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ABSTRACT

In minimax optimization, the extragradient (EG) method has been extensively
studied because it outperforms the gradient descent-ascent (GDA) method in both
strongly-convex-strongly-concave (SC-SC) and convex-concave (C-C) problems.
However, stochastic EG (SEG) has seen limited success in C-C problems, espe-
cially in unconstrained cases: known results suffer limitations such as uniformly
bounded gradient variance, bounded domain, increasing batch size, monotonic-
ity of components, and/or absence of convergence rates. Motivated by the re-
cent progress in analysis of shuffling-based stochastic optimization methods, we
investigate the convergence of shuffling-based SEG in unconstrained finite-sum
minimax problems, in search of improved convergence guarantees for SEG under
minimal algorithm modifications. Our analysis reveals that both random reshuf-
fling and the recently proposed flip-flop shuffling (Rajput et al., 2022) alone can
still suffer divergence in C-C problems. However, with an additional simple
trick called anchoring, we develop the SEG with flip-flop anchoring (SEG-FFA)
method which successfully converges in C-C problems, overcoming all the limita-
tions above. We also show upper and lower bounds in the SC-SC setting, demon-
strating that SEG-FFA has a provably faster convergence rate compared to other
shuffling-based methods.

1 INTRODUCTION

Minimax problems with a finite-sum structure, which are optimization problems of the form

min
x

max
y

f(x,y) :=
1

n

n∑
i=1

fi(x,y), (1)

can be found in many interesting applications in machine learning, such as generative adversarial
networks (GANs) (Goodfellow et al., 2014), adversarial training (Mądry et al., 2018), multi-agent
reinforcement learning (Wai et al., 2018), fair classification (Mohri et al., 2019), and so on. Deter-
ministic methods for minimax problems, such as gradient descent-ascent (GDA) (Arrow & Hurwicz,
1956) and extragradient (EG) (Korpelevich, 1976), have been extensively studied in the literature. It
is though known that, unlike gradient descent (GD) for minimization problems, GDA may diverge
even when f is convex on x and concave on y. On the other hand, EG finds an optimum under this
convex-concave setting (Gorbunov et al., 2022b), and moreover, attains a convergence rate faster
than GDA (Azizian et al., 2020) when f is strongly convex on x and strongly concave on y.

In contrast, attempts to construct stochastic variants of these algorithms have not been so fruitful.
When f is convex-concave, stochastic gradient descent-ascent (SGDA) clearly can diverge, as the
deterministic GDA does not. To make matters worse, stochastic extragradient (SEG) methods have
also had limited success on convex-concave problems. As we summarize in Section 2 in more detail,
existing versions of SEG and their analyses have limitations that hinder its application to general
unconstrained convex-concave problems, such as uniformly bounded gradient variance, bounded
domain, increasing batch size, monotonicity of components, and/or absence of convergence rates.

In the context of finite-sum optimization, most existing theoretical studies on stochastic methods (in-
cluding the aforementioned results) have long been based on the with-replacement sampling scheme.
In with-replacement sampling, at each iteration t an index i(t) is independently and uniformly sam-
pled among {1, . . . , n}. Such a sampling scheme is relatively easy to theoretically analyze, because
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the sampled fi(t) is an unbiased estimator of the full objective function f . In practice, however,
inspired by the empirical observations of faster convergence (Bottou, 2009; Recht & Ré, 2013), the
without-replacement sampling schemes have been the de facto standard. Among them, the most
popular one is the random reshuffling (RR) scheme, where in every epoch consisting of n iterations,
the indices are chosen exactly once in a randomly shuffled order.

This gap between theory and practice is being closed by the recent breakthroughs in stochastic
gradient descent (SGD), namely that SGD with RR leads to a provably faster convergence compared
to with-replacement SGD when the number of epochs is large enough (Nagaraj et al., 2019; Ahn
et al., 2020; Mishchenko et al., 2020a; Nguyen et al., 2021; Yun et al., 2021; 2022). This has
motivated further studies on finding other shuffling-based sampling schemes that can improve upon
RR, resulting in the discoveries such as the flip-flop scheme (Rajput et al., 2022) and GraB (Lu et al.,
2022; Cha et al., 2023). The flip-flop scheme is a particularly simple yet interesting modification
of RR with improved rates in quadratic problems: a random permutation is used twice in a single
epoch (i.e., two passes over n components in an epoch), but the order is reversed in the second pass.

