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ABSTRACT

Small generalization errors of over-parameterized neural networks (NNs) can be
partially explained by the frequency bias phenomenon, where gradient-based al-
gorithms minimize the low-frequency misfit before reducing the high-frequency
residuals. Using the Neural Tangent Kernel (NTK), one can provide a theoretical
analysis for training where data are drawn from constant or piecewise-constant
probability densities. Since most training data sets are not drawn from such distri-
butions, we use the NTK model and a data-dependent quadrature rule to theoret-
ically quantify the frequency bias of NN training given nonuniform data. By re-
placing the loss function with a selected Sobolev norm, we can amplify or dampen
the intrinsic frequency bias in NN training.

1 INTRODUCTION

Neural networks (NNs) are often trained in supervised learning on a small data set. They are ob-
served to provide accurate predictions for a large number of test examples that are not seen during
training. A mystery is how training can achieve small generalization errors in an overparameterized
NN and a so-called “double-descent” risk curve (Belkin et al., [2019)). In recent years, a potential
answer has emerged called “frequency bias,” which is the phenomenon that in the early epochs of
training, an overparameterized NN finds a low-frequency fit of the training data while higher fre-
quencies are learned in later epochs (Rahaman et al., |2019; Yang & Salman, 2019; | Xu, 2020). In
addition to generalization errors, it is often useful to understand the convergence rate for each spec-
tral component of the data mismatch to study the robustness of the NN under noises. Currently,
frequency bias is theoretically understood via the Neural Tangent Kernel (NTK) (Jacot et al., [2018)
for uniform training data (Arora et al., 2019} Cao et al., 2019} Basri et al.||2019) and data distributed
according to a piecewise-constant probability measure (Basri et al., 2020). However, most training
data sets in practice are highly clustered and not uniform. Yet, frequency bias is still observed during
NN training (Fridovich-Keil et al., |2021), even though the theory is absent. This paper proves that
frequency bias is present when there is nonuniform training data by using a new viewpoint based on
a data-dependent quadrature rule. We use this theory to propose new loss functions for NN training
that accelerate its convergence and improve stability with respect to noise.

An NN function is a map N : R? — R given by
N(x) = Wy, 0 (Wy,-10(--+ (Wao (Wix+by)+by)+---)+by,_1)+bn,,

where W; € R™:i*™i-1 gre weights, mg = d, b; € R™: are biases, and Ny, is the number of
layers. Here, o is the activation function applied entry-wise to a vector, i.e., o(a); = o(a;). In
this paper, we consider ReLU NNs, which are NNs for which o is the ReLU function given by
ReLU(t) = max(t,0). Since ReLU(at) = aReLU(t) for any o > 0, we assume that the input of
the NN is normalized so that x € S?~!. To introduce a continuous perspective, we assume that there
is an underlying target function g : S%~' — R and the training samplers x;’s follow distribution
u(x). Given training data {(x;, y;)}?_, drawn from g, where x; € S¢~! and y; ~ g(x;), our goal is
to train the NN, in a way that is robust when the sampling of y; from g(x; ) is contaminated by noises,
so that A uniformly approximates g on S%~!. One standard training procedure is a gradient-based
optimization algorithm that minimizes the residual in the squared L?(du) norm, i.e.,
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where A, is the Lebesgue measure of the hypersphere S~ ! and W represents the weights and
bias terms. Similar to most theoretical studies investigating frequency bias, we restrict ourselves to
2-layer NNs (Arora et al.,|2019; |Basri et al., 2019; Su & Yang}, 2019;|Cao et al., 2019).

To study NN training, it is common to consider the dynamics of ®(W) as one optimizes the coef-

ficients in W. For example, the gradient flow of the NN weights is given by % = —%. Define
the residual z(x; W) = g(x) — N (x; W). Applying gradient flow with the population loss gives us
dz(x; W
% = — Ay K (x,x'; W)2(x'; W)dpu(x'), )
Sd—l

where K(x,x; W) = <8N6(${,w), 8Né’;;;w) > Under the assumptions that the weights do not
change much during training, one can consider the NTK given the underlying time-independent
distribution of W, ie., K*°(x,x) = Ew[K(x,x’; W)] (Du et all 2018). Based on eq. ,
one can understand the decay of the residual by studying the reproducing kernel Hilbert space
(RKHS) through a spectral decomposition of the integral operator £ defined by (Lz)(x) =
J K>(x,x")z(x')dp(x"). Most results in the literature require (x) to be the uniform distribution
over the sphere so that the eigenfunctions of £ are spherical harmonics and the eigenvalues have
explicit forms (Cao et al.,|2019; Basri et al., 2019} |Scetbon & Harchaouil, |2021). These explicit for-
mulas for the eigenvalues and eigenfunctions of £ rely on the Funk—Hecke theorem, which provides
a formula allowing one to express an integral over a hypersphere by an integral over an interval (See-
leyl|1966). The frequency bias of NN training can be explained by the fact that low-degree spherical
harmonic polynomials are eigenfunctions of £ associated with large eigenvalues (Basri et al.,2019).
Thus, for uniform training data, the optimization of the weights and biases of an NN tends to fit the
low-frequency components of the residual first.

When (%) is nonuniform, it is difficult to analyze the spectral properties of £ and thus the frequency
bias properties of NN training. Since the Funk—Hecke formula no longer holds, there are only a few
special cases where frequency bias is understood (Williams & Rasmussen, [2006, Sec. 4.3). Although
one may derive asymptotic bounds for the eigenvalues (Widom, |1963;/1964; Bach & Jordan,|2002),
it is hard to obtain formulas for the eigenfunctions, and one usually relies on numerical approxima-
tions (Baker, [1977). For the ReLU-based NTK, [Basri et al.| (2020) provided explicit eigenfunctions
assuming that the u(x) is piecewise constant on S*, but this analysis does not generalize to higher
dimension. To study the frequency bias of NN training, one needs to understand both the eigenval-
ues and eigenfunctions of £, and this remains a significant challenge for a general p(x) due to the
absence of the Funk—-Hecke formula.

To overcome this challenge, we take a different point-of-view. While it is standard to discretize
the integral in eq. using a Monte Carlo-like average, we discretize it using a data-dependent
quadrature rule where the nodes are at the training data. That is, we investigate the frequency bias
of NN training when minimizing the residual in the standard squared L? norm:
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where ¢y, . . ., ¢, are the quadrature weights associated with the (nonuniform) input data x, . .., X,,.
If x1,...,%x, are drawn from a uniform distribution over the hypersphere, then one can select
¢i = Ag/n for 1 < i < n; otherwise, one can choose any quadrature weights so that the integration
rule is accurate (see section . If x1,...,x, are drawn independently at random from p(x), then
it is often reasonable to select ¢; = 1/(np(x;)), where du(x) = p(x)dx. While ¢y,..., ¢, de-
pend on Xy, ..., Xy, the continuous expression for ®(W) is always unaltered in eq. . Therefore,
we can use the Funk—Hecke formula to analyze the eigenvalues and eigenfunctions of £ defined
by (L2)(x) = [sus K°°(x,%')z(x')dx’, revealing the frequency bias. We address that by choos-
ing eq. (3) as a loss function instead of eq. (), we are enforcing the frequency bias of NN training,
whereas eq. (I)) does not ensure such spectral property (see Section [6.1]for an illustration).

To further tune the NN frequency bias during training, we also propose to minimize the residual
in a squared Sobolev H* norm for a carefully selected s € R. Unlike the L? norm (the case
of s = 0), the H® norm for s # 0 has its own frequency bias. For s > 0, H® penalizes high
frequencies more than low, while for s < 0, low frequencies are penalized the most. We implement
the squared H*® norm using a quadrature rule, which induces a different integral operator £,. We
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analyze the eigenvalues and eigenfunctions of L, and consequently, the frequency bias in the NN
training using the Funk—Hecke formula. Given our new understanding of frequency bias, we select
s so that the H° norm amplifies, dampens, counterbalances, or reverses the natural frequency bias
from an overparameterized NN training.

Contributions. Here are our three main contributions to analyzing and tuning NN frequency bias.

(1) From our quadrature point-of-view, we analyze the frequency bias in training a 2-layer overpa-
rameterized ReLU NN with nonuniform training data. In Theorem [2] we show that the theory of
frequency bias in |Basri et al.| (2019)) for uniform training data continues to hold in the nonuniform
case up to quadrature errors. In Theorem 3] we provide control of the quadrature errors.

(2) We use our understanding of frequency bias to modify the usual squared L? loss function to a
squared H® norm. By selecting s, we can amplify or dampen the intrinsic frequency bias in NN
training, accelerate the convergence of gradient-based optimization procedures, and separate out
noises of particular frequencies.

(3) A potential issue with the H® norm is the difficulties of implementing with high-dimensional
training data. Using an image dataset of dimension 282 = 784, we show how to use an encoder-
decoder architecture to implement a practical version of the squared H® norm loss and adjust the
frequency bias in NN training to suppress noises of different frequencies (see Figure [).

2  PRELIMINARIES AND NOTATION

Ford > 1,let g : S~ — R be a square-integrable function defined on S?~!. The function g can
be expressed in a spherical harmonic expansion given by

oo N(d,0)

TEED D DI R BTt @
(=0 p=1 §a-t
where Y7 ,, is the spherical harmonic basis function of degree ¢ and order p (Dai & Xu, [2013).
Here, N(d, ) is the number of spherical harmonic functions of degree ¢ so that N(d,0) = 1 and
N(d,¢) = % for £ > 1. The set {Y%,,}/>0,1<p<nN(d,¢) is an orthonormal basis for
L%(S9=1). Let H{ be the span of {Y;,}

harmonics of degree < /.

;V:(f’e), and 11} = @?:0 ’H? be the space of spherical
Given distinct training data {x;}?_; from S?~! and evaluations y; = g(x;) for 1 < i < n, our goal
is to understand the intrinsic frequency bias behavior of training a 2-layer ReLU NN given by

1

m

N(x) = NG ; a,ReLU(wW, x +b,.), ReLU(t) = max(t,0), ®)
where m is the number of hidden neurons, wy, ..., w,, and ay, . .., a,, are weights, and by, ..., b,
are biases. We use the same setup as in (Basri et al} 2020): assuming that (1) wy, ..., w,, are
initialized independently and identically distributed (i.i.d.) from Gaussian random variables with
covariance matrix x2I, where k > 0, (2) the biases are initialized to 0, and (3) a1, ..., a,, are

initialized i.i.d. as 4-1 with probability % and —1 otherwise, and {a,. } are not updated during training.

We use a gradient-based optimization scheme to train for the weights and biases and aim to minimize
the residual defined by a symmetric positive definite (SPD) matrix P, which can be written as

Dp(W) = (v —u) Ply ) ©

where y = (g(x1),...,9(x,))" and u = (N(x1),...,N(x,))". For example, we have P =
Agn~'Tineq. (1) and P = diag(cy, . .., cy,) ineq. (3). Recall that W represents all the weights and
biases of the NN. Given the loss function, we train the NN based on the gradient descent algorithm:
8(1)13 6'(I)P

— b(k+1)—0b.(k)=— , 1<r<m, (@

Ngar bl =b) =0Tl 1<r<m ()
where k is the iteration number and 7 > 0 is the learning rate. The matrix P induces an
inner product (§,¢)p = £TP¢, which leads to a finite-dimensional Hilbert space with the

w.(k+1)—w.(k) =
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norm |€|p = /(£ &)p. Given a matrix A € R™*", we define its operator norm ||A|p =
SUPgern ||¢||—1 || A€]lp. We also define a finite positive number that depends on P:

£TP£ CTP1/2PP1/QC
Mp= sup [€llp= sup (|[Z=r= sup (/[==imo5—= sup [P¢l,. (8
eckn =1 eermifoy| €€ cemmyqo) CTPYPPY2( ccmn =1

Note that by the third expression in eq. , we also have Mp = ||P1/2 H2 =/||PJ|,. Furthermore,
we define the matrix H>* € R"*" by

x!x;+1 x, x; + 1)(m — arccos(x, x;
H7 =By n(orn) [Z;H{wai,wajsz}] LA pm G %)) 9

Note that due to the introduction of the biases, H* is slightly different than the one in (Du et al.,
2018 |Arora et al.,|2019). In fact, in contrast with (Du et al., 2018)), H* defined in eq. @]) is SPD
regardless of the distribution of the training data, as shown in the supplementary material.

Proposition 1. Ifxy,...,x, are distinct, then H* in eq. (9) is SPD.
As a consequence of Proposition |1} the matrix H>P has positive eigenvalues, which we denote
by Ap—1 > -+ > Ao > 0. In fact, let A = diag(\g, ..., \n—1). Then, H*P is self-adjoint in
(R™, (-,-)p) (see appendix[A) and can be diagonalized as
H®P = P71/2P1/2H0CP1/2P1/2 — P71/2V71AVP1/27 (10)

where PY/2H>P'/2 = V~1AV is SPD and therefore diagonalizable. One can view H™ as
coming from sampling a continuous kernel K°° : S9=1 x S~ — R given by
+ 1)(7 — arccos({x,y)))

4 ’
where (-, -) is the £2 inner-product. The eigenvalues and eigenfunctions of K> are known explicitly
via the Funk—Hecke formula (Basri et al., 2019):

K> (x,y) = K*((x,y)) = {&Y) an

L BT y)Yep(y)dy = pe¥ep(x),  £20. (12)
gd—

The explicit formulas for p, with £ > 0 are given in the supplementary material. We find that pp > 0
for all ¢ and p, is asymptotically O(E‘d) for large ¢ (Basri et al.,[2019; |Bietti & Mairal, 2019).

