sentiment Classification (Pon-
tiki et al., 2014), illustrated in Figure 1, the
task is to predict the polarity (positive, negative
or neutral) of the sentiment in input sentence
s = [wi, w2, ..., Wp, ..., Wptm—1, ..., Wy towards
a given target aspect ¢ (a substring of the input
sentence: t; = {wp, ..., Wptm—11}).

2.1 Language Models for ABSC

Large pre-trained language models (PLMs) such
as BERT (Devlin et al., 2019), XLNET (Yang
et al., 2019), and RoBERTa (Liu et al., 2019) have
gained predominance for many NLP tasks, includ-
ing ABSC. RoBERT3, a variant of BERT, is known
to show notable performance on ABSC tasks (Dai
et al., 2021), and forms the basis of the models
explored in this paper. ROBERTa (and BERT) are
(pre)trained on large amounts of raw text with a
masked language modeling objective. Both models
use a Transformer (Vaswani et al., 2017) archi-
tecture in which each token’s embedding is fed
through multiple layers such that each token’s em-
bedding in a given layer can attend to all tokens
in the sequence (in the same layer). To adapt
these models for classification tasks, a special to-
ken ([CLS] for BERT, [s] for RoBERTa) whose
output is fed into a task-specific feedforward layer
is included in the input sequence. A separation to-
ken ([SEP] or [/s]) can be used to separate the input
sequence from other task-specific information.

For the ABSC task, RoBERTa is typically used
as follows: after tokenization, the input sentence
is fed into RoOBERTa as ‘[s] input sentence [/s] [/s]
aspect sequence [/s]’, where the aspect sequence
includes the target aspect word itself. Only the [s]
token embedding of the last layer is used for the
final prediction and fine-tuning.

2.2 Combining PLMs with syntax

A common approach to ABSC is to supplement a
PLM with syntactic information (Tang et al., 2020;
Zhang et al., 2019b) obtained from a dependency
parser. In a dependency graph (Figure 2) each word



in the sentence corresponds to a node, with labeled
edges indicating word-word dependencies. Note
that the syntactic distance between related words
(e.g. sucked and vista) can be much smaller than
their surface distance in the original sequence.

Since the dependency parser and the PLM may
use different tokenizers, tokenization needs to be
broken into two stages to integrate both models
seamlessly. The input sentence is first tokenized
by the dependency parser, and then each token is
again tokenized by RoBERTa’s tokenizer, follow-
ing previous work (Tang et al., 2020).

Graph Neural Network-based ABSC models
To incorporate syntax into ABSC models, PLMs
have been augmented with Graph Neural Networks
(GNNs, Kipf and Welling (2016)) that capture the
structure of the sentence’s dependency tree. Al-
though there are many variants (Trisna and Jie,
2022), the basic idea behind GNNs is to represent
each node as a vector h; that is updated via graph
convolution in each layer (I € [1,2,... L]) of the
GNN (Kipf and Welling, 2016) by aggregating its
neighborhood information from the previous layer:

hi = o (A Wik + bhl )

Here o is is an activation function, W and b are
learnable parameters, and A;; is the entry of the
graphs adjacency matrix that indicates whether
nodes ¢ and j are connected (in which case 4;; = 1;
otherwise A;; = 0). If A is defined by a depen-
dency tree, A;; = 1 if there is a dependency be-
tween words ¢ and j. To combine GNNs with
PLMs for ABSC, the GNN embeddings of all
words can be initialized with the PLM’s output
embeddings, and the embeddings of the target as-
pects in the last layer can be used for classification.
Zhang et al. (2019a) was the first to implement
a GNN-based model for ABSC, adding a multi-
layered Graph Convolutional Network (GCN) to
encode dependency graphs on top of the word em-
bedding layer. Sentic GCNs (Liang et al., 2022)
leverage the dependencies between context words
and aspect words on top of the embedding mod-
ule. Wang et al. (2020) and Wu et al. (2022) used
a relational graph attention network (R-GAT) on
top of initial embeddings from BERT. Tang et al.
(2020) presented a dependency graph enhanced
dual-transformer network named DGEDT that con-
textual representation and graph representation in-
teract with each other through a mutual biaffine
module. More recent research in ABSC has tried

to revise dependency graphs due to the noise and
imperfection of syntactic dependency graphs (Xiao
et al., 2021, 2022). What is common to all these
approaches is that the PLM and GNN operate in a
serial fashion, and are not tightly integrated.

Attention-mask based approaches Another
promising approach to incorporate syntactic infor-
mation into PLLMs that is more related to this paper,
is to manipulate the Transformer’s self-attention
masks. For example, Syntax-BERT (Bai et al.,
2021) uses multiple masks induced from the syn-
tactic trees (e.g., parent, children, sibling, pairwise
masks) to incorporate syntactic information into
BERT. To do so, it requires multiple (usually more
than 90) sub-networks, which causes a considerable
amount of increase in training/inference time. The
key difference between Syntax-BERT and GOB-
ERTA is that Syntax-BERT alters all the input to-
kens’ attention masks while GoBERTa (which is
specifically designed for tasks like ABSC, where
the desired output depends on specific parts of the
input) keeps the original input tokens intact while
only modifying the attention-mask of the newly
added [g] token. This allows GOBERTA to meet
our primary objective of keeping the computational
costs constant.

3 GOBERTA

The primary objective of GOBERTA (Figure 4) is
to incorporate syntactic information into a PLM
without (essentially) increasing the computational
costs (i.e. number of model parameters and run-
ning time) of the PLM. We accomplish this goal by
augmenting ROBERTa with three components: (1)
a single additional input token, named [g], whose
attention masks depend on the structure of the in-
put’s dependency tree(s), paired with (2) a “variable
distance control" (VDC) mechanism that specifies
how the structure of the dependency graph is re-
flected in [g]’s attention masks, and additionally (3)
a “variable interaction control” (VIC) mechanism
that specifies the interaction of [g] and [s]. Since
GOBERTA does not introduce any new learnable
parameters and only increases the sequence length
of every input by one token ([g]), it has nearly iden-
tical training/inference time (less than 1 % increase)
to the standard RoBERTa model.

Input and output After tokenization with
RoBERT2’s tokenizer, the input to GOBERTA is
‘[s] [g] input sentence [/s] [/s] aspect sequence [/s]’,
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Figure 3: GOBERTA’s [g] token uses attention masks based on syntactic distance (left), not surface distance (right)
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Figure 4: The overall architecture of GOBERTA with Variable Distance Control.

where the aspect sequence is the phrase "target
is" followed by the target aspect words (this gave
slightly better performance than using only the as-
pect words). [g] and [s] use the same dictionary
embedding in the input layer. We evaluate this
choice in Section 5.! To obtain the output, the final
layers of the [s] and [g] tokens are pooled before
feeding them through a softmax classification layer.
For the pooling process, we use the attention-based
pooling mechanism introduced in (Bai et al., 2019).

The [g] token and distance-based attention
masks To capture the intuition that the relevance
of each word in a sentence to ABSC depends on
its distance to the target aspect words, we define
distance-based attention masks (Figure 3) that de-
pend either on syntactic or surface distance, and
are only used for the [g] token. For a given distance
metric D(j) and distance d;, an attention mask m;
is a vector whose elements m;; are zero if the dis-
tance D(j) between token j and the target aspect
words is greater than d;, and one otherwise. If
distance is syntax-based, D(7) is the length of the
shortest path between token j and the target aspect
(so, if the target aspect consists of multiple tokens,
we take the minimum distance to any of its compo-
nent tokens). If the distance is surface-based, D(j)
is simply the token distance to the target aspect (1

"Future work could examine if letting [g]’s embedding vary
independently of [s]’s during fine-tuning would be beneficial.

if j is adjacent). The [g] token is inserted next to
the [s] token. Unlike the [s] token that attends to
every token in the input, each layer /; of [g] only at-
tends to the subset of input tokens that are at most a
distance d; (specified by the VDC hyperparameters
explained below) away from the target aspect. We
do not restrict how the input tokens can attend to
[g]. The attention between [s] and [g] is controlled
by the VIC hyperparameters described below.

Variable Distance Control (VDC) To specify
the attention masks used by the [g] token, we
introduce a new set of hyper-parameters named
Variable Distance Control (VDC). VDC is a list
of 12 non-negative integers where the i-th ele-
ment represents the value of d; of the i-th layer
of the [g] token. For example, if the VDC is
[0,0,0,0,0,0,1,1,1,1,1, 1], the first six layers of
the [g] token attend only to the target aspect, and
the remaining six layers attend to tokens that are
connected to the target via a direct dependency
link.

Note  that increasing VDCs (e.g.,
[0,0,0,0,1,1,1,1,2,2,2,2], [0,0,0,1,1,1,2,2,2,3,3,3])
can be used to mimic how GNNs’ work. Through
graph convolution, the i-th layer of a GNN
aggregates features of nodes up to length ¢ away
from each node in the graph, allowing the GNN to
gradually aggregate information from more and
more distant nodes in its upper layers. Empirical



results in Section 5 show that increasing VDCs
have indeed better performance than constant
VDCs (e.g., [2,2,2,2,2,2,2,2,2,2,2,2]) or decreasing
VDCs (e.g. [3,3,3,2,2,2,1,1,1,0,0,0]).

Variable Interaction Control Unlike [g], the [s]
token always attends to the entire input sequence.
To make the best of use of both types of informa-
tion, the interaction between them is crucial (Tang
et al., 2020). Unlike previous combination mod-
els where syntax is captured by a distinct model,
GOBERTA integrates it directly into the PLM, and
since it does so by adding a separate [g] token, we
can also use an attention mask mechanism to pre-
cisely control the interaction between [s] and [g]
in each layer. For example, we can allow [s] and
[g] to attend to themselves and each other ("full in-
teraction"), only to themselves ("self interaction"),
or only to each other ("cross interaction"), as in
Figure 5. GOBERTA has an additional set of hy-
perparameters, called variable interaction control
(VIC), that define how [s] and [g] interact in each
layer. Although there are theoretically 16 possi-
ble VIC values for each of the 12 layers, we only
experiment with the three settings shown in Fig-
ure 5. We show in Section 5 that starting with n
self interaction layers as a warm-up phase and then
transitioning to (12 — n) cross interaction layers
can boost the performance of GOBERTA.

Cross interaction

Self interaction

Full interaction

Figure 5: The Variable Interaction Control (VIC) hyper-
parameters define how [s] and [g] attend to each other
and themselves. We experiment with the three of the
16 possible VIC values shown here ("full", "self" and
"cross" interaction)

4 Experimental Results

Datasets and Experimental Settings We use
the most widely used ABSC data sets: the Lap-
top and Restaurant datasets from SemEval-2014
task 4 (Pontiki et al., 2014) and the Twitter dataset
of Dong et al. (2014). Table 7 in Appendix A
shows the statistics of the ABSC datasets. For
GOBERTA, we use the pre-trained RoBERTa-base

model® provided by huggingface. We use spaCy>’s
en_core_web_sm model version 3.3.0 as depen-
dency parser. Finetuning uses a batch size of 32,
dropout rate of 0.1, and learning rate of 1.5e-5 us-
ing the AdamW optimizer. We run the experiments
with five random seeds and report the average ac-
curacy and macro-F1. All the experiments are con-
ducted on a single Tesla A100 GPU.

Overall Results Table 1 compares GOB-
ERTA against all competitive ROBERTa+GNN
or BERT+GNN combination models that use de-
pendency graphs extracted from widely used de-
pendency tree parser such as spaCy?>, Stanford
CoreNLP*, and Biaffine Parser’. We can see that
GOBERTA outperforms all previous models on
both SemEval-2014 Task4 datasets, establishing
a new state-of-the-art record. On Twitter, GOB-
ERTA clearly outperforms the other ROBERTa
based models and is competitive with the (overall
better performing) BERT-based models. However,
since [g] uses the same parameters GOBERTA
has the exact same number of parameters as the
basic RoBERTa model, and only requires minute
(< 0.5%) increases in training and inference run
times (Table 2), it arguably resolves the computa-
tional cost problem mentioned in Section 1.

Twitter and multi-sentence items Table 3
shows that the Twitter dataset has a particularly
large proportion of multi-sentence items. Since
each sentence has a single dependency graph, multi-
sentence items have multiple dependency graphs,
requiring us to combine them by adding a dummy
root node that links to the heads of each sentence.
This, as well as RoOBERTA’s generally lower per-
formance on Twitter, may be one reason why we
do not achieve state of the art on Twitter. We have
also not attempted to examine how parser accu-
racy contributes to performance differences across
datasets

5 Analysis

We now examine the effect of the design decisions
and hyperparameters that distinguish GOBERTA
from RoBERTa through a number of analyses and
ablation studies.

2https ://huggingface.co/roberta-base

*https://spacy.io/

‘https://stanfordnlp.github.io/
CoreNLP/

SBiaffine Parser (Dozat and Manning, 2016) implemented
from the allenNLP https://allenai.org/allennlp
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Lapl4 Rest14 Twitter
Base PLM  Models TR Acc. T Acc, T
DGEDT-BERT®(Tang ct al., 2020) 79.8 756 863 800 779 75.4
RGAT-BERT®(Wang et al., 2020) 78.2 74.1 86.6 814 762 74.9
DGNN (BERT)® (Xiao et al., 2022) 814 790 872 817 762 75.0
BERT PD-RGAT (BERT)* (Wu et al., 2022) 81.6 809 887 836 779 76.2
MWM-GCN (BERT)* (Zhao et al., 2022) 82.8 79.5 88.5 8.6 789 77.4
Sentic GCN-BERT® (Liang et al., 2022) 82.1 79.1 86.9 810 - -
SGGCN-BERT (Veysch et al., 2020) 823 802 872 85 - -
BERT4GCN (RoBERTa)’ (Xiao etal., 2021) 81.8 782 862 786 748 74.0
ROBERTa-RGAT" (Dai et al., 2021) 834 80.3 87.4 80.6 744 72.9
RoBERTa _ ROBERTa-PWCN® (Dai et al., 2021) 84.2 812 874 81.1 76.6 75.6
Ours: GOBERTA 845 81.6 893 843 772 76.0

Table 1: GOBERTA outperforms all prior works on the Laptop and Restaurant data, and is competitive on Twitter

Model # of Params. Training (s) Inference (s)
RoBERTa 125M 12.77 0.3452
GOBERTA 125M (+0.0%) 12.84 (+0.5%) 0.3464 (+0.3%)

Table 2: Computational cost comparison between GOB-
ERTA and a single RoOBERTa. RoBERTa and GoBERTa
has the exact same number of total parameters. The
reported run times are measured as the average of 100
runs for a single epoch in the Twitter dataset. We use
batch size of 32 and a single Tesla A100 GPU.

o Datasets
Distribution Tram Test
Lap14 % of multiple sent./item 7.86 7.84
Avg. sent./item 1.09 1.09
Res14 % of multiple sent./item 4.02 4.38
Avg. number of sent./item 1.04 1.05
Twitter % of multiple sent./item 59.44  60.55
Avg. number of sent./item 1.99 1.96

Table 3: Prevalence of multi-sentence items in the
ABSC datasets.

Does [g] require syntactic distances? To under-
stand the impact of syntax on GOBERTA, we now
compare it to a variant that uses surface distance
instead of syntactic distance. The surface (or po-
sition) distance of a token is computed simply by
the number of tokens between the closest target
aspect token and the corresponding token follow-
ing previous works (Zeng et al., 2019; Phan and
Ogunbona, 2020). Focusing on words near the tar-
get aspect is known to be effective in the ABSC
task (Zeng et al., 2019). But syntactic distance is
often very different from surface distance (see Fig-
ures 1 and 3, where the target word ‘vista’ and the
sentiment word ‘sucked’ are not connected until
D = 4 when using the position distance, while the

dependency graph captures the connection between
‘vista’ and ‘sucked’ at D = 1). In fact, Dai et al.
(2021) have observed that the average syntactic
distances (based on dependency graphs) between
target and sentiment words are 3.77 and 4.46 for the
laptop and restaurant datasets, while the average
position distances are 6.48 and 7.49 respectively.

Table 4 shows results for all three VDCs types
(decreasing, constant, and increasing) under both
metrics that indicate that syntactic distances yield
generally better performance than position-based
distances, especially in the increasing VDC config-
uration.

The Impact of Variable Distance Control
GOBERTA is inspired by how GNNs aggregate
information from nodes that are more and more
distant in their upper layers. As mentioned
in section 3, increasing VDC hyperparameters
can be used to mimic this behavior. As men-
tioned above, Table 4 summarizes experiments
conducted on three different types of VDCs: in-
creasing (e.g., [0,0,0,1,1,1,2,2,2,3,3,3]), constant
(e.g.,[2,2,2,2,2,2,2,2,2,2.2.2]), and decreasing (e.g.,
[3,3,3,2,2,2,1,1,1,0,0,0]). It can be seen that GOB-
ERTA has the highest performance with increas-
ing VDCs (i.e. when it is most similar to typical
GNNs), and the lowest performance with decreas-
ing VDCs (i.e. when it is the least similar to GNNGs).
More detailed experiment results are provided in
Appendix C.

What range of distances matters for ABSC?
Finally, Dai et al. (2021)’s observation that differ-
ent corpora exhibit different distances and that syn-
tactic distances are shorter than surface distances
is also consistent with the results in Figure 6. Here,
we use a constant VDC, but vary its range from



. . Lap14 Rest14 Twitter
Variable Distance Control (VDC) AcC, Fi AcC, Fi Acc, Fi
RoBERTa-ASC 82.1 78.9 87.6 81.7 75.6 74.5
GoBERTA (Position Distance)

¢ Decreasing-VDC 83.4 80.4 88.5 83.2 76.5 753

¢ Constant-VDC 83.7 80.7 88.6 83.3 76.4 75.4

¢ Increasing-VDC 83.7 80.5 88.6 83.2 76.9 76.0
GoBERTA (Dependency Graph)

¢ Decreasing-VDC 83.7 80.6 88.4 83.0 76.5 754

¢ Constant-VDC 83.7 80.4 88.9 83.7 76.4 75.2

¢ Increasing-VDC 83.8 80.8 89.1 83.8 771 75.9

Table 4: Empirical results on the effect of VDC. The results show that GOBERTA generally shows better perfor-
mance in the order of decreasing < fixed < increasing VDCs. This result matches our intuition of [g] imitating
GNN as described in Section 3. A more detailed result table is in the Appendix C.

. . Lapl4 Rest14 Twitter
Variable Interaction Control (VIC) Acc FT Acc. FT Acc FT
GoBERTA w/o Variable Interaction 83.8 80.8 89.1 83.8 77.1 75.8
GoBERTA w/ Variable Interaction

* Cross (n) — Self (12 — n)
en=4 83.3 80.4 88.7 83.5 75.6 74.3
en==6 83.5 80.3 88.4 82.9 74.8 73.3
en=28 82.7 79.3 88.3 82.8 76.0 74.7
* Self (n) — Cross (12 — n)
en=4 84.2 80.9 89.3 84.3 75.7 74.6
en==6 84.1 81.0 89.0 83.8 77.2 76.0
en=28 84.5 81.6 89.1 84.1 76.9 76.0

Table 5: Empirical results on the effectiveness of VIC. See Figure 5 for the definitions of self and cross interactions.
We use increasing VDCs [000011112222] for Laptop and Twitter and [000222444666] for Restaurant.

0 to 9 across runs. Using surface distance (red
dot in Figure6), performance peaks near D=1-4 on
the laptop data, and near D=6,7 on the restaurant
dataset. On the other hand, when using syntax dis-
tances (blue dot in Figure6), performance peaks
near D=2 for the laptop data, and near D=4,6 on
the restaurant data.

The Impact of Variable Interaction Control As
explained in Section 3, the VIC hyper-parameters
allow us to control the degree of interaction be-
tween the [s] and [g] token in each layers.
Although there are 162 possible VIC configu-
rations (4 options per [s] and [g] token, in each
of the 12 layers), we only experiment with the
three VIC settings shown in Figure 5, and only ex-
plore a full variant (where all layers use full inter-
actions), one variant where GOBERTA first goes
through n self-interaction layers and then transi-
tions to (12 — n) cross-interaction layers, and a
reverse ordering where cross-interaction happens
in the first n layers, followed by (12 — n) self-
interaction layers. The results for n € 4,6, 8 are
summarized in Table 5. Starting with n self in-

teraction layers and then transitioning to (12 — n)
cross interaction layers generally outperforms us-
ing only constant interaction. On the other hand,
going through cross interaction layers first and then
through self interactions generally shows worse
performance.

Although we have only examined a small num-
ber of possible VIC configurations, we can see that
the VIC settings can have a significant impact on
performance. Finding the best VIC configuration
(or combination of VIC and VDC configurations)
could be an interesting future work.

Does [g] need to be a separate token? We now
compare GOBERTA to a variant that does not use
a [g] token, but instead uses the target tokens at
the end of the input sequence (recall that the input
sequence has the form of ‘[s] sentence [/s] [/s] tar-
get is aspect [/s]’). We call this the GOBERTA-[g]
variant. As Table 6 shows, the loss in performance
is considerable compared to using an independent
[g] token as in the the original GOBERTA model.
We speculate that the drop in performance is due to
the original input sentence getting corrupted when
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Figure 6: Experiments on different constant VDC values This result implies that the restaurant data has a longer
distance between sentiment word and target than the laptop data.

2] token Lapl4 Restl14 Twitter

g Acc. Fl Acc. Fl1 Acc. Fl
GOBERTA-[g] 835 805 883 829 756 743
GOBERTA

[g] init. = [s] embed. 838 808 89.1 838 76.7 755
[g] init. = aspectembed. 83.5 80.6 88.8 83.3 739 728

Table 6: Empirical results on the necessity of the [g] token and the inherent strength of the pre-trained [s] token
embedding. We used the increasing VDC ([0,0,0,1,1,1,2,2,2,3,3,3]) with default VIC for the ablation studies.

we modify the aspect token’s attention mask. This
result indicates the importance of using an addi-
tional and independent [g] token for the GNN role
as in GOBERTA.

Furthermore, there seems to be an inherent ad-
vantage in using the pre-trained embedding of the
[s] token also for [g]. Table 6 also compares GOB-
ERTA (in which the dictionary embedding of [g]
is identical to [s]), with a variant in which we use
the actual aspect word’s dictionary embeddings as
the dictionary [g] embedding (if the aspect consists
of several words, we average their embeddings).
Initializing [g] token with the [s] token embedding
yields better performance, perhaps because the [s]
embedding is better suited to aggregate information
than the embeddings of other tokens, providing a
better starting point for a sequence element that
is also intended to capture aggregate information
(albeit of a slightly different nature). We plan to ex-
amine the effect of letting [g]’s embedding deviate
from [s] during fine-tuning.

6 Conclusion

This paper has proposed a novel framework, GOB-
ERTA, that effectively incorporates syntactic infor-
mation directly into a pre-trained large language
model (PLM) such as RoBERTa for tasks like
Aspect-Based Sentiment Classification (ABSC),

in which the desired output depends on specific
words in the input, and where syntactic distance
to the relevant input words may be important. In
contrast to prior work, where a separate GNN was
added to the output of the PLM, in our model, at-
tention masks for new [g] token capture syntactic
information, and a new hyper-parameter, named
variable distance control (VDC), can instead cap-
ture graph structure in a similar fashion. Another
unique hyper-parameter called variable interaction
control (VIC) increases the flexibility of our model
by making it possible to adjust the degree of inter-
action between syntax and the PLM. To the best
of our knowledge, GOBERTA is the first model
to incorporate syntactic knowledge into ROBERTa
without (essentially) increasing the computational
costs. Experimental results show that we achieve
state-of-the-art performance in SemEval-2014 task
4 with computational costs that are equivalent to
a basic RoBERTa model. This demonstrates the
efficiency of our approach and suggests a new
paradigm for combining PLM and syntactic infor-
mation in ABSC, even though GOBERTA is a very
simple extension to ROBERTa. In future work, we
plan to incorporate edge-type and/or edge-direction
information into GOBERTA, and to explore the
space of possible VDC and VIC settings in a more
systematic fashion.
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A Details on Datasets

Our model GOBERTA is evaluated on three differ-
ent datasets from SemEval 2014 Task 4 and Twitter
datasets. Table 7 shows the statistics of the datasets.

Dataset Train Test
Restaurant (SemEval-2014) 3608 1120
Laptop (SemEval-2014) 2328 638
Twitter 6248 692

Table 7: Dataset Overview

B Comparing Different Pooler Types

The [s] and [g] token outputs are combined after the
last layer of GOBERTA encoders as described in
Section 3. We conduct experiments on three differ-
ent types of poolers for combining [s] and [g] token
embeddings at the final layer: average, max, and
attention pooling. Table 8 summarizes the results
of using different pooler types for GOBERTA. The
result shows that attention pooling shows better
results in general.

C Detailed Variable Distance Control
Results

Our variable distance control (VDC) is a unique
hyper-parameter which consists of 12 non-negative
integers, where each integer represents the d; value
of the i-th layer. Theoretically there are expo-
nentially many possible values for VDC but we
use three representative types: increasing, constant,
and decreasing VDCs.

We heuristically chose specific values for each
type of VDCs and the detailed results are summa-
rized in Table 9. The table shows that GOBERTA
has the highest performance with increasing VDCs.
Increasing VDCs are designed to work as the most
similar to the typical GNN by aggregating informa-
tion from the closest nodes to farther nodes based
on the target aspect. On the other hand, decreasing
VDC:s has the lowest performance due to the fact
that the decreasing VDCs are designed to work as
least similar to a GNN in the opposite order (i.e., ag-
gregating information from farther nodes to closer
nodes based on the target aspect). From these re-
sults, we can conclude that GOBERTA success-
fully imitates the typical GNN mechanism through
increasing VDC configuration.
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Pooler types Lapl4 Rest14 Twitter
Acc. Fl1  Acc. Fl1 Acc. Fl
GOBERTA
w/ max pooling 83.2 80.0 88.7 833 748 73.7
w/ avg pooling 83.8 80.6 88.8 835 765 755
w/ att pooling 838 80.8 89.1 838 76.7 755

Table 8: Comparing different pooler types for GOB-
ERTA. We used VDC =[0,0,0,1,1,1,2,2,2,3,3,3] with
the default full-interaction for the experiment.



Lapl4 Rest14 Twitter

Variable Distance Control (VDC)

Acc. F1 Acc. F1 Acc. F1

GoBERTA (Position Distance)

* Decreasing-VDC 83.4 80.4 88.5 83.2 76.5 75.3

* VDC =[222211110000] 83.3 80.2 88.2 82.7 76.0 74.8

* VDC =[333222111000] 82.0 78.8 88.4 82.8 76.5 75.3

* VDC = [444422220000] 834 80.4 88.4 83.1 75.6 74.4

* VDC =[554433221100] 83.1 79.9 88.5 83.2 75.2 73.7

* VDC = [666444222000] 83.2 80.0 87.8 82.0 76.0 74.8

* Constant-VDC 83.7 80.7 88.6 83.3 76.4 75.4
* Please refer to Figure 6

* Increasing-VDC 83.7 80.5 88.6 83.2 76.9 76.0

* VDC =[000011112222] 83.5 80.3 87.8 82.1 76.9 76.0

* VDC =[000111222333] 83.5 80.5 88.5 83.2 75.5 74.4

* VDC =1000022224444] 83.6 80.4 87.9 82.2 75.7 74.4

* VDC =[001122334455] 83.3 80.3 88.6 83.1 76.1 74.9

* VDC =1[000222444666] 83.7 80.5 88.3 82.5 76.6 75.8

GoBERTA (Dependency Graph)

* Decreasing-VDC 83.7 80.6 88.4 83.0 76.5 75.4

* VDC =1[222211110000] 83.5 80.4 88.1 82.7 75.4 74.2

* VDC =1[333222111000] 82.6 79.6 87.1 81.1 76.1 75.1

* VDC = [444422220000] 83.4 80.5 87.9 82.2 76.5 75.4

* VDC =1[554433221100] 83.7 80.6 88.4 83.0 75.3 74.2

* VDC = [666444222000] 83.2 80.0 88.2 82.7 75.6 74.3

* Constant-VDC 83.7 80.4 88.9 83.7 76.4 75.2
* Please refer to Figure 6

* Increasing-VDC 83.8 80.8 89.1 83.8 77.1 75.9

* VDC =[000011112222] 83.5 80.5 88.3 82.8 77.1 75.8

* VDC =[000111222333] 83.8 80.8 89.1 83.8 76.7 75.5

* VDC =[000022224444] 83.5 80.5 88.9 83.5 75.7 74.6

* VDC =1[001122334455] 83.2 80.2 88.8 83.5 74.7 75.9

* VDC =[000222444666] 82.5 79.4 88.9 83.8 76.9 75.9

Table 9: Detailed experimental results on the effect of DRC. The results show that GOBERTA generally shows
better performance in the order of decreasing < fixed < increasing DRCs. This result matches our intuition of [g]
token imitating GNN as described in Section 3.
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