The aforementioned progress in minimization also triggered the study of stochastic minimax meth-
ods with shuffling. Similar to minimization problems, SGDA with RR indeed converges faster than
the with-replacement SGDA, under assumptions such as strongly-convex-strongly-concave objec-
tives (Das et al., 2022), or f satisfying the Polyak-Łojasiewicz condition (Cho & Yun, 2023). Despite
the superiority of EG over GDA, SEG with shuffling has not yet been investigated in the literature,
and the promising achievements in SGDA motivates us to study the following question:

Can shuffling schemes provide improved convergence guarantees for SEG, in
unconstrained convex-concave and strongly-convex-strongly-concave settings?

More specifically, we are interested in developing shuffling-based variants of SEG with minimal
modifications to the algorithm in unconstrained finite-sum minimax problems, and showing that (a)
in convex-concave settings, the new method reaches an optimum with a guarantee on the rate of
convergence, overcoming the aforementioned limitations of existing results; (b) in strongly-convex-
strongly-concave settings, the method converges faster than existing SGDA/SEG variants.

1.1 OUR CONTRIBUTIONS

In this paper, we propose the stochastic extragradient with flip-flop anchoring (SEG-FFA) method,
which is SEG amended with the techniques of flip-flop sampling scheme and anchoring.1 With such
minimal modifications to SEG, we show that SEG-FFA achieves provably improved convergence
guarantees. More precisely, our contributions can be listed as follows (see Table 1 for a summary).
For clarity, we use SEG-US to refer to with-replacement SEG (US for uniform sampling).

• We first study SEG with RR (SEG-RR) and SEG with flip-flop (SEG-FF), and find out that
shuffling alone does not fix the divergence issue of SEG-US2 in convex-concave functions.
In particular, we demonstrate that SEG-RR and even SEG-FF still fail to converge in the
convex-concave setting, by constructing an explicit counterexample (Theorem 4.2).

• We next investigate the underlying cause for the nonconvergence of SEG-RR and SEG-
FF, and a way to remedy this issue. In particular, we identify that either they fail to match
the update equation of the reference method EG beyond first-order Taylor expansion terms,
or attempting to match both the first- and second-order Taylor expansion terms results in
divergence (Proposition 5.2). By adopting a simple technique called anchoring on top of
flip-flop shuffling, we devise our algorithm SEG-FFA, whose epoch-wise update deter-
ministically matches EG up to second-order Taylor expansion terms (Proposition 5.3).

1The anchoring in this paper simply averages the initial and terminal points of the epoch. The readers should
not be confused with the anchoring in (Cai et al., 2022; Yoon & Ryu, 2021; Lee & Kim, 2021), which are based
specifically on the Halpern iteration (Halpern, 1967).

2This paper focuses on the same-sample version of SEG, which uses a single sample for both extrapolation
and update steps in the update of SEG (see Beznosikov et al. (2023) for the details). So, to be precise, we are
stating here that the same-sample SEG-US suffers divergence, which does not contradict Hsieh et al. (2020)
where the authors show that the independent-sample (i.e., independent samples for extrapolation and update
steps) version of SEG converges to optima for convex-concave settings, albeit without a convergence rate.
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Table 1: Summary of upper/lower bounds. Pseudocode of algorithms can be found in Appendix A. We only
display terms that become dominant for sufficiently large T and K. To compare the with-replacement versions
(-US) against shuffling-based versions, one can substitute T = nK. The optimality measure used for SC-SC
problems is E[∥ẑ − z∗∥2] for the last iterate ẑ. For C-C problems, we consider mint=0,...,T E[∥Fzt∥2] for
with-replacement methods and mink=0,...,K E[

∥∥Fzk
0

∥∥2
] for shuffling-based methods.