3 TRAINING CONVERGENCE WITH A GENERAL LOSS FUNCTION

Given the NN model in eq. @) and a general loss function ®p in eq. @, we are interested in the
convergence rate of NN training. We study this by analyzing the convergence rate for each harmonic
component. We start by presenting a convergence result that holds for any SPD matrix P. It says
that up to an error €, which can be made arbitrarily small by taking x small enough and m large
enough, the residual of the NN at the kth iteration is approximately (I — 277H°°P)k y.

Theorem 1. In eq. (3), suppose that w1, ..., W, are initialized i.i.d. from Gaussian random vari-
ables with covariance matrix k1, by, . .., by, are initialized to zero, and a1, . . ., a,y, are initialized
i.i.d. as +1 with probability 1/2 and —1 otherwise. Suppose the NN is trained with training data
(xi, i) for 1 < i < n, loss function Pp in eq. @for a SPD matrix P, and the training procedure
is the gradient descent update rule eq. with step size 1. Let Ny, be the NN function after the kth
iteration and u(k) = (Ni(x1), ..., Ni(xn)), where Ny is the initial NN function. Let an accuracy
goal 0 < € < 1, a probability of failure 0 < § < 1, and a time span T > 0 be given. Then, there
exist constants C1,Co > 0 that depend only on the dimension d such that if 0 < n < 1/(2M3n)

(see eq. ), k< C’leMr_,lw/(S/n, and m satisfies

M8 n3 Min21 )
m> 02( ,,;; ()\64+7]4T464)+ PN Ezg(N/ )()\02+772T2€2)> ’ (13)

then with probability > 1 — 6, we have
y—uk)=(T-2HP) y +e(k), le(®)p<e, 0<k<T. (14
Here, H* follows eq. @) y=(g(x1),...,9(xx)) ", and g is the smallest eigenvalue of H*P.
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We defer the proof to the supplementary material, which uses techniques from (Su & Yang] 2019).
The main idea behind the proof is that I — 2nH®P is close to the transition matrix for the residual
y — u(k) when m is large. By taking x small, we can control the size of u(0) and therefore obtain
y —u(k) = (I - 2nH>®P)*(y — u(0)) ~ (I — 2nH>P)"*y. As 1 decreases, the gradient descent
algorithm gets closer to the gradient flow algorithm (Du et al., 2018), which allows us to more
accurately quantify the frequency bias (see sectiond). For a fixed n, if y is an eigenvector associated
to Ao, then ||(I — 2nH>P)Fy|| = exp(—klog((1 — 2nXe)~")) |lyl, where log((1 — 2nAe)~?) is
called the convergence rate (Su & Yang, 2019). If we assume Ap,in (P) = O(1/n), which is the case
of eq. (I), then as shown in (Su & Yang, 2019, Thm. 2) and (Nguyen et al., 2021), we expect that
Ao — 0as n — oco. Hence, as n — oo, there exists a labeling y on the training data, depending on
n, that makes the convergence rate vanish. However, as suggested by (Su & Yang, [2019; |Cao et al.}
2019), for a fixed bandlimited target function g, its convergence rate in early epochs stays constant
as n — oo. We make similar observations in section @l

4 FREQUENCY BIAS WITH AN L2-BASED LOSS FUNCTION

The mean-squared loss function in eq. (1) corresponds to setting ¢; = Ag/nfor1 < i < nineq. .
When p is uniform, eq. (1)) and eq. (3) are equivalent; when p is nonuniform, we introduce a quadra-
ture rule with nodes x4, ...,x, and weights ¢y, .. ., ¢, to approximate the L? loss function eq. .
The weights are selected so that for low-frequency functions f : S“~! — R, the quadrature error

Sd-1

Eo(f) = f(x)dx — Z ci f(xi) (15)

is relatively small[] A reasonable quadrature rule has positive weights for numerical stability and
satisfies Z?Zl ¢; = Ag so that it exactly integrates constants. The continuous squared L? loss
function based on the Lebesgue measure is then discretized to be the square of a weighted discrete
2 norm (see eq. ). Hence, we take P = D, = diag(cy, ..., cy), which is SPD as the ¢;’s are
positive. For a vector v € R", we write Hv||§ = v D.v and set ¢pax = maxi<i<n{ci}.

We now apply Theoremto study the frequency bias of NN training with the squared L? loss eq. .
We state these results in terms of quadrature errors. Recall our continuous setup where we assume
that the training data is taken from a function g : S?-1 5 R so that y; = g(x;) for 1 < i < n. We
further assume that g is bandlimited with bandlimit I where ¢ = g9 + --- + g1 and g, € ’H? for
0<{¢{<L Withl <i<mn,j,>0,and1 <p < N(d,!), we define quadrature errors as

6?,[,1) = Ec(gji/&p)v eg,e,p = EC( OO(X’L" ')n,p)7 6;,[ = Ec(ngE)v eg,é = EC( OO(Xiv ')gf)' (16)
We interpret g; = 0 when ¢ > L and function products are interpreted as pointwise products.

4.1 A FREQUENCY-BASED FORMULA FOR THE TRAINING ERROR

We obtain a similar result to (Arora et al., 2019, Thm. 4.1) when using loss function ® in eq. .
Instead of expressing the training error using the spectrum of H>*D,, we directly relate the training
error to the frequency components of g and the eigenvalues of the continuous kernel K °°.

Theorem 2. Under the same setup and assumptions of TheOrem let P = D, and Mp = \/Crax-

If g : ST — R is a bandlimited function with bandlimit L and 1 — 2np, > 0 forall 0 < £ < L
(see eq. (12)), then with probability > 1 — § we have

L

ly—ulk)le=y > (1=20p0)* gl 72 +e1 (k) +ea+es(k), |es(k) <e, 0<k<T, (17)
=0

where €1 (k) and &2 satisfy

L& k k o VA4
er(B)] < (DD (=2mp)" (A=2mpe)" eS|, e <D oy B led |-

- 1<i<n
j=0 ¢=0 £=0

'In the case where we do not have a good quadrature rule associated with {x;}?~,, we usually have very
limited understanding of the spectral property of the target function given its values at {x;};-—;. Hence, we
assume the existence of a good quadrature rule for theoretical purposes.
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The proof of Theorem [2]is postponed to the supplementary material. The idea is that by Theorem|[T}
we know y — u(k) = (I — 2pH*D,)" y + e3(k). Using Funk-Hecke formula and quadrature, we
have that 1 — 27, are roughly the eigenvalues of I — 2pH>*D, and y; = (ge(x1),-- -, g¢(xn)) "
are associated eigenvectors. Hence, y — u(k) ~ ZzzL:o(l — 2nt¢)*y,. This can be made precise
by introducing €,. Finally, up to some quadrature error €1, we have (g;,g¢)r2 ~ Adn_ly;ryg,
which gives us eq. . Since Y., ¢; = Ay, For a fixed data distribution 1, we expect that Cmax =
O(n~') as n — oo so that ) does not decay as n — oo. Up to a quadrature error, ||y — u(k)||, is
close to the L? norm of the residual function g — N},. Explicit formulas for the eigenvalues {pe}
(see eq. ) are given in (Basri et al., 2019), and it was shown that 1, = O(¢~9) (Bietti & Mairal,
2019). Theorem [2] demonstrates the frequency bias in NN training as the rate of convergence for
frequency 0 < ¢ < L is 1 — 2nuy, which is close to 1 when £ is large. As n — 0, we have
(1 — 2nue)?t/n — e~*et which gives the convergence rate for frequency ¢ using gradient flow.
Therefore, we expect that NN training approximates the low-frequency content of g faster than its
high-frequency one, which is similar to the case of training with uniform data (Basri et al.,2019).

4.2 ESTIMATING THE QUADRATURE ERRORS

We now quantify the quadrature errors in Theorem [2] If we can design a quadrature rule at the
training data x1, . . ., X, such that the quadrature error satisfies

|—‘/Sd1 dx—ZcZ (xi)

for some constant y,, ¢, > 0, then we can bound the terms in eq. @ We expect that for each fixed
¢, v ¢ — 0 as n — oo as this is saying that integrals can be calculated more accurately for a denser
set of quadrature nodes. In practice, it can require a large amount of training data to make +,, , small
when d is large. Under the assumption that our quadrature rule satisfies eq. with reasonably
small y,, ,’s when £ is small, we can bound the quadrature errors appearing in Theorem

<Yl REM}, €>0, (18)

Theorem 3. Under the same assumptions of Theorem [2| and that the quadrature rule satis-
fies eq. (I8), there exist constants C1,Cy > 0 only depending on the dimension d such that the
terms |e1 (k)| and |e2| in Theorem[2] satisfy

L2
o1 <0 (4 00) s Ll kﬂ<6b(e+L%M)rmmwﬁum§j%

0<5<L

forallk >0, ¢ > 1, where g = go + - - - + g, with g; € H;i and vy, ¢ satisfies eq. .

The proof is in the supplementary material. Theorem [3|states that £ (k) and €5 can be made arbi-
trarily small if the quadrature errors converge to 0 as the number of nodes n — oo. In particular, if
there is a sequence {/,,} that increases to oo such that the quadrature rule is exact for all functions
h e Hdn, i.e., Ec(h) = 0, where £,, — oo (see e.g. (Mhaskar et al.}|2000)), the rates of convergence
of 1 (k) and &5 are both O(1/¢,,) for a fixed g. Without the quadrature being exact, we still have
nice convergence provided the quadrature errors are small, as the following corollary shows.

Corollary 1. Suppose there exists a sequence {,, — oo such that v, ¢, — 0 asn — oo. Then, for
afixed L > 0, we have maxyq, ey |e1(k)|/ lgl13x and max, ey [ea] /gl — 0 as n— oc.

Corollary shows that as n increases, the quadrature errors £ (k) and €5 converge to zero. Moreover,
this convergence is uniform in the sense that it does not depend on the specific choice of g €
1¢. Here, we normalize &1 (k) and €5 by || g||i2 and ||g|| -, respectively, to obtain the “relative”
quadrature errors that do not scale when ¢ is multiplied by a scalar (see (17)).

5 FREQUENCY BIAS WITH A SOBOLEV-NORM LOSS FUNCTION

The frequency bias during the training of an overparameterized NN has several consequences. In
many situations, worse convergence rates for high-frequency components of a function are benefi-
cial since the NN training procedure is less sensitive to the oscillatory noise in the data, acting as
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a low-pass filter. This significantly improves the generalization error of overparameterized NNs.
However, in other situations, NN training struggles to accurately learn the high-frequency content of
g, resulting in slow convergence. To precisely control the frequency bias of NN training, we propose
to train a NN with a loss function that has intrinsic spectral bias.

Let D'(S%1) be the space of distributions on S, Given s € R, consider £* : D'(S?!) —
D'(S%1), where £5 = (I + (— A)l/ 2 ) and A is the Laplace—Beltrami operator on the sphere. We
follow (Barcel6 et al.,[2021) and define the spherical Sobolev space H*(S%™1) = {f € D'(S?1) :
L5f e L*(S* 1)}, equipped with a norm equivalent to eq. (1.24) in (Barcel6 et al., 2021},

oo N(d,0)

£y = >, (1+0

(=0 p=1

fep

. 19)

where f; _p are the spherical harmonic coefﬁc1ents of J (see eq. ) and N(d,0)i is given in sectlon
We propose to set the loss function to be 1 |lg — A[|7;. in replace of 1 ||g — N||L2 in eq. (3). When
s = 0, it reduces to the L? norm. If s > 0 the high-frequency spherrcal harmonic coefficients are
amplified by (1 + ¢£)2°. The high-frequency components of the residual are then penalized more in
the loss function, and one can expect the NN training to learn the high-frequency components faster
with the squared H® loss function than the case of eq. (1;_]) Similarly, if s < 0, the high-frequency
spherical harmonic coefficients are dampened by (1 +¢)=® and one expects the NN training captures
the high-frequency components of the residual more slowly with the squared H?® loss function.
However, when s < 0, the training is more robust to the high-frequency noise in the data. By tuning
the parameter s, we can control the frequency bias in NN training (see Theorem ). The choice of s
for a particular application can be determined from theory or by cross-validation.

First, we justify that the residual function is indeed in H®. Since we assume that g is bandlimited,
g € H?forall s € R. Propositionl 2| shows that we could consider s < 3/2 for ReLU-based NNs.

Proposition 2. Suppose N' : S?~! — R is a 2-layer ReLU NN (see eq. .) Then, we have
N € H*(S4Y) for all s < 3/2. Moreover; if s > 3/2, N € H*(S%1) if and only if N is affine.

The proof is deferred to the supplementary material. When s > 3/2, the residual function N' — ¢
may not be in H°. However, we can still truncate the sum in eq. to a maximum frequency £«
to train the NN, although the sum can no longer be interpreted as an approximation of some Sobolev
norm at the continuous level. We discretize the Sobolev-based loss function as

max IV (d,€) > 1
Z 3 (140 (Z Yo (x:)( J\f)(xi)) = 5y —wP,(y —u), 0

Z 0 p=1
where u and y follow eq. (@) and P, = Y0 N(d D(1+0%P,,, Py, = aspa] prand (agp); =
¢ Yy p(x;). We assume that P is SPD, which requlres that (£max + 1)? > n. Next, we present our
convergence theorem for Sobolev training.

