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Abstract: Learning from Demonstration (LfD) approaches empower end-users
to teach robots novel tasks via demonstrations of the desired behaviors, democ-
ratizing access to robotics. However, current LfD frameworks are not capable
of fast adaptation to heterogeneous human demonstrations nor the large-scale de-
ployment in ubiquitous robotics applications. In this paper, we propose a novel
LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR).
Our approach (1) leverages learned strategies to construct policy mixtures for fast
adaptation to new demonstrations, allowing for quick end-user personalization,
(2) distills common knowledge across demonstrations, achieving accurate task in-
ference; and (3) expands its model only when needed in lifelong deployments,
maintaining a concise set of prototypical strategies that can approximate all be-
haviors via policy mixtures. We empirically validate that FLAIR achieves adapt-
ability (i.e., the robot adapts to heterogeneous, user-specific task preferences), ef-
ficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e.,
the model grows sublinearly with the number of demonstrations while maintain-
ing high performance). FLAIR surpasses benchmarks across three control tasks
with an average 57% improvement in policy returns and an average 78% fewer
episodes required for demonstration modeling using policy mixtures. Finally, we
demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR
as having higher task (p < .05) and personalization (p < .05) performance.

Keywords: Personalized Learning, Learning from Heterogeneous Demonstra-
tion, Inverse Reinforcement Learning

1 Introduction

Robots are becoming increasingly ubiquitous with recent advancements in Artificial Intelligence
(AI), largely due to the success of Deep Reinforcement Learning (DRL) techniques in generating
high-performance continuous control behaviors [1, 2, 3, 4, 5, 6, 7, 8]. However, DRL’s success
heavily relies on sophisticated reward functions designed for each task. These hand-crafted reward
functions typically require iterations of fine-tuning and consultation with domain experts to be ef-
fective [9]. Instead, Learning from Demonstration (LfD) approaches democratize access to robotics
by having users demonstrate the desired behavior to the robot [10], removing the need for per-task
reward engineering. While LfD research strives to empower end-users with the ability to program
novel behaviors onto robots, we must consider that end-users may adopt varying preferences and
strategies in how they complete the same task [11]. An LfD framework that assumes homogeneity
across the set of provided demonstrations could cause the robot to fail to infer the accurate intention,
resulting in unwanted or even unsafe behavior [12, 13]. On the other hand, embracing individual
preferences can help robots achieve better performance and long-term acceptance from humans [14].

While personalization is important for accurate recovery of the demonstrator’s behavior, personal-
ization can also prove inefficient if each individual policy must be inferred separately. To avoid
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Figure 1: This figure shows an illustration of the lifelong learning process with our proposed method,
FLAIR. As each demonstrator performs their strike, FLAIR determines whether the demonstration
is novel. If a demonstration can be explained by a policy mixture of previously learned strategies,
FLAIR accepts the policy mixture without training a new strategy. If the policy mixture is not close
to the demonstration, FLAIR creates a new strategy and a prototype policy for the demonstration.

this issue, prior work, MSRD [15], decomposed shared and individual-specific reward informa-
tion across heterogeneous demonstrations (i.e., demonstrations seeking to accomplish the same task
with different styles). While MSRD significantly improves the accuracy and efficiency in personal-
ized policy modeling, the framework must be trained all-at-once and is unable to handle incremen-
tal/lifelong learning, a more realistic paradigm for LfD real-world applications.

In this work, we develop FLAIR: Fast Lifelong Adaptive Inverse Reinforcement learning. As a
running example, consider a series of humans teaching a robot how to play table tennis, a compelling
robot learning platform [16, 17, 18]. Users of the robot may have their own preferences for table
tennis strikes. As shown in Figure 1, the first user demonstrates a topspin strike, while the second
user demonstrates a slice strike. The third user demonstrates a push strike, which could be explained
by a composition of known behaviors of the previously seen topspin and slice prototypical behaviors.