Method
Strongly-Convex-Strongly-Concave Convex-Concave
Upper Bound Lower Bound Upper Bound Lower Bound

SGDA-US O( 1
T ) (Loizou et al., 2021) Ω( 1

T ) (Cho & Yun, 2023) N/A Ω(1) (as GDA)

SEG-US O( 1
T ) (Gorbunov et al., 2022a) Ω( 1

T ) (Beznosikov et al., 2020) N/A Ω(1) (Thm. 4.2) †

SGDA-RR Õ( 1
nK2 ) (Das et al., 2022) Ω( 1

nK3 ) (Thm. 5.6) N/A Ω(1) (as GDA)

SEG-RR O( 1
nK2−3ε ) (Thm. 4.1) Ω( 1

nK3 ) (Thm. 5.6) N/A Ω(1) (Thm. 4.2)

SEG-FF O( 1
nK2−3ε ) (Thm. 4.1) – N/A Ω(1) (Thm. 4.2)

SEG-FFA O( 1
nK4−5ε ) (Thm. 5.5) – Õ( 1

K1/3 ) (Thm. 5.4) –
† Hsieh et al. (2020) also show Ω(1) bounds, but for independent-sample SEG with stepsize αt = βt.

• We prove that SEG-FFA enjoys improved convergence guarantees, as anticipated by our
second-order matching principle. Most importantly, we show that SEG-FFA achieves a
convergence rate of Õ(1/K1/3) when f is convex-concave. This result is in stark contrast
to other baseline algorithms that diverge under this setting (see the last column of Table 1),
and it overcomes limitations of existing SEG results on unconstrained setups.

• Moreover, we show that when f is strongly-convex-strongly-concave, SEG-FFA achieves
a convergence rate ofO(1/nK4−5ε) for any fixed 0 < ε < 2/3, where K denotes the number
of epochs (Theorem 5.5). Additionally, by proving lower bounds Ω(1/nK3) for the conver-
gence rates of SGDA-RR and SEG-RR under the same setting (Theorem 5.6), we show
that SEG-FFA has a provable advantage over these baseline algorithms.

2 RELATED WORKS

Extragradient and EG+ Extragradient method (Korpelevich, 1976) is a widely used minimax op-
timization method, well-known for resolving the nonconvergence issue of GDA on convex-concave
problems. It has been observed by Mokhtari et al. (2020) that this advantage of EG over GDA
comes from the fact that the Taylor expansion of update equations of EG and the proximal point
(PP) method (Martinet, 1970) match each other up to the second-order terms, i.e., O(η3) approxi-
mation error when η is the stepsize. In contrast, GDA matches PP only up to first-order terms, being
an approximation with error O(η2).
In this paper, we also consider EG+ (Diakonikolas et al., 2021), which is a generalization of EG.
The update rule of EG+ is defined, for stepsizes {η1,k}k≥0 and {η2,k}k≥0, as{

uk ← xk − η1,k∇x f(x
k,yk)

vk ← yk + η1,k∇y f(x
k,yk)

,

{
xk+1 ← xk − η2,k∇x f(u

k,vk)

yk+1 ← yk + η2,k∇y f(u
k,vk)

. (2)

If f is convex-concave, Diakonikolas et al. (2021) show that EG+ reaches an optimum when η1,k ≥
η2,k. In particular, when η1,k = η2,k, we recover the standard EG by Korpelevich (1976).

Shuffling and flip-flop As previously described, shuffling-based stochastic methods can outper-
form the methods based on with-replacement sampling, both in theory and in practice. One key
property of shuffling-based methods is that, while the individual estimators become biased as they
become dependent to other estimators within the same epoch, the overall stochastic error across the
epoch decreases dramatically compared to using n independent unbiased estimators. For instance,
in SGD with RR (Ahn et al., 2020) and in SGDA with RR (Das et al., 2022), the overall progress
made within each epoch exactly matches their deterministic counterparts up to the first-order, leav-
ing an error as small asO(η2) , where η is the stepsize. Rajput et al. (2022) observe that, when each
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component functions are convex quadratics, then using flip-flop on SGD can reduce the error further
to O(η3), resulting in an even faster convergence.

Stochastic Variants of Extragradient While EG improves upon GDA, unfortunately, SEG has
not been able to show a clear advantage over SGDA. To the best of our knowledge, for general un-
constrained convex-concave problems, the existing stochastic variants of EG and their analyses face
several limitations: (i) many assume that the components have uniformly bounded gradient vari-
ance (Diakonikolas et al., 2021; Cai et al., 2022; Pethick et al., 2023), which becomes particularly
restrictive for unconstrained setups (see discussion after Assