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Abstract

Parameter-efficient fine-tuning (PEFT) is001
widely studied for its effectiveness and effi-002
ciency in the era of large language models.003
Low-rank adaptation (LoRA) has demonstrated004
commendable performance as a popular and005
representative method. However, it is imple-006
mented with a fixed intrinsic rank that might not007
be the ideal setting for the downstream tasks.008
Recognizing the need for more flexible down-009
stream task adaptation, we extend the methodol-010
ogy of LoRA to an innovative approach we call011
allocating low-rank adaptation (ALoRA) that012
enables dynamic adjustments to the intrinsic013
rank during the adaptation process. First, we014
propose a novel method, AB-LoRA, that can ef-015
fectively estimate the importance score of each016
LoRA rank. Second, guided by AB-LoRA, we017
gradually prune abundant and negatively im-018
pacting LoRA ranks and allocate the pruned019
LoRA budgets to important Transformer mod-020
ules needing higher ranks. We have conducted021
experiments on various tasks, and the exper-022
imental results demonstrate that our ALoRA023
method can outperform the recent baselines024
with comparable tunable parameters.1025

1 Introduction026

Large language models (LLMs) have been027

emerging and achieving state-of-the-art (SOTA)028

results not only on a variety of natural language029

processing tasks (Qin et al., 2023; Zhu et al., 2023),030

but also many challenging evaluation tasks (Huang031

et al., 2023; Li et al., 2023) like question answering032

in special domains, reasoning, math, safety, instruc-033

tion following. Despite LLMs becoming general034

task solvers, fine-tuning still plays a vital role in035

efficient LLM inference and controlling the style036

of the LLMs’ generated contents.2 Fine-tuning037

1Codes and fine-tuned models will be open-sourced to
facilitate future research.

2Recently, OpenAI also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.

such large models by full parameters is prohibitive 038

since it requires a large amount of GPU memory 039

and computations. Thus, parameter-efficient fine- 040

tuning (PEFT) (Zhang et al., 2023c; Zhao et al., 041

2023) has raised much attention in the research 042

field since in PEFT, the tunable parameters are of- 043

ten less than 1% of the LLMs and the computation 044

costs will be significantly decreased. 045

Many PEFT methods have been validated to be 046

effective across various models and tasks, often 047

yielding comparable results with full-parameter 048

fine-tuning (He et al., 2021; Zhu and Tan, 2023; 049

Zhang et al., 2023c). Among these PEFT meth- 050

ods, the reparameterization-based method low-rank 051

adaptation (LoRA) (Hu et al., 2021) is consid- 052

ered one of the most efficient and effective meth- 053

ods at present. LoRA is especially popular after 054

open-sourced LLMs become ubiquitous (Dettmers 055

et al., 2023). LoRA assumes that the change of 056

the model’s parameters for adaptation is intrinsi- 057

cally low-dimensional and performs adaptation by 058

optimizing the matrix obtained from low-rank de- 059

composition. Since it is in the form of weight 060

matrix reparameterization, LoRA parameters can 061

be merged with the original LLMs and cause no 062

forward propagation latency. 063

Although LoRA is effective and can bring stable 064

performance with the original setting in Hu et al. 065

(2021), how to fully exploit its potential for down- 066

stream tasks still needs to be determined. First, 067

how to determine the intrinsic rank for each model 068

weight in the Transformer block is still unclear. 069

Moreover, is it reasonable to set the same LoRA 070

rank number for adapting the query, key, and value 071

matrix? Second, in practice, the optimal LoRA 072

rank setting would vary according to multiple fac- 073

tors, such as the backbone model and the task. 074

In order to improve the performance of down- 075

stream task adaptation of LoRA, we now propose 076

the Allocating LoRA (ALoRA) framework (de- 077

picted in Figure 1). First, LoRA modules with 078
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Figure 1: Schematic illustration of our ALoRA. Left (a): ALoRA follows LoRA to update the weight matrix W by
fine-tuning the low-rank matrices A and B with intermediate rank k. Matrix G is a diagonal matrix where each
diagonal element is the gate unit αi for each LoRA rank i < k. Each αi is set to 1 at initialization. Right upper (b):
Some abundant LoRA ranks are pruned by setting the corresponding gate αi to zeros. Right lower (c): For weight
matrix W whose LoRA ranks are not pruned, we will assign additional LoRA ranks to enhance reparameterization.

equal rank size are initialized at each Transformer079

weight, with all rank gates set to one. During fine-080

tuning, we re-allocate the LoRA ranks by (a) iden-081

tifying which LoRA ranks are abundant or have082

negative contributions and prune those ranks by set-083

ting the rank gates to 0; (b) adding the pruned rank084

budgets to model weights that receive no pruning,085

that is, important model weights will be assigned086

more LoRA ranks. In order to calculate the con-087

tribution score of each LoRA rank efficiently and088

accurately, we propose a novel method, AB-LoRA.089

Our working procedure does not require re-training090

and does not require higher LoRA rank budgets at091

initialization or during training.092

We conduct extensive experiments on a wide093

collection of tasks, including sentiment classifica-094

tion, natural language inference, question answer-095

ing, natural language generation under constraint,096

and instruction tuning, to demonstrate the effective-097

ness of our method. Notably, our method can con-098

sistently outperform strong PEFT baselines with099

comparable tunable parameter budgets, especially100

the recent LoRA variants. We also conducted an101

analysis showing that (a) our AB-LoRA method102

indeed can reflect the contribution of each LoRA103

rank; (b) our method can work with different LoRA104

rank budgets and different backbone models.105

Our contributions are summarized as follows:106

• we propose a novel method, AB-LoRA, to 107

estimate the importance of each LoRA rank. 108

• Built upon AB-LoRA, we propose our 109

ALoRA framework, which can allocate LoRA 110

ranks across different model weights and en- 111

hance the adaptation process. 112

• We have conducted extensive experiments and 113

analysis showing that our ALoRA framework 114

is practical and outperforms the baselines un- 115

der comparable parameter budgets. 116

2 Related works 117

2.1 Parameter-efficient fine-tuning (PEFT) 118

methods 119

Parameter-efficient fine-tuning (PEFT) is an ap- 120

proach of optimizing a small portion of parame- 121

ters when fine-tuning a large pretrained backbone 122

model and keeping the backbone model untouched 123

for adaptation (Ding et al., 2022; Zhang et al., 124

2023c). A branch of PEFT methods inserts addi- 125

tional neural modules or parameters into the back- 126

bone model. Representative works in this direction 127

are Adapter (Houlsby et al., 2019; Rücklé et al., 128

2020; Zhang et al., 2023c), Prefix tuning (Li and 129

Liang, 2021), Prompt tuning (Lester et al., 2021), P- 130

tuning V2 (Liu et al., 2022b). Another approach is 131
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to specify the particular parameters to be tunable or132

prunable (Ben-Zaken et al., 2021; Guo et al., 2021;133

Zhao et al., 2020). The reparameterization-based134

methods have attracted much attention (Hu et al.,135

2021). This branch of approaches transforms the136

adaptive parameters during optimization into low-137

rank and parameter-efficient forms. This type of138

PEFT method is closely related to intrinsic dimen-139

sion (Aghajanyan et al., 2021; Li et al., 2018), that140

is, full parameter fine-tuning process of pre-trained141

models can be reparameterized into optimization142

within a low-dimensional subspace, i.e., fine-tuning143

has a low intrinsic dimension (Hu et al., 2021). In-144

tuitively, a well pretrained model does not need to145

be altered significantly for downstream task adap-146

tation. Qin et al. (2021) investigate whether we can147

find a common intrinsic subspace shared by various148

NLP tasks. LoRA (Hu et al., 2021) is inspired by149

(Aghajanyan et al., 2021; Li et al., 2018) and hy-150

pothesizes that the change of weights during model151

tuning has a low intrinsic rank and optimizes the152

low-rank decomposition for the change of original153

weight matrices. PEFT methods are widely applied,154

especially with the popularization of open-sourced155

large language models (Zhao et al., 2023) and in-156

struction tuning with these models for different157

application scenarios (Taori et al., 2023; Dettmers158

et al., 2023).159

2.2 The LoRA method and its variants160

LoRA (Hu et al., 2021) is proven to be effec-161

tive and yield stable results when applied to both162

relatively small pretrained backbones and large lan-163

guage models (Dettmers et al., 2023; Zhu et al.,164

2023). Despite its tractability and effectiveness,165

LoRA still has room for improvements in select-166

ing optimal rank rm for each Transformer model167

weight m. The rank r takes discrete values; thus,168

changing it will directly alter the model structures.169

The optimal choices of ranks can vary across back-170

bone models, tasks, and even Transformer model171

weights. Setting a large rank value for rm can waste172

training time and computation resources, while173

progressively setting a small rm may degrade the174

model performance. These limitations highlight the175

importance of upgrading LoRA with an adaptive176

strategy.177

There are already a few works investigating this178

direction. AdaLoRA (Zhang et al., 2023b) ex-179

presses the low-rank multiplication of LoRA in the180

form of singular value decomposition (SVD), and it181

identifies the most important ranks by a sensitivity- 182

based importance score. SoRA (Ding et al., 2023) 183

prunes abundant LoRA ranks by imposing a l0 184

norm and optimizing with proximal gradient de- 185

scent. SaLoRA (Hu et al., 2023) prunes the LoRA 186

ranks via the Lagrange multiplier method. Despite 187

these recent efforts, we believe issues still need to 188

be investigated for LoRA rank allocation: (a) The 189

current works initialize a larger value for each rm 190

and use certain heuristics to prune the number of 191

ranks to meet a predefined budget. This training 192

process inevitably requires additional GPU mem- 193

ory consumption. In addition, the maximum LoRA 194

rank size for each model weight is limited, which 195

restricts the solution space for LoRA rank alloca- 196

tions. (b) The current works depend on heuristic 197

importance scores, which may not reliably reflect 198

the contribution of each LoRA rank. Our work 199

complements the existing literature by addressing 200

the above issues. 201

3 Methods 202

3.1 Preliminaries 203

Transformer model Currently, most widely 204

used open-sourced language models and large lan- 205

guage models adopt the stacked Transformer archi- 206

tecture (Vaswani et al., 2017). Each Transformer 207

block is primarily constructed using two key sub- 208

modules: a multi-head self-attention (MHA) layer 209

and a fully connected feed-forward (FFN) layer. 210

The MHA is given as follows: 211

x
′
= MHA(xWQ, xW k, xW V )WO, (1) 212

where MHA() denotes the multi-head attention 213

operation, x ∈ Rl×d is the input tensor, WO ∈ 214

Rd×d is the output projection layer (denoted as 215

the Output module), and WQ,WK ,W V ∈ Rd×d 216

(denoted as the Query, Key, and Value modules). 217

l is the sequence length, d is the hidden dimen- 218

sion. The FFN module consists of linear transfor- 219

mations and an activation function g such as ReLU 220

or GELU (Hendrycks and Gimpel, 2016). Take 221

the FFN module in the LlaMA-2 models (Touvron 222

et al., 2023) as example: 223

x
′
= (g(xWG) ∗ xWU )WD, (2) 224

where WG,WU ∈ Rd×d
′

(denoted as Gate and 225

Up module) and WD ∈ Rd
′×d (denoted as the 226

Down module), and d
′

is usually larger than d. For 227

notation convenience, we will refer to the number 228

3



of modules in a Transformer block as Nmod. Thus,229

in LlaMA-2, Nmod = 7.230

Denote the task’s training set as Dtrain =231

(xm, ym),m = 1, 2, ...,M , where M represents232

the number of samples. In this work, we only con-233

sider the case where input xm and target ym are234

both text sequences. And we expect the language235

modeling head of LLMs to decode ym during in-236

ference. That is, no additional linear prediction237

heads are considered for predicting categorical or238

numerical values.239

3.2 Formulation240

Our objective is to efficiently fine-tune the LLMs241

for a specific downstream task under a given LoRA242

parameter budget Rtarget =
∑Nmod

m=1 rtargetm . The243

previous literature (Ding et al., 2023; Hu et al.,244

2023; Zhang et al., 2023b) usually initialize the245

LoRA modules with a pre-defined large maxi-246

mum rank rmax, consuming extra GPU memo-247

ries. Different from the previous works, we now248

initialize each LoRA module with rank rinitm =249

Rtarget/Nmod. That is, upon initialization, we have250

met the LoRA rank budget. Moreover, we will re-251

allocate the LoRA ranks in order to enhance the252

fine-tuning performance.253

In order to adjust the rank allocation of LoRA254

modules, we now inject gate units αi ∈ {0, 1}255

(i = 1, 2, ..., rm) to each module m with LoRA256

rank rm. Imitating the formulation of SVD, the257

forward propagation of ALoRA is given by:258

z = xWA
mGmWB

m ,259

Gm = diag(αm,1, ..., αm,rm), (3)260

where diag() denotes a diagonal matrix, WA
m ∈261

Rd×rm , WB
m ∈ Rrm×d. At initialization, the gate262

units are all set to 1.263

Different from the previous literature (Ding et al.,264

2023; Hu et al., 2023; Zhang et al., 2023b), we265

take an alternative approach, that is, consider the266

problem of LoRA allocation as neural architecture267

search (White et al., 2023). We consider the gate268

units αi as architecture parameters (denoted as the269

set Θ), the network with all the non-zero gate units270

as the super-network M , and denote the parameters271

in the down-projection and up-projection matrices272

as Ω, then the optimization objective is:273

min
Θ

L(D2,Ω
∗,Θ),274

s.t. Ω∗ = argmin
Ω

L(D1,Ω,Θ), (4)275

where D1 and D2 consists of a split of the training 276

set Dtrain, L() is the loss function. This work 277

uses the cross-entropy loss as the loss function. 278

Note that with discrete values of αi, solving the 279

above optimization problem is challenging due to 280

non-differentiability. Thus, following the work of 281

differentiable neural architecture search (DNAS) 282

(Liu et al., 2019a), αi is relaxed to a continuous 283

value in between (0, 1) and the equation 3 becomes: 284

z = WB
mG

′
mWA

mx, 285

G
′
m = diag(α

′
m,1, ..., α

′
m,rm), 286

α
′
m,i = 2 ∗ Sigmoid(a

′
m,i), a

′
m,i ∈ R, (5) 287

where a
′
m,i is initialized with zero value. With this 288

setting, Equation 4 becomes differentable and can 289

be optimized by bi-level optimization (Liu et al., 290

2019a). 291

3.3 Our novel AB-LoRA method 292

Under the DNAS setting, it is natural to consider 293

the architecture weight α
′
i as the importance score 294

for LoRA rank i, and one can use these scores to 295

guide the pruning of abundant LoRA ranks. How- 296

ever, as pointed out by the literature (Zhang et al., 297

2023c; Chen et al., 2019), and as will be demon- 298

strated in the experiment, the architecture weights 299

are not reliable indicators for the final LoRA allo- 300

cation’s performance. This observation motivates 301

us to propose a simple yet effective modification 302

to the DNAS-style architecture search. Instead of 303

relying on the architecture weights’ values to keep 304

the best LoRA ranks, we propose directly evaluat- 305

ing the LoRA rank’s superiority by its contribution 306

or influence on the super-network’s performances. 307

Since our method mimics conducting ablation stud- 308

ies of a certain LoRA rank from the hyper-network, 309

we refer to our method as the ablation-based LoRA 310

(AB-LoRA). 311

We now introduce the core of our AB-LoRA 312

method: calculating each LoRA rank’s importance 313

score, defined as how much it contributes to the 314

performance of the hyper-network. Denote the 315

complete super-network as M . Super-network M 316

is trained till convergence on the training set. We 317

now consider a modified super-network obtained 318

by zeroing out a single LoRA rank r while keeping 319

all other LoRA ranks. This new hyper-network is 320

denoted as M\r. We also consider another modified 321

super-network Mr in which only LoRA rank r is 322

kept while all other LoRA ranks are zeroed out. We 323
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Algorithm 1: Workflow of ALoRA
Input: A super-network M , with Rtarget

LoRA ranks uniformly distributed in
modules of M ;

Output: A new allocation of Rtarget LoRA
ranks.

Data: Training set Dtrain, a batch of
validation data Bval

1 Train hyper-network M on the training set
Dtrain for K1 epochs;

2 for n = 0; n < NA do
3 for a single LoRA rank rm,i on M do
4 Calculate the importance score

IS(rm,i) on Bval;

5 Prune n0 LoRA ranks with lowest
importance scores;

6 if there are modules not pruned then
7 Add n0 LoRA ranks to the

un-pruned modules;
8 Further train the Super-network M on

Dtrain for K2 epochs;

evaluate the three versions of hyper-networks on324

the same batch of validation data Bval. Denote the325

metric score as a function of a model M , S(M),326

with the validation data fixed. Then, the importance327

score of LoRA rank r is given by328

IS(r) = S(M)− S(M\r) + S(Mr). (6)329

In the above equation, S(M) can be treated as a330

constant term. Thus the above equation can be331

simplified to CS(o) = −S(M\r) + S(Mr). Intu-332

itively, the LoRA rank that results in a significant333

performance drop upon zeroing out must play an334

important role in the super-network. Similarly, the335

one keeping most of the performance when acting336

alone contains important task-related knowledge337

and should be considered important. In the experi-338

ments, different from Chen and Hsieh (2020), we339

set S() as the negative of the cross-entropy (CE)340

loss since the widely applied metrics like accuracy341

or F1: (a) may not vary if the super-network only342

masks out a single operation, and (b) is not suitable343

for generative language model fine-tuning.344

3.4 The complete process of ALoRA345

With the guidance of the importance score in346

Equation 6, we can now formally define the whole347

working process of our ALoRA framework (Fig-348

ure 1). Our working flow of allocating the LoRA349

ranks builds upon the following intuitions: (a) the 350

pruning and allocation of LoRA ranks is conducted 351

gradually to avoid performance degradation. (b) 352

if the LoRA ranks in a Transformer module re- 353

ceive relatively high importance scores and are not 354

pruned, this module is deemed important. It may 355

need more LoRA ranks for adaptation so that the 356

LoRA parameters can better learn the task knowl- 357

edge. 358

The framework of ALoRA is centered on our 359

AB-LoRA method, which requires the super- 360

network to be trained for K1 epochs on the train 361

set. We freeze the architectural parameters and 362

train only the model parameters on the train set. 363

No bi-level optimization is required, thus saving 364

training time costs. Then, for each LoRA rank, we 365

evaluate the importance score on a batch of samples 366

Bval from the development set. Then, nA LoRA 367

ranks with the lowest scores are pruned by zero- 368

ing out their corresponding gate units. Moreover, 369

if some Transformer modules do not have pruned 370

LoRA ranks, we allocate the parameter budgets to 371

them to enhance the adaptation further. 34 After 372

the pruning and adding operations, we tune the al- 373

tered super-network for K2 > 0 epochs to recover 374

the lost performance. The above steps are repeated 375

for NA times. Formally, we summarize the above 376

process in Algorithm 1. 377

4 Experiments 378

In this section, we conduct a series of experi- 379

ments to evaluate our ALoRA method. 380

4.1 Baselines 381

We compare our ALoRA framework with the 382

current SOTA PEFT baseline methods. 383

Adapter-based tuning We consider the follow- 384

ing adapter tuning baselines: (1) Houlsby-Adapter 385

3Note that increasing the rank size of a LoRA module from
rm to r

′
m for Transformer module m involves concatenating

newly initialized parameters for the matrices, so that WA
m ∈

Rd×rm and WB
m ∈ Rrm×d becomes WA

m ∈ Rd×r
′
m and

WB
m ∈ Rr

′
m×d. And the diagonal matrix Gm is changed

from diag(αm,1, ..., αm,rm) to diag(αm,1, ..., αm,rmm
). The

newly added gate units are initialized with ones.
4If nA is not divided by the number of un-pruned modules,

we allocate the nA ranks as uniformly as possible, with priority
given to modules with higher average importance scores. For
example, if nA = 8, and module m1, m2, m3 are not pruned,
and m1 has the highest average importance score, m2 ranks
the second, m3 receives the lowest average importance score.
Then three ranks are given to m1 and m2, and two ranks are
given to m3.
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Method Additional Params SST-2 RTE QNLI BoolQ COPA ReCoRD Squad
Initial Final (acc) (acc) (acc) (acc) (acc) (f1-em) (f1-em)

Baselines
P-tuning v2 20.9M 20.9M 93.4 79.6 92.6 84.7 90.3 89.9 87.6

SPT 16.8M 16.8M 93.6 80.3 92.8 85.3 90.6 90.2 88.1
Housbly-Adapter 21.0M 21.0M 93.5 81.3 92.9 85.2 91.0 90.4 88.0
Parallel-Adapters 21.0M 21.0M 93.6 81.2 93.0 85.7 90.8 90.6 88.2

AdapterDrop 21.0M 21.0M 93.2 80.7 92.8 85.1 90.6 90.3 87.9
LST 21.1M 21.1M 93.4 81.6 93.0 86.2 91.0 90.4 87.9

Learned-Adapter 21.2M 21.2M 94.1 82.1 93.1 87.0 91.1 90.7 88.3
LoRA 20.0M 20.0M 94.1 83.3 93.1 87.3 91.3 90.8 88.4

AdaLoRA 40.0M 20.0M 94.1 83.5 93.2 87.1 91.6 91.1 88.3
SoRA 40.0M 20.0M 94.2 83.7 93.3 87.6 91.7 91.0 88.5

SaLoRA 40.0M 20.0M 93.9 83.4 93.2 87.2 91.5 90.9 88.4
SSP 40.0M 20.0M 94.1 83.1 93.1 87.1 91.6 90.6 88.2

Our proposed methods
ALoRA 20.0M 19.6M 95.0 84.6 93.7 88.0 92.1 91.8 89.2

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix B.5.

(Houlsby et al., 2019); (2) Parallel-Adapter pro-386

posed by He et al. (2021); (3) AdapterDrop (Rücklé387

et al., 2020); (4) LST (Sung et al., 2022); (5)388

Learned-Adapter (Zhang et al., 2023c).389

Prompt-based tuning For prompt-based tuning390

methods, we compare with (a) P-tuning v2 (Liu391

et al., 2021); (b) SPT (Zhu and Tan, 2023).392

LoRA and its variants we consider the following393

LoRA variants as baselines: (a) LoRA (Hu et al.,394

2021); (b) AdaLoRA (Zhang et al., 2023b). (c)395

SoRA (Ding et al., 2023); (d) SaLoRA (Hu et al.,396

2023).397

Other PEFT methods We also compare: (1) SSP398

(Hu et al., 2022), which combines different PEFT399

methods.400

The baselines are implemented using their open-401

sourced codes. The hyper-parameter settings for402

the baselines are detailed in Appendix E.403

4.2 Datasets and evaluation metrics404

We compare our approach to the baselines405

on (a) four benchmark question-answering tasks:406

SQUAD (Rajpurkar et al., 2016) and three tasks407

from the SuperGLUE benchmark(Wang et al.,408

2019) (BoolQ, COPA and ReCoRD). (b) three sen-409

tence level tasks from GLUE benchmark (Wang410

et al., 2018), SST-2, RTE, QNLI. (d) Alpaca dataset411

(Taori et al., 2023) for instruction tuning, and MT-412

Bench (Zheng et al., 2023), to evaluate the instruc-413

tion tuning quality of LLMs. The dataset introduc-414

tions, statistics, and prompt-response templates for415

the above tasks are detailed in Appendix B. The416

above tasks’ evaluation metrics or protocols are in417

Appendix B.5. 418

4.3 Experiment Settings 419

Computing infrastures We run all our experi- 420

ments on NVIDIA A40 (48GB) GPUs. 421

Pretrained backbones The main experiments 422

uses most recent open-sourced LLM, LlaMA-2 7B 423

released by Meta (Touvron et al., 2023) as the pre- 424

trained backbone model. In the ablation studies, 425

we will also use GPT2-large model (Radford et al., 426

2019), and RoBERTa-large (Liu et al., 2019b). 427

Prediction heads When fine-tuning LlaMA-2 428

7B, we only consider the supervised fine-tuning 429

(SFT) setting (Ouyang et al., 2022), that is, all 430

the predictions are generated using the language 431

modeling head (LM head) upon receiving a prompt 432

or an instruction. For decoding during inference, 433

we use beam search with beam size 5. 434

Hyper-parameters for ALoRA In our experi- 435

ments, unless otherwise specified, we set Rtarget 436

to 8 ∗ Nmod, and initially all Transformer model 437

weights are paired with LoRA modules with rank 438

rinitm = 8. In this setting, ALoRA satisfies the 439

LoRA rank budget upon initialization, and thus dur- 440

ing training and inference.5 We set nA to 1 ∗Nmod. 441

For training with the ALoRA’s workflow, we set the 442

batch size of Bval to 32, K1 to 1 epoch, K2 to 0.25 443

epoch, and the LoRA rank allocation procedure is 444

conducted for at most NA = 8 times. 445

Reproducibility We run each task under five 446

5Note that it is possible that the total LoRA ranks after
training is smaller than that at initialization.
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Method BLEU ROUGE-L METEOR
Learned-Adapter 68.9 70.9 45.8

LoRA 68.9 71.2 46.1
SoRA 70.0 71.1 46.3

ALoRA 70.6 71.8 47.1

Table 2: Results for different PEFT methods on the
E2E benchmark. The backbone LM is LlaMA-2 7B.
The metrics are explained in Appendix B.5.

Method Avg GPT-4 score (↑) ROUGE-L (↑)
SoRA 7.16 53.2

ALoRA 7.47 54.3

Table 3: The performance of instruction tuning using
the SoRA and ALoRA methods. The backbone model
is LlaMA-2 7B. ↑ means the metric is higher the better.

different random seeds and report the median per-447

formance on the test set of each task.448

Due to limited length, other experimental set-449

tings for the baseline methods and the training pro-450

cedure are put in Appendix E.451

4.4 Main results452

The experimental results on the three classifica-453

tion tasks and 4 question answering tasks are pre-454

sented in Table 1. In the second and third columns455

of Table 1, we present the initial number of tun-456

able parameters and the final ones. Table 1 reveals457

that our ALoRA method outperforms the baseline458

methods across all seven tasks, with comparable459

or fewer tunable parameters throughout the train-460

ing and inference processes. In particular, ALoRA461

successfully outperforms AdaLoRA, SoRA, and462

SaLoRA with comparable initial and final LoRA463

parameters. These results demonstrate that our464

method can better allocate LoRA parameters for465

better downstream task adaptation.466

For the E2E benchmark (Novikova et al., 2017),467

the results are reported in Table 2. The results468

show that on the E2E task, our ALoRA method469

successfully outperforms LoRA and SoRA regard-470

ing BLEU, ROUGE-L, or METEOR scores.471

After the LlaMA-2 7B is fine-tuned on the Al-472

paca dataset with our ALoRA and SoRA methods,473

we utilize the 80 instructions in the MT-Bench as474

the test set. We follow the current standard practice475

of utilizing GPT-4 as an unbiased reviewer (Zheng476

et al., 2023). The protocol of utilizing GPT-4 as477

the reviewer and scorer is specified in Appendix478

B.5. The average score provided by GPT-4 is pre-479

sented in Table 3, along with the ROUGE-L scores480

Method Memory cost (GB) Speed (it/s) Time cost (h)
LoRA 17.6 5.01 2.68
SoRA 18.8 4.96 3.63

ALoRA 18.1 5.01 3.81

Table 4: The memory, speed and time cost for fine-
tuning LlaMA-2 7B on the E2E task with different PEFT
methods.

calculated by considering the GPT-4’s answers as 481

ground truth. Consistent with the previous exper- 482

iments (Table 1 and 2), our ALoRA method out- 483

performs the SoRA method in terms of the GPT-4 484

evaluation scores and ROUGE-L, demonstrating 485

that ALoRA can enhance the instruction tuning 486

quality of large language models. A case study 487

of answers generated by different methods is pre- 488

sented in Table 9, showcasing that ALoRA leads to 489

better instruction-tuned LLMs. 490

4.5 Ablation studies and analysis 491

Analysis of Training Efficiency So far, we have 492

demonstrated that our ALoRA can outperform 493

LoRA and SoRA on a wide collection of tasks. 494

One might suspect this advantage is achieved with 495

significant time or memory costs. We compare the 496

max training GPU memory, training speed, and 497

training time costs of ALoRA, SoRA, and LoRA 498

when fine-tuning LlaMA-2 7B with the E2E bench- 499

mark. From Table 4, one can see that ALoRA 500

requires less memory costs during training than 501

SoRA since it does not initialize with a larger LoRA 502

rank. Moreover, under early stopping, the total 503

training time cost of ALoRA remains comparable 504

with SoRA and LoRA. 505

Ablation study of ALoRA framework We now 506

consider the following variants of ALoRA: (a) in- 507

stead of utilizing our novel AB-LoRA method, we 508

follow the optimization procedure of Equation 4, 509

and use the architectural weights α
′
m,i as the impor- 510

tance scores. This variant is denoted as ALoRA- 511

DNAS. (b) Use the sensitivity-based metric in 512

Zhang et al. (2023b) as the importance measure- 513

ment. (denoted as ALoRA-Sensi). The experimen- 514

tal results on the BoolQ, ReCoRD, and SQUAD 515

tasks are reported in Table 6 of Appendix F. The 516

results show that ALoRA outperforms the two vari- 517

ants, demonstrating that our AB-LoRA method can 518

provide better guidance in allocating LoRA ranks. 519

Visualization of the final rank allocations In 520

this section, we visualize the final rank allocations 521

of ALoRA after the training process on the E2E 522

task in Figure 3. We also compare the LoRA rank 523
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(a) BoolQ (b) E2E

Figure 2: Performances under different LoRA rank budgets. The x-axis represents the number of tunable parameters,
and the y-axis represents the performance score.

Figure 3: The final rank allocations of ALoRA after
fine-tuning the LlaMA-2 7B model on the E2E task.

allocations by the SoRA method in Figure 4 of524

Appendix H. We can see from Figure 3 that (a)525

More LoRA rank budgets are put to adapt the query526

and key modules, while the value and output mod-527

ules in the self-attention are less emphasized. (b)528

The feed-forward layer in the Transformer block529

requires fewer LoRA ranks, indicating that this530

layer stores general language knowledge, while the531

attention module will contain more task-specific532

knowledge after ALoRA fine-tuning. Compared533

with ALoRA’s allocation, SoRA results in a more534

unbalanced allocation, putting more rank budgets535

to the Down module than our ALoRA method.536

Comparisons under different LoRA rank bud-537

gets Note that in the main experiments, we set the538

targeted LoRA rank budget as Rtarget = 8 ∗Nmod.539

Now we vary this budget to any multiplier in 1,540

2, 4, 8, 16, 32, 64, 128 times Nmod, and see how541

ALoRA, SoRA, and LoRA perform on the BoolQ542

and E2E tasks. The experimental results are pre-543

sented in Figure 2(a) and 2(b). From the results, we 544

can see that under different LoRA rank budgets, our 545

ALoRA method can consistently outperform LoRA 546

and SoRA by effectively allocating different LoRA 547

ranks properly to different Transformer modules, 548

thus enhancing the performance of fine-tuning. 549

Ablation on the pretrained backbones Our 550

main experiments are conducted on the LlaMA- 551

2 7B model. To demonstrate the wide applicability 552

of our method, we now conduct experiments on 553

RoBERTa-large and GPT2-large. The results are 554

reported in Table 7 and 8. We can see that on these 555

two backbones, our method can also outperform 556

the baseline methods. 557

5 Conclusion 558

This work presents the Allocating Low-Rank 559

Adaptation (ALoRA), an innovative method for 560

parameter-efficient fine-tuning large language mod- 561

els. Upon the hypothesis that the adaptation for 562

different Transformer modules could be of differ- 563

ent tanks, we introduce a novel workflow for al- 564

locating LoRA ranks in the fine-tuning process. 565

First, we propose a novel method, AB-DNAS, to 566

accurately evaluate the importance scores of LoRA 567

ranks. Second, guided by the AB-DNAS method, 568

our workflow allows the pruning of ranks at spe- 569

cific modules and considers allocating more ranks 570

to essential modules. Thus, our method does not 571

require to set a more significant initial rank. Our 572

method is convenient to implement and off-the- 573

shelf. Experiments on various tasks demonstrate 574

that our ALoRA method outperforms the baseline 575

methods. 576
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Limitations577

We showed that our proposed method can greatly578

improve the performance of parameter-efficient tun-579

ing on diverse tasks and different pretrained mod-580

els (i.e., LlaMA-2 7B, RoBERTa-large and GPT2-581

large). However, we acknowledge the following582

limitations: (a) the more super-sized open-sourced583

LLMs, such as LlaMA-2 13B and 70B, are not ex-584

perimented due to limited computation resources.585

(b) Other tasks in natural language processing, like586

information extraction, were also not considered.587

But our framework can be easily transferred to588

other backbone architectures and different types of589

tasks. It would be of interest to investigate if the su-590

periority of our method holds for other large-scaled591

backbone models and other types of tasks. And we592

will explore it in future work.593

Ethics Statement594

The finding and proposed method aims to im-595

prove the low-rank adaptation (LoRA) based tun-596

ing in terms of better rank allocations and per-597

formances. The used datasets are widely used598

in previous work and, to our knowledge, do not599

have any attached privacy or ethical issues. In this600

work, we have experimented with LlaMA-2 7B, a601

modern large language model. As with all LLMs,602

LlaMA-2’s potential outputs cannot be predicted603

in advance, and the model may in some instances604

produce inaccurate, biased or other objectionable605

responses to user prompts. However, this work’s in-606

tent is to conduct research on different fine-tuning607

methods for LLMs, not building applications to608

general users. In the future, we would like to con-609

duct further testing to see how our method affects610

the safety aspects of LLMs.611
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 752
2017. The E2E dataset: New challenges for end- 753
to-end generation. In Proceedings of the 18th An- 754
nual SIGdial Meeting on Discourse and Dialogue, 755
pages 201–206, Saarbrücken, Germany. Association 756
for Computational Linguistics. 757

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints, 758
page arXiv:2303.08774. 759

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 760
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 761
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 762
2022. Training language models to follow instruc- 763
tions with human feedback. Advances in Neural 764
Information Processing Systems, 35:27730–27744. 765

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 766
Kyunghyun Cho, and Iryna Gurevych. 2021. 767
AdapterFusion: Non-destructive task composition 768
for transfer learning. In Proceedings of the 16th Con- 769
ference of the European Chapter of the Association 770
for Computational Linguistics: Main Volume, pages 771
487–503, Online. Association for Computational Lin- 772
guistics. 773

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao 774
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is 775
chatgpt a general-purpose natural language process- 776
ing task solver? arXiv preprint arXiv:2302.06476. 777

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, 778
Ning Ding, Zhiyuan Liu, Juan-Zi Li, Lei Hou, Peng 779
Li, Maosong Sun, and Jie Zhou. 2021. Exploring 780
low-dimensional intrinsic task subspace via prompt 781
tuning. ArXiv, abs/2110.07867. 782

10

https://api.semanticscholar.org/CorpusID:264336659
https://api.semanticscholar.org/CorpusID:264336659
https://api.semanticscholar.org/CorpusID:264336659
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://doi.org/10.48550/arXiv.1804.08838
https://doi.org/10.48550/arXiv.1804.08838
https://doi.org/10.48550/arXiv.1804.08838
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://api.semanticscholar.org/CorpusID:239009752
https://api.semanticscholar.org/CorpusID:239009752
https://api.semanticscholar.org/CorpusID:239009752
https://api.semanticscholar.org/CorpusID:239009752
https://api.semanticscholar.org/CorpusID:239009752


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,783
Dario Amodei, Ilya Sutskever, et al. 2019. Language784
models are unsupervised multitask learners. OpenAI785
blog, 1(8):9.786

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and787
Percy Liang. 2016. SQuAD: 100,000+ questions for788
machine comprehension of text. In Proceedings of789
the 2016 Conference on Empirical Methods in Natu-790
ral Language Processing, pages 2383–2392, Austin,791
Texas. Association for Computational Linguistics.792

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman793
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna794
Gurevych. 2020. Adapterdrop: On the efficiency795
of adapters in transformers. In Conference on Empir-796
ical Methods in Natural Language Processing.797

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.798
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine799
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,800
Manan Dey, M Saiful Bari, Canwen Xu, Urmish801
Thakker, Shanya Sharma Sharma, Eliza Szczechla,802
Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak,803
Debajyoti Datta, Jonathan D. Chang, Mike Tian-804
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,805
Zheng-Xin Yong, Harshit Pandey, Rachel Bawden,806
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht807
Sharma, Andrea Santilli, Thibault Févry, Jason Alan808
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali809
Bers, Thomas Wolf, and Alexander M. Rush. 2021.810
Multitask prompted training enables zero-shot task811
generalization. ArXiv, abs/2110.08207.812

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.813
Lst: Ladder side-tuning for parameter and memory814
efficient transfer learning. ArXiv, abs/2206.06522.815

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann816
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,817
and Tatsunori B. Hashimoto. 2023. Stanford al-818
paca: An instruction-following llama model. https:819
//github.com/tatsu-lab/stanford_alpaca.820

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter821
Albert, Amjad Almahairi, Yasmine Babaei, Niko-822
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,823
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-824
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,825
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin826
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,827
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-828
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor829
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.830
Korenev, Punit Singh Koura, Marie-Anne Lachaux,831
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai832
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,833
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew834
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan835
Saladi, Alan Schelten, Ruan Silva, Eric Michael836
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross837
Taylor, Adina Williams, Jian Xiang Kuan, Puxin838
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-839
gela Fan, Melanie Kambadur, Sharan Narang, Aure-840
lien Rodriguez, Robert Stojnic, Sergey Edunov, and841

Thomas Scialom. 2023. Llama 2: Open foundation 842
and fine-tuned chat models. ArXiv, abs/2307.09288. 843

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 844
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 845
Kaiser, and Illia Polosukhin. 2017. Attention is all 846
you need. ArXiv, abs/1706.03762. 847

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 848
preet Singh, Julian Michael, Felix Hill, Omer Levy, 849
and Samuel R. Bowman. 2019. Superglue: A stickier 850
benchmark for general-purpose language understand- 851
ing systems. ArXiv, abs/1905.00537. 852

Alex Wang, Amanpreet Singh, Julian Michael, Felix 853
Hill, Omer Levy, and Samuel R. Bowman. 2018. 854
Glue: A multi-task benchmark and analysis plat- 855
form for natural language understanding. In Black- 856
boxNLP@EMNLP. 857

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 858
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 859
Dai, and Quoc V. Le. 2021. Finetuned language mod- 860
els are zero-shot learners. ArXiv, abs/2109.01652. 861

Colin White, Mahmoud Safari, Rhea Sukthanker, 862
Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta 863
Dey, and Frank Hutter. 2023. Neural Architecture 864
Search: Insights from 1000 Papers. arXiv e-prints, 865
page arXiv:2301.08727. 866

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 867
Chaumond, Clement Delangue, Anthony Moi, Pierric 868
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 869
et al. 2020a. Transformers: State-of-the-art natu- 870
ral language processing. In Proceedings of the 2020 871
conference on empirical methods in natural language 872
processing: system demonstrations, pages 38–45. 873

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 874
Chaumond, Clement Delangue, Anthony Moi, Pier- 875
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 876
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 877
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 878
Scao, Sylvain Gugger, Mariama Drame, Quentin 879
Lhoest, and Alexander M. Rush. 2020b. Transform- 880
ers: State-of-the-art natural language processing. In 881
Proceedings of the 2020 Conference on Empirical 882
Methods in Natural Language Processing: System 883
Demonstrations, pages 38–45, Online. Association 884
for Computational Linguistics. 885

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux- 886
iao Dong, V. G. Vinod Vydiswaran, and Hao Ma. 887
2022. Idpg: An instance-dependent prompt gener- 888
ation method. In North American Chapter of the 889
Association for Computational Linguistics. 890

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen 891
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient 892
low-rank adaptation for large language models fine- 893
tuning. ArXiv, abs/2308.03303. 894

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin, 895
Pengcheng He, Yu Cheng, Weizhu Chen, and 896

11

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://doi.org/10.48550/arXiv.2301.08727
https://doi.org/10.48550/arXiv.2301.08727
https://doi.org/10.48550/arXiv.2301.08727
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267


Tuo Zhao. 2023b. Adaptive budget alloca-897
tion for parameter-efficient fine-tuning. ArXiv,898
abs/2303.10512.899

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-900
berger, and Yoav Artzi. 2020. Revisiting few-sample901
bert fine-tuning. ArXiv, abs/2006.05987.902

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo903
Zhu. 2023c. Learned adapters are better than man-904
ually designed adapters. In Annual Meeting of the905
Association for Computational Linguistics.906

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-907
rich Schütze. 2020. Masking as an efficient alterna-908
tive to finetuning for pretrained language models. In909
Proceedings of the 2020 Conference on Empirical910
Methods in Natural Language Processing (EMNLP),911
pages 2226–2241, Online. Association for Computa-912
tional Linguistics.913

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,914
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen915
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen916
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,917
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,918
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A919
Survey of Large Language Models. arXiv e-prints,920
page arXiv:2303.18223.921

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan922
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,923
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,924
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging925
LLM-as-a-Judge with MT-Bench and Chatbot Arena.926
arXiv e-prints, page arXiv:2306.05685.927

Wei Zhu and Ming Tan. 2023. SPT: Learning to se-928
lectively insert prompts for better prompt tuning.929
In Proceedings of the 2023 Conference on Empir-930
ical Methods in Natural Language Processing, pages931
11862–11878, Singapore. Association for Computa-932
tional Linguistics.933

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,934
and Buzhou Tang. 2023. PromptCBLUE: A Chinese935
Prompt Tuning Benchmark for the Medical Domain.936
arXiv e-prints, page arXiv:2310.14151.937

A Additional related works938

Adapter-based tuning. One of the most impor-939

tant research lines of PEFT is adapter-based tuning.940

Adapter (Houlsby et al., 2019) inserts adapter mod-941

ules with bottleneck architecture between every942

consecutive Transformer (Vaswani et al., 2017) sub-943

layers. AdapterFusion (Pfeiffer et al., 2021) only944

inserts sequential adapters after the feed-forward945

module. Adapter-based tuning methods have com-946

parable results with model tuning when only tun-947

ing a fraction of the backbone model’s parame-948

ter number. Due to their strong performance, a949

branch of literature has investigated the architec- 950

ture of adapters in search of further improvements. 951

He et al. (2021) analyze a wide range of PETun- 952

ing methods and show that they are essentially 953

equivalent. They also propose the general archi- 954

tecture of PEFT, and derive the Parallel Adapter 955

which connects the adapter modules in parallel to 956

the self-attention and MLP modules in the Trans- 957

former block. AdapterDrop (Rücklé et al., 2020) 958

investigates the efficiency of removing adapters 959

from lower layers. Adaptive adapters (Moosavi 960

et al., 2022) investigate the activation functions of 961

adapters and propose to learn the activation func- 962

tions of adapters via optimizing the parameters of 963

rational functions as a part of the model parameters. 964

Compacter (Mahabadi et al., 2021) uses low-rank 965

parameterized hypercomplex multiplication (Le 966

et al., 2021) to compress adapters’ tunable parame- 967

ters. LST (Sung et al., 2022) improves the memory 968

efficiency by forming the adapters as a ladder along 969

stacked Transformer blocks, and it enhances the 970

adapter module by adding a self-attention module 971

to its bottleneck architecture. (Sung et al., 2022; 972

Jie and Deng, 2022) try to add different encoding 973

operations, like self-attention operations and convo- 974

lutions between the bottleneck structure of adapters, 975

and achieve better performances. Learned-Adapter 976

(Zhang et al., 2023c) builds upon the above adapter- 977

based methods and enhance the performance of 978

adapter tuning by automatically learning better ar- 979

chitectures for adapters. 980

Prompt tuning methods Prompt tuning (Lester 981

et al., 2021) and P-tuning (Liu et al., 2022b) insert 982

a soft prompt to word embeddings only, and can 983

achieve competitive results when applied to super- 984

sized PTMs. Prefix-tuning (Li and Liang, 2021) 985

and P-tuning v2 (Liu et al., 2021) insert prompts 986

to every hidden layer of PTM. IDPG (Wu et al., 987

2022) uses the prompt generator with parameter- 988

ized hypercomplex multiplication (Le et al., 2021) 989

to generate a soft prompt for every instance. LPT 990

(Liu et al., 2022a) improves upon IDPG by select- 991

ing an intermediate layer to start inserting prompts. 992

SPT (Zhu and Tan, 2023) designs a mechanism 993

to automatically decide which layers to insert new 994

instance-aware soft prompts. 995

Literature LoRA methods Since LoRA is the 996

most popular PEFT method in the era of large lan- 997

guage models, there are many works that are or- 998

thogonal to AdaLoRA, SoRA and our work that 999

are devoted to improve LoRA on many different 1000
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Datasets #train #dev #test |Y| Type Labels Metrics
SuperGLUE tasks

BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

ReCoRD 101k 1k 7.4k - Question Answering - f1-em
GLUE tasks

SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc

QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks

Squad 87k 1k 5.9k - Question Answering - f1-em
E2E 42k 4.6k 4.6k - NLG - BLEU/ROUGE-L/METEOR

Alpaca 52k - - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. |Y| is the
number of classes for a classification task.

aspects. QLoRA (Dettmers et al., 2023) proposes1001

a novel quantization method that can significantly1002

reduce the memory consumptions of LLMs dur-1003

ing LoRA fine-tuning. LoRA-FA (Zhang et al.,1004

2023a) freezes parts of the randomly initialized1005

LoRA matrices. (d) VERA (Kopiczko et al., 2023)1006

investigate whether one could froze the randomly1007

initialized LoRA matrices and only learns a set of1008

scaling vectors. Tying LoRA matrices across layers1009

are also investigated by VERA.1010

B Appendix for the datsets and evaluation1011

metrics1012

B.1 Datasets from GLUE and SuperGLUE1013

We experiment on three tasks from the GLUE1014

(Wang et al., 2018) benchmark: (a) (a) a senti-1015

ment classification task, SST-2. (b) two benchmark1016

natural language inference tasks, RTE and QNLI.1017

We also experiment with three question-answering1018

tasks: (a) two question answering tasks in the for-1019

mat of binary choices, COPA and BoolQ. (b) A1020

Squad (Rajpurkar et al., 2016) style question an-1021

swering task, ReCoRD.1022

Since the original test sets are not publicly1023

available for these tasks, we follow Zhang et al.1024

(2020); Mahabadi et al. (2021) to construct the1025

train/dev/test splits as follows to ensure a fiar com-1026

parison: (a) for datasets with fewer than 10k sam-1027

ples (RTE, COPA, BoolQ), we divide the original1028

validation set in half, using one half for validation1029

and the other for testing. (b) for larger datasets, we1030

split 1k samples from the training set as the devel-1031

opment set, and use the original development set1032

as the test set. The detailed statistics of the GLUE1033

and SuperGLUE benchmark tasks is presented in1034

Table 5.1035

B.2 The Squad task 1036

Stanford Question Answering Dataset (SQuAD) 1037

(Rajpurkar et al., 2016) is a reading comprehension 1038

dataset, consisting of questions posed by crowd- 1039

workers on a set of Wikipedia articles, where the 1040

answer to every question is a segment of text, or 1041

span, from the corresponding reading passage, or 1042

the question might be unanswerable. This task is 1043

one of the most widely studied question answering 1044

task in the field. 1045

In this work, we use the v1.1 version of SQUAD. 1046

Since the original test sets are not publicly avail- 1047

able for these tasks, we follow Zhang et al. (2020); 1048

Mahabadi et al. (2021) and split 1k samples from 1049

the training set as the development set, and use 1050

the original development set as the test set. The 1051

detailed statistics of this task is presented in Table 1052

5. 1053

B.3 Datasets: E2E benchmark 1054

The E2E benchmark dataset for training end-to- 1055

end, data-driven natural language generation sys- 1056

tems in the restaurant domain. It asks a model to 1057

generate natural utterances based on a set of given 1058

key contents. This dataset has a 42061/4672/4693 1059

train/dev/test split. 1060

B.4 Dataset: Instruction tuning 1061

Instruction tuning is an important method to im- 1062

prove the general capabilities of large language 1063

models (Ouyang et al., 2022). With the rise of 1064

large language models in the scale of 10B param- 1065

eters or more, like GPT-3, T5, PaLM, researchers 1066

have actively explored the few-shot or zero-shot 1067

capabilities of these models. (Mishra et al., 2021) 1068

find that fine-tuning these LLMs on a large scale 1069
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datasets containing hundreds of NLP tasks signif-1070

icantly improves the zero-shot performances on1071

unseen tasks, establishing the scaling law of task1072

numbers. The previous works like (Wei et al., 2021)1073

and T0 (Sanh et al., 2021) establishes the instruc-1074

tion tuning datasets by transforming the traditional1075

NLP tasks into a unified prompt format. Instruct-1076

GPT (Ouyang et al., 2022) conducts instruction1077

tuning using the dataset constructed based the user1078

queries from the OpenAI API users. Note that this1079

work is also a seminal work for human feedback1080

learning with reinforcement learning. However, the1081

complete instruction tuning dataset from (Ouyang1082

et al., 2022) remains closed. With the launch of1083

ChatGPT, (Taori et al., 2023) (Alpaca) constructs1084

an instruction tuning dataset with diverse topics1085

using the self-instruct techniques.1086

For our experiment, we employ the Alpaca1087

dataset (Taori et al., 2023) for instruction tuning.1088

Specifically, we employs its cleaned version6. This1089

dataset comprises 51K instructions and demonstra-1090

tions, and is suitable for instruction tuning. The1091

cleaned version corrects multiple issues such as1092

hallucinations, merged instructions, and empty out-1093

puts.1094

B.5 Evaluation metrics/protocols1095

For the three GLUE tasks we experiment on, we1096

report accuracy (denoted as acc). For ReCoRD, we1097

report the average of the F1 score and the exact1098

match score (denoted as f1-em). For the BoolQ1099

and COPA tasks, we report accuracy. The above1100

choices of evaluation metrics strictly follow (Wang1101

et al., 2018) and (Wang et al., 2019).1102

For the SQUAD dataset, we also report the av-1103

erage of the F1 score and the exact match score1104

(denoted as f1-em).1105

Following (Novikova et al., 2017), we report1106

three different metrics on the E2E task: (a) BLEU;1107

(b) ROUGE-L; (c) METEOR. We rely on the Hug-1108

gingFace Evaluate package7 for computing these1109

metrics.1110

For evaluating the quality of instruction tuned1111

LlaMA-2 7B, we follow the current common prac-1112

tice of utilizing GPT-4 as a unbiased reviewer1113

(Zheng et al., 2023). 80 instructions from the MT-1114

Bench is set as a test set. We generate model re-1115

sponses from a fine-tuned model with beam size 51116

6https://huggingface.co/datasets/yahma/
alpaca-cleaned.

7https://huggingface.co/docs/evaluate/index

with the generation function in Huggingface Trans- 1117

formers (Wolf et al., 2020a). Then we compare 1118

SoRA and ALoRA’s answers with GPT-4. For each 1119

instruction in MT-Bench, GPT-4 (OpenAI, 2023) 1120

is asked to write a review for both answers from 1121

the two methods, and assigns a quantitative score 1122

on a scale of 10 to each response. The prompts 1123

of instructing GPT-4 for evaluation is presented in 1124

Appendix D. ROUGE-L scores computed by con- 1125

sidering the answers generated by GPT-4 as the 1126

ground truth. 1127

C Prompt templates for fine-tuning 1128

LlaMA-2 7B 1129

Since we fine-tune LlaMA-2 7B without intro- 1130

ducing task-specific prediction heads, we need to 1131

transform all the tasks into a prompt-response for- 1132

mat. Now we present the prompt-response template 1133

for each task. 1134

Templates for RTE and QNLI Since these two 1135

tasks are NLI tasks, the samples in them consists 1136

of two input text, [sentence1] and [sentence1], and 1137

a label [label_name] (entailment or not entailment). 1138

Thus, we use the following templates: 1139

Template for prompt: 1140

sentence 1: [sentence1] 1141

sentence 2: [sentence1] 1142

Are sentence 1 and sentence 2 have 1143

entailment relation or not? 1144

Template for response: 1145

[label_name] 1146

Templates for SST-2 The samples in this task con- 1147

sists of one input text, [sentence], and a label [la- 1148

bel_name] (positive or negative). 1149

Template for prompt: 1150

[sentence] 1151

The sentiment of the given sentence is: 1152

Template for response: 1153

[label_name] 1154

Templates for BoolQ The samples in this task 1155

consists of a reference document, [doc], a query, 1156

[query], and a label [label_name] (yes or no). 1157

Template for prompt: 1158

Reference document: 1159

[doc] 1160

Question: 1161

[query] 1162

Template for response: 1163
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[label_name]1164

Templates for COPA The samples in this task con-1165

sists of a premise, [premise], two choices, [choice1]1166

and [choice2], a query, [query], and a label [la-1167

bel_name] (1 or 2, indicating which choice is con-1168

sistent with the premise).1169

Template for prompt:1170

Premise:1171

[premise]1172

Choice 1: [choice1]1173

Choice 2: [choice2]1174

Question:1175

[query]1176

Template for response:1177

[label_name]1178

Templates for ReCoRD and SQUAD The sam-1179

ples in these two tasks consist of a context docu-1180

ment, [context], a question, [query], and a answer-1181

ing span, [answer].1182

Template for prompt:1183

Context:1184

[context]1185

Question:1186

[query]1187

Template for response:1188

[answer]1189

Templates for E2E The samples in this task con-1190

sists of a reference [ref], consisting required infor-1191

mation, and a targeted response, [target], which is1192

a customer review written according to the refer-1193

ence’s contents.1194

Template for prompt:1195

Reference:1196

[ref]1197

Generate a customer review following the1198

given reference.1199

Template for response:1200

[target]1201

D Prompt templates for GPT-41202

evaluations1203

In this work, we utilize the powerful LLM GPT-41204

(OpenAI, 2023) as the evaluator for comparing the1205

instruction tuning quality. As a reviewer, GPT-41206

will receive a query [query], two responses, [re-1207

sponse1] and [response2], from two assistants. We1208

will ask GPT-4 to write a review for each response,1209

assessing the quality of the response, and then ask1210

GPT-4 to assign a score on a scale of 10 to each 1211

response. 1212

Template for prompt: 1213

Task Introduction 1214

you will be given a query, and two responses 1215

from two assistants, 1216

could you compare the two responses, 1217

and do the following: 1218

(1) write a concise review for each 1219

assistant's response, on how well the 1220

response answers the query, and whether 1221

it will be helpful to humans users, and any 1222

issues in the response; 1223

(2) assigns a quantitative score on a scale 1224

of 10 to each response, reflecting 1225

your assessment of the two responses 1226

Query: 1227

[query] 1228

Response 1 from assistant 1: 1229

[response1] 1230

Response 2 from assistant 2: 1231

[response2] 1232

E Appendix for Experimental settings 1233

Here, we provide more details for experimental 1234

settings. 1235

Hyper-parameters for the baseline PEFT meth- 1236

ods For P-tuning V2, the number of prompt to- 1237

kens at each layer is set to 160. For SPT, the bot- 1238

tleneck dimension is set to 256, and the number 1239

of prompt layers is set to 8. For adapter-based 1240

methods, the bottleneck dimension is set to 40, and 1241

the adapter modules are added on the self-attention 1242

and feed-forward module. For LoRA and ALoRA, 1243

the initial rank at each module is set to 8. For 1244

AdaLoRA, SoRA, and SaLoRA, the initial rank 1245

at each module is set to 16, and half of the rank 1246

budget is pruned during fine-tuning. We adjust the 1247

sparsity for SSP so that the number of tunable pa- 1248

rameters is comparable with ALoRA and the other 1249

baselines. 1250

Training settings for PEFT methods We use 1251

the HugginFace Transformers (Wolf et al., 2020b) 1252

and PEFT (Mangrulkar et al., 2022) for implement- 1253

ing all the methods, and for training and making 1254

predictions. For fine-tuning LlaMA-2 7B model, 1255

the maximum sequence length is set to 2048. The 1256

maximum training epoch is set to 10. The batch 1257

size is set between 16 for task with less than 10k 1258

training set, and 128 otherwise. We use AdamW 1259

as the optimizer with a linear learning rate decay 1260

15



Method BoolQ ReCoRD Squad
(acc) (f1-em) (f1-em)

ALoRA-DNAS 87.6 91.2 88.7
ALoRA-Sensi 87.5 91.3 88.6

ALoRA 88.0 91.8 89.2

Table 6: The comparison of ALoRA’s variants on
the BoolQ, ReCoRD, and Squad tasks. The backbone
model is LlaMA-2 7B.

schedule and 6% of the training steps for warm-up.1261

The learning rate is set to 1e-4. The other hyper-1262

parameters are kept the same with (Wolf et al.,1263

2020b). In every 200 steps, the model is evaluated1264

on the dev set. Patience is set to 10, that is, if1265

the model does not achieve a lower development1266

set loss for 10 evaluation runs, the training stops.1267

The best checkpoint on the dev set is used to run1268

predictions on the test set.1269

F Ablation on the ALoRA framework1270

We consider two variants of ALoRA: (a) use the1271

architectural weights α
′
m,i as the importance scores1272

during bi-level optimization (Liu et al., 2019a).1273

This variant is denoted as ALoRA-DNAS. (b)1274

Use the sensitivity-based metric in Zhang et al.1275

(2023b) as the importance measurement. (denoted1276

as ALoRA-Sensi). The experiments on the BoolQ1277

and E2E methods are provided in 61278

G Ablation on the pretrained backbones1279

Our main experiments are conducted on the1280

LlaMA-2 7B model. To demonstrate that our1281

method works well regardless of the backbone mod-1282

els, we now conduct experiments on the RoBERTa-1283

large. In this experiment, since the language mod-1284

eling capabilities of these RoBERTa-large can not1285

match LlaMA-2 7B model, we change the follow-1286

ing setting for the prediction head: (a) we use a1287

linear layer as the prediction head for classification1288

tasks. (b) for the ReCoRD task, we use two linear1289

layers to predict the starting and ending positions1290

of a entity span. The other experimental settings1291

are kept the same with the main experiments (Table1292

1).1293

We conduct experiments on the BoolQ, ReCoRD1294

and Squad tasks. The results are reported in Table1295

7. We can see that on the RoBERTa-large back-1296

bone, our method can also outperform the baseline1297

methods.1298

We also run GPT2-large on the E2E task, and the1299

results are reported in Table 8. The results demon-1300

Figure 4: The final rank allocations of SoRA after fine-
tuning the LlaMA-2 7B model on the E2E task.

strate that when the GPT2-large is the backbone 1301

model, our ALoRA method also outperforms the 1302

baselines. 1303

H Visualization of the final rank 1304

allocations of SoRA 1305

In the main contents, we visualize the final rank 1306

allocations of ALoRA after the training process on 1307

the E2E task in Figure 3. As comparison, we now 1308

present the LoRA rank allocations by the SoRA 1309

method in Figure 4. 1310

I Case studies of Instruction tuning 1311

In the Section 4.4 of the main content, we present 1312

the overall performance of ALoRA and SoRA on 1313

the MT-Bench, after fine-tuning LlaMA-2 7B on 1314

the Alpaca dataset. Now we present concrete ex- 1315

amples in Table 9 to showcase the Superiority of 1316

ALoRA. 1317

16



Method Additional Params BoolQ ReCoRD Squad
Initial Final (acc) (f1-em) (f1-em)

Results for RoBERTa-large
Learned-Adapter 366M 354M 86.8 90.2 88.7

LoRA 3.54M 3.54M 86.9 90.0 88.6
SoRA 708M 3.53M 87.2 90.1 88.7

ALoRA 3.54M 3.42M 87.6 90.7 89.4

Table 7: The comparison on the BoolQ, ReCoRD, and Squad tasks, when the backbone model is RoBERTa-large.
We report the median performance over 5 random seeds. Bold and Underline indicate the best and the second best
results. The metric for each task is explained in Appendix B.5.

Method BLEU ROUGE-L METEOR
Learned-Adapter 68.6 69.6 45.2

LoRA 68.7 69.8 45.3
SoRA 68.9 69.9 45.4

ALoRA 69.3 70.4 46.0

Table 8: Results for different PEFT methods on the
E2E benchmark. The backbone LM is GPT2-large. The
metrics are explained in Appendix B.5.
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Query

Edit the following paragraph to correct any grammatical errors:
She didn’t remembre where is her purse, so I thinks its in the car but he’s say
it’s on kitchen table but he are not sure, and then they asked me to looking for
it, she’s say, "Can you?", and I responds with, "Maybe, but ain’t no sure," and
he not heard me, and, "What?", he asks, "Did you found it?".

ALoRA’s response

Responses

She didn’t remember where her purse was, so I thought it was in the car, but he
said it was on the kitchen table, but he wasn’t sure, and then they asked me to
look for it, she said, "Can you?" and I responded with, "Maybe, but I’m not
sure," and he didn’t hear me, and then he asked, "Did you find it?"

GPT-4’s
comments

Assistant 1’s response effectively corrects all the grammatical errors in the
original paragraph. The assistant has correctly changed "remembre" to
"remember," rearranged the clause order from "where is her purse" to "where
her purse was," and adjusted verb forms for proper agreement (e.g., changing
"thinks" to "thought"). Quotation marks and commas are properly used, making
direct speech clear and punctuated correctly. The conjunctions are better placed,
contributing to a more natural flow of sentences. Additionally, all instances of
colloquial or incorrect language such as “ain’t no sure” have been revised into
standard English ("I’m not sure"). Overall, this response would be very helpful
to human users as it provides a grammatically sound version of the original text.

GPT-4 score 9
SoRA’s response

Responses

She didn’t remember where her purse was, so I thought it was in the car, but he
said it was on the kitchen table, but he wasn’t sure. They asked me to look for it,
and she said, "Can you?" I responded with, "Maybe, but I’m not sure." He didn’t
hear me, and he asked, "What?" I said, "Did you find it?"

GPT-4’s
comments

Assistant 2 also does an excellent job correcting grammatical mistakes from the
initial query. This assistant similarly fixes issues with verb tense consistency and
subject-verb agreement (e.g., “he’s say” corrected to “he said”). However, there
is a slight deviation at the end where Assistant 2 writes: “I said, ’Did you find
it?’”. This seems like an attempt by Assistant 2 to make sense of a confusing
part of dialogue in which speaker roles were unclear but results in altering the
meaning slightly because it suggests that ‘I’ am asking if ‘he’ found it rather
than him asking ‘me’. This could be misleading or confusing without additional
context indicating who is speaking at that moment. Nevertheless, punctuation
around quotations is accurate which aids readability.

GPT-4 score 8

Table 9: An example showcasing that the fine-tuning quality of ALoRA is higher than SoRA.
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