Theorem 4. Suppose g € 11$ and @ is the loss function in eq. (20), where P g is SPD and {4 > L.
Under the assumptions of Theorem if 1 — 2nue(1 + €)% > Ofor all 0 < ¢ < L, then with
probability > 1 — § over the random initialization, we have

L
=> (1 - 2nu(1 +02) v ber+ea(k), e, <6 0<E<T, 21)
=0
where y* = (go(x1), - .., 9¢(x,)) " and e, satisfies
m(b\ 1+ ) N(d7j)
lexlle, <Zw Mele,, (EDimelerd (g 2 chunlmbinbatelsy).
Jj= 0 p=1

Compared to Theorem 2] TheoremEj says that up to the level of quadrature errors, the Convergence
rate of the degree-¢ component is 1 — 2nue(1 + 6)2q In particular, since py = O(¢~%), there is
an s* > 0, which depends on d, such that (1 4 ¢)>*" 114 can be bounded from above and below for
all £ > 0 by positive constants that are independent of ¢. This means for any s > s*, we expect to
reverse the frequency bias behavior of NN training. Figure 2]shows the reversal of frequency bias as
s increases from —1 to 4 (see section[6.T).
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sin 0

number of iterations

P /
B 10’ 107 10° 10 10°

5 0 05 1 0
cos 6 epochs

frequenq; A

Figure 1: Left: the nonuniform data x = (cos#,sin ) on the unit circle S'. Middle: the change
of frequency loss for £ = 1 (blue), 5 (red) and 9 (yellow) against the number of iterations for loss
function ® (solid lines) and ® (dashed lines). Right: the number of iterations for the NN training to
achieve a fixed loss threshold in learning g,(x) = sin(¢f) for 3 < ¢ < 10 given the loss function ®.
The black line represents the 0(62) rate based on the analysis in (Basri et al.,[2019).

ReLU NTK L2
1- freq. bias min. freq. bias

high-to-low
<3 107 freq. bias

1 05 0 05 1 15 2 25 3 35 4
s
Figure 2: Frequency bias during NN training with a squared H ° loss function. The blue-to-red rain-
bow corresponds to low-to-high frequency losses |N(¢) — g(¢)| for the frequency index £ ranging
from 1 (blue) to 9 (red) with nonuniform training data, respectively. Here, an overparameterized
2-layer ReLU NN N/ (x) is trained for 5000 epochs to learn function g(x) given the H* loss with
—1 < s < 4. The inversion of the rainbow demonstrates the reversal of frequency bias.

6 EXPERIMENTS AND DISCUSSION

This section presents three experiments with synthetic and real-world datasets to investigate the
frequency bias of NN training using squared L? loss and squared H* loss. The first two experiments
learn functions on S! and S?, respectively. In the third test, we train an autoencoder on the MNIST
dataset for a denoising task. One can find more details in the supplementary material.

6.1 LEARNING TRIGONOMETRIC POLYNOMIALS ON THE UNIT CIRCLE

First, we consider learning a function on S*. We create a set of n = 1140 nonuniform data {x; }?* ;,
as seen in Flgure and compute the quadrature weights {¢; }?*_; for the loss function @ in eq. (3) by
solving a constramed quadratic program (see appendix [FI). We train a 2-layer ReLU NN to learn
g(x)=g(0) = Zz 1 sin(€6), where x = (cos 6, sin #). We define the frequency loss IN(0) — §(0)]
where /\/ and § are the Fourier coefficients of A" and g, respectively (see appendix [FI). In F1gure|IL
we plot the frequency loss for £ = 1,5, 9 in different colors to illustrate how well the NN fits each
frequency component. The solid and dashed lines correspond to the loss function ® in eq. (T) and ¢
in eq. (3], respectively. Our observations collaborate with the theoretical statements in Theorem [2]
Figurealso shows that it takes asymptotically (9(62) iterations to learn the (th frequency sin(¢6)
given the loss function ®. A similar plot appears in Basri et al.|(2019)) for uniform training data.

We also use the squared /7° norm as the loss function to learn g. After 5000 epochs, we plot the
(th frequency loss with ¢ ranging from 1 (blue) to 9 (red) in Figure [2] given different s values.
As s increases, the higher-frequency components are learned faster. When s > 2, the frequency
bias is reversed in the sense that higher-frequency parts are learned faster than the lower-frequency
ones rather than a low-frequency bias under the squared L? loss (see Theorem . The gradually
changing “rainbow” in Figure 2] shows that the smoothing property of an overparameterized NN can
be compensated by the H*® loss function for large enough s, corroborating Theorem ]
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3 4 o 3 4
epochs epochs epochs

Figure 3: Frequency losses for £ = 4 (blue), 10 (red), and 20 (yellow), when learning a function
on S? using different squared H* loss functions. Compared to low-frequency bias in the cases of
s = —1 (left) and s = 0 (middle), we observe a high-frequency bias when s = 2.5 (right).

(a) blurred image (c)s=0.0 d)s=1.0

(e) blurred image f)s=-1.0 (g)s=0.0 (hys=1.0

Figure 4: Outputs of a squared H® loss-trained autoencoder on a typical test image when the input
images are contaminated by low-frequency noise (top row) and high-frequency noise (bottom row).

6.2 LEARNING SPHERICAL HARMONICS ON THE UNIT SPHERE

Similar to the previous example in S', we design an experiment on S?. We utilize a data set
{x;}2°%° in (Wright & Michaels, [2015), which comes with carefully designed positive quadra-
ture welghts {ci}27". We test the squared H? loss function in NN training with a target function
g(x) =% ¢=0,¢ even Y2,0 defined on S? that involves many high-frequency components. The results
are shown in Flgurel 3| with different s values. The natural low-frequency bias of the NN in the case
of L?-based training (i.e., s = 0) is enhanced when s = —1, and is totally reversed when s = 2.5.

6.3 AUTOENCODER ON THE MNIST DATASET

The idea of Sobolev training is also useful for high-dimensional training data. In Figure f] we
present the results of the autoencoder for image denoising using the MNIST dataset (LeCun et al.,
2010). The outputs of the autoencoder are presented when trained with the squared H® norm as
the loss function. We contaminate the dataset with random low-frequency noise (top row) and high-
frequency noise (bottom row). When high-frequency noise is present, the H* loss function generally
performs better with s < 0, while the case of s > 0 helps image deblurring when the input image
suffers from low-frequency noise. This corroborates our discussion in Section[5] In appendix [G] we
theoretically justify this phenomenon by studying the frequency bias in operator learning.

7 CONCLUSIONS

A frequency bias phenomenon is observed in NN training with nonuniform training data. Instead of
the standard mean-squared loss function in eq. (I), we propose the use of a different loss function
in eq. (3), which involves quadrature weights and has a natural continuous analog. With eq. (3)), we
rigorously analyze frequency bias with nonuniform training data using the Funk—Hecke formula. By
changing the loss function to a squared L2-type Sobolev norm, we can control the frequency bias in
NN training, which can accelerate NN training convergence and improve robustness under noises.
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SUPPLEMENTARY MATERIAL

This is the supplementary material for the paper titled “Tuning Frequency Bias in Neural Network
Training with Nonuniform Data.”

The supplementary material is organized as follows. In Appendix [A] we recall the notations used
in the paper and introduce additional concepts for our analysis. In Appendix [B] we prove that H>
is a symmetric and positive definite matrix. In Appendix [C| we prove Theorem |1| of the paper,
while the proofs of results in Section ] and Section [5] are given in Appendix [D]and Appendix [E]
respectively. In Appendix [F] we provide further details of our three experiments. The observation
made in the third experiment is then briefly justified in Appendix (G} in which we study frequency
bias in a general operator learning setting. In Appendix [H| we formally discuss the computation of
positive quadrature weights.

A PRELIMINARIES AND NOTATION

Ford > 1,let g : S™! — R be a square-integrable function defined on S?~!. The function g
has a spherical harmonic expansion given in Section 2] We denote the space of harmonic functions

of degree ¢ by H{, which is the span of {Yz’p}N(d»f)

p=1 - We further denote the space of spherical
. ¢

harmonics of degree < ¢ by I1{ = @ =0 ’H“f.

Given distinct training data {x;}"*_; from S¢~! and evaluations y; = g(x;) for 1 < i < n, our goal is
to understand the intrinsic frequency bias behavior of training a 2-layer ReLU NN given in eq. (3). It
is important for the theory that we initialize the weights as independently and identically distributed
(iid) Gaussian random variables with a covariance matrix 21, the bias terms are initialized to zero,
and the coefficients, i.e., a1, . . . , G, are initialized iid as +1 with probability 1/2 and —1 otherwise.
During the training process, the values of {a, } are not updated.

We train with the loss function given in eq. (€ so that the gradient descent algorithm for NN training
is given by eq. (7). An important object in understanding the frequency bias of NN training is the
symmetric and positive definite matrix H>* € R"*" in eq. @) Since H*® and P are symmetric
positive definite matrices (see Proposition [I)), H*°P has positive real eigenvalues. To see this,
note that H*P = H>P!/2P'/2 = P~1/2(PY/2H>P'/2)P'/2. This means that H*P and
P'/2H>P'/2 are similar. Since the matrix P/2H>*P/2 is symmetric positive definite, H>*P
has positive eigenvalues. We denote the eigenvalues of H*P by A\,_1 > --- > A\¢ > 0, which
partially govern the frequency bias phenomena. It is worth mentioning that although H*P is not
symmetric, it is self-adjoint in the inner product space induced by P because

(H*PE,¢)p = (HXPE)TP¢ = € "P(H®P() = (£, HP()p . (22)

S4=1 x 8?1 — R given in eq. (11). The key is the Funk—-Hecke formula (Seeleyl, [1966).

Theorem 5 (Funk—Hecke). Suppose K : [L—l, 1] — R is measurable and K (t)(1 — t2)(@=3)/2 is
integrable on [—1, 1]. Then, for any h € 17, we have

It is convenient to analyze the eigenvalues and eigenvectors of H>P via the zonal kernel K> :
i

K((&,¢))h(&)de = (Ad /_ EOPat( —t2><d‘3>/2dt) he),  ¢estl (23

Sd—l
where P 4 is the ultraspherical polynomial given by

(—1)T((d—1)/2) d’ (1— 2)+d=3)/2, 24)

Pea®) = 50+ a0 /20— )@ e

Applying Theorem 5] we have that

K> (x,y)h(y)do(y) = peh(x),  heH],

gd—1
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where 1y > 0, VY, given by (Basri et al.,[2019)

1 vd 1 (d-1 942 1 p(43y 1 /=
2C1O0) | @iy () + ey — 2 55 0 () |- (=0,
2
[—‘rd 3 2
PEEE _ 2p—0+2
%Cf(é) Zp Lgl Cg( g)(2(2p—16+1) +2(2p—1£+2) (1* 22p}e+2 (z};—%))) , £>2even,
4452 -
%Cii(é) E "%] C (p,€) (2(2p,1g+1) (1 - 221)}[4»1 (221;—725111))) ) £ > 2odd
for d > 3, d odd, where
Lo, (d—1)/2 d—3
ot = ool e o= (T ) A2
(d—=1)2I(l+ (d—1)/2) p (2p —£)!

Here, the exclamation mark means a factorial and () denotes the binomial coefficient.

Given x, w,, and b, in eq. , we write X = %(x, 1) € S and W, = (w,, b,) € R¥*L, Therefore,
we have ReLU(w,  x + b,.) = v/2ReLU(w, %) and the NN function can be rewritten as

i ReLU(W, %).

By replacing the expectation over random initialization of W by w(¢), we define the instantiations
of H* at the kth iteration by H(k), where

aws

1 _ ~ m
H;j(k) = EXZXJ' Z %7 %o, () >0,%] W, (k) >0} (25)
r=1

where 1 is an indicator function.

B THE MATRIX H*> IS SYMMETRIC AND POSITIVE DEFINITE

Proposition|[I]states that the matrix H> defined by eq. (9) is symmetric and positive definite. While
the symmetry of H* is immediate from its closed-form expression, the fact that it is positive definite
requires a more detailed analysis. The proof idea is similar to that of Theorem 3.1 of (Du et al.|
2018)), in which the matrix H® is associated with a 2-layer ReLU NN without biases. However, our
H is associated with a 2-layer ReLU NN with biases. While (Du et al., 2018) requires that no two
training data points are parallel, we allow the existence of x;, = —X;, for some ¢; and 2. To deal
with this case, our proof employs a pair of nodes denoted by x;, , X;,.

Proof of Proposition[I] For a measurable function f : R? — Rt we define a norm of f as

17113 = Ew~nvo.n2m [LF(W)13 4

and let H be the space of measurable functions such that || f||,, < oc. It can be shown that # is

a Hilbert space with respect to the inner product (f, g)% = Ew~nr0,x21) [f(W) g(w)] (Du et al.,
2018)). For each x;, 1 < ¢ < n, we define the function ¢; by

d)l(w) = ii]]‘{WTxiZO}7 W € Rd,

Then, ¢; € H for all i, and HY = (¢;, ¢;)3. We prove that H> is positive definite by showing
that {¢; }_, is a linearly 1ndependent set in H.

To show {¢;}7; is a linearly independent set, we show that
a191 (W) + -+ andp(w) =0 for almost every w € R? (26)

implies that a; = O for 1 < ¢ < n. We fix some 1 < 7; < n and, without loss of generality,
assume that x;, = x“ﬂ Define the set D; = {w € R | w'T x; =0} forl <j<n Asa

2Otherwise, 1f such i2 does not exist, we can add an element ¢,, 41 associated with —x;, to {¢; }i—1. If we
can show {¢; }7! is linearly independent, then so is {¢; }7;.
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result, D;, = D;,. Since each D; is a hyperplane passing through the origin and D;, # D; for
any j # i1,49, 3z € D;, such that z ¢ D; for any j # i1,i2. For a positive radius R > 0, let
Br = B(z, R) be the ball centered at z of radius R. Define a partition of B into two sets denoted
by BE and By, (possibly missing a subset of B, that has zero Lebesgue measure), where

B ={weBr|w'x; >0} ={weBg|w'x;, <0},
Bp={weEBr|w'x; <0} ={weBr|w'x;, >0}
Since Dj; is closed for each 1 < j < n, Bp is eventually disjoint from D; as & — 0. Hence, we

have
I R _ Lo,
fm, sup. (6j(2) = ¢5(W)| =0, j#ir,ia,
where || denotes the Euclidean distance. Then, for any j # i1, é2, we have

. 1
iy g i = o0 i e [ oy = 0,60,

R—0 |BR| By

where || denotes the Lebesgue measure of a set. Consequently, we find that

1 1
lim | — ¢j(W)dw — —— ¢j(w)dw | =0, J # i1, 02
A0 <|B§| Bf; ! |Brl /B !

Now, consider the integral of ¢;, and ¢;,. We have

lim %/ i, (W)dw — / @i, (W)dw|= lim L—i—/ iildw—%/ 0dw|= x;,,
=0\ |Bg |/ 5 |Br /55 R0\ |Bg|/B;; |Bg| /B,

. 1 1 1 - -
lim T/ ip (W)dw — / Oip (W)dw|= hm — Od —7/ Xi, dW|= —X;,.
R=0\ |Bgl/ By |Brl/sj, o\ |Bgl/B |Brl/ 55

By applying these limiting expressions to Z?:
Since the last entries of both x;, and %;, are 1/v/2, we have a;, = a,. Thus, we have a;, = 0
because x;, # 0. Since 7; is arbitrary, we showed that a; = 0 for every 1 < j < n, and the

statement of the proposition follows. O

L ¢ (w) = 0, we find that o;, X;, — a4,%;, = 0.

It is clear that the proof of Proposition [I]is also true if we assume that each entry of w, is initialized
from an iid sub-Gaussian distribution with zero mean and whose support is the entire R, and we
update the definition of H* according to eq. (9).

C THE CONVERGENCE OF NEURAL NETWORK TRAINING

In this section, we develop the theory for learning a NN with a general loss function ®p defined by
a positive definite matrix P in eq. (6). In particular, we prove Theorem [I} which states that provided
the learning rate is sufficiently small, the weights are initialized without too much variance, and the
NN is sufficiently wide, then the residual in the first few epochs can be described with the matrix
H*>P.

While our proof is similar to that of (Su & Yang| 2019)), the argument is distinct in three essential
ways: (1) Our proof applies to any loss function defined by a positive definite matrix P, which
requires us to use a different Hilbert space (R, (-,)p). (2) While the result in (Su & Yang, 2019)
bounds the residual using the minimum eigenvalue of H*, we estimate the residual as a matrix-
vector product of (I — 2pH>P)*y, which allows us to analyze the training error using all eigen-
values of H>*P. (3) We use a different NN function that incorporates the bias terms and we do not
assume that we initialize the weights in a way that makes Ny = 0.

Before we prove the theorem, we define some useful quantities. Let A be the set of indices such
that the coefficients a, are initialized to 1 and let B be the set initialized to —1. We then decompose
H(k) into two parts, where H(k) is defined in eq. (23], so that H(k) = H* (k) + H~ (k) with

H;;(k) = %5(:59 Z 1{@.(;@)7&120}’ Hi;(k) = %5(:5(3 Z l{wr(k)quzo}-

reA |\ w,(k) %;>0 reB W, (k) %;>0
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Similarly, we define two other matrices H (k) and H™ (k) as
. 1 1. - 1 _+.
H;;(k) = Exi Xj Z ]1{ ~,,.(k+1)chizo}’ H;; (k) = Exi Xy Z l{w,,.(kﬂ)ﬂzizo}-
reA W (k) T %;>0 reB w.. (k) T%;>0

Unfortunately, H* (k) and H™ (k) are not necessarily symmetric and they differ from H* (k) and
H~ (k) up to sign flips. To simplify the notation later, we also define two auxiliary matrices L(k)
and M (k) as

L(k)=H*(k)—H"(k), M(k)=H (k) —H (k).

We now prove that I — 2nH(k)P is close to the transition matrix for the residual, up to sign flips,
e,y —u(k+1)~ (I-2nH(k)P)(y — u(k)).

Lemma 1. Let z(k) = y — u(k) be the residual after the kth iteration. For any £ > 0 and n > 0,
we have

(1= 20 (B (k) + B (1)) P) 2(k) < 2k + 1) < (1= 20 (B (k) + H-(k)) P) 2(k),

where the inequalities are entry-wise.

Proof. First, by the gradient descent update rule, we have

(4 1) — () = _naq>P(v~V1(ka);§T. Wi () _na;vgvli) 8(1)5 éU)’

where the (d + 1) x n Jacobian matrix is given by

ou(k) V2a, . .
= x11 *T e Xn]l x'w ) 27
w, = v b w20 (&I, (020 ] @7)
and the gradient of the loss function ®p defined in eq. (6) with respect to u is given by
0Pp(u
—;f ) — Py~ ulk) = —Pa(). (28)

which is a vector of length n. Hence, it follows that

V2na, < ST
NG > (Pa(k)), % %pLizrw, (10
p=1

Wk 4+1)T%; — W, (k)% =

where (Pz(k)),, denotes the pth element of Pz(k). Using the property of ReLU that

(b—a)ligsoy < ReLU(b) — ReLU(a) < (b — a)L{p>0y, a,beR,

we have
ReLU (W, (k + 1) T%;) — ReLU (W, (k) ' %;)
V2na, T
< NG ;(P (k) Xi %p Lz, ()03 LixT o, (et 1) 20}
and

ReLU (W, (k + 1) T%;) — ReLU (W, (k) ' %)
\/ﬁnar - T~
> NG > (Pa(k)), % % Lizrw, (1) 203 LixT w, (k)20

p=1
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Hence, we have

(u(k + 1)), — (u( Z (ReLU(W,(k +1)"%:) — ReLU (W, (k) "))
.A

a\s

fz (ReLU(W, (k +1)"%;) — ReLU(W, (k) '%:))

reB

ZZ (Pz(k)), % &p Lz w, )20} Lix] w, (1-+1) 20}
reAp=1

2n " T~
+ DD (Pa(k), & ZpLisgw, (6)20) LxT w, (>0}
reBp=1

=20y (5H(8) + Hip(k)) (P2(h)), -

3\3

This proves the first inequality. The second inequality can be shown with a similar argument. O

In particular, if there is no sign flip of the weights, then H(k) = H* (k) + H (k) = H(k) and
the inequalities in Lemma [I] are equalities. Next, using Lemma|[I] we can derive an expression for
y — u(k) using H*, up to an error term.

Lemma 2. For any 0 < 1 < 1/(2M2n) and any k > 0, we have that
y —u(k) = (I 29H*P)" (y — u(0)) + (k). (29)

where

k—1
le(®)llp < 20 (I = H®)P||p || (T - 20H*P)" (y — u(0))||

(30)

k—1

+27)  (IM®)P|lp + [[LEPp) Iy — u()]p -

t=0

Proof. For k > 1, we define r(k) by
v(k) = y — (k) — (T 20H(k — 1)P) (y — ulk — 1)), G1)

Then, by Lemma [T we have

[r(B)llp < 2n([M(k—1)Pllp + Lk - DP|p) ly —ulk —1)|p . (32)

Note that eq. is a first-order non-homogeneous recurrence relation for y — u(k), which has an
analytic solution. Thus, we can expand y — u(k) for k > 1 as

y —u(k) = (I-2nH(k = )P)--- (I - 2nH(0)P)) (y — u(0))

k—1 (33)
+r(k)+ ) (I—29H(k — )P)--- (I - 27H(t)P)) r(t).

t=1
Moreover, we can write the product of the matrices as (Su & Yang| 2019)
(I-27nH(k —1)P)---(I—2nH(0)P)
=(I - 2nH®P)* + 2n(H*P-H(k—1)P)(I-2nH>P)*~!
k-1 (34)
+2n Z (I-2nH(k-1)P)---I-2nH(t)P)) H*P-H(t— 1)P)(I—277H°°P)’5_1

t=1
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Combining eq. (33) and eq. (34), we obtain eq. (29) where
(k) = 29(H*P —H(k—1)P)(I-27H*P)*~ (y—u(0))

k—1

+21)_(I-27H(k—1)P)- --(I-27H(t)P) (H*~H(t —1))P(I1-2pH*P)' " (y —u(0))
t=1 -

+r(k) + Y (I-2pH(k—1)P) - - - (I-2nH()P)r(t).

Finally, we note that

[BHZH ()P 2],

A (H(P) = Aax (PYZH(OP2) = [PY2HOPY2] = sup

£cr™\ {0} €1,
P/2H(t)P¢ H(t)P¢
— sup H 1/2 H2 — su || ( ) HP — ||H(t)P||P,
cermfoy [PV, cermiop  IICllp
(35)
and that
H(tHP H(tP HtH)P P
ecrn\(o}  l€llp ecrn\(o} [HOPE, P&, [€lp

We can then bound ||H(t)P||, using Mp defined in eq. (8) and ||H(¢)||» as

[H®P[lp < M [H()|, Mp < ME\/HH(t)Ill (1), < Mn.

By requiring that ) < 1/(2M3n), we have Apin (I — 2nH(¢)P) > 0 for all t. Hence, I — 2nH(¢)P
is positive definite in (R™, (-, ) p ), and according to eq. (33)), we have [T — 2nH(t)P||p = Amax(I—
2nH(t)P) < 1. The upper bound in eq. follows from the triangle inequality and our estimate
onry, in eq. (32). O

The residual terms in Lemma [2| can be made small by controlling | M(¢)P|p + ||L(t)P||p and
[ (H(0) — H(t))P||p. Their upper bounds are given in Lemma 3] First, we define
Sz(t) = {1 <rs<m | ]l{Wr(t’)TiiZO} 7é ]l{Wr((])TiiZO} for some 0 < v < ﬁ}

to be the set of indices of the weights that have changed the sign at least once by the kth iteration.
Lemma 3. For all ¢t > 0, we have

4n n
max (IM(P]p + [LEPlp , |E(0) ~ HOPlp) < | 2 S5 (1) 2
i=1

Moreover, for any 0 < § < 1, with probability at least 1 — 4, we have

(B~ H(O)P[p < 20430 22,

Proof. First, we have

2 2 2

p < Mp [M(t)]; < Mp ||M(t)[|5
IM(t)P||p < M,

My

<2

i=1

MAin &
PENT S0P
=1

m2

D

2
(Z ’]l{WT(t)TiiZO,VYIT(t)TiPZO} - ]]-{v”vr(t+1)7>~ci>O,v?rr(t)Ticp>O}|>
p=1

reA

n

IN
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The estimate for ||L(t)P||f> is exactly the same and obtained by replacing A with 3. We also have

I(H(0) — H(1))P|[p < Mp [H(0) — H(t)||3 < M |[H(0) - H(®)| 7

2
M4 n n m
< mil; ZZ (Z 11w, (0) T %:>0,%,.(0) "%, >0} — l{v?/r(t)Tii>O,v?/r(t)Tip>0}>

i=1p=1 \r=1
4 n n n n

< S S S0 IS0 < MBS (218,00 + 215, 00P)
i=1 p=1 i=1 p=1

:4Ml‘§ni‘s

This proves the first inequality. Since H;;(0) is the average of m iid random variables bounded in
[0, 1], by Hoeffding’s inequality (Hoeffdingl |1963)), for any ¢ > 0 and any 1 < i, j < n, we have

o 212 t?
P (m|Hy;(0) — H;Y| > t) < 2exp (—m> < 2exp (—m) : (37)
Sett = /mlog(2n2 /). With probability at least 1 — §/n?, we have

Hence, by a union bound, we know that with probability at least 1 — &, we have

[~ H(O)], < [~ H(0), < 20/ 220

The last estimate follows from the definitions of Mp (see eq. (§) and eq. (36)). O

Now, we state and prove our initial control of the decay of the residual.

Lemma 4. Lete > 0,5 > 0,0 < § < 1and T > 0 be given. There exist constants C,,, C’. > 0
such that if 0 < 7 < 1/(2M3n) and m satisfies

2
m > C'm@ </\— ( KQA;@”) n 174T4e4>

and

4,2 2712
m>C! Mpn?log(n/é) <)‘52 (1 + K A(?P”) Jr7]2Tzez> ’

2
then with probability at least 1 — §, we have the following forall 0 < k < T*

y —u(k) = (1— 2/HP)* (y —u(0)) + e(k),  [le(k)]p <« (39)

Proof. Setd’ = §/3. Forany R > Oandr = 1,...,m, since w,.(0) " x; ~ N(0, %), we have
P (|w,.(0)'%;| < R) =E[1 2R
([ (0) %] < B) = B [Lgpsr. o712 ] <

By Hoeffding’s inequality (Hoeffding) |1963), for any ¢ > 0 we have

2mR 22 t? )
(Z (@, (0)Tx:|<R} = \/» +t> < exp (_m> < exp <_m> ) 1<i<n. (40

r=1

Thus, if we set t = \/mlog(n/d’) then we find that with probability at least 1 — ¢’ /n we have

m
2mR R log (n/d’

r=1
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By a union bound, we have with probability at least 1 — ¢,

2 2
Ly gL R log(n/d")
> <Z 1{|v~v7~<0>ﬂzi|sm> < 4m’n <ﬁn * m

i=1 \r=1

By combining this with Lemma|[3] we have that with probability at least 1 — 24”,

2
AMEn o~ (< R log(n/é’
mr2> Z(Zﬂ{lv‘vrmﬁiilm}) < 4Mgn (ﬁn+ g(m/ )>, (41)

=1 \r=1

and

log(2n/d") .

[(H> — H(0))P||p < 2Mpn (42)

Since the ith entry of u(0) has mean 0 and variance < k2, we have E[(u(0))?] < k2, where (u(0));
is the ith entry of u(0). Hence, we have E[ [u(0)[|p] < MZnw?. By Markov’s inequality, with
probability at least 1 — ¢’, we have

[u(0)[lp < kMp\/n/d',  [ly =u(0)llp < llyllp +rMp/n/d" (43)
By a union bound, we know that egs. (1) to hold with probability of at least 1 — 36’. The

theorem now follows using induction, where the base case when k£ = 0 is obvious. Assume eq.
holds fort =0,...,k — 1, where 1 < k < T'. Then, we have

k—1 k—1
20> lly —u®)lp <27 [(1=20X0)" [ly — u(0)llp + €] < A" [ly — u(0)[[p+21Te, (44)
t=0 t=0

where the first inequality follows from the fact that I — 2nH®P is positive semidefinite in
(R™,(,-)p) with the maximum eigenvalue being 1 — 27\, and the second inequality follows by
bounding the power series. By the definition of \g, we have

k—1 k—1
21 || (@—20E=P) (v —u(0))|| | <20 )" (1=2120)" Iy = u(O)l]p < 25" lly = u(0)]p -
t=0 t=0

(45)
By Lemma[2]and 3] we have
y —u(k) = (I—29H*P)" (y — u(0)) + (k)

with )
le(B)llp < Ao~ [[(H(0) = H™)P|[p |y — u(0)[/p

AMin & (46)
\l PnZIS 2 (A0t ly = u(0)|lp +nTe),
i (1))

where we used the fact that |S;(¢)| is a nondecreasing function of ¢ and the triangle inequality
I(H® ~H(#)P|lp < [(H(0) ~ H*)P|p + [[(H(t) ~ H(0))P||p. Here, we also combined

Aot [(H(t) — H(0))P|lp |ly — u(0)]|p with the last term on the right-hand s1de of eq. (30) and
applied Lemma[3] eq. @4), and eq. (43)) to obtain the last term on the right-hand side of eq. [#6). To

control |S;(k)|, we ﬁrst bound the change of the weights. Forany 0 <t <k —1and1 <r <m,
the change of weights in one iteration can be bounded by

a‘I)P( )

ow,
H du(t)

o, | PO~ ll2<m/ Me lly = u(t)

where the inequalities follow from eq. (27) and eq. (28). Hence, the total change of the weights can
be bounded by

¥ e+ 1) = 0, = |

W, (1) = W ()], < nMP\/ Z ly —u(t)llp < Rr, (47)
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where Ry = Mp /7= (g ly — u(0)||p + 2nT€). Recall that S;(k) is the set of indices of
weights that have gone through at least one sign flip by iteration k. Thus, if » € S;(k), we have
[Wr(t) = Wr(0)]l, = |W,(0)T%;| for some 0 < ¢ < k as the sign flip leads to [W,(0)"%;| <
|W,-(0)T%; — W,(t) "%;|. This gives us

1Si(k)| < [{r € [m] : |w,(0) | W, (t) — Wy (0)]|, for some 0 <t < k}| 48)
S’{re[m]:’ﬁvr <
where [m] = {1,...,m}. Hence, there exists a constant C' > 0 such that
log(2n/d")
ekl < 2083my[PEEL Gy o)
log(n/d")
M2 e Sy — T
+8Mpn ( N ly = u(O)llp +nTe)
< 2M1% 10g(6n/6 ( )
m
1
F8MEn | = Mp, (a5t | My 20 ) 4 anre | 1/ 208 BR/0)
f ™ 0 n
—_————
As
As
1 3
Ao C |1+ &kMp 5 +nTe
Ay
(49)

where the first inequality follows from eq. @I), eq. , and eq. , and the second inequality
follows from eq. (#3) and eq. @7). Flnally, eq. 39) follows from the way we define m. By taking
C,, large enough, we guarantee that 2ManA;,8ManAs Ay < €/3. By taking C! large enough,
we guarantee that 8MAnA; A4 < €/3. Hence, eq. follows. O

Lemma [ gives us an estimate of the residual y — u(k) in terms of the initial residual y — u(0).
However, in analyzing the frequency bias, we hope to express the residual in terms of y only. This
can be done by controlling the size of u(0). First, we note that the proof of eq. @]) does not rely
on the assumptions on m in Lemmad] Hence, it holds for any n,m > 1,k > 0,0 < ¢ < 1, and
positive definite matrix P. Now we are ready to prove our first main result Theorem [T}

Proof of Theorem([I] By eq. , with probability at least 1 — §/2, we have
|@=nEP) u(0)|| < u(0)p < £Mp/20/5. (50)
By taking x < q/é/Tn/(ZMﬂ, we guarantee that
H(I - nH“P)ku(O)HP < e/2.

By the way we pick « and m, for some constant C’ > 0 that only depends on d, we have

k2 Man
0

1+ <.

Hence, by taking C> in eq. (I3) large enough, we guarantee that m satisfies the assumptlons in
Lemmaw1th €, k, T, and 0 to be €/2, K, T, and 0/2, respectively. Then, we have eq. (39) is true
with probability of at least 1 — 6 /2, for which ||€(k)||p < €/2. The result follows from the triangle
inequality and union bound. O
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Notably, there are other initialization schemes that allow us to avoid using . One of the examples
is to initialize the weights at odd indices wo;, 41 and agpy1 randomly and set Wop 0 = Wapt1,
(2p4+2 = —0A2q41, assuming m is even (Su & Yang, 2019). This initialization scheme guarantees
that u(0) = 0 and hence we do not need to introduce & to control the initialization size ||u(0)||p.
In addition, if we assume that each entry of w,. is initialized from an iid sub-Gaussian distribution
with zero mean and whose support is the entire R, then since H* is still SPD (see the remark at
the end of Appendix [B) and the Hoeffding’s inequality holds, the proof does not break down and a
result similar to Theorem [Tl can be shown.

Following the same steps of proof, we can study the case when the gradient descent steps are slightly
perturbed. That is, Suppose we perturb the output of the NN by du; at the jth iteration. Then, we
expect that the residual of the NN at the kth iteration is approximately

y —u(k) = (I-2nH>®P)--- (I - 2npH*P) (I — 2nH>*P) y + duy) + dug) + - - - + duy,

k
= (I-2nH>®P)* Z I—27H®P)"7 6u;.

Since the maximum eigenvalue of I — 2npHP is less than one, we can then control the errors in
this approximation using arguments similar to previous lemmas.

In Theorem [I] we showed how the parameters of the NN should depend on the desired maximum
error €. Sometimes, it is also very useful to understand the dependence of ¢ on the parameters
1, T, n,m, etc. Therefore, we present the following result to show this dependency.

Theorem . In eq. , suppose that wy, . .., W,, are initialized iid from Gaussian random vari-
ables with covariance matrix k1, by, . .., by, are initialized to zero, and a1, . . . , 6y, are initialized
iid as +1 with probability 1/2 and —1 otherwise. Suppose the NN is trained with training data
(x4, ;) for 1 < i < n, loss function $p in eq. @ for a symmetric positive definite matrix P, and
the training procedure is the gradient descent update rule eq. (7)) with step size n < 1/(2MPn) Let
N be the NN function after the kth iteration and u(k) = (/Vg 1)s- s Ni(xy)), where Ny is the
initial NN function. Let a probability of failure 0 < 6 < 1 be given. Then, there exists a constant
C > 0 that depends only on the dimension d such that with probability > 1 — 0, the following
statement holds: for any k > 1, if we define €, by

e = max [y —u(t) - (I-20H*P)'y|p,

then we have

Hy —u(k) — (I- 277H°°P)ky||P < 2M3n @/\510 (1 + £Mp 3;)

1 [n [ _ [3n log(3n/0)
2
X ()\610 <1 + kMp ﬁ) + Wk6k> + kMp (;1

Proof. The result follows immediately from eq. (49) and eq. (50). O

While this paper is primarily concerned with learning a continuous function using loss functions that
are adapted from MSE, we briefly discuss the changes that are needed to study classifiers trained
by cross-entropy. If the classification task has p classes, then our NN has p outputs, each of which
is then passed through a softmax layer and represents an estimate of the likelihood that the input
belongs to the corresponding class. More information on the NN architecture and the cross-entropy
loss function can be found in (Kurbiel, 2021). Let N;(x; W) be the jth entry of the outputs of the
NN and let u;(x; W) = softmax(N;(x; W)), 1 < j < p. Let g;(x) be the ground-truth of the
jth entry of the outputs and let z;(x; W) = g;(x) — u;(x; W) be the residual. Assume we use the
gradient flow and have access to data on the entire domain. Then, to derive a formula analogous

10
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to eq. ([2), for each fixed x, we have
dzj(x; W) duj(W) Ep: duj(x; W) dNi(x; W)

dt N dt ~  dN; dt
B 72 du] X; W ON; (x; W) dW Z du;(x; W) ON; (x; W) [ OL(W) "
T & N; oW dt & N OW OW
P [ duj(x; W) 8/\/ (x; W ON (x'; W) ,
;< : Ni Z/sd 1 (_Zl SWITw oW ) W) )

where L is the cross-entropy loss function computed as an integral over S%~! and in the last step
we used the fact that (d/dN; ) L(x'; W) = uy (x'; W) — gir(x') = —z4(x'; W) (Kurbiel, 2021).
Hence, eq. (2) now becomes

=K, /1 (x,x"; W)
where we also know that (d/d/\/')uj (x; W) = (3 W)(1g—j3 — uj(x; W)). Again, we define
Hfoz, as the discretization of K; ;» in expectation over random initialization of W. Note that H?S
coincides with H> that we used extensively in this paper. However, the entries of H?S, might dlffer

with H* in signs. This potentially causes difficulties in analyzing the spectrum of H . Now, by
the formula above, we expect that the residual can approximately be written as

zj(k+1) —z;(k) = [gj(X) —uj(k+ 1)) = [g;(x) — u;(k)]

_nz (uz ]l{z =i} 7]1{74-:J_}]T — uj(k)) o Z (Hfﬁ,PZy(lﬂ))) 5

i'=1

(52)
where ‘o’ is the Hadamard product, w;(k) = [uj(x1; W(k)), - ,u;(x,; W(k))]", and
zj(k) = [zj(x1; W(k)),- -+, zj(xn; W(k))]T. Suppose we define the vectorized residual z =

[z],... 7z];r]T and define the np x np block matrix J(k) by J(k)(int1):(it+1)n,(int1):(+1)n =
diag (uz(k) o ([Tgimjy,- - ]l{i:j}]T - uj(k))) fori,j =0,...,p — 1. Let H™ be the np x np
block matrix such that H, 1.+ 1yn, (#n+1):(i7+1)n = Hig fori, i’ =0,...,p—1. Then, eq.
can be written compactly as

z(k +1) —z(k) = —nJ (k)H>* (I, ® P)z(k), (53)

where ‘®’ is the Kronecker product. Frequency bias can be analyzed by studying the dynamics of
z(k) based on eq. . However, the fact that J depends on k is expected to add complication to the
analysis.

D THE THEORY OF FREQUENCY BIAS WITH AN L2-BASED LOSS FUNCTION

In this section, we prove the results stated in Section ] where we are concerned with the frequency
bias behavior of NN training when using the squared L? norm as the loss function. We theoretically
show the frequency bias phenomena in this setting, up to a quadrature error.

D.1 A CONSEQUENCE OF THEOREMT]

Given a bandlimited function g : S~! — R with bandlimit L, we can uniquely decompose g into a
spherical harmonic expansion as g(x) = Z(%L=o ge(x), where g¢(x) € H. Here, H is the space of
the restriction of (real) homogeneous harmonic polynomials of degree ¢ on S?~!. That is,

N(d,e)

X) = Z Qe,pYz,p, ﬁz,p = ‘/gd ) g(X)Y-[’p(X)dX.
p=1 -

11
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where N (d, /) is given in section |2 I and Y , are the spherical harmonic function of degree ¢ and
order p. As a consequence of Theorem [I] we can consider the NN training error with the squared
L2-based loss function.

Proof of Theorem[2] By Theorem [l] for every k = 0, ..., T, we can write

lu(k) =yl = [@A-20H*De)*y || +e3(k),  les(k)] < [le(R)l|, < e. (54)

C

To estimate the first term, we first note that the matrix I — 2nH>D,. is positive semidefinite in
(R™, (-,-)e) and ||T —2nH>*D.||, < 1 — 21X, (see Theorem . Since g(x) = ZLO ge(x), we

have
L L
(I - 2nH>*D,)"y = Z (I - 2nH*D,)"y*, y = Zyé,
=0 =0
where y¢ = [g¢(x1), ..., 9¢(x,)]" € R™. By the Funk—Hecke formula and the quadrature rule, we

have
(HooDcy Z K Xpa X;)ge(X;) / K (Xpa £)ge(§)d€ + ep 0= Uﬁgl(xp) + ep 05

where ezé is a quadrature error (see eq. (16)). Therefore, in vectorized form, we have

H>*D_ .y’ = ,upy + e¢ or, equivalently, (I — 27)H°°D )y = (1 —2nw)y* — 2ned, where
el = (ei{Z7 S en Z) By applying I — 2nH>D,. to y* for k times, we find that
k—1
(I-20H>D.)*y" = (1 2np0)" y* — 20> (1 — 2np)" (I-27H®D, )" ef .
t=0
5

The second term, sg, can be easily bounded from above to obtain

el < 2n e, S (1200 :*Ilezll
t=0

The inequality above shows that (I—2nH>D,)*y” is close to (1 — 2nu,)" y*. We define

L
Z (1- 277#17 e
(=0

to be the quantity in the statement of Theorem[2] which measures the accuracy of approximating the
eigenvalues and eigenvectors of H* D, using the eigenvalues and eigenfunctions of the continuous
kernel K°°. Hence, we have

L
> (I-27H>*D,)
=0

C Cc

+ée9. (55

c

|@—2nH*D.)"y|| =

L
> (-2 y*
=0

Using the triangle inequality, we have

lea] < Z |€2||

(= 0
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Recall that Z? 1Ci = Ad, the surface area of S9!, Next, we can write
T

L
( (1—2npy) ye) Dc< (1—2nue)kye>
= =0

T
(1—2np5)" (1=2np0)" y? Doy’

L

(1—2np0)"
=0

Mhﬂﬁh

(1—2np;)" (1=2npe)" (/d 95(&)ge(§)d€ + e?,e)

Y4

Il
o

- 1M 11

L
k c
(1—2np20)° ||gz||Lz+Z (1=2n;)" (1=2np0)" €55, (56)
7=0 ¢=

o~
i
[

El(k)

where we used the fact that g; and g, are orthogonal in L?(S?~1) for j # ¢. Combining eq. .
and eq. (56), we can write

L
[@—20H>Do)*y |, = [ D (1—20)* llg; |7 + e1(k) + €2, (57)
=0
where
e (k)] < ZZ (1—=2np5)" (1=2np0)" €5 ] .
7=04¢=0
The result follows from eq. (54) and eq. (57). O

Similarly, suppose we use Theorem [I[, we can write down Theorem [2|in a form such that €3 (k)
depends on the parameters of the NN.

Theorem . Under the same setup and assumptions of Theorem let P = D, and Mp = \/Cax-
If g : ST1 — R is a bandlimited function with bandlimit L and 1 — 2np, > 0 forall 0 < £ < L
(see eq. (12)), then with probability > 1 — 6 we have

L
ly—u(k)lle=y| > (1=20u0)* gl 7> +e1 (k) +eat+es(k), 0<k<T, (58)
£=0
where |e3(k)| is bounded by eq. (51)), and &1 (k) and e satisfy
L L L
k k
le1 (k)] < > 2 (1=2np5)" (1—=2npe)" €5 4|, lea] < ZZ; e X, =9
=0 = -

We remark that the left-hand side of eq. (I7) can be rewritten as

n n

ly—uk)lle = | D cily —us(k)? = | D cilg(xi) = Ni(xi)?

i=1 i=1

= llg = NllZs — Bel(g — M)?),

where N}, is the neural network at the kth iteration. Hence, eq. (17) can also be written as

L

lg — Nill 2= Z (1=2n00)*% | gel|2 2 +e1 (k) +e2+es (k) +ea(k), (59)
=0

where €1, 9,3 are as in Theoreml and |e4(k)] < +/|Ec((g — Nk)?)|. Moreover, we assumed

g is bandlimited, and as we see in Proposition 2] the spherlcal harmomc coefﬁc1ents of N}, decay
fast as the frequency ¢ — oo. This shows that the size of |¢4(k)| can also be controlled by 7, ¢
in eq. (I8). Therefore, we derived a frequency bias statement of the generalization error with respect
to the uniform distribution on S?~1.

13
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D.2 FREQUENCY BIAS UP TO AN APPROXIMATION ERROR

Theorem shows that we theoretically have frequency bias up to the level of quadrature errors 1 (k)
and e9. If the quadrature errors are large, then we may not observe frequency bias in practice. Here,
we show that the quadrature errors can be made arbitrarily small by taking enough samples in the
training data. Recall that our quadrature rule satisfies eq. (18).

Next, we pass the quadrature error to the approximation error, which may not necessarily be tight.
However, this allows us to use the existing theory of spherical harmonics approximation to show the
decay of quadrature errors.

Lemma 5. Let f : S9~! — R be a function and dist(f, 11¢) = min | f — h|| ;. We have
helly

[, Hee =3 cirtx

i=1

< 29,0 | e + 2Aqdist(f, 117) (60)

for any integer £ > 0.

Proof. Let hy = argmin || f — hl| .. By the triangle inequality, we have
heId

| 1(©)dg =D aif(x)
=1

[ @ [ nerae]+| [ ey = eunxo| + 3 e () = £

<Agdist(f,117) + Y e el oo + Aadist(f, 1) < 290 | f o + 2Add1st<f, 13),
where we used the fact that ¢; > 0 fori = 1,...,n and the fact that ||hg|| oo < 2 f|| - O

<

Next, we focus on controlling the minimum approximation error dist( f, H?) on the right-hand side
of eq. (60). To do so, we prove the following lemma.

Lemma 6. Let f;;(€) = K™ (x;,€)g;(€) and g;,,(€) = g;(€)g,(€). Then, for a constant C' > 0
that only depends on d, we have

dlSt(fmaHZ)<C E ”J”Loov ]-SZSTLaOS]SLa

CJ—HU

dist(g;, I17) < 195l oo N9pll e, 0= jp <L,

forall ¢ > 1.

Proof. For1 < a < b < dwherea,b € N,andt € [—m, ), let Q4+ denote the action on Sd-1
of rotation by the angle ¢ in the (z,,zp)-plane. For an integer o > 1, we define the operator on

functions on S4~1 by
abt_(I T(Qabt)) )

where T(Q) f(x) = f(Q~'x). If f € C(S?1), then we define for ¢ > 0 that

walfit) = max  sup 1A% b0 -

By (Dai & Xul 2013 Thm. 4.4.2), we have
dist(f, H‘Z) <c wa(f;ﬁfl), £>1,a>1,

where ¢; > 0 is some constant that only depends on «. Then it is sufficient to bound wq, ( f;5; é‘l)
and wq (gjp; £1) to finish the proof.

First, we aim to bound the term dist(f;;, II?) where f;;(£) = K*°(x;,£)g;(€). We fix 1 < i < n,
1 <a <b<dwherei,a,b €N, and choose 6 such that |§] < ¢~1. We have

18 0Fiill o = [[£:0(6) = £s(Qb o) -

14
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We then define
SK®(8) = K™ (xi, Q5 08) — KX (x1,€),  09;(8) == g;(Qy} 4€) — 95(8).

We then have
1:(6) = Fis( Qo8| =1 ki, €)5(€)— (K (1, €)+ 5K (€)) (05(6) +695(€)) | .
< 6K (8)(9;(8) + 095 (€l oo + 1K (%, £)09; ()| v -

We control the two terms separately. First, to control the second term, we Write

1K (x5 €)09; (&)l oo < M2 (%, &) e [1995(€) ] e < Hﬁgj( M pee s (62)

based on the definition of K in eq. (IT). For some constant c; > 0 that depends only on d, we
have

169 (€l e = [| 8,095 (€ o < 207" 1 Dapgs(€)ll o < 02 ||gJHLoo’ (63)
where D, j, = 2,0, — 250, and the two inequalities follow from (Dai & Xu, 2013, Lem. 4.2.2
(iii)) and (Dai & Xu| 2013| Lem. 4.2.4), respectively. Next, we control the first term of eq. (61) by
writing
1055 (€)(95(€) + 395 (N < 10Kl [03(Qiha8)| | = 1K@l sl -

(64)
We fix € and define £’ = Q;}),gé. It follows that

6Kzoo(€) = Km(xiugl) - KOO(XZ7£)

- % [(x; & +1) (n—arccos(x; €)) — (x] € + 1) (r—arccos(x; £))]

- % [x] (¢ — &) (m—arccos(x] €)) — (x; & + 1) (arccos(x; &) —arccos(x; ¢'))]
Next, by the triangle inequality for angles, we have
|arccos(x;r£) - arccos(x;rﬁ')| <o)<t
Since arccos is monotone and |(d/dt) arccos(t)| > 1 for all ¢, by the fundamental theorem of
calculus, we must have
|x; & —x; €| < |arccos(x, &) — arccos(x; &) < €71
As a result, we have

PEF(E) < = [e e 4207 = W;%*l. (65)
By eq. (64) and eq. (63), we find that
o +2
1655 (€)(9(€) + 095 €D e < 207 g5 v - (66)

4m
Putting eqs. (61) to (63) and (66) together, we obtain

2
o(©— (@) < (e + 52 ) 7 gl

||Aé,b,9fij||L°° = ’ An

Since a, b, and § are chosen arbitrarily, this bound also holds for w; ( fi;; 1.

Second, we aim to bound the term dist(g;,, II¢) where g;,(&) = g;(€)g,(&). As before, we fix the
indices a,b € N where 1 < a < b < d and 6 such that || < ¢~!. Similarly, we define

6g;(&) = gj(Q;zl,ﬂg) —gi(§), dgp(&) = gp(Q(:,(lhgg) — 9p(&)-
By eq. (63), we have
l9i90(©) = 9190(Q71,68) | . = 19 (©)0(&) = (9:(&) + 39;(€)) (9(&) + 9 (€D

< ||6gj(§)(gp(£) + §9p(£))||Loo + ||gj<£)5gp(£)”Loo (67)
j+p
<P 2 gl gyl

Since a, b, and 6 are arbitrary numbers, this bound also holds for w1 (g;,; £~1). O
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Using these lemmas, we can prove that Theorem [3]asymptotically controls the quadrature errors.

Proof of Theorem[5] First, we control €1 (k) as

L
<22 (2w 1951 90l + 2406252 g1 ||g“x>

where the third and the forth inequalities follow from Lemma [5| and Lemma [6] respectively. The
final upper bound for |e; (k)| holds since Zf:o Eﬁ:o( j +p) = O(L3). Next, there exists Cy > 0
such that we can control €2 by writing

L
VA j+1
lea] < Zf max |ef;| <> » 2.0 95| oo + 244C 7= [l g; || L

1<i<n
j=0 "V

Zu ( Ly, e) max g1l .

where the second and the third inequalities follow from Lemma [5]and Lemma 6] respectively. The
proof is complete.

Proof of Corollary[I} By Theorem [3| it suffices to show that maxo<;<r, [|g;l|; < Cllg| - for
some constant C' > 0 that does not depend on g. Since HZ L 7—[;-1 in L? for i # j, we have
llgill,2 < llgllp= for 0 < j < L. The claim follows from the fact that ||-|| . and ||| - are
equivalent in IT¢ . O

E THE THEORY OF FREQUENCY BIAS WITH A H°-BASED LOSS FUNCTION

This section presents detailed proofs for Proposition [2]and Theorem []in Section[5] which concerns
the frequency bias behavior of NN training using the H* loss function.

E.1 A 2-LAYER RELU NEURAL NETWORK IS IN H3(S4~1) ForR s < 3/2

We prove that a 2-layer ReLU NN map is contained in H*(S~1) for any s < 3/2 (see Proposi-

tion[2)).

Proof of Proposition[2] Since N can be written as

N(x)=> a,ReLU(W, x +b,),

r=1

it suffices to prove that f(x) = ReLU(w " x+b)isin H*® forallw € R b € R. Since ReLU(ax) =
aReLU(x) for any a > 0, we can assume that |w||, = 1. Moreover, since the Sobolev spaces are
rotationally invariant, we can assume that w = (1,0,...,0)". Then, f can be written as

f(x) = ReLU(z1 +b).
If b < —1lorb > 1, then f(x) is a constant, and thus f € HS(Sd_l) for all s € R. We assume

—1 < b < 1. Then, we have
™ +0b, x> —Db,
f(X) N {0, T < —b.
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We define the function

8:(f)(x) = /0 RIS,

where

7o) = . @ Ol = (£ €8"! arccos( ) < 1)

Here, fC(X " f(&)de = |C(x,t)| " fC(x N f(&)d¢ is the averaged integral, where |C'(x,t)| is the

Lebesgue measure of C(x, t). Then, by (Barcel§ et al., 2020, Thm. 1.1), we have f € H*(S?!) if
and only if S,(f) is integrable. We now show that S, (f) is integrable on both £y = {x € S?~! |
71 > —b}and By = {x € S47! | 21 < —b}ifs < 3/2.

First, we define the function
h(X) =1 + b
Then, h € H*(S?!). If we can show that
0

$2s+1

is integrable on F, then we have

I.f
//'t Ml COL g
E1 El t

Tih(x) = h(x)* + |Zi(h = H) = (A= NP o e
<2/E1/ dtd (68)

t23+1

- / Su(h) (x)dx + 2/ Sulh — f)(x)dx < .
E; E;
Assume x € Fj, and let p be the minimum angular distance between x and any point in the set
S={€esSt|& = —b},ie, p=mingeg arccos(€ - x). Then, for 0 < t < p, we clearly have
Zi(h — f)(x) =0 = (h— f)(x). Assume p < t < 7. We divide C'(x, t) into two parts C; and Cs
up to a Lebesgue null set, where C; = C(x,t) N E;. Then, h — f = 0 on Cy. Next, by [Li| (2011},
we know that the measure of Cs satisfied’]

G| _ 2—p® d 1N\ _ #—p?d1 "
o O\ ipg)) 7O B e ien)) T

where [ is the regularized incomplete beta function and B is the incomplete beta function. Here and
throughout the proof, the constants in the big-© notations are independent of p or ¢, but possibly
depend on b and d, which are fixed in the proof. Moreover, we have the formula

t2—p? d 1 (12— p2)/t)¥2 _(d 1 d+2 t* —p?
Bl——i55)="——7F%4——Fl5.5—5 :
2 7272 d/2

2727 2 7 2

where F' is the hypergeometric function that converges to 1 as ¢ — p* (Olver et al., 2010,
sect. 8.17, sect. 15.2). Hence, we have

Col o (=" .
e o () oo )

Now, by the way we defined h — f, there exist constants R, Ro > 0 such that

|h— f| (&) < Ri(t —p), £ € (o,

h— F1(6) > Ralt — p), ge{ge@

. t—p
-0) > —— 5.
Ienenslarccos(C ) > 5 }

3For two functions «(t) and B(t), we say a(t) = ©(B(t)) ast — pT if there exist positive constants
Cy, Cy and radius r > 0 such that C;8(t) < a(t) < CrB(¢) forall0 <t — p < r.
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This gives us

+— ) (d+2)/2
=9<(2/2>’ t—pt. (70)

f (h— £)(€)de
C(x,t)

Now, we have

Ss(h = f)(x) = /pﬂ t2 T (h = f)(x)2dt = /;t_zs_l <][C(x7t)(h - f)(£)da(£)>2 dt
=0 (/F t2s (g p)d+2dt> =0(p* % +1).

To integrate S;(h — f) over E;, we first change the coordinates and integrate over S?~2 by fixing
a p. The resulting integral is still in ©(p?~2° + 1). We then integrate over p and the result follows
from the fact that a function in ©(p?>~2% + 1) is integrable near p = 0 if and only if s < 3/2. This
proves S;(h — f) is integrable on E if and only if s < 3/2. Note that if S;(h — f) is not integrable
on E, then S;(f) is neither integrable. This proves the proposition when s > 3/2.

To see S,(f) is integrable over E> when s < 3/2, we note that f can be rewritten as f—h,
where f(x) = ReLU(—x1 —b) and h(x) = —z1 — b. By the same argument, we have that
Ss(f) = Ss(f — h) is integrable on E5, which completes the proof. O

E.2 FREQUENCY BIAS WITH A SQUARED SOBOLEV NORM AS THE LOSS FUNCTION

In this section, we prove Theorem ] on Sobolev training. Recall that we compute the H *-based loss
based on eq. (20).

Proof of Theorem[d] Fix some 0 < ¢ < L. We can write

émax N(dﬂj) max N(d7J
HOOPSYZ = Z Z Hoowjaj7pajTPyE Z H> wga&pg@p + Z Z H*™ w]a“)em P
j=0 p=1 j=0 p=1
(71)
where wy = (1 + £)* and we used the fact that
T ot Gep €45 p it £ =j,
, = Y, d 4sp
ajp¥ /Sdil 5.p(8)9e(8)dE + €f 5, {e?,“w otherwise.
Next, we have
(H*>a;,), = i K™ (x;,€)Y;p(§)d€ + 67 P = p;Y;p(xi) + eg,jm’

where the last equality follows from the Funk—Hecke formula. Hence, the first term in eq. can
be written as

N(d,0) N(d,0) N(d,0)
Z Hoowfaé,pg&p = Z (:U']Y} p(xz) + 61 VA p)wig/ p = .ujwﬁgj Xz Z 61 ., pwig/,p
p=1 . p=1

(3

Moreover, the second term in eq. (71)) can be written as

Loax N (do7) Lonax N (d,5)
b
Z Z Hoowjajvpezj,p = Z Wy e[,j,p l’[’] ]7P(X1) + ei,j,p) .
j=0 p=1 ;=0 p=1
Therefore, we have
H™P,y" = pwey’ + weel, (72)
where
max N(d).j
b
€1 [ Z ez 871)9@,]7 + Z Z 7_7,]) :LLJ (XZ) + ei,j,p) . (73)
7j=0 p=1
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Applying eq. recursively, we have
L

L
(I—20H=P,)Fy = > (1 — 2nppw) y" =20 > > (1= 2npewy)’ (I-20H=P, ) wyef
£=0 £=0 t=0

€1
Now, since H*P is self-adjoint and positive definite in (R", (-,)p ), by the way we pick 7, we
guarantee that I — 2nH°P is positive definite in (R", (-, )p_) and hence

JT— 24 H*P, [ <1 - 20o.

This gives us | &1 |

p, < ZeL:o W_l ||€’{ HPS, and the result follows from Theorem O

While Theorem [] captures the frequency bias in squared H* loss training up to quadrature errors,
analyzing the quadrature errors can be task-specific. Therefore, studying the quadrature rules could
be a direction of future research.

Suppose we use Theorem in the proof, we can write down Theorem E] in a form such that €5 (k)
depends on the parameters of the NN.

Theorem E} Suppose g € H‘i and D is the loss function in eq. || where P is positive definite
and Uy > L. Under the assumptions ofTheorem if 1 —2npe(1 + 5)25 >0forall0 < (< L,
then with probability > 1 — § over the random initialization, we have

L
y —u(k) 22(1—277W(1+€)25)ky[+€1 + e2(k), 0<k<T, (74)
=0
where ||ea(k)||p. is bounded by eq. with Mp = Mp_, and y* = (go(x1),. .., g¢(x,)) " and
€1 satisfies

L emm (1+J)2q N(d’j)
lexlle, <D wg lellle.,  (EDi=edi+> azo= D et Yip(xi)+el ;) -
(=0 =0 =1

Moreover, we note that the remark after the proof of Theorem 2] applies here as well. In particular,
using the relation that

2
ly —u(k)l. = \/llg = Nillz2 = Ee((g — Ni)?),
we can rewrite eq. into
L

3 (1 201+ 0)%) "y

£=0

||Q—Nk||L2 = +eé1 +52(k)+53(k)7 (75)

Cc

where |e1] < |ledll,,le2(k)] < |lea(k)|l, are as in Theorem and les(k)| <
[Ec(g — No)?|. By eq. , we can directly relate HZLO (1 f2nuz(1+g)2s)ky£H to

ZzL:o (I—2npe(1 4+ 3)25)21C ngHiz up to some quadrature errors. Therefore, the generalization
error with respect to the uniform distribution can be written as

L

2k 2
lg = Nillge = | 32 (121, (1 + 029 [l gel|22 + Enrc + Bquaa:
£=0

where Enrk is an error that can be made arbitrarily small by taking x small enough and m large
enough and Ej,q involves only quadrature errors and can be made arbitrarily small if we make the
quadrature rule accurate enough.

F EXPERIMENTAL DETAILS

We now present the details of the three experiments in Section [6]
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F.1 LEARNING TRIGONOMETRIC POLYNOMIALS ON THE UNIT CIRCLE

In section[6.1] we train a NN with data derived from sampling a trigonometric polynomial at nonuni-
form points on the unit circle. The n = 1140 nonuniform data points {x;} for this test are generated
by taking the union of three sets of equally spaced points, as shown in Figure [T The data set
{(cos(;),sin(0;))} contains 100 equally spaced nodes sampled from 6 € (0, 2x], superimposed
with 40 equally spaced nodes sampled from 6 € [0, 0.37] and 1000 equally spaced nodes sampled
from 6 E [1.47,1.87] (see Figure [1} left). We construct the quadrature weights ¢; by minimizing
Z 1 ], under the constraints that the ¢;’s are positive and the quadrature rule is exact on 112 55, 1.€.,
E. ( f) = 0forall f € II%;. Note that due to the linearity of the quadrature rule, it suffices to check
a finite set of linear constraints

Ee(Yyp) =0, 0<0<551<p<N(20).

This computation method is proposed in (Mhaskar et al.|[2000). Here, 55 is selected to be an integer
close to the maximum degree ¢ such that there exists a positive quadrature rule exact on Hzl. In the
upper-bounds of the quadrature errors in Theorem 3] there exist terms

3 2

L
-+ L%, 0, — + Lme, (76)

where L is a constant bandlimit of the target function. By requiring the quadrature rule to be exact
on I1? 7,» We guarantee that v, ¢, = 0. Hence, by requiring o to be large, we can heuristically make
Vn,e smaller for a moderate /. This allows us to show that the upper-bounds in eq. are small
by balancing the term that involves =1, which vanishes as £ — oo, and the term that 1nvolves Y b>
which increases as £ — oo. This justiﬁes why we compute the quadrature rule by requiring it to be
exact on spherical harmonics of degree as large as possible.

The experiment consists of two parts. First, we compare the effects of training with the loss function
® based on eq. (1)) against the squared L? loss function ® in eq. ( ' where

A n
(W) = 23" IN(x) — g(xi)|* Zcz IV (xi) — glxi)?.
We define the target function to be
9
g(x)=g(0) = Zsin(w), x = x(f) = (cosf,sinf) € S',

where §(6) = g(x(0)). We set up two 2-layer ReL.U-activated NNs with 5 x 10* hidden neurons in
each layer and train them using the same training data and gradient descent procedure, except with
different loss functions ® and ®. In Figure we showed the evolution of the NNs trained using ®
and @, respectively. While the NN trained with ® approximates the function very well in the region
where the training data are dense (i.e., where 6 € [1.47,1.87] = [4.40, 5.65]), the NN trained with

® provides a better overall approximation on the entire domain and demonstrates frequency bias
much more clearly.

To evaluate the frequency loss, we collect 100 uniform samples from N'(x) and g(x) and compute
the Fourier coefficients N'(¢) and g(ﬁ) such that functions

N( Z N 1@0 g Z g 159

where N(0) = N (x(0)). The frequency loss |'(£) — §(£)| estimates how g(x) is approximated by
N (x) at the frequency ¢ when training with the different loss functions (see Figure [} middle). In
addition, we also train the NN to learn each individual frequency with the training data coming from

g¢ = sin(£0) and count the number of iterations it takes to obtain ®(W) < 1.0x 1073 (see Figure
right).

The second part of the experiment focuses on NN training with a discretized squared Sobolev norm
as the loss function. More precisely, we fix some s € R and consider the Sobolev loss func-
tion eq. (20). For S!, we have N(d,f) = 2 if £ > 0. We take Yz 1(x) = sin(¢0)//2r and
Y;.2(x) = cos(£0)/+/2m, where the /27 factor is a normalization factor.
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Iteration = 1000 Iteration = 5000 Iteration = 9000

5 6 0 1 5 6 0 1 5 6

* domain * domain * domain
Figurg 5: The target function (black, dotted), the NN trained with ® (blue, solid), and the NN trained
with ® (red, solid). The purple bars on the horizontal axes show the positions of the training data.
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epochs epochs epochs

Figure 6: Frequency loss for ¢ = 3 (blue), £ = 5 (red), and ¢ = 9 (yellow) based on the squared H*
norm as the loss function. Left: s = —1; Middle: s = 0; Right: s = 1. The error bars are generated
using the results obtained by executions with thirty different random seeds. In the left figure, the
result of one of the thirty executions is omitted because the NN is trapped by a local minimizer that
is not a global one, making the NN not converge to the target function.

We set £iax = 30 in eq. @) and learn g with different s values ranging from —1 to 4. For each s,
we compute the frequency loss [A(¢) — §(¢)| after different numbers of epochs. As s increases, the
frequency loss for higher frequencies decays faster (see Figure[)). In particular, we see in Figure[2]
the “rainbow” plot, that when s = —1, the lower-frequency losses are much smaller than the higher
ones after 5000 iterations, while when s = 3 the higher frequencies are learned faster than the lower
ones.

F.2 LEARNING SPHERICAL HARMONICS ON THE UNIT SPHERE

In section we train a NN with data derived from sampling a function defined on S? at nonuniform
points. The training data is a maximum determinant set of 2500 points that comes from the so-called
“spherepts” dataset (Wright & Michaels|, |2015)). In this experiment, the target function is

15
9(x) = Yaro(x),
=1

where Y5,  is the normalized zonal spherical harmonic function of degree 2¢. Therefore, the spher-
ical harmonic coefficients of g defined in eq. @) satisty gp, = lifp=0and £ = 2,4,...,30, and
Je,p = 0 otherwise. We then train an NN with the squared /7° norm as the loss function (see eq. @))
for s = —1,0,2.5. By Theorem ] we need £nax > L = 30. We set £y = 40 in eq. (20), assum-
ing that the bandwidth L is not known a priori. We observe frequency bias in this experiment by
considering |./\A/'47p — §u,p| after each epoch for £ = 4,10,20. We confirm that low frequencies of g
are captured earlier in training than high frequencies when s = —1 and s = 0 (see Figure [3] left
and middle), and that this frequency bias phenomena can be counterbalanced by taking s = 2.5
(see Figure[3] right).

F.3 TEST ON AUTOENCODER

Autoencoders can be used as a generative model to randomly generate new data that is similar to
the training data. In this experiment, we use Sobolev-based norms to improve NN training for
producing new images of digits that match the MNIST dataset. In our final experiment, we use the
same autoencoder architecture as in (Chollet, 2016)), except we train the autoencoder with a different
loss function (see section[6.3)).
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Here, for training images {x;}, a standard loss function can be
1. 1 = ..
y“m_z/mmN@%@m@yv%g;mwwm%&%

where 1 is the distribution of the training images and dist(N(x;), x;) is a distance between the
output of the NN given by NV (x) and the image x. We select the distance metric to measure the
difference between N'(x) and x as

1 n
= o Z IV (x:) = xil| %, (77)

where || - || p denotes the matrix Frobenius norm. The distance metric in eq. (77) can be viewed as a
discretization of the continuous L? norm. That is, if one imagines generatlng a contlnuous function
z:[0,1]? [0 00) that interpolates an image as well as a function that interpolates the NN, then

Nplxe] ”N( )_X”F N/ ‘N y17y2) _m(y17y2)| dyldy2 HN( )_I'HLQ,

where Ny s the total number of pixels of the image x. In this continuous viewpoint, the //* norm
is given by (assuming that the continuous interpolating functions x and A/ (z) are constructed with
periodic boundary conditions)

IV (@) — 2|} = / (14 [€%)* N (@)(&) — F(&)2dE ~ [|Sy o (Fy (N(x) —x) F) [, (78)

where F;, F,. are the left and right 2D-DFT matrices, respectively, (Ss) ;e = (1 + j2 + ¢2)*/2, and
o’ is the Hadamard product. Hence, if we define vec(A) to be the vector obtained by reshaping a
matrix A using the column-major order, then we have

IS5 o (Fi (N(x) = ) F) |3 = [[diag(vec(Ss)) (Fy ® Fi)vee(N (x) —x)][5,

where ® is the Kronecker product of two matrices. Setting J; = diag(vec(S;))(F, ® F;), the loss
function in our NN training can be written as

1 & 1
= g 2 Mavee W) =) I = g a =) @@ T —y). (79

where I is the n-by-n identity matrix and u,y are the vectors of length n X Nk given by
u = (vec(N(x1))",...,vec(N(x,))")" and y = (vec(x;1)',...,vec(x,)")". Hence, the
discrete NTK matrix is given by n~'H>(I ® J]J;), where the (i, j)th sub-block is Hy, =

<8V60(/\g&c’i;w))’ BVCC(N(XJ';W))> fori,j = 1,. <6"°C jg&‘, w)) Dec(N (x5 W))> is inter-

preted as the Npixe1-by-Npixel matrix whose ( J )th entry is oy 5
This means that the frequency bias behavior during NN training is directly affected by the choice of
s. Alternatively, one can consider this problem more abstractly from an operator learning perspec-
tive, which is presented in appendix |G} We remark that while eq. is a mathematically equivalent
expression for the loss function that allows us to easily express the NTK, in practice, we implement
the loss function based on eq. using a 2D FFT protocol.

,n. Here,

OW
<WMM%WD]WMM&WN]

We use the same autoencoder architecture as in (Chollet, 2016), except with the loss function
in eq. for s = —1,0,1. We train the autoencoder using mini-batch gradient descent with
batch size equal to 256. We first pollute the training images with low-frequency noise and train
the NN, hoping that the trained NN will act as a filter for the noise. We see that training the NN
with eq. (79) for s = 1 gives us the best results due to the high-frequency bias induced by choice
of the loss function. Although H* is low-frequency bias, the high-frequency bias of J[ J, domi-
nates for sufficiently large s. In that case, the low-frequency noise barely changes the tralnlng in the
earlier epochs as the low-frequency components of the residual correspond to small eigenvalues of
H>*(I®J STJ s). Similar results are discussed in (Engquist et al., 2020) and (Zhu et al., 2021)) in the
inverse problem and image processing contexts, respectively.

The opposite phenomenon occurs when we add high-frequency noise (see Figure ] bottom row).
Since H* by itself makes the NN training procedure bias towards low-frequencies, the output for
s = 0 does already filter high-frequency noise. Since J[J, for s < 0 further biases towards low-
frequencies, one can obtain better high-frequency filters. We observe that the best denoising results
for the autoencoder come from selecting s = —1 (see Figure ] bottom row).
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G NTK AND FREQUENCY BIAS IN OPERATOR LEARNING

We saw how using the H®-based losses can help us tune frequency bias in training the autoencoder
(see section [6.3). In fact, in training the autoencoder, we are learning the identity operator on the
space of images. In this section, we briefly mention the NTK associated with operator learning
and its consequences. Let £ be a linear operator on L?(S?~!). Let D = {f1,..., fx} be a finite
subset of L2(S9~1), and x,, ..., x,s be distinct “samplers” in S¢~1. Since £ is linear, without loss
of generality, we assume ||(f;(x1), ..., fi(xM))TH2 = 1fori =1,...,N. Given a function f,
we use f(x) to denote the vector (f(x1),..., f(xar))". We consider a fully-connected two-layer
ReLU NN, A/ = (N, ..., Ny), that takes M inputs and produces M outputs. The goal of training
is to learn the linear operator £ on D. That is, we want N;(f(x1),..., f(xm)) = (L£f)(x;). In
other words, given the samples f(x) of a function f, we want the NN to output the values of L f at
X1,... X 1€, (Lf)(X). As before, we let P be an M x M symmetric positive definite matrix
that measures the distance between two L? functions given their samples at x;, ..., xs. That is,

D(f(x), 9(x)) = (f(x) = 9(x)) "P(f(x) = g(x)).

We then consider a loss function of the operator NN given by
1N
®(W) = == > D((Lfi)(x), N(fi)), (80)
i=1

where N(fi) :== (N1(fi), .., Nas(f;)) T in which N (f;) denotes the jth output of the NN when

we input f;. That is, Nj(f;) = N;(fi(x)). Let wl(lj) be the ith weight in the jth neuron of the first
hidden layer, 1 < ¢ < M and 1 < j < m, where m is the number of hidden neurons. Let b; be
the bias term of the jth neuron in the hidden layer. Let wf? be the ¢th weight in the jth neuron
of the output layer, so 1 < ¢ < mand 1 < 57 < M. We assume the same initialization scheme.
That is, wg}j) are initialized from iid Gaussian and b; are initialized to 0, and they are updated during
training, whereas wg) are initialized from iid Rademacher random variables and are not updated
during training. In the derivation of the NTK below, we let W to be the vector of all trainable
weights and biases, wz(lj) and b;, enumerated in an (arbitrary) fixed order. This allows us to write

W = (wy,...,wg) ', where K = m(M + 1).

We assume that the gradient flow algorithm is used to train the NN, i.e., % = —g—%. We define
the vector of labels by

yi:(‘Cfi(xl)7"'7£fi(xM))Ta y:(yir77y]—\r/)—r
Similarly, we define the vector of the NN outputs by
w;(W) = (N1 (fi; W), ..., N (fi; W) T, u=(u/,...,uly)’.
Our goal is to understand % (y — u) and write it in terms of y — u. To this end, we first consider

dy: —w(W)) _ du;(W) _ du;(W)dW _ du;(W) 02(W)
dt B dt B dW dt =~ dW OW
Denote by wy, the kth entry of W, where 1 < k£ < K. Then, by the chain rule, the kth entry of

OD(W) .
W can be written as

81

DD(W))  9B(W) 1L 0 , |
(W )J T =N 2 Gur D (££)(0. N(f) ()

[aD((ﬁfw)(X), N(fi')(x))MaN(fi';W)]

P ON (fir; W) Owy,
) N o on : £fi’(xl)_N1(fi’)
=3 [ . uto]p :
= Lfir(xar) — Nar(fir)
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Hence, we have

DN il aN il
9D(W) | X 8115{’ : éww(f ) Lfir(x1) — NMi(fir)
W - N Z : : P : (82)
=1 6N1(f7‘,/) aNJ\l(fi’) 'Cfi’(X]W) _NM(fl’)
Jw g owg
Now, combining eq. (81) with eq. (82), we have
ON1(fi) ON1(fs)
dui(W) B i w1y owg y
dt N BNI\/-I(fi) 3N1».1(fi)
Owy Owg
BN ’i/ 6N/ i,
N alu(;{ : §fﬂ(lf ) Lfir(x1) = Ni(fir)
Z : : P : )
=1 8N1(f7‘,’) 6N1W(fz’) ‘Cfl’(XM) 7NM(f7,’)
oWk Owg
Jil
which gives us
I3 3TN
dy —u(W))  du(W) 1
J;Jl J;JN

The derivation so far does not rely on the architecture of the NN. In fact, it holds for the loss function
® defined in eq. with any abstract function A/(f;; W). Now, we exploit the NN architecture to
study J.' J ;. Consider the (7, j')th entry of J J;,. We have

1 ¢ fi(x) " fir(x) +1
T _ (2),,2) Ji i
(i i) = ™ ;wkﬂjwk,j’f]l{fi(x)Tw,ﬁ”er,i”20,fi/(x)Tw§c”+bS>20}’ (84)
where w,(cl) = (w§1;7 . ,wgé) &) is the collection of weights on the Ath hidden neuron. Now, note
that w,(f]).w,(f} = 1if j = j' and is a Rademacher random variable when j # j’. Hence, by the way
we initialize wg}j), we have

373, moee, [0 () +1)( — arecos(£,60 T fu D) )

v 4 ’
where the convergence is entry-wise. Now, suppose we define the N x N matrix H*® as
4o, _ UG fi(x) + 1) — arccos(f(x)7 fir(x))) )

CUN A '
That is, we define H* as in the function learning case, except that the inputs are { f;(x)} ; instead
of {x;}!;. By eq. (85), we have

I3 |37 TN

m—r o0

—— H* @Iy, 87)

b J8 PR O

where the convergence is entrywise. Hence, if we discretize the gradient flow algorithm and apply
gradient descent with step size 7, then by eq. (83)) and eq. ([7), we expect that

N
yi—wi(k) = (yi —wi(k - 1)) — % Z HP(yy —uy(k —1)), (88)

/=1
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or otherwise written more compactly,

" ppo ¥
y—u(k) ~ (Luy - FH* @ Ly)(Iy @ P)) (39)

if the variance in the initialization is small enough.

Given this characterization of the residual equation [89] we can see how the usage of the Sobolev
loss plays a role in tuning frequency bias. Suppose we decompose the residual vector into

oo N(d,0)
—uk) =3 > A Yoy,
(=0 p=1
where Y, = (Yz,(%1),...,Ye,(xar)) " is the evaluation of the spherical harmonic on S%~1.

Then, ﬁf P measures the amount of frequency loss associated with the (¢, p)th frequency in learning
the function f;. Let 457 (k) = (377 (k), ..., 48" (k))T. The size of 4% (k) measures the amount
of overall frequency-¢ components (in the pth direction) in the residuals after the kth iteration.
Assume wy is an eigenvalue of P associated with the eigenspace that is approximately spanned by
{Y&Z,}N(d ) Note that this is the case when P = P, is associated with the squared-I1° loss on

S%-1. Then, by eq. (88), we have

k
3P (L) ~ _n ) $bp
¥ (k) = (Ly = FwH®) 3, 90)

where yP = (g]f’p e ,yAf\}p ) is defined by the decomposition

oo N(d,)

=2 D Y

(=0 p=1

Equation (90) demonstrates that if wy is relatively large for bigger £ (e.g., when we use the squared-
H?* loss with a large s > 0), then we expect that v? (k) decays much faster for high frequencies
than the low ones, and vice versa. This connects frequency bias in operator learning to the spectral
properties of P ;. We studied and justified the phenomena in the autoencoder experiment in Sec. 6.3.

H COMPUTATION OF QUADRATURE WEIGHTS

In practice, the training dataset usually does not come with a carefully designed quadrature rule.
Hence, we inevitably need to compute a set of quadrature weights before training the NN. In this
section, we briefly discuss methods for computing positive quadrature weights.

Given a set of points {x;}"_; on S?~!, we wish to construct a quadrature rule so that

) = Zcif(xi) ~ f(x)dx

Sd—1

for sufficiently smooth f, where ¢; > 0 are positive quadrature weights. One approach that could
give us a very accurate quadrature rule is to guarantee that

L= [, fedax remt, o1

where dim(I1¢) < n. The one-dimensional case of such quadrature rules was studied in (Austin
& Trefethen, |2017; |[Yu & Townsend, 2022)) and the general higher-dimensional case was analyzed
in (Mhaskar et al.| 2000; Dai & Xu, 2013). Given any dataset {x;}?_; and ¢ so that dim(I1¢) < n,
one cannot guarantee the existence of a positive quadrature rule satlsfylng eq. (OT) (Mhaskar et al.

2000; Dai & Xul [2013), even when the distribution of {x;}" ; is very regular (Yu & Townsend,
2022)). On the other hand, by choosing ¢ to be small, we can eventually find an ¢ for which eq.
holds. When such a positive quadrature rule exists, Mhaskar et al.| (2000) proposed to solve the
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following feasible constrained quadratic program

n
min E c
Cq

i=1

st. ¢ >0 V1I<i<n,
> aYp(xi) = / Y p(x)dx Y0<j</{1<p<N(dj).
Sd—l

=1

While eq. gives us a guarantee on the accuracy of the quadrature rule (provided ¢ is not too
small), it is not always practical to compute the quadrature weights in this way. Indeed, if d is
large, then we need a tremendous amount of points to guarantee that dim(H?) < n even for a
small /. Also, if we have too many data points, then the quadratic program can get infeasible
to solve. Hence, we need some other methods for computing quadrature weights that, albeit less
accurate, can be applied more cheaply to general datasets. One of the many possible approaches is
to do kernel density estimation (Rosenblatt| |1956; [Parzen| [1962)). To do so, we fix a positive kernel
K(x,y) = K(arccos(x "y)) defined on S~ x S~ A common choice of K can be the Gaussian
density function of standard deviation 1 centered at 0. For each h > 0, we then define a function py,

on S~! by
u arccos(x ' x;)
pr(x) = 1—21 K ( N S > .
The bandwidth h is a hyperparameter, and with an appropriate h, the function py, is an (unnormal-
ized) estimate of the density function of the distribution of nodes. Hence, by setting

—1/..
¢ = Agtn &) 92)
Zj:l P (%))

we obtain a positive quadrature rule that approximates the integral of smooth functions on S?~1.
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