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Abstract

The molecular large language models have garnered widespread attention due to
their promising potential on molecular applications. However, current molecular
large language models face significant limitations in understanding molecules due
to inadequate textual descriptions and suboptimal molecular representation strate-
gies during pretraining. To address these challenges, we introduce KnowMol-100K,
a large-scale dataset with 100K fine-grained molecular annotations across multiple
levels, bridging the gap between molecules and textual descriptions. Additionally,
we propose chemically-informative molecular representation, effectively address-
ing limitations in existing molecular representation strategies. Building upon
these innovations, we develop KnowMol, a state-of-the-art multi-modal molecular
large language model. Extensive experiments demonstrate that KnowMol achieves
superior performance across molecular understanding and generation tasks.

GitHub: https://github.com/yzf-code/KnowMol

Huggingface: https://hf.co/datasets/yzf1102/KnowMol-100K

The molecular formula of the 
compound is: C12H18N4O12S2.

The formula representing the 
molecule is C7H15NO2S.

Please tell me the molecular 
formula of this molecule.

The functional groups present in the SELFIES 
sequence are:  1. Carbon 2. Sulfur.

The molecule has the following functional groups: Alkyl, 
Carboxylate, Carbonyl, 4ammoniumIon, Sulfide.

Can you identify the functional groups that this 
molecule contains?

Please analyze the composition of the molecule, 
including the substructures or functional groups, and 

then analyze the connections between them.

The molecule is a peptide composed of 11 amino acids, 
with a total of 30 amino acid residues. ...... Overall, the 
SELFIES sequence is a linear peptide composed of 11 

amino acids, with a branched side chain and a thiol 
group. The molecule contains amide, thiol, and 

carbonyl functional groups, and the substructures or 
functional groups are connected through peptide bonds 

and other chemical bonds.

The structure includes the following functional groups: 
a methylsulfanyl group, a carboxylate group, and an 
amino group. The main chain is a hexane backbone.  
The molecule consists of a six-carbon chain with a 

methylsulfanyl group attached to the sixth carbon and 
a carboxylate group attached to the first carbon. The 

carboxylate group is deprotonated, giving it a negative 
charge. The second carbon is bonded to an amino 

group that carries a hydrogen ion. 

The molecule in question is a chiral compound with an 
amino group that is protonated. The molecule also 

includes a carboxylate group, which is a deprotonated 
carboxylic acid, suggesting the molecule can act as a 
weak acid or base depending on the environment....... 
The polarity of the molecule is increased by the polar 

carboxylate group and the polarizable sulfur atom, 
which could also influence its reactivity by making the 
adjacent carbon more electrophilic. ...... Overall, the 

molecule's structure suggests it is polar, and reactive.

Please consider the effects of functional groups and 
structure on the properties and analyze the physical 

and chemical properties of the molecule.

(3)

(1) (2)

(4)

(a) comparison of molecule understanding

The compound is composed of a repeating unit of 12 
carbon atoms, 12 sulfur atoms, and 12 carbon atoms.  It 
does not have any functional groups that are known to 

be acidic or basic. It is expected to be soluble in 
nonpolar solvents such as hexane or toluene, but 

insoluble in water.  It is expected to be relatively inert 
due to the presence of the sulfur atoms. It does not have 
any functional groups that are known to be electrophilic. 

(b) comparison of caption’s quality

Isobornyl thiocyanoacetate 
has been reported in Illicium 
verum with data available.

Functional Groups
This molecule’s function groups are: 
Alkyl, Carboalkoxy, Ether, Carbonyl, 
Nitrile, Sulfide, and Thiocyanate.

PubChem Caption

KnowMol-100K

Training

Molecular Formula
The molecular formula is C13H19NO2S. 
It consists of 13 carbon atoms, 19 
hydrogen atoms, 1 nitrogen atom, 2 
oxygen atoms and 1 sulfur atom.

Training

Structural Description
The molecule consists of a 
bicyclo[2.2.1]heptane ring system with 
three methyl groups attached ...... The 
main chain is the bicyclo[2.2.1]heptane 
ring, with side chains including the ester 
and thiocyanate groups. The 
connections between the substructures 
are as follows: ......

Property Description
The molecule exhibits moderate polarity 
due to the presence of polar functional 
groups like the ester and thiocyanate...... 
The molecule's reactivity is influenced 
by the ester and thiocyanate groups, 
which are reactive sites for nucleophilic 
attack and other chemical reactions......

InstructMol KnowMol

Molecule

Figure 1: (a) Demonstration of InstructMol (baseline) and KnowMol (ours) on four fundamental molecular
understanding factors: (1) atoms, (2) functional groups, (3) structure, and (4) properties. Error/hallucination
parts are marked in red, while correct parts in green. InstructMol is the state-of-the-art among open-sourced
Mol-LLMs. (b) The comparison between the caption in our KnowMol-100K and the widely used caption in
PubChem database.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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1 Introduction

The remarkable capabilities of large language models (LLMs) have spurred significant interest in
developing molecular large language models (Mol-LLMs) [25, 32, 30, 15, 2, 3, 16]. These Mol-
LLMs have demonstrated promising potential in tasks such as understanding individual molecular
structures [30] and predicting chemical reactions involving multiple molecules [2, 16]. Despite the
notable progress in molecule-related tasks, existing Mol-LLMs still fall short of achieving optimal
comprehension of molecular information [39, 17]. As illustrated in Figure 1(a), our analysis discovers
several limitations: Inaccurate identifications of molecular formulas and functional groups, imprecise
interpretations of substructures, and wrong characterization of chemical connections and properties.
These shortcomings underscore the capability of current Mol-LLMs on molecule understanding,
thereby undermining their effectiveness in addressing complex chemistry tasks.

The main reasons for these problems lie in two aspects: (i) low quality of pretraining dataset and
(ii) sub-optimal molecular representation strategies. On one hand, the PubChem database [19],
commonly used for pretraining Mol-LLMs, exhibits two major deficiencies: imbalanced coverage
and coarse granularity. Such descriptions fail to capture the complexity of molecular structures
and properties, as shown in Figure 1(b). Existing works pay little attention to the improvement
of the datasets’ quality. Although HIGHT [3] attempts to address this problem by augmenting the
captions with functional groups, it is far from enough for Mol-LLMs to understand and reason the
structures and property details of molecules. On the other hand, existing molecular representation
strategies, on one-dimensional (1D) string formats and two-dimensional (2D) graphical formats,
may not effectively encode molecular information. For 1D representation, current methods [30, 16]
usually utilize the SMILES [49] and apply the same tokenizer for both natural language and SMILES.
However, SMILES suffer from inherent limitations [39], and the shared tokenization may lead to
potential modality confusion for LLMs. For 2D representation, current approaches often employ a
graph neural network [30, 2] or a specialized molecular tokenizer [3, 16] to encode molecule graphs.
While these methods are effective for basic alignment, they fail to capture hierarchical structural
information efficiently.

In this paper, we advance molecule large language models by tackling the above two challenges.
To address the dataset challenge, we propose KnowMol-100K, the first comprehensive dataset with
100K multi-level molecule descriptions. Specifically, we design an elaborate pipeline with high-
quality databases and tools to construct multi-level annotations from four fundamental factors: atoms,
functional groups, molecular structures, and molecular properties. Consequently, the dataset increases
both the coverage and granularity over PubChem captions, as shown in Figure 1(b).

Leveraging KnowMol-100K, we construct two instruction-following training tasks, including molec-
ular understanding and generation, to enhance the capability of LLMs in understanding molecules.
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Figure 2: Our proposed KnowMol, a Mol-LLM with state-
of-the-art performance on 7 molecule understanding and
generation tasks.

To tackle the representation challenge, we
introduce chemically-informative molecular
representation strategies. For 1D strings,
we replace SMILES with the more robust
SELFIES [20] and design specialized vocab-
ulary to avoid token-sharing issues with nat-
ural language. For 2D graphs, we propose
an efficient hierarchical encoder that repre-
sents molecule graphs with multi-level to-
kens, capturing structural hierarchies without
additional parameters.

Equipped with the sophisticated training
tasks and the chemically-informative molec-
ular representation strategies, we develop
a state-of-the-art molecular large language
model, KnowMol. Figure 2 shows the strong
improvement of our model on 7 downstream
tasks. KnowMol surpasses existing Mol-
LLMs, including InstructMol [2] and HIGHT
[3], in all tasks while making a clear advan-
tage compared with UniMoT [16]. Qualita-
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tive analysis in Figure1(a) shows that KnowMol shows clear advantage on fundamental molecular
understanding over the baseline, thus can be applied to a wider range of downstream molecular
understanding and generation tasks.

In summary, this paper makes the following contributions:

• We discover the limitations of the pretraining datasets of Mol-LLMs and construct KnowMol-100K,
which consists of 100K detailed multi-level molecular descriptions.

• We develop a chemically-informative molecular representation strategy using specialized tools on
both 1D and 2D representations.

• Leveraging the elaborately crafted datasets and improved molecular representation strategies, we
present KnowMol, a state-of-the-art Mol-LLM, which consistently outperforms existing models in
various molecular understanding and generation tasks.

2 Related Work

Molecule-text Data Enhancement by LLMs. In the realm of molecule-text multi-modality, various
methods have explored leveraging LLMs to enhance molecule-text data. Early method [53] uses
MolT5 [10] to generate alternating dialogue data for CheBI-20 [9]. Benefiting from the rapid progress
of GPT models, [24] utilized GPT-3.5 for semantic enrichment of sparse molecular descriptions
in PubChem, while [42] employed GPT-4 to refine the construction of molecular caption data for
instruction-based tasks. In addition, [4] applied few-shot prompting, using PubChem molecular
annotations as examples, to generate an “artificially-real" dataset with ChatGPT for domain adaptation.
Another approach [11] combined multiple datasets with GPT-4 to construct templates and integrate
them with original data to create diversified molecular descriptions. Despite these diverse efforts, all
the aforementioned methods rely on PubChem as their primary data source, which inherently limits
the quality of the generated captions due to the original data shortcomings. In contrast, our approach
utilizes advanced tools to construct a multi-level, fine-grained molecule-text dataset, overcoming the
limitations within PubChem descriptions.

Molecule Graph Representation Learning for LLMs. To enable LLMs to handle molecule
graphs, several methods have been proposed to achieve informative graph representations. Early
models [43, 28, 31, 26] employ GNNs as molecular encoders and utilize cross-modal contrastive
learning to align molecular and textual representation spaces. Subsequently, multi-modal architectures
incorporating adapter-based mechanisms with LLMs have been explored. For example, models such
as InstructMol [2] and DrugChat [25] integrate simple projection layers to map molecular features into
the LLM input space, while architectures like MolCA [30] and 3D-MoLM [24] leverage Q-Former
[23] modules to bridge modality gaps. Recently, recognizing the limitations of existing molecular
representation approaches, HIGHT [3] and UniMoT [16] have proposed specially designed tokenizers
to enhance the quality of molecular representations. However, their approach employs complicated
models, such as Vector Quantized Variational AutoEncoders (VQ-VAEs) [47] or Q-former [23],
necessitating an additional pretraining stage and significantly increasing computational complexity.
Despite various attempts in model designs, a key limitation persists: how to improve molecular
representation in both 1D and 2D modalities which is efficient and effective?

3 KnowMol-100K Dataset

3.1 Preliminaries

Several fundamental factors are essential for a comprehensive understanding of molecular character-
istics [41, 35]: (a) Atoms and functional groups, as the fundamental units of molecular structure,
which serve as the primary interaction sites and determine a molecule’s core composition and inherent
properties. (b) Molecular structure, which defines the arrangement and bonding of atoms and func-
tional groups, and governs the geometry and spatial configuration of molecules. (c) Physicochemical
properties, including six important aspects [33, 34, 7, 38, 48, 37]: polarity, acidity/basicity, solubil-
ity, reactivity, stereochemistry, and electrophilicity. These properties are influenced by the atomic
composition, functional groups, and overall structure, and play a crucial role in determining the
behavior and interactions of molecules in diverse environments, thereby influencing their applications
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Table 1: Statistics of two subsets of 1000 PubChem descriptions on the coverage and granularity of fundamental
factors for molecule understanding. The number outside (in) parentheses indicates the average word count
(amount of occurrence) of the fundamental factor.

sample atoms Functional molecular Physicochemical property full description
set groups structure Polarity Acidity/Basicity Solubility Reactivity Stereochemistry Electrophilicity Sum

random sampling 1.643 (104) 2.454 (259) 2.406 (165) 0.028 (4) 0.566 (51) 0.114 (16) 1.019 (38) 0.304 (29) 0.035 (1) 2.066 (139) 19.338
long text sampling 8.428 (404) 9.579 (660) 14.178 (656) 0.145 (17) 2.572 (184) 0.892 (59) 9.965 (317) 0.885 (69) 0.011 (1) 14.470 (647) 68.283

in chemical processes. Together, these factors underpin molecular behavior and are indispensable for
accurate molecular description.

Based on these fundamental factors, we first describe the shortages of the existing dataset, PubChem,
on these factors in Sec.3.2, highlighting the necessity of constructing KnowMol-100K. Then we
describe the construction of KnowMol-100K targeting these factors, from the perspective of data
sampling and annotation pipeline in Sec.3.3.

3.2 Shortcomings of Existing Dataset

In this section, we provide an in-depth analysis of the critical molecular information present (or
absent) in the PubChem dataset.

Existing molecular deep learning methods [30, 2, 16] primarily rely on the PubChem database to
construct the molecule–caption pair datasets. To assess the coverage of fundamental molecular
characteristics in the PubChem dataset, Table 1 summarizes detailed statistics of the aforementioned
factors from two subsets of PubChem descriptions. Specifically, we construct subsets of size 1000
using two strategies: (a) random selection from all of the descriptions, and (b) random selection from
descriptions longer than 40 words. We leverage GPT-4 to select the content related to each factor,
and then calculate the average length (by word) of relevant content in each sample. This provides a
reference metric for how thoroughly each factor is covered.

Observation 1: PubChem Captions Cover Only a Limited Subset of Aspects. As depicted in
Table 1, we observe a pronounced imbalance in the average word count and the occurrence across
different factors. Polarity and electrophilicity, for instance, appear nearly absent, whereas certain
details such as functional groups and reactivity are covered in relatively more detail. This imbalance
suggests that PubChem captions focus disproportionately on a few aspects while overlooking other
critical components like solvent-related properties or stereochemical nuances. Such selective coverage
restricts the depth and breadth of molecular understanding of Mol-LLMs pretrained on these captions.

Observation 2: PubChem Captions Provide Only Coarse-grained Annotations. Another key
limitation of PubChem captions lies in their brevity. As shown in Table 1, all of the descriptions exhibit
a relatively low average word count and insufficient occurrence for crucial molecular aspects. For
example, while captions may briefly mention the presence of functional groups, the explanations rarely
extend to discuss how these groups connect or contribute to the overall property. Similarly, references
to specific properties tend to be perfunctory, omitting critical nuances that would substantially enrich
a model’s comprehension ability. Consequently, such shallow, sparse, and coarse-grained captions
limit the development of Mol-LLMs for representing and understanding the complexity of molecular
structure and properties.

3.3 Construction Pipeline

3.3.1 Data Sampling

PubChem database records a large amount of basic information about molecules, such as molecular
formula, IUPAC name, and molecule picture. To leverage these resources, we choose molecules with
the basic information available from the PubChem database. However, given the large size of the
molecules in the PubChem database and the high similarity among molecules, annotating the dataset
directly would result in significant redundancy. To address this problem, we implement a screening
process to reduce the molecule set’s size and redundancy. In detail, we select a subset of 100,000
molecules exhibiting maximal diversity using the MaxMin method [1] to maximize the diversity of
the molecules in the dataset. This selected molecule set is used for subsequent annotation.
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SMILES
C1=CC(=
CN=C1)C
(=O)NCC

(=O)O

Molecular Formula
�8�8�2�3

Functional Groups
Carboxamide     

Pyridyl       
 Carboxyl

Alkyl   

IUPAC name
2-(pyridine-3-

carbonylamino)acetic 
acid

Molecule Image

Functional Group Level 
This molecule consists of four function groups:

Carboxamide, Pyridyl, Carboxyl, Alkyl.  

Structural Construction Level 
The molecule consists of a pyridine ring, which 
is a six-membered ring with five carbon atoms 
and one nitrogen atom ...... The structure can 
be described as: the pyridine ring is the core, 
linked to the carboxamide group at position 3. 
The carboxamide is connected to the carboxyl 

group via a methylene (-CH2-) linker.  

Physicochemical Property Level 
The molecule exhibits polarity due to the 

presence of multiple polar functional groups. 
The carboxyl group imparts acidity, as it can 
donate a proton, while the pyridine ring can 
exhibit basicity due to the lone pair on the 

nitrogen atom......

Atomic Level 
The molecule’s formula is C8H8N2O3. 

It is composed of 8 carbon atoms, 8 hydrogen 
atoms, 2 nitrogen atoms, 3 oxygen atoms......

PubChem
Database

RDKit

GPT-4o

KnowMol-100K datasetMolecule
Information

Pre-train Tasks
Multi-round Question Answering
Q: Please tell me the molecular formula of this molecule. The molecule SELFIES sequence is:  
      [C][=C][C][=Branch1][=Branch1][=C][N][=C][Ring1][=Branch1][C][=Branch1][C][=O][N][C][C]
      [=Branch1][C][=O][O]
A: The molecule’s formula is C8H8N2O3. It is composed of 8 carbon atoms, 8 hydrogen ......
Q: Could you identify the functional groups in this molecule?
A: This molecule consists of four function groups: Carboxamide, Pyridyl, Carboxyl, Alkyl.
Q: Please analyze the composition of the molecule, including the main chain, side chain, ring and 
     other substructures or functional groups, and then analyze the connections between the    
     substructures or functional groups.
A: The molecule consists of a pyridine ring, which is a six-membered ring with five carbon atoms    
    and one nitrogen atom ....
Q: Consider how functional groups and the molecular structure influence the properties of the 
     molecule, and analyze its physical and chemical traits, such as polarity, acidity or basicity, 
     solubility, reactivity, stereochemistry, and electrophilicity.
A: The molecule exhibits polarity due to the presence of multiple polar functional groups  .....

Description Guided Molecule Generation
Q: Given a molecule's molecular formula, its functional groups, its structural configuration, and 
     its physical and chemical properties, Please give the SELFIES sequence of the molecule.
     The molecule’s formula is C8H8N2O3. This molecule consists of four function groups: 
     Carboxamide, Pyridyl, Carboxyl, Alkyl. The molecule's structure is: The molecule consists of a 
     pyridine ring, which is a six-membered ring ......  The molecule's property is: The molecule 
     exhibits significant polarity due to the presence of multiple polar functional groups.  ......
A: The molecule SELFIES sequence is: 
     [C][=C][C][=Branch1][=Branch1][=C][N][=C][Ring1][=Branch1][C][=Branch1][C][=O][N][C][C]
     [=Branch1][C][=O][O]

(a) construction pipeline of KnowMol-100K (b) two pre-train tasks bulid upon KnowMol-100K 

Figure 3: (a) The pipeline of building the KnowMol-100K. We use a combination of basic data from PubChem
databases, an open-source toolkit for cheminformatics, RDKit, and the powerful multi-modal large language
model GPT-4o. (b) Building upon the KnowMol-100K, we design two instruction-following pre-train tasks: (1)
Multi-round Question Answering, and (2) Description Guided Molecule Generation.

3.3.2 Multi-level Annotations

Based on the multi-level molecular structure and the dependencies between levels as introduced in Sec
3.1, we developed a multi-level, fine-grained dataset called KnowMol-100K. The construction process
of this dataset integrates the basic information of the PubChem database, the functional group analysis
results of the cheminformatics toolkit RDKit [21], and the detailed language description generated by
GPT-4o[36]. The annotations are divided into four levels of chemical knowledge, organized from
basic to complex: (1) atomic level, (2) functional group level, (3) structural construction level, and
(4) physicochemical property level. The dataset construction pipeline is illustrated in Figure 3(a).
Next, we delve into the construction of the four levels of annotations. For more details, please see
Appendix A.

• Atomic Level. At this level of annotation, we leverage the molecular formula data from the
PubChem database. By parsing the chemical formula, we identify the types of atoms and their
corresponding quantities that constitute the molecule.

• Functional Group Level. This level of annotation utilizes the chemical informatics toolkit RDKit,
and a collection of patterns for 82 common functional groups built by [14]. RDKit is used to identify
the matched functional groups within the molecule based on the Breaking of Retrosynthetically
Interesting Chemical Substructures (BRICS) algorithm [8]. Notably, the BRICS algorithm is a
deterministic matching process, which is highly reliable for this task and could guarantee the
correctness of Functional Group annotations.

• Structural Construction Level. At this level of annotation, we leverage SMILES formulas,
IUPAC names, molecule images from the PubChem database, and functional group annotations
generated by the previous level. All molecules in our datasets are equipped with the above basic
information. By incorporating basic information from different sources and aspects, GPT-4o
is prompted to analyze the relationships between the main chain, side chains, rings, and their
associated functional groups accurately and efficiently, thereby creating a detailed description of
the molecular structure. This multifaceted information can provide comprehensive basic knowledge
of the molecular structure from various complementary perspectives, thus ensuring the consistency
and precision of GPT-4o in generating accurate descriptions.

• Physicochemical Property Level. To annotate the physicochemical property level, we leverage
the above annotated functional group and structural construction to prompt GPT-4o to analyze
the physicochemical properties derived from functional groups and their interactions within the
molecular structure. Along with the rich information, we also prompt GPT-4o with explicit defini-
tions of six specific properties: polarity, acidity/basicity, solubility, reactivity, stereochemistry, and
electrophilicity, ensuring the reliability of GPT-4o in generating accurate and complete descriptions.

3.3.3 Dataset Quality Inspection

To evaluate the quality of KnowMol’s annotations, we invite three chemical expert volunteers from a
national chemical research institute to conduct qualitative evaluations from multiple perspectives.
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The evaluation results show the strong reliability and quality of our dataset. The detailed evaluation
process and results can be found in the appendix B.

4 Chemically-Informative Molecular Representation Learning

Following the implementation of InsturctMol [2], our baseline model consists of three components:
(1) a molecule graph encoder, (2) a projection layer, and (3) a LLM. Based on the baseline model, we
make improvements on molecular representation learning on both molecule string and molecule graph,
as presented in Sec.4.1 and Sec.4.2 respectively. The chemically-informative model architecture is
illustrated in Figure 4.

4.1 Molecule Tokenization for String

Molecule 
Graph

What’s the structural 
construction of this 
molecule? 
The molecule 
SELFIES sequence is:
[C][=C][C][=Branch1]
[=Branch1][=C][N][=C]
[Ring1][=Branch1][C]
[=Branch1][C][=O][N]
[C][C][=Branch1][C]
[=O][O] 

Text 
Tokenizer

SELFIES
Vocabulary

Sec 4.2 Hierarchical Molecule Graph Encoder

Molecule 
Graph 

Encoder

Global 
Pool

RDKit

Functional 
Groups

Projector

Atoms 
Projector

molecule
 Projector

Large Language Model

The molecule consists of a pyridine ring, which is a 
six-membered ring with five carbon atoms and one 
nitrogen atom ...... The structure can be described 
as follows: the pyridine ring is the core, linked to the 
carboxamide group at position 3. The carboxamide 
is connected to the carboxyl group via a methylene 
(-CH2-) linker.  Sec 4.1

+

Atoms 
Level

molecule
Level

Functional 
Groups 
Level Mapping

Local 
Pool...

Alkyl Nicotinuric acid
 Carboxyl

Pyridyl

Carboxamide
H O C C C N

Figure 4: Chemically-informative model architecture. Three levels
of representation are used for molecular features: atomic level,
functional group level, and molecule level. We mark baseline model
in blue, while improved parts in green.

SMILES [49] is a widely used string
representation for molecules, but sev-
eral studies [39, 15] have highlighted
its inherent limitations. In response
to these concerns, we adopted the im-
proved SELFIES [20] representation
for molecules. Furthermore, some
studies [39, 45] have raised doubts
about the efficacy of sharing token em-
beddings across molecule string and
natural language, leading to the de-
sign of separate vocabularies for each
modality. In alignment with these find-
ings, we constructed a dedicated token
vocabulary for SELFIES, where each
chemically meaningful atom group,
denoted by brackets in the SELFIES
syntax, is treated as a distinct token.
This approach ensures that the seman-
tic spaces of different modalities re-
main clearly separated, preserving the
integrity of each modality and prevent-
ing potential cross-modal confusion.

4.2 Hierarchical Tokenization for Molecule Graph

Current Mol-LLMs [15, 2] normally use the graph neural network as the encoder only to extract
atomic-level molecular tokens. However, atomic-level tokens alone are inadequate for capturing
the inherent hierarchical structure of molecules. Drawing inspiration from multi-level molecular
annotations, the use of hierarchical tokens for representing molecule graphs offers a more informative
and nuanced approach. Specifically, the incorporation of functional group tokens and molecule tokens
serves to encapsulate higher-order structural and chemical information, enabling more effective
communication of molecular structures and properties to LLMs. By leveraging these hierarchical
tokens, the graph-language alignment with the multi-level annotations annotated in KnowMol-100K
will be significantly enhanced. This approach could facilitate more accurate and context-aware
reasoning about molecular data, improving the model’s ability to understand and generate meaningful
interpretations of complex chemical graphs.

To achieve this, we design an efficient graph hierarchical encoder. Same as the functional group
level annotation in KnowMol-100K, we use the RDKit [21] and BRICS algorithm [8] to detect the
functional group in the molecule and get the mapping between functional groups and their constituent
atoms. Using the obtained mapping, we employ local pooling on the corresponding atoms within
a functional group to get functional group level tokens. Subsequently, these functional group-level
tokens are further globally pooled to form molecule-level tokens. Outside the encoder, the three
level tokens are further projected using separate projectors into the LLM’s embedding space. Using
the BRICS algorithm and pooling, we constructed molecular tokens with hierarchical dependencies,
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transforming the original atomic-level tokens into a more detailed and hierarchical representation,
without bringing additional training parameters or extra model usage in the encoder.

5 Experiments

5.1 Implementation

Construct Pre-train Tasks from KnowMol-100K. Building upon the four levels of molecular
knowledge annotated in KnowMol-100K, we utilize molecular information from each annotation
level to design two instruction-following pre-train tasks. Figure 3(b) illustrates the pre-train tasks.

• Multi-Round Question Answering. The first task involves a multi-round, iterative question-
answering process. The questions commence with fundamental atomic information and progres-
sively advance to more complex topics, such as functional groups, molecular structures, and
physicochemical properties.

• Description Guided Molecule Generation. The second task requires the model to generate the
corresponding molecule based on the four-level annotations, presenting a reverse challenge to
the first task. Through training on this task, the model learns to generate molecules grounded in
specified molecular structures or chemical properties.

Training Setting. Based on the two pre-train tasks, we trained our model, KnowMol. The training of
KnowMol is divided into two instruction-tuning stages:

• Pretraining. The pretraining stage uses the tasks constructed in Sec 5.1 to inject comprehensive
chemical knowledge into the LLM. Given these high-quality data, only fine-tuning the projection
layers does not suffice to exploit the full capabilities. So this stage involves fine-tuning LLM using
low-rank adaptation (LoRA) [18] and the projection layers. The molecule graph encoder is frozen
to avoid feature interference.

• Task-specific Instruction Tunning. The second stage fine-tunes KnowMol for specific downstream
tasks, allowing it to effectively interpret and follow human instructions, thereby enhancing the
model’s performance across various applications. We also utilize LoRA to improve efficiency.

5.2 Molecule Comprehension Tasks

Baselines. Following previous work [2, 3], We adapt three types of baselines: (1) Specialist
Models, (2) Retrieval Based LLM, and (3) LLM-Based Generalist Models. Specialist Models
refer to single-modality molecular models that are pre-trained on large molecular datasets using
either supervised or unsupervised tasks and then fine-tuned on specific downstream tasks. Retrieval
Based LLM approaches mainly utilize ChatGPT or GPT-4 as the foundation model and employ
retrieval methods on the molecule captioning task. LLM-Based Generalist Models include base large
language models and other models built on top of the LLMs via instruction tuning or architectural
improvements. These generalist models have open-form communication capabilities and can be
flexibly adapted to various specialized tasks by switching different adapters.

As investigated by [40], generalist models are not expected to outperform specialist models universally.
We follow the prior works [2, 3] to both highlight the best Specialist Models and LLM-Based Gener-
alist Models. In general, KnowMol demonstrates clear and robust improvements over LLM-based
generalist models, which are our primary baselines. Besides, KnowMol also performs comparably to
Specialist Models while having broad versatility across multiple tasks.

Molecule Captioning Task. The molecule captioning task requires the model to generate the given
molecule’s description. We conduct the experiment on the widely used dataset ChEBI-20 [9] in
instruction tuning format. Since UniMoT [16] uses data from PubChem pre-train set in their Pre-
training stage with LoRA, in order to compare with it fairly, we also report the result of fine-tuning
our model on PubChem pre-train set without duplication with the ChEBI-20 test split.

The results are listed in Table 2. We can observe consistent improvements above the baselines
across multiple evaluation metrics(BLEU, ROUGE-2, ROUGE-L). Compared to specialist models
such as Text+Chem T5-augm-base, which previously held the best results among baselines, Know-
Mol surpasses it by 0.053 on BLEU-4 and 0.058 on ROUGE-2. When compared to generalist
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Table 2: Results of the molecular description generation task on the test split of the ChEBI-20 dataset.
MODEL BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

Specialist Models
MoT5-base [10] 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) [43] 0.549 0.462 - - - 0.576
MolFM (MolT5-base) [31] 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT [29] 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph [26] 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES [26] 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) [26] 0.352 0.263 0.575 0.485 0.560 0.430
Text+Chem T5-augm-base [6] 0.625 0.542 0.682 0.543 0.622 0.648
Retrieval Based LLMs
GPT-3.5-turbo (10-shot MolReGPT) [22] 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) [22] 0.607 0.525 0.634 0.476 0.562 0.610

LLM Based Generalist Models
GPT-3.5-turbo (zero-shot) [22] 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B [32] 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instructions [15] 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-GS [2] 0.475 0.371 0.566 0.394 0.502 0.509
HIGHT-GS [3] 0.498 0.397 0.582 0.414 0.518 0.525
MolCA [30] 0.620 0.531 0.681 0.537 0.618 0.651
UniMoT [16] 0.664 0.583 0.722 0.584 0.664 0.703

KnowMol (finetuned on ChEBI-20) 0.605 0.518 0.666 0.522 0.605 0.626
KnowMol (finetuned on ChEBI-20 and PubChem pretrain-set) 0.665 0.595 0.717 0.601 0.671 0.683

Table 3: Molecular property prediction task (classification)
on the MoleculeNet benchmark. We report the ROC-AUC
metric for classification tasks. ∗: Fine-tuned with LoRA.

METHOD BACE ↑ BBBP ↑ HIV ↑ MUV ↑ Tox21 ↑
# MOLECULES 1513 2039 41127 93087 7831

Specialist Models
KV-PLM [52] 78.5 70.5 71.8 61.7 49.2
GraphMVP-C [27] 81.2 72.4 77.0 74.4 77.1
MoMu [43] 76.7 70.5 75.9 60.5 57.8
MolFM [31] 83.9 72.9 78.8 76.0 77.2
Uni-Mol [55] 85.7 72.9 80.8 82.1 78.1
GIMLET [54] 69.6 59.4 66.2 64.4 61.2

LLM Based Generalist Models
Galactica-6.7B [45] 58.4 53.5 72.2 - 63.9
Galactica-30B [45] 72.7 59.6 75.9 - 68.5
Galactica-120B [45] 61.7 66.1 74.5 - 68.9
Vicuna-v1.5-13b-16k (4-shot) [5] 49.2 52.7 50.5 - -
Vicuna-v1.3-7b∗ [5] 68.3 60.1 58.1 - -
LLama-2-7b-chat∗ [13] 74.8 65.6 62.3 46.9 62.0
InstructMol-G [2] 64.3 48.7 50.2 50.0 59.0
HIGHT-GS [3] 77.1 61.8 63.3 51.1 67.4

KnowMol 85.9 69.2 81.8 61.5 68.7

Table 4: Results on molecular property prediction
tasks (regression) on QM9. We report the MAE
results of the hartree metric. ∆ϵ: HOMO-LUMO
energy gap. †: few-shot in-context learning(ICL)
results from Mol-Instructions. Baseline results are
from Instructmol.

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓

LLM Based Generalist Models
Alpaca† [44] - - - 322.109
Baize† [51] - - - 261.343
LLama2-7B [13] (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B [5] (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instructions [15] 0.0210 0.0210 0.0203 0.0210
InstructMol-GS [2] 0.0048 0.0050 0.0061 0.0050
HIGHT-GS [3] 0.0056 0.0065 0.0077 0.0066
UniMoT [16] 0.0042 0.0047 0.0055 0.0049

KnowMol 0.0028 0.0029 0.0034 0.0030

models, KnowMol also achieves substantial improvements. This strong performance highlights
KnowMol’s advanced capability in generating molecular descriptions, showcasing the effectiveness
of our enhanced dataset and model architecture.

Molecule Property Prediction Task. The Molecule Property Prediction Task requires the model
to predict the molecule’s specific property. We leverage 5 classification tasks(BACE, BBBP, HIV,
MUV, Tox21) from MoleculeNet [50] with the standard scaffold splitting and the instruction tuning
formats from GIMLET [54]. We also leverage the regression tasks built on the QM9 dataset by
Mol-Instructions [15]. For classification tasks and regression tasks, we report the ROC-AUC metric
and the Mean Absolute Error (MAE) metric respectively.

Compared to the baselines, KnowMol performs strong advance in both Table 3 and 4, indicating
its better understanding of molecular properties, demonstrating the significant effectiveness of our
dataset and representation strategies in bridging the basic molecule string and the complex molecule
properties. This effectiveness highlights the potential of KnowMol for more complex tasks related to
molecular properties.

5.3 Molecule Generation Tasks

For molecule generation tasks, we choose LLM-Based Generalist Models as the baselines and
incorporate four datasets from [15] i.e., caption-guided molecule generation, reagent prediction,
forward reaction prediction, and retrosynthesis prediction. Caption-guided molecule generation aims
to generate the corresponding molecule of the given description. Reagent prediction aims to determine
the catalysts, solvents, or ancillary substances required for a specific chemical reaction based on the
given reactant(s) and product(s). Forward reaction prediction aims to predict the possible products
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Table 5: Results of molecule generation tasks. †: Few-shot ICL results from Mol-Instructions. ∗: fine-tuned
using task-specific instruction data.

MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Caption-guided Molecule Generation
LLama [46] 0.000 0.003 59.864 0.005 0.000 0.000 0.003
Vicuna [5] 0.000 0.006 60.356 0.006 0.001 0.000 0.001
Mol-Instructions [15] 0.002 0.345 41.367 0.231 0.412 0.147 1.000
MolT5 [46](LoRA) 0.112 0.546 38.276 0.400 0.538 0.295 0.773
UniMoT [16] 0.237 0.698 27.782 0.543 0.651 0.411 1.000

KnowMol 0.083 0.797 30.702 0.570 0.693 0.426 1.000

Reagent Prediction
Alpaca† [44] 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† [51] 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† [12] 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama† [46] 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† [5] 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instructions [15] 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b∗ [46](LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-GS [2] 0.129 0.610 19.664 0.444 0.539 0.400 1.000
HIGHT-GS [3] 0.067 0.482 27.167 0.462 0.346 0.303 1.000
UniMoT [16] 0.167 0.728 14.588 0.549 0.621 0.507 1.000

KnowMol 0.238 0.733 14.058 0.525 0.609 0.490 1.000

Forward Reaction Prediction
Alpaca† [44] 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† [51] 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† [12] 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama† [46] 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† [5] 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instructions [15] 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b∗ [46](LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
InstructMol-GS [2] 0.536 0.967 10.851 0.776 0.878 0.741 1.000
HIGHT-GS [3] 0.293 0.935 16.687 0.774 0.618 0.566 1.000
UniMoT [16] 0.611 0.980 8.297 0.836 0.911 0.807 1.000

KnowMol 0.752 0.986 5.662 0.889 0.943 0.872 1.000

Retrosynthesis
Alpaca† [44] 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† [51] 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† [12] 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama† [46] 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† [5] 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instructions [15] 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b∗ [46](LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-GS [2] 0.407 0.941 13.967 0.753 0.852 0.714 1.000
HIGHT-GS [3] 0.202 0.914 20.194 0.772 0.623 0.577 0.999
UniMoT [16] 0.478 0.974 11.634 0.810 0.909 0.771 1.000

KnowMol 0.598 0.975 8.363 0.856 0.912 0.829 1.000

given the reactant(s) and reagent(s). Retrosynthesis prediction aims to predict the potential reactant(s)
given the product(s). These tasks evaluate the ability of LLMs to generate specific molecules based
on the given conditions. The metrics evaluate the similarity between the generated molecule and the
ground truth molecule from diverse aspects.

Table 5 shows the result of the molecule generation tasks. The evaluation across the four molecule
generation tasks collectively highlights the versatility, accuracy, and chemical validity of KnowMol.
Compared to other models, KnowMol demonstrates a balanced and comprehensive performance
across all aspects of molecular generation, from semantic alignment with descriptions to structural
accuracy and chemical plausibility. Its consistent superiority on metrics like BLEU, fingerprint
similarity (RDK, MACCS, and Morgan), and Exact Match reflects its ability to capture both the
textual and structural intricacies of molecular design. These advantages highlight that KnowMol’s
advanced dataset and model architecture enable it to not only outperform existing baselines in specific
tasks but also maintain high performance across diverse molecular generation scenarios.

5.4 Ablation Study

Since accurate chemical reaction prediction requires the model’s comprehensive understanding of all
of the involved molecules across multiple perspectives, we choose forward reaction prediction as the
ablation task. We perform LoRA tuning of LLM on the pre-training set of PubChem dataset[19] and
take it as the baseline.
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Table 6: Ablation study on the impact of annotation level, training task, and representation learning. SC:
Structural Construction. PP: Physicochemical Property. MRQA: multi-round question answering. DGMG:
description guided molecule generation. HR: hierarchical representation. ST: SELFIES tokenization.

TRANING DATA HR ST EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

PubChem Captions (301K) % % 0.509 0.954 11.33 0.762 0.868 0.730 1.000
MRQA w/o SC (100K) % % 0.618 0.969 8.982 0.822 0.907 0.792 1.000
MRQA w/o PP (100K) % % 0.587 0.970 9.580 0.812 0.897 0.778 1.000

MRQA (100K) % % 0.627 0.967 9.250 0.827 0.905 0.795 1.000
DGMG (100K) % % 0.624 0.966 8.756 0.830 0.906 0.794 1.000

MRQA + DGMG (200K) % % 0.622 0.974 8.677 0.833 0.910 0.800 1.000
MRQA + DGMG (200K) ! % 0.728 0.985 6.429 0.879 0.936 0.857 1.000

MRQA + DGMG (200K) ! ! 0.752 0.986 5.662 0.889 0.943 0.872 1.000

Impact of Annotation Level. We conduct ablation on the Structural Construction Level and
Physicochemical Property Level annotation in the multi-round question answering training task. The
comparison of lines 1-4 in Table 6 shows the indispensable role of both annotation levels. Serving as
one part of the fundamental factors, both levels provide certain knowledge for Mol-LLMs and it is
irreplaceable.

Impact of Training Tasks. We conduct ablation on the impact of two training tasks constructed
using the KnowMol-100K, the result is shown in Table 6 lines 4-6. Excluding either training task
would lead to a clear drop in performance, implying the necessity of both the molecule understanding
task and the molecule generation task. Compared to the baseline trained on PubChem, our training
data constructed based on KnowMol-100K shows significant improvement with less training data,
reflecting the clear advantage of our dataset in efficiently enhancing the ability of Mol-LLMs.

Impact of Representation Learning. We conduct ablation to assess the influence of the enhanced
molecular representation learning, the result is shown in Table 6 lines 6-8. The row 6 of Table 6
corresponds to the InstructMol [2] fine-tuned on KnowMol-100K with both training task, but without
the enhanced representation strategies proposed in our work. Lines 7 and 8 show that enhancing
either the 1D molecule string or 2D molecule graph representation leads to clear improvements,
while combining them yields better performance. This indicates the effectiveness of both SELFIES
tokenization and hierarchical molecule graph representation in enhancing the quality of molecular
representation for Mol-LLMs.

6 Conclusion

In this work, we shed light on the untapped limitation of Mol-LLMs in fundamental molecule
understanding and address critical challenges in Mol-LLMs, including the inadequacy of textual
molecular descriptions and suboptimal representation strategies. To address these challenges, We
introduce KnowMol-100K, a large-scale dataset with 100K multi-level annotations that bridges the
gap between molecular information and textual descriptions, enabling a deeper understanding of
molecules. Additionally, we propose chemically-informative molecular representation strategies
that effectively capture the diversity and hierarchical structure of molecules. Building upon these
contributions, we develop KnowMol. Extensive evaluations demonstrate that KnowMol significantly
outperforms existing models in molecular understanding and generation tasks, highlighting its
capability to address complex molecular challenges.

Overall, this study provides a foundation for advancing Mol-LLMs and highlights the potential of
large-scale datasets and tailored representation strategies in bridging the gap between molecular
science and artificial intelligence. While our contributions represent a clear step forward, there are
limitations for further refinement. Future work could explore the usage of KnowMol to generate
more high-quality data, as well as consider the integration of advanced three-dimensional molecular
representations.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions include the KnowMol-100K dataset (Sec.3) and the
chemically-informative molecular representation learning methods (Sec.4). We have tried
our best to accurately reflect them in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations and the future works in Sec.6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the model architecture in Sec.4, details of data construc-
tion in SecC, and details of training settings in Sec.D.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have open-sourced the datasets on HuggingFace and the codes on Github.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified the experiment details in Sec.5.1 and Sec.D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because of the expensive computation cost of LLMs, we adhered to the
common practice in the community and did not report the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computer resources in Sec.D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in Sec.6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We follow the PubChem and vicuna licenses and hope that the users to
follow them too. But due to the open-source property, it is challenging for us to provide
comprehensive safeguards.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited, acknowledged, and followed the license of the creators or
original owners of assets used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have documented the new assets in this paper and provided alongside the
assets on the huggingface.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We do not include crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not include crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM as an important component, and we describe the usage of the
LLM in Sec.3 and Sec.A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Structural Construction Level Prompt:
Given the molecule's  SMILES: {smiles}, IUPAC name: {IUPACName}, a picture of the molecular 
structure, and its functional groups: {fg_names}. Please analyze the composition of the molecule based 
on these information, without missing any substructures, including the main chain, side chain, ring, and 
other substructures or functional groups, and then analyze the connections between every 
substructures or functional groups step by step.\nRequirements: Pay attention to utilize the given 
molecular picture, distinguish the names of different substructures when analyzing substructures, do not 
make factual errors when analyzing the connection between functional groups, and do not produce 
structural analysis that is inconsistent with the structure shown in the picture and SMILES formula, and 
do not make quantitative errors when analyzing the number of atoms in the substructure. Please do not 
include irrelevant information other than the molecular structure, especially do not include content 
related to the properties of the molecule. Please output unambiguous analyses in the simplest sentence 
structure possible, without including complex IUPAC names in sentences. Please answer in one 
paragraph. Please do not repeat the SMILES and IUPAC name of the molecule in your answer.

Physicochemical Property Level Prompt:
Property Analysis Guideline
Polarity: The polarity of a molecule is generally affected by its structure or substructure through the 
arrangement of atoms and the shape of the molecule. Even if a molecule has polar bonds, its overall 
polarity depends on whether these bond dipoles cancel out or reinforce each other. Symmetrical 
structures tend to be nonpolar, while asymmetrical structures with uneven charge distribution lead to 
polar molecules.
Acidity or Basicity: The acidity or basicity of a molecule is affected by its structure or substructure 
through the presence of electron-donating or electron-withdrawing groups. Electron-withdrawing groups 
stabilize negative charges, increasing acidity. Electron-donating groups decrease acidity and increase 
basicity by stabilizing positive charges. Additionally, resonance, inductive effects, and the hybridization 
of atoms involved in the acidic or basic site can also influence acidity and basicity.
Solubility: The solubility of a molecule is generally affected by its structure or substructure through the 
presence of polar or nonpolar groups. Polar groups (e.g., hydroxyl, amine) enhance solubility in polar 
solvents like water, while nonpolar groups (e.g., alkyl, aromatic rings) increase solubility in nonpolar 
solvents. The size and branching of the molecule also play roles—smaller and more branched 
molecules tend to be more soluble due to better interactions with the solvent.
Reactivity: The reactivity of a molecule is generally affected by its structure or substructure through the 
presence of functional groups, electron density, and strain. Reactive functional groups (e.g., carbonyl, 
hydroxyl) dictate the types of chemical reactions a molecule can undergo. Electron-withdrawing or 
electron-donating groups influence electron density at reactive sites, making them more or less reactive. 
Additionally, structural strain (e.g., in rings) can increase reactivity by making bonds easier to break.
Stereochemistry: The stereochemistry of a molecule is affected by its structure or substructure through 
the presence of chiral centers, double bonds, and ring structures. Chiral centers result in different 
enantiomers, which are non-superimposable mirror images. Double bonds can lead to cis/trans 
isomerism based on the spatial arrangement around the bond. Ring structures can create different 
conformations and affect the overall 3D shape of the molecule.
Electrophilicity: The electrophilicity of a molecule is generally affected by its structure or substructure 
through the presence of electron-withdrawing groups and the overall electron density around the 
electrophilic center. Electron-withdrawing groups (e.g., carbonyl, nitro) increase electrophilicity by 
making the electrophilic center more positively charged or electron-deficient. The nature of the 
electrophilic site, such as a partially positive carbon in a carbonyl group, also influences reactivity.

Given the molecule's  SMILES: {smiles}, IUPAC name: {IUPACName}, a picture of the molecular 
structure, functional group: {fg_names}, and its structural construction: {mol_messages['construction']}. 
Based on these information, please consider the effects of functional groups and molecular structure on 
the properties to analyze the physical and chemical properties of the molecule, including: Polarity, 
Acidity or Basicity, Solubility, Reactivity, Stereochemistry, Electrophilicity. \nRequirements: Do not make 
factual errors, do not confuse different causal relationships, and output unambiguous analysis in the 
simplest possible sentence structure. Please answer in one paragraph. Please do not repeat the 
molecule's IUPAC name in your answer.

Figure 5: Prompt for generating structural construction and physicochemical property descriptions to construct
KnowMol-100K.

A GPT-generated annotations

To guarantee the correctness and mitigate the errors in the GPT-generated annotations for constructing
KnowMol-100K, we designed a comprehensive annotation prompt. We visualize the prompt in Fig.5.

In the prompt, each set of brackets is filled with corresponding information. We provided multi-
source data with diverse descriptive perspectives to maximize the reference information available to
GPT-4o for generating annotations. Additionally, we designed detailed instructional cues to ensure
the accuracy and efficiency of GPT-4o’s generation.
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B Dataset Quality Inspection

To evaluate the quality of the generated chemical molecular descriptions in KnowMol-100K, we
randomly selected a subset of size 30 for in-depth assessment. In detail, we carefully designed an
evaluation criterion to ensure scientific rigor and invited three chemistry expert volunteers to validate
the dataset according to the criteria.

Given the molecule's  SMILES, IUPAC name, and picture of the molecular structure. GPT4 is asked to 
analyze the composition of the molecule based on these information, without missing any substructures, 
including the main chain, side chain, ring, and other substructures or functional groups, and analyze the 
connections between every substructures or functional groups step by step.

Your task is to evaluate the molecular structure description text generated by GPT4. The evaluation 
dimensions for the structural description are as follows.

*****Evaluation Dimensions for the Structural Description*****
1. Factual Accuracy
Recognition of atoms and functional groups: Does the description correctly identify all atoms, functional 
groups, and ring systems in the molecule without omissions or additions?
Accuracy of connectivity: Are the connections between each group or substructure in the molecule 
accurately described?

2. Completeness
Coverage of substructures: Does the description cover all required and important substructures, such 
as the main chain, side chains, ring systems, and functional groups? Are certain rings/bridged rings or 
key functional groups (e.g., ester, amine, ether) that clearly exist in the molecule omitted?
Completeness of elements: Does the description mention all substructures (alkenyl chains, ring systems, 
ester groups, aromatic rings, amine groups, etc.) and their interconnections?

3. Clarity and Conciseness
Concise and unambiguous: Does the description follow the requirement to be written in a single 
paragraph with straightforward sentence structures, free of excessive detail or overly complex technical 
terms?
No unnecessary repetition: Does the text avoid repetition or contain redundant information?

*****Scoring Reference*****
You should assign a score of poor/acceptable/excellent to each dimension. For example:
 For example:

Structural Description Dimensions
Factual Accuracy: excellent
Completeness: acceptable
Clarity and Conciseness: acceptable

Figure 6: structural construction evaluation criteria for chemistry experts. The criteria include three aspects:
Factual Accuracy, Completeness, Clarity and Conciseness.

The evaluation criteria are shown in Fig 6 and Fig 7. The evaluation criteria for structural construction
include three aspects: Factual Accuracy, Completeness, Clarity and Conciseness. The criteria
for physicochemical property description include four aspects: Factual Accuracy, Completeness,
Consistency, Clarity and Conciseness. To better demonstrate the quality of KnowMol-100K, we
assign a score for each level, 0 for poor, 1 for fair, 2 for acceptable, and 3 for excellent. The average
score of each aspect is shown in Table 7.

Table 7: Average score of each aspect. We assign a score for each level, 1 for poor, 2 for acceptable, and 3 for
excellent.

Structural Description Property Description Overall
Factual Accuracy Completeness Clarity and Conciseness Factual Accuracy Completeness Consistency Clarity and Conciseness

2.10 2.33 2.38 2.48 2.24 2.62 2.43 2.43

The evaluation of KnowMol-100K demonstrates its strong reliability and quality, with an overall av-
erage score of 2.43 out of 3, reflecting its effectiveness in generating chemical molecular descriptions.
The dataset excels in ensuring consistency, particularly in property descriptions, which achieved the
highest score of 2.62, highlighting its robustness in maintaining uniformity and logical structure.
Additionally, the clarity and conciseness of descriptions received commendable scores (2.38 for
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Given the molecule's  SMILES, IUPAC name, a picture of the molecular structure, and its structural 
construction generated by GPT4 previously. Based on these information, GPT4 is asked to consider 
the effects of functional groups and molecular structure on the properties to analyze the physical and 
chemical properties of the molecule, including: Polarity, Acidity or Basicity, Solubility, Reactivity, 
Stereochemistry, Electrophilicity.

Your task is to evaluate the molecular property description text generated by GPT4. The evaluation 
dimensions for the property description are as follows.

Evaluation Dimensions for the Property Description
1. Factual Accuracy
Analysis of functional groups’ influence on properties: Does the description correctly explain how 
functional groups such as ester, amine, and aromatic rings affect molecular polarity, acidity/basicity, 
solubility, etc.?
Errors in qualitative features: For example, does the text describe a portion of the molecule as acidic 
when it is obviously not, or incorrectly emphasize a non-existent hydrogen bonding?

2. Logic and Causality
Causal relationships: Does the text correctly identify which functional groups lead to specific property 
changes, or explicitly clarify the causes of certain properties? For instance, claiming “the molecule 
has an amine group → the molecule shows acidity” is an obvious causal error and a serious mistake.
Reactivity and structural interpretation: Does the text provide a reasonable structural explanation for 
which parts of the molecule might be more reactive toward nucleophilic/electrophilic/radical reactions?

3. Completeness
Coverage of the specified properties: Does the description address the requested properties such as 
polarity, acidity/basicity, solubility, reactivity, stereochemistry, and electrophilicity?
No critical omissions: For instance, failing to mention notable steric hindrance or ignoring multiple 
chiral centers with potential mixtures of stereoisomers.

4. Consistency 
Content alignment: Do the properties described correspond to the structural analysis, with no conflict 
between the two? For example, if the structural description mentions a primary amine, does the 
property description mistakenly referring to it as a secondary amine?

5. Clarity and Conciseness
Readable and straightforward: Does the text use simple sentences to describe properties, avoiding 
excessive complexity or unnecessary technical jargon?
Avoidance of redundancy: Does it refrain from unrelated structural details, and avoid extending into 
irrelevant topics?

Scoring Reference
You should assign a score of poor/acceptable/excellent to each dimension. For example:

Property Description Dimensions
Factual Accuracy: excellent
Logic and Causality: acceptable
Completeness: poor
Consistency: acceptable
Clarity and Conciseness: excellent

Figure 7: physicochemical property description evaluation criteria for chemistry experts. The criteria include
four aspects: Factual Accuracy, Completeness, Consistency, Clarity and Conciseness.

structural descriptions and 2.43 for property descriptions), showcasing its ability to present complex
information in an accessible manner. These results affirm the scientific rigor of KnowMol-100K and
its potential as a valuable resource for downstream applications in the field of chemistry.

C Details of Datasets

We provide a summary of the datasets involved in our paper, including our constructed dataset
KnowMol-100K and the downstream task datasets.

C.1 KnowMol-100K

In KnowMol-100K, there are 1,000,000 molecules selected from the PubChem database annotated
with four level fundamental chemical understanding factors. Table 8 shows the statistics of these
factors.
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Table 8: Average word of fundamental factors for molecule understanding in the description from KnowMol-
100K.

dataset atoms Functional groups molecular structure Physicochemical property full description
Polarity Acidity/Basicity Solubility Reactivity Stereochemistry Electrophilicity Sum

KnowMol-100K 7.198 14.339 161.780 58.840 25.282 30.435 40.414 21.426 32.141 208.538 391.855

As illustrated in Table 1 and Table 8, the KnowMol-100K dataset demonstrates a substantially broader
and deeper coverage of molecular characteristics compared to the PubChem dataset. Notably, the
average word count for key molecular factors in KnowMol-100K is significantly higher across all
categories. For instance, molecular structure, a critical factor for molecular understanding, receives
an extensive average coverage of 161.780 words in KnowMol-100K, whereas it is limited to merely
2.406 words in PubChem’s sample. This disparity underscores the deliberate focus of KnowMol-
100K on providing detailed and nuanced descriptions. This level of detail is evident in the total
average word count for KnowMol-100K (391.855), which greatly surpassed the 19.338 words seen
in PubChem’s sample.

KnowMol-100K also excels in representing factors that are severely underrepresented in PubChem.
Properties such as polarity and electrophilicity, which are nearly absent in PubChem captions, achieve
robust coverage in KnowMol-100K with average word counts of 58.840 and 32.141, respectively. This
comprehensive representation ensures that KnowMol-100K addresses critical aspects of molecular
characterization that are overlooked in PubChem, thereby offering a more balanced and holistic
dataset.

C.2 Downstream Datasets

Table 9: Examples of instruction following data on each downstream task.
task qusetion answer

molecule captioning Could you provide a description of this molecule? The compound SELFIES sequence is:
[SELFIES]

The molecule is an in-
dole phytoalexin that
is indole substituted
at position 3 by ......

molecule property prediction
(classification)

BACE1 plays a significant role in the development of Alzheimer’s disease and the creation of
myelin sheaths as an essential aspartic-acid protease. Is it possible for this molecule to attach
to BACE1? The compound SELFIES sequence is: [SELFIES]

Yes

molecule property prediction
(regression)

Please provide the energy separation between the highest occupied and lowest unoccupied
molecular orbitals (HOMO-LUMO gap) of this molecule. The compound SELFIES sequence
is: [SELFIES]

0.1913

caption-guided molecule
generation

Create a molecule with the structure as the one described. The molecule’s description is: The
molecule is a natural product found in Picea abies, Citrus unshiu, and other organisms with
data available.

[SELFIES]

reagent prediction Based on the given chemical reaction, can you propose some likely reagents that might have
been utilized? ⟨reactantA⟩.⟨reactantB⟩... ≫ ⟨productA⟩.⟨productB⟩...

[SELFIES]

forward reaction prediction Please suggest a potential product based on the given reactants and reagents.
⟨reactantA⟩.⟨reactantB⟩...⟨reagentA⟩.⟨reagentB⟩...

[SELFIES]

retrosynthesis prediction Provided the product below, propose some possible reactants that could have been used in the
reaction. ⟨productA⟩.⟨productB⟩...

[SELFIES]

This section provides detailed information about the downstream datasets used to evaluate the ability
of KnowMol. The datasets include molecule captioning datasets, molecule property prediction
datasets, and molecule generation datasets. We provide some examples of the instruction following
data on each downstream task in Table 9.

Details of molecule captioning datasets. The molecule captioning datasets mainly focus on
generating the corresponding description of a given molecule. In this task, we use a widely used
dataset ChEBI-20 [9]. This dataset contains 33,010 molecule-description pairs longer than 20 words
selected from the PubChem database. The molecule-description pairs in ChEBI-20 are separated into
train, validation, and test splits in 80%, 10% and 10%. Based on the original dataset and the splitting,
we transform the molecule-description pairs into instruction following form.

Details of molecule property prediction datasets. The molecule property prediction tasks are
designed to predict the given molecule’s specific chemical or physical properties. For this task, we
consider both binary classification tasks and regression tasks on molecule property prediction.
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For binary classification tasks, we use five datasets derived from MoleculeNet [50], BACE, BBBP,
HIV, MUV and Tox21. The BACE dataset aims to predict the inhibitors of the BACE-1 enzyme.
The BBBP dataset aims to predict whether the given molecule is able to penetrate the blood-brain
barrier. The HIV dataset aims to predict whether the given molecule can impede the replication of the
HIV virus. The MUV dataset is selected from PubChem BioAssay and contains 17 tasks for around
90,000 compounds which aims to the validation of virtual screening techniques. The Tox21 dataset
contains toxicity measurements for 8k compounds on 12 different targets, and aims to measure the
toxicity of compounds. We use the scaffold splitting to split the dataset and transform the dataset into
instruction following data using the prompt from GIMLET [54].

For regression tasks, we consider the QM9 dataset. This dataset aims to predict the quantum
mechanics properties, of the molecules. The quantum mechanics properties include: (1) Highest
occupied molecular orbital (HOMO) energy; (2) Lowest occupied molecular orbital (LUMO) energy;
(3) and HUMO-LUMO gap energy. We adopt the process dataset of Mol-Instructions [15].

Details of molecule generation datasets. For the molecule generation datasets, we consider both
caption-guided molecule generation and chemical reaction prediction tasks. The chemical reaction
prediction tasks involve three subtasks: reagent prediction, forward reaction prediction, and retrosyn-
thesis prediction. All of the four tasks aim to predict the corresponding molecules according to the
given condition. We adopt the four datasets from Mol-Instructions [15].

D Details of Training

Architecture. We use a pretrained GNN by MoleculeSTM [28] as the basic molecule graph encoder.
The molecule graph encoder is a 5-layer GIN with a hidden dimension of 300. The multi-level feature
projection includes three single-layer MLPs corresponding to three hierarchies, used to connect the
molecule and text modality. The LLM is the open-source vicuna-v-1.3-7B [5]. The overall scale of
parameters of KnowMol is around 6.9B. The input of the model includes both 1D SELFIES string
and 2D molecule graph.

Training settings. To enable fair comparisons, we adopted the training parameter settings consistent
with the baselines [2, 3, 16]. For the LoRA adapters [18] used in the two stage tuning, we use a LoRA
rank of 64, a scaling value α of 256, and dropout 0.1 for all of the training stage and training tasks.
All experiments are run with 8×RTX A40 (48GB) GPUs.

In pretraining stage, we train the model using two tasks constructed on KnowMol-100K. we conduct
the training for 5 epochs, with batch size 64, learning rate 8e-5, weight decay 0.05 and warmup ratio
3%.

For molecule captioning dataset, we conduct the training for 50 epochs, with batch size 64, learning
rate 8e-5, weight decay 0.05 and warmup ratio 3%.

For classification molecule property prediction datasets, we conduct the training for 10 epochs, with
batch size 64, learning rate 8e-5, weight decay 0 and warmup ratio 3%.

For regression molecule property prediction datasets, we conduct the training for 15 epochs, with
batch size 128, learning rate 8e-5, weight decay 0.05 and warmup ratio 3%.

For four molecule generation tasks: caption-guided molecule generation datasets, reagent prediction
datasets, forward reaction prediction datasets, and retrosynthesis prediction datasets. We conduct the
training for 15 epochs, with batch size 64, learning rate 8e-5, weight decay 0 and warmup ratio 3%.

E Pre-training Cost analysis

We provide a detailed computation cost comparison between our KnowMol and the second-best
model UniMoT [16] in Table 10. Under identical downstream task settings, our analysis focuses on
pre-training costs, the primary difference between methods. KnowMol requires only 5 epochs on
200K samples built from KnowMol-100K and achieves SOTA performance, while UniMoT needs 3
training stages with more epochs and larger datasets.
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Table 10: Computation cost comparison of the pretrain stage(s) between KnowMol and UniMoT.
model pre-training stage training data data size training epoch

Causal Q-Former Pretraining PubChem pretrain subset 301658 50
UniMoT Molecule Tokenizer Pretraining PubChem pretrain subset, CheBI-20 train subset 328065 50

Unified Molecule-Text Pretraining PubChem pretrain subset, CheBI-20 train subset 328065 10

KnowMol pertaining on KnowMol-100K KnowMol-100K 200000 5

F Effect of LoRA

We evaluate LoRA’s impact through an ablation study on the molecular property prediction tasks
(regression) in Table 11. Given the prohibitive computational cost of full LLM fine-tuning, we focus
on optimizing LoRA hyperparameters. The results demonstrate that LoRA provides substantial
improvements, since higher LoRA capacity enables the model to extract more chemical information
from KnowMol-100K, thereby enhancing prediction accuracy.

Table 11: Ablation of LoRA on molecular property prediction tasks (regression).

Rank scaling α HOMO ↓ LUMO ↓ ∆ϵ ↓ Avg ↓

8 32 0.0051 0.0051 0.0064 0.0055
64 16 0.0039 0.0039 0.0051 0.0043
64 128 0.0034 0.0037 0.0042 0.0038
64 256 0.0028 0.0029 0.0034 0.0030

G Qualitative Analysis

We provide three additional qualitative analysis in Fig 8, 9 and 10. Obviously, KnowMol demonstrates
significant advantages over InstructMol in the ability to analyze molecules’ basic information.

In terms of atomic composition, KnowMol consistently provides accurate molecular formulas,
even for complex structures, while InstructMol struggles in this. When identifying functional
groups, KnowMol shows the advantage of providing accurate and comprehensive identification. In
contrast, InstructMol provides limited analysis and broad coverage, which may hinder a thorough
understanding of the molecule. In the structural analysis, KnowMol effectively captures complex
molecular geometries and stereochemical features, such as chiral centers and bonding configurations,
which are often overlooked by InstructMol. Similarly, in property analysis, KnowMol links structural
features to chemical behaviors, such as reactivity and solubility, with greater accuracy and depth than
InstructMol. This ability to integrate functional and structural data makes KnowMol a superior tool
for advanced molecular research.

In summary, KnowMol surpasses InstructMol across all aspects of molecular understanding—atomic
composition, functional groups, structure, and properties—by providing precise, detailed, and
application-focused insights. These capabilities position KnowMol as a more powerful and re-
liable model for advanced chemical analysis.
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I'm sorry, but I cannot provide 
the molecular formula of a 
molecule without further 
information or context.

The molecule's molecular 
formula is C22H27NO5.

Please tell me the molecular 
formula of this molecule.

The functional groups present in the molecule 
SELFIES sequence are: Aromatic ring, 

Carbonyl group, Carboxylic acid group, Alkyl 
chain, Hydroxyl group, Amino group 

The molecule has the following functional groups: 
Alkyl, Alkenyl, Phenyl, Acetal, Carboalkoxy, Ether, 
Methylenedioxy, Ketal, Carbonyl, PrimaryAmine.

Can you identify the functional groups that this 
molecule contains?

Please analyze the composition of the molecule, 
including the substructures or functional groups, and 

then analyze the connections between them.

The molecule SELFIES sequence is a polycyclic aromatic 
hydrocarbon with a tricyclic ring system. The main chain 
of the molecule consists of  18 carbon atoms. The side 

chain consists of a branched alkyl group attached to the 
tricyclic ring system, with a total of 4 carbon atoms. The 
ring system consists of two fused six-membered rings 
and one fused five-membered ring, with a total of 10 

carbon atoms. The connections between the 
substructures or functional groups include double bonds 

between the rings, single bonds between the carbon 
atoms in the side chain, and a carbonyl group attached to 

the side chain. The molecule is a hydrocarbon with a 
general formula C36H18O2.

The molecule consists of several distinct substructures 
and functional groups. The main chain is a dienyl group, 
which is connected to a tricyclic structure.  The tricyclic 

system is connected to a benzoyl group via an ether 
linkage. The benzoyl group is further connected to a 

formamide group. The benzoyl group has a primary amine 
group attached to it. The molecule contains multiple 

functional groups: alkenyl groups in the main chain, a 
benzoyl group, an ether linkage, primary amine group, 
and a hydroxyl group. The connections between these 

substructures are as follows: the dienyl group is 
connected to the tricyclic structure, which is linked to the 

benzoyl group via an ether bond. The benzoyl group is 
connected to the primary amine group. 

The molecule's structure, featuring a complex system 
with multiple functional groups, significantly 

influences its physical and chemical properties. The 
presence of polar functional groups like the ester, 
ether, and primary amine introduces polarity and 

potential for hydrogen bonding, enhancing solubility in 
polar solvents. The ester group also contributes to 

acidity, while the amide group can act as a weak base. 
The molecule's reactivity is influenced by the 

electron-donating effects of the alkyl and alkenyl 
groups. The stereochemistry is complex, with multiple 

chiral centers leading to potential enantiomers and 
diastereomers, affecting the molecule's interaction 
with biological systems. The electron-withdrawing 
groups increase electrophilicity, particularly at the 
carbonyl carbon, making it more reactive towards 
nucleophiles. Overall, the molecule's structure and 

functional groups result in moderate polarity, potential 
acidity, good solubility in polar solvents, and 

significant reactivity and electrophilicity.

Please consider the effects of functional groups and 
structure on the properties and analyze the physical 

and chemical properties of the molecule.

(3)

(1) (2)

(4)

The physical and chemical properties of the SELFIES 
sequence are not known, as it is a proprietary sequence 

and its properties are not publicly available.

InstructMol

KnowMol

Question

InstructMol

KnowMol

InstructMol

KnowMol

InstructMol

KnowMol

Question

Question Question

Figure 8: Qualitative Results 1. We mark the wrong/illusion parts with red, the unverifiable parts with orange,
and the correct parts with green.

The molecular formula of this 
molecule is C36H70O2.

The formula for this molecule is 
C18H30O3.

Please tell me the molecular 
formula of this molecule.

This molecule contains the following functional 
groups: Carbon-carbon double bonds, 

Carbon-carbon triple bonds, Carbon-carbon 
single bonds.

The molecule has the following functional groups: 
Alkyl, Alkenyl, Hydroxyl, Carboxyl, Carbonyl.

Can you identify the functional groups that this 
molecule contains?

Please analyze the composition of the molecule, 
including the substructures or functional groups, and 

then analyze the connections between them.

This molecule is a polyunsaturated fatty acid, specifically a 
branched-chain fatty acid with a 18:2 (omega-9) fatty acid 
chain. The main chain of the molecule is composed of 18 
carbon atoms, with two branches at positions 9 and 12. 

The side chain is composed of 2 carbon atoms and 
contains a double bond at position 9. The molecule also 

contains a branch at position 12, which is not shown in the 
SELFIES sequence. The functional groups present in the 

molecule include carboxylic acid groups at positions 2 and 
12, and a hydroxyl group at position 9. This molecule is an 

example of a polyunsaturated fatty acid with a 18:2 
(omega-9) fatty acid chain. It is a member of the class of 

fatty acids known as branched-chain fatty acids, which are 
characterized by the presence of a branched chain in the 

main chain of the molecule. 

The molecule consists of a main chain of 17 carbon atoms. 
The main chain includes a double bond between the 6th 

and 7th carbons and another double bond between the 9th 
and 10th carbons. There is a ketone group (C=O) attached 
to the 8th carbon. The molecule also has a carboxyl group 

(COOH) attached to the 17th carbon. The functional groups 
present are a ketone, a carboxyl, and two double bonds. 

The connections between the substructures are as follows: 
the main chain is connected to the side chain, the ketone 
group is connected to the 8th carbon, and the carboxyl 

group is connected to the terminal carbon.

 The carboxyl group is polar and can participate in hydrogen 
bonding, making the molecule slightly polar. The carbonyl group 
at the 8th carbon is electron-withdrawing, increasing the acidity 

of the molecule. The molecule is likely to be more soluble in 
nonpolar solvents due to its long hydrophobic carbon chain, but 
the polar functional groups may provide some solubility in polar 
solvents. The presence of double bonds and carbonyl groups 
increases the molecule's reactivity, allowing it to participate in 

addition and nucleophilic reactions. The molecule does not have 
chiral centers, so stereochemistry is not a significant factor. The 

carbonyl group at the 8th carbon makes the molecule 
electrophilic, particularly at the carbon adjacent to the carbonyl 
group, which is electron-deficient and can attract nucleophiles.

Please consider the effects of functional groups and 
structure on the properties and analyze the physical 

and chemical properties of the molecule.

(3)

(1) (2)

(4)

This molecule is a branched fatty acid with a long chain of carbon 
atoms. It has a polar carboxylic acid group, which makes it 

slightly acidic, and a branched structure, which may affect its 
reactivity and solubility. The molecule is not basic, and it does 
not have any functional groups other than the carboxylic acid 

group. It is not particularly electrophilic, as it does not have any 
electron-donating groups. Overall, this molecule is a long-chain 
fatty acid with a branched structure and a polar carboxylic acid 

group. It is not particularly reactive or soluble, and it is not 
particularly electrophilic. It is generally considered to be safe 

when ingested in normal amounts, but high levels of certain fatty 
acids may have negative effects on health.
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Figure 9: Qualitative Results 2. We mark the wrong/illusion parts with red, the unverifiable parts with orange,
and the correct parts with green.
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The molecular formula of the 
molecule SELFIES sequence 

is: C20H21NO3

The formula representing the 
molecule is C20H22N2O4.

Please tell me the molecular 
formula of this molecule.

The functional groups present in this molecule 
are: Carbonyl , Carbonyl, Carbonyl .....

The molecule has the following functional groups: 
Alkyl, Phenyl, Ether, Carbonyl, Carboxamide.

Can you identify the functional groups that this 
molecule contains?

Please analyze the composition of the molecule, 
including the substructures or functional groups, and 

then analyze the connections between them.

The molecule you provided is a polycyclic aromatic 
hydrocarbon (PAH) called [1,3,4]-benzene-1,3,4-

tricarboxamide. It is composed of a benzene ring with 
three carboxamide groups attached to it. The molecule 

has a total of 34 atoms, with 18 carbon atoms, 12 
hydrogen atoms, and 4 nitrogen atoms. The 

carboxamide groups are attached to the carbon atoms 
at positions 1, 3, and 4 on the benzene ring. The 

molecule has two branches, which are formed by the 
carboxamide groups, which are attached to the benzene 
ring via single bonds. The branches are symmetrical and 
contain four carbon atoms each. The molecule also has 
a ring structure, which is formed by the carbonyl groups 
attached to the carbon atoms at positions 1, 3, and 4 on 
the benzene ring. The ring is composed of three carbon 
atoms and is planar. The nitrogen atoms are attached to 
the carbonyl groups at positions 1 and 3, and they are 

bonded to the carbon atoms via single bonds. The 
nitrogen atoms are also bonded to each other via a 

double bond, forming a ring structure. 

The molecule consists of several substructures and 
functional groups. The main chain includes a tert-butyl 
group attached to a nitrogen atom, which is part of an 

amide linkage. This amide is connected to a benzene ring, 
which is further connected to another amide group. This 

second amide group is linked to a two-carbon chain ending 
in a 1,4-benzodioxin ring.  The 1,4-benzodioxin ring is a 

fused ring system consisting of a benzene ring and a 
dioxin ring. The molecule contains two amide groups, one 
tert-butyl group, and two benzene rings. The connections 
between these substructures are as follows: the tert-butyl 

group is connected to the nitrogen of the first amide, which 
is connected to the benzene ring. The benzene ring is 

connected to the second amide, which is connected to the 
two-carbon chain ending in the 1,4-benzodioxin ring.

The molecule consists of several distinct functional groups 
and structural features.  The molecule exhibits moderate 

polarity due to the presence of polar functional groups like 
carbonyls and the ether linkage in the benzodioxin ring, 
although the overall structure is somewhat balanced by 

nonpolar groups like the tert-butyl and aromatic rings. The 
molecule is likely to be slightly acidic due to the presence of 
electron-withdrawing carbonyl groups, which can stabilize 
negative charges. Its solubility will be higher in nonpolar 

solvents due to the significant nonpolar regions, but the polar 
functional groups may also allow some solubility in polar 
solvents. The molecule's reactivity is influenced by the 

carbonyl groups, which are electrophilic and can participate in 
nucleophilic addition reactions. The electrophilicity is 

enhanced by the carbonyl groups, making the molecule 
reactive towards nucleophiles.

Please consider the effects of functional groups and 
structure on the properties and analyze the physical 

and chemical properties of the molecule.

(3)

(1) (2)

(4)

The molecule you provided is a polycarbonate, specifically a 
bisphenol A polycarbonate. The molecular formula is 
C15H10O5. The molecule is polar, as it contains both 

hydroxyl (-OH) and carbonyl (-C=O) groups. These functional 
groups give it both acidic and basic properties. It is also 

soluble in common organic solvents such as chloroform and 
acetone. In terms of reactivity, the carbonyl group (-C=O) is a 
good electrophile, meaning it can react with nucleophiles to 

form bonds. The molecule is chiral, meaning it cannot be 
superimposed on its mirror image. The molecule's 

stereochemistry affects its physical properties, such as its 
melting point and boiling point. The molecule is a 

thermoplastic, meaning it can be melted and reformed 
multiple times without undergoing a chemical change. It is 
also a lightweight and strong material, making it useful in 

applications such as automotive parts and electrical insulation. 

InstructMol
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Question
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KnowMol

InstructMol
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Figure 10: Qualitative Results 3. We mark the wrong/illusion parts with red, the unverifiable parts with orange,
and the correct parts with green.
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