Unlike prior LfD algorithms, FLAIR is capable of continually learning and refining a set of pro-
totypical strategies either to (1) efficiently model new demonstrations as mixtures of the acquired
prototypes (e.g., the third user in our example) or (2) incorporate a new strategy as a prototype
if the strategy is sufficiently unique (e.g., the second user). Consider a real-world example where
household robots are delivered to users’ homes and the users want to teach those robots skills over
the course of the deployment. User demonstrations from different end-users form a demonstra-
tion sequence the robots personalize to. In such a lifelong learning scenario, FLAIR autonomously
identifies prototypical strategies, distills common knowledge across strategies, and precisely models
each demonstration as prototypical strategies or policy mixtures. We show FLAIR accomplishes
adaptivity, efficiency, and scalability in LfD tasks in simulated and real robot experiments:

1. Adaptive Learning: We display the adaptivity of FLAIR by successfully personalizing to het-
erogeneous demonstrations on three simulated continuous control tasks. FLAIR models demon-
strations better than best benchmarks and achieves an average of 57% higher returns on the task.

2. Efficient Adaptation: FLAIR is more efficient, empirically needing an average of 78% fewer
samples to model demonstrations compared to training a new policy.

3. Lifelong Scalability: We showcase the scalability of FLAIR in a simulated experiment obtain-
ing 100 demonstrations sequentially. FLAIR identifies on average eleven strategies and utilizes
policy mixtures to achieve a precise representation of each demonstration, providing empirical
evidence for FLAIR’s ability to learn a compact set of prototypical strategies in lifelong learning.

4. Robot Demonstration: We demonstrate FLAIR’s ability to successfully leverage policy mixtures
to achieve stronger task and personalization performance than learning from scratch in a real-
world table tennis robot experiment.

2 Related Work

Two common approaches in LfD are to either directly learn a policy, i.e., Imitation Learning (IL), or
infer a reward to train a policy, i.e., Inverse Reinforcement Learning (IRL) [19]. IL learns a direct

2



mapping from states to the actions demonstrated [20, 21]. Although a straightforward approach, IL
suffers from correspondence matching issues and is not robust to changes in environment dynam-
ics due to its mimicry of the demonstrated behaviors [22, 23]. IRL, on the other hand, infers the
demonstrator’s latent intent in a more robust and transferable form of a reward function [24].

Although traditional IRL approaches often overlook heterogeneity within demonstrations, there has
been recent work that models heterogeneous demonstrations [25, 26, 27, 28, 29, 30]. One intu-
itive way is to classify demonstrations into homogeneous clusters before applying IRL [11]. The
Expectation-Maximization (EM) algorithm also operates on a similar idea and iterates between E-
step and M-step, where E-step clusters demonstrations and M-step solves the IRL problem on each
cluster [31, 32]. When the number of strategies is unknown, a Dirichlet Process prior [33, 34, 35]
or non-parametric methods [36] could be used. In these approaches, each reward function only
learns from a portion of the demonstrations, making them prone to the issue of reward ambigu-
ity [15]. Furthermore, these methods assume access to all demonstrations beforehand, which is not
realistic for LfD algorithm deployment. We instead consider the more realistic setting of lifelong
learning [37], where an agent adapts to new demos through its lifetime and continually builds its
knowledge base. One instance to generate such demonstration sequences is through crowd-sourcing
(seeking knowledge from a large set of people) [38, 39, 40].

Despite the abundance of previous approaches, few consider the relationship between the policies
learned to represent each demonstration. Our method, FLAIR, exploits these relationships to not
only model heterogeneous demonstrations (adaptability), but do so by creating expressive policy
mixtures from previously extracted strategies (efficiency), and can scale to model large number of
demonstrations utilizing a compact set of strategies (scalability).

3 Preliminaries

In this section, we introduce preliminaries on Markov Decision Processes (MDP), Inverse Rein-
forcement Learning (IRL), and Multi-Strategy Reward Distillation (MSRD).

Markov Decision Process – A MDP, M , is a 6-tuple, 〈S,A, R, T, γ, ρ0〉. S and A are the state and
action space, respectively. R is the reward function, meaning the agent is rewarded R(s) in state s.
T (s′|s, a) is the probability of transitioning into state s′ after taking action a in state s. γ ∈ (0, 1) is
the temporal discount factor. ρ0 denotes the initial state probability. A policy, π(a|s), represents the
probability of choosing an action given the state and is trained to maximize the expected cumulative
reward, π∗ = argmaxπ Eτ∼π

[∑∞
t=1 γ

t−1R(st)
]
, where τ = {s1, a1, s2, a2, · · · } is a trajectory.

Inverse Reinforcement Learning – IRL considers an MDP sans reward function (MDP\R) and
infers the reward function R based on a set of demonstration trajectories U = {τ1, τ2, · · · , τN},
where N is the number of demonstrations. Our method is based on Adversarial Inverse Reinforce-
ment Learning (AIRL) [23], which solves the IRL problem with a generative-adversarial setup. The
discriminator, Dθ, predicts whether the transition, (st, st+1), belongs to a demonstrator vs. the
generator, πφ(a|s). πφ is trained to maximize the pseudo-reward given by the discriminator.

Multi-Strategy Reward Distillation – MSRD [15] assumes access to the strategy label, cτi ∈
{1, 2, · · · ,M} (M is the number of strategies), for each demonstration, τi, and decomposes the
per-strategy reward, Ri, for strategy i as a linear combination of a common task reward, RTask, and a
strategy-only reward, RS-i. MSRD parameterizes the task reward by θTask and strategy-only reward
by θS−i. MSRD takes AIRL as its backbone IRL algorithm, and adds a regularization loss which
distills common knowledge into θTask and only keeps personalized information in θS−i. The MSRD
loss for the discriminator (the reward) is shown in Equation 1.
LD =− E(τ,cτ )∼U

[
logDθTask,θS-cτ

(st, st+1)
]
− E(τ,cτ )∼πφ

[
log
(
1−DθTask,θS-cτ

(st, st+1)
)]

+ αE(τ,cτ )∼πφ [||RS-cτ (st)||2]
(1)

4 Method

In this section, we start by introducing the problem setup and notations. We then provide an overview
of FLAIR, and its two key components: policy mixture and between-class discrimination.

We consider a lifelong learning from heterogeneous demonstration process where demonstrations
arrive in sequence, as illustrated in Figure 1. We denote the i-th arrived demonstration as τi. Unlike
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prior work, FLAIR does not assume access to the strategy label, cτi . Similar to MSRD, FLAIR
learns a shared task reward RθTask , strategy rewards RθS-j , and policies corresponding to each strat-
egy πφj . We define the number of prototype strategies created by FLAIR till demonstration τi as
Mi, and ηR(τ) =

∑∞
t=1 γ

t−1Rθ(st) as trajectory τ ’s discounted cumulative reward with the re-
ward function Rθ. The goal of the problem is to accurately model each demonstration sequentially
with as few environment samples as possible. Note that learning from sequential demonstrations is
not a requirement of FLAIR but rather a feature in comparison to batch-based methods where all
demonstrations must be available before the learning could start.

4.1 Fast Lifelong Adaptive Inverse Reinforcement Learning (FLAIR)

In our lifelong learning problem setup, when a new demonstration τi becomes available, we seek to
accomplish two goals: a) design a policy that solves the task while personalizing to the demonstra-
tion (i.e., the objective in personalized LfD), and b) incorporate knowledge from the demonstration
to facilitate efficient and scalable adaptation to future users (i.e., the characteristics required for a
lifelong LfD framework). We present our method, FLAIR, in pseudocode in Algorithm 1.

Algorithm 1: FLAIR
Input : Demonstration modeling quality threshold ε

1 M0 = 0, MixtureWeights=[], m=[]
2 while lifetime learning from heterogeneous demonstration do
3 Obtain demonstration τi
4 ~wi, D

mix
KL ←PolicyMixtureOptimization(τi, {πφj}

Mi
j=1)

5 if Dmix
KL < ε then

6 MixtureWeights[i]← ~wi, Mi+1 ←Mi

7 else
8 πnew, RθS-(Mi+1)

←AIRL(τi)

9 Dnew
KL ← Eτ∼πnewDKL(τi, τ)

10 if Dmix
KL < Dnew

KL then
11 MixtureWeights[i]← ~wi, Mi+1 ←Mi

12 else
13 Mi+1 ←Mi + 1
14 mMi+1

← i
15 MixtureWeights[i]← [0, 0, · · · , 0︸ ︷︷ ︸

Mi zeros

, 1]

16 Update RθTask , RθS-j , πφj by Between-Class Discrimination and MSRD

To accomplish these goals, FLAIR decides whether to explain a new demonstration with previously
learned policies (a highly efficient approach), or create a new strategy from scratch (a fallback
technique). In the first case, FLAIR attempts to explain the new demonstration, τi, by constructing
policy mixtures with previously learned strategies according to the demonstration recovery objective
(line 4). If the trajectory generated by the mixture is close to the demonstration (evidenced by the
KL-divergence between the policy mixture trajectory and the demonstration state distributions falling
under a threshold, ε), FLAIR adopts the mixture without considering creating a new strategy (line 6).
Since the policy mixture optimization (details in Section 4.2) is more sample efficient than the AIRL
training-from-scratch, FLAIR can bypass the computationally expensive new-strategy training (line
8) if the mixture provides a high-quality recovery of the demonstrated behavior. This procedure
results in an efficient policy inference.

If the mixture does not meet the quality threshold, ε, FLAIR trains a new strategy by AIRL with
τi and compares the quality of the new policy to the policy mixture (Lines 8-10). If the mixture
performs better, we accept the mixture weights (line 11). If the new strategy performs better, we
accept the new strategy as a new prototype and update our reward and policy models (accordingly,
in Line 13, we increment the number of strategies by one). Further, we call the demonstration, τi,
the “pure” demonstration for strategy Mi+1, meaning strategy Mi+1 represents demonstration τi
(line 14). As such, the mixture weight for τi is a one-hot vector on strategy Mi+1 (line 15).
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To effectively maintain a knowledge base, we propose a novel training signal named Between-Class
Discrimination (BCD). BCD trains each strategy reward to capture the fact that each demonstration
has a certain percentage of the strategy. In the table tennis example (Figure 1), the third user’s be-
havior is a mixture of the topspin and the slice, indicating topspin and slice strategy rewards should
be apparent in the third demonstration. BCD encourages the two strategy rewards to give partial
rewards to the third demonstration. In addition to BCD, FLAIR also optimizes MSRD loss (Equa-
tion 1) for all strategies with their corresponding pure demonstrations, and updates the generator
policies based on the learned reward (line 16).

4.2 Policy Mixture Optimization

To achieve efficient personalization for a new demonstration τi (Line 4 of Algorithm 1), we con-
struct a policy mixture with a linear geometric combination of existing policies π1, π2, · · · , πMi

(Equation 2), where wi,j ≥ 0 are learned weights such that:
∑Mi

j=1 wi,j = 1.

π~wi(s) =

Mi∑
j=1

wi,jaj , aj ∼ πj(s) (2)

As the ultimate goal of demonstration modeling is to recover the demonstrated behavior, we optimize
the linear weights, ~wi, to minimize the divergence between the trajectory induced by the mixture
policy and the demonstration, shown in Equation 3.

minimize
~wi

Eτ∼π~wi [DKL(τi, τ)] (3)

Specifically, we choose Kullback-Leibler divergence (KL-divergence) [41] on the state marginal dis-
tributions of trajectories in our implementation. We estimate the state distribution within a trajectory
by the kernel density estimator [42]. More details can be found in supplementary.

Since the trajectory generation process is non-differentiable, we seek a non-gradient-based optimizer
to solve Equation 3. Specifically, FLAIR utilizes a naı̈ve, random optimization method; it generates
random weight vectors ~wi, evaluates Equation 3, and chooses the weight that achieves the minimiza-
tion. Empirically, we find random optimization outperforms various other optimization methods for
FLAIR. Please see the supplementary for a detailed comparison.

4.3 Between-Class Discrimination

Although MSRD distills the task reward from heterogeneous demonstrations, it does not encourage
the strategy rewards to encode distinct strategic preferences. MSRD also requires access to ground-
truth strategy labels for all demonstrations, which limits scalability. In order to increase the strategy
reward’s discriminability between different strategies, we propose a novel learning objective named
Between-Class Discrimination (BCD). BCD enforces the strategy reward to correctly discriminate
mixture demonstrations from the pure demonstration: if demonstration τi has weightwi,j on strategy
j (as identified in Policy Mixture), we could view the probability that τi happens under the strategy
reward, RS-i, should be wi,j proportion of the probability of the pure demonstration, τmj . This
property can be exploited to enforce a structure on the reward given to the pure-demonstration, τmj ,
and mixture-demonstration τi, as per Lemma 1. A proof is provided in the supplementary.
Lemma 1. Under the maximum entropy principal,

wi,j =
P (τi; S-j)
P (τmj ; S-j)

=
e
ηRS-j (τi)

e
ηRS-j (τmj )

Thus, we enforce the relationship of strategy rewards, S-j, evaluated on pure strategy demonstration,
τmj , and mixture strategy demonstration, τi with mixture weight wi,j , as shown in Equation 4.

LBCD(θ
S-j) =

n∑
i=1

(
e
ηθS-j

(τi) − wi,je
ηθS-j

(τmj )
)2

(4)

An extreme case of BCD loss is when τi is the pure demonstration for another strategy, k (i.e.,
mk = i). In this case, wi,j = 0 (as τi is purely on strategy k), and Equation 4 encourages the
strategy j’s reward to give as low as possible reward to τi. In turn, strategy rewards gain better
discrimination between different strategies, facilitating more robust strategy reward learning, and
contributing to the success in lifelong learning.
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Table 1: This table shows learned policy metrics between AIRL, MSRD, and FLAIR. The higher
environment returns / lower estimated KL divergence / higher strategy rewards, the better.

Domains Inverted Pendulum Lunar Lander Bipedal Walker
Methods AIRL MSRD FLAIR AIRL MSRD FLAIR AIRL MSRD FLAIR
Environment Returns −172.7 −166.4 −38.5∗∗ −7418.1 −9895.3 −6346.6∗ −30637.2 −74166.0 −7064.0∗∗

Estimated KL Divergence 4.08 7.67 4.01∗∗ 72.0 70.9 67.2∗∗ 13.0 32.6 12.1∗∗

Strategy Rewards −5.73 −6.22 −1.23 −12.67 −20.26 −4.19∗ −5.31 −29.82 −4.22∗∗

∗ Significance of p < 0.05
∗∗ Significance of p < 0.01

Correlation between the Estimated and
the Ground-Truth Task Reward

Figure 2: This figure shows the correlation
between the estimated task reward with the
ground truth task reward for Inverted Pen-
dulum. Each dot is a trajectory. FLAIR
achieves a higher task reward correlation.

# Episodes Needed to Achieve the Same
Performance

Figure 3: This figure compares the number
of episodes needed for AIRL and MSRD to
achieve the same Log Likelihood as FLAIR’s
mixture optimization. The red bar is the me-
dian and the red triangle represents the mean.

5 Results

In this section, we show that FLAIR achieves adaptability, efficiency, and scalability in model-
ing heterogeneous demonstrations. We test FLAIR on three simulated continuous control environ-
ments in OpenAI Gym [43]: Inverted Pendulum (IP) [44], Lunar Lander (LL), and Bipedal Walker
(BW) [45]. We generate a collection of heterogeneous demonstrations by jointly optimizing an envi-
ronment and diversity reward with DIAYN [46]. For all experiments excluding the scalability study,
we use ten demonstrations. We compare FLAIR with AIRL and MSRD by running three trials of
each method. More experiment details and statistical test results are provided in the supplementary.

5.1 Adaptability

Q1: Can FLAIR’s policy mixtures perform well at the task? From ten demonstrations, FLAIR
created 6.3 ± 0.5 strategies (average and standard deviation across three trials) in IP, 5.3 ± 1.2 in
LL, and 3.3± 0.5 in BW. FLAIR’s learned policies including policy mixtures are significantly more
successful at the task (row “Environment Returns” in Table 1), outperforming benchmarks in task
performance with 77% higher returns in IP, 14% in LL, and 80% in BW than best baselines.

Q2: How closely does the policy recover the strategic preference? Qualitatively, we find that
FLAIR learns policies and policy mixtures that closely resemble their respective strategies, visual-
ized in policy renderings (videos available in supplementary). We further show that FLAIR is sta-
tistically significantly better in estimated KL divergence than AIRL (average 4% better) and MSRD
(average 18% better), shown in row “Estimated KL Divergence” in Table 1, where KL divergence
is evaluated between policy rollouts and demonstration state distributions. We further tested the
learned policies’ performance on ground-truth strategy reward functions given by DIAYN. The re-
sults on row “Strategy Rewards” illustrate FLAIR’s better adherence to the demonstrated strategies.

Q3. How well does the task reward model the ground truth environment reward? We evaluate
the learned task reward functions by calculating the correlation between estimated task rewards
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Figure 4: This figure depicts the normalized strategy
rewards on demonstrations in IP for FLAIR without
BCD (left) and with BCD (right).

Figure 5: This figure plots the returns of FLAIR
policies in a 100 demonstration experiment in In-
verted Pendulum.

with ground-truth environment rewards. We construct a test dataset of 10,000 trajectories with
multiple policies obtained during the “DIAYN+env reward” training. FLAIR’s task reward achieves
r = 0.953 in IP (shown in Figure 2), r = 0.614 in LP, and r = 0.582 in BW, with an average 18%
higher correlation than best baselines and statistical significance compared with AIRL and MSRD.

Q4. Can the learned strategy rewards discriminate between different strategies? We analyze the
learned strategy rewards on heterogeneous demonstrations (shown in Figure 4 right). We find that
each strategy reward of FLAIR identifies the corresponding pure demonstration (Demonstrations
0-4,7) alongside the mixtures (Demonstrations 5-6, 8-9). In contrast, the strategy rewards learned
without BCD (Figure 4 left) do not distinguish between different strategies. This ablation study also
finds that FLAIR with BCD achieves 70% better environment returns and 10% better KL divergence
than FLAIR without BCD (additional metrics available in supplementary). The qualitative results in
Figure 4 and quantitative results in supplementary together provide empirical evidence that FLAIR
with BCD can train strategy rewards to better identify different strategies.

5.2 Efficiency & Scalability

Q5. Can FLAIR’s mixture optimization model demonstrations more efficiently than learning
a new policy? We study the number of episodes needed by FLAIR’s mixture optimization and
AIRL/MSRD policy training to achieve the same modeling performance of demonstrations. The
result in Figure 3 demonstrates FLAIR requires 77% fewer episodes to achieve a high log likelihood
of the demonstration relative to AIRL and 79% fewer episodes than MSRD. Three (out of ten) of
AIRL’s learned policies and four of MSRD’s learned policies failed to reach the same performance
as FLAIR even given 10,000 episodes, and are thus left out in Figure 3. By reusing learned policies
through policy mixtures, FLAIR explains the demonstration in an efficient manner.

Q6. Can FLAIR’s success continue in a larger-scale LfD problem? We generate 95 mixtures with
randomized weights from 5 prototypical policies for a total of 100 demonstrations to test how well
FLAIR scales. We train FLAIR sequentially on the 100 demonstrations and observe FLAIR learns
a concise set of 17 strategies in IP, 10 in LL, and 6 in BW that capture the scope of behaviors while
also achieving a consistently strong task performance (Figure 5 and supplementary). We find FLAIR
maintains or even exceeds its 10-demonstration performance when scaling up to 100 demonstrations.

5.3 Sensitivity Analysis

Q7. How sensitive is FLAIR’s mixture optimization threshold? We study the classification skill
of the mixture optimization threshold and find it has a strong ability to classify whether a demon-
stration should be included as a mixture or a new strategy. A Receiver Operating Characteristic
(ROC) Analysis suggests FLAIR with thresholding achieves a high Area Under Curve (0.92) in the
ROC Curve for IP; the specific choice of the threshold depends on the performance/efficiency trade-
off the user/application demands (see the ROC Curve and threshold selection methodology in the
supplementary).

5.4 Discussion

The above findings show that our algorithm, FLAIR, sets a new state-of-the-art in personalized LfD.
Across several domains, FLAIR achieves better demonstration recovery compared to the baselines.
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Figure 6: This figure illustrates a topspin and slice
mixture policy (a push-like behavior). The robot
moves from location (1) to (2) and (3).

Metrics Task Score Strategy Score
FLAIR’s Policy Mixture 66.9± 10.3∗ 96.6± 17.4∗

FLAIR’s Worst Mixture 59.5± 12.8 70.3± 23.7
Learning-from-Scratch 56.6± 12.3 90.0± 18.0

∗ Significance of p < 0.05

Table 2: This table depicts policy metrics between
FLAIR’s best mixtures, FLAIR’s worst mixtures,
and learning-from-scratch policies. The scores are
shown as averages ± standard deviations across
28 participants. Bold denotes the highest scores.

Not only can FLAIR more accurately infer the task reward and associated policies, but FLAIR is also
able to perform policy inference with much fewer environmental interactions. These characteristics
make FLAIR amenable to lifelong LfD, resulting in one of the first LfD frameworks that can handle
sequential demonstrations without requiring retraining the entire model.

6 Real-World Robot Case Study: Table Tennis

We perform a real-world robot table tennis experiment where we leverage FLAIR’s policy mixtures
to model user demonstrations. An illustration of an example policy mixture is shown in Figure 6
(more videos are available in supplementary).

We first collect demonstrations of four different table tennis strategies (i.e. push, slice, topspin, and
lob) via kinesthetic teaching from one human participant who is familiar with the WAM robot but
does not have prior experience providing demonstrations for table tennis strikes. After training the
four prototypical strategy policies, we assess how well FLAIR can use policy mixtures to model
new user demonstrations. To do so, we collected demonstrations from 28 participants by instructing
them to demonstrate five repeats of their preferred PingPong strike. We utilize this data and compare
three LfD approaches for learning a robot policy: 1) the best policy mixture identified by FLAIR, 2) a
learning-from-scratch approach, and 3) an adversarially optimized policy mixture (i.e., minimize the
KL divergence between the rollout and the demonstration). We then have users/participants observe
the robot executing these policies in a random order. Using ad hoc Likert scale questionnaires (see
supplementary), participants evaluate the robot’s performance in (i) accomplishing the task and (ii)
doing so according to the user’s preferences. Table 2 shows that FLAIR’s best mixture outperforms
both the worst mixture (task score: p < .01, strategy score: p < .001) and the learning-from-scratch
policy (task score: p < .001, strategy score: p < .05), demonstrating FLAIR’s ability to optimize
policy mixtures that succeed in the task and fit user’s preferences. Full statistical testing results are
available in the supplementary.

7 Conclusion, Limitations, & Future Work

In this paper, we present FLAIR, a fast lifelong adaptive LfD framework. In benchmarks against
AIRL and MSRD, we demonstrate FLAIR’s adaptability to novel personal preferences and effi-
ciency by utilizing policy mixtures. We also illustrate FLAIR’s scalability in how it learns a concise
set of strategies to solve the problem of modeling a large number of demonstrations.

Some limitations of FLAIR are 1) if the initial demonstrations are not representative of a diverse set
of strategies, the ability to effectively model a large number of demonstrations may be impacted due
to the biased task reward and non-diverse prototypical policies; 2) FLAIR’s learned rewards are non-
stationary (the learned reward function changes due to the adversarial training paradigm), a property
inherited from AIRL, and hence could suffer from catastrophic forgetting. For the first limitation,
we could pre-train FLAIR with representative demonstrations before deployment to avoid biasing
the task reward and to provide diverse prototypical policies. Another potential direction is to adopt a
“smoothing”-based approach over a “filtering” method. The smoothing-based approach would allow
new prototypical policies to model previous demonstrations, relaxing the diversity assumptions on
initial policies. We are also interested in studying how to recover a minimally spanning strategy set
that could explain all demonstrations. For the second limitation, we seek to leverage IRL techniques
that yield stationary reward for the FLAIR framework. f-IRL [47] could be a potential candidate,
but is notoriously slow due to the iterative reward training and policy training.

8



Acknowledgments

We wish to thank our reviewers for their valuable feedback in revising our manuscript. This work
was sponsored by NSF grant IIS-2112633, MIT Lincoln Laboratory grant FA8702-15-D-0001, and
Office of Naval Research grant N00014-19-1-2076.

References
[1] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,

P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905,
2018.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[3] R. Paleja, Y. Niu, A. Silva, C. Ritchie, S. Choi, and M. Gombolay. Learning interpretable,
high-performing policies for continuous control problems. arXiv preprint arXiv:2202.02352,
2022.

[4] E. Seraj, Z. Wang, R. Paleja, D. Martin, M. Sklar, A. Patel, and M. Gombolay. Learning
efficient diverse communication for cooperative heterogeneous teaming. In Proceedings of the
21st International Conference on Autonomous Agents and Multiagent Systems, pages 1173–
1182, 2022.

[5] A. Silva, N. Moorman, W. Silva, Z. Zaidi, N. Gopalan, and M. Gombolay. Lancon-learn:
Learning with language to enable generalization in multi-task manipulation. IEEE Robotics
and Automation Letters, 7(2):1635–1642, 2022. doi:10.1109/LRA.2021.3139667.

[6] E. Seraj, L. Chen, and M. C. Gombolay. A hierarchical coordination framework for joint
perception-action tasks in composite robot teams. IEEE Transactions on Robotics, 38(1):139–
158, 2021.

[7] S. Konan, E. Seraj, and M. Gombolay. Iterated reasoning with mutual information in coopera-
tive and byzantine decentralized teaming. arXiv preprint arXiv:2201.08484, 2022.

[8] S. G. Konan, E. Seraj, and M. Gombolay. Contrastive decision transformers. In 6th Annual
Conference on Robot Learning, 2022.

[9] L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Reward function and initial values: Better
choices for accelerated goal-directed reinforcement learning. In Artificial Neural Networks –
ICANN 2006, pages 840–849, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[10] S. Schaal. Learning from demonstration. In M. C. Mozer, M. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9.
MIT Press, 1997. URL https://proceedings.neurips.cc/paper/1996/file/
68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf.

[11] S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah. Efficient model learning from joint-action
demonstrations for human-robot collaborative tasks. In 2015 10th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 189–196. IEEE, 2015.

[12] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the people: The role
of humans in interactive machine learning. AI Magazine, 35(4):105–120, Dec. 2014.
doi:10.1609/aimag.v35i4.2513. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2513.

[13] E. F. Morales and C. Sammut. Learning to fly by combining reinforcement learning with
behavioural cloning. In Proceedings of the International Conference on Machine Learning
(ICML), page 76, 2004.

[14] I. Leite, C. Martinho, and A. Paiva. Social robots for long-term interaction: A survey. In-
ternational Journal of Social Robotics, 5(2):291–308, Apr 2013. ISSN 1875-4805. doi:
10.1007/s12369-013-0178-y. URL https://doi.org/10.1007/s12369-013-0178-y.

9

http://dx.doi.org/10.1109/LRA.2021.3139667
https://proceedings.neurips.cc/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf
http://dx.doi.org/10.1609/aimag.v35i4.2513
https://ojs.aaai.org/index.php/aimagazine/article/view/2513
https://ojs.aaai.org/index.php/aimagazine/article/view/2513
http://dx.doi.org/10.1007/s12369-013-0178-y
http://dx.doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.1007/s12369-013-0178-y


[15] L. Chen, R. R. Paleja, M. Ghuy, and M. C. Gombolay. Joint goal and strategy inference
across heterogeneous demonstrators via reward network distillation. In Proceedings of the
International Conference on Human-Robot Interaction (HRI), 2020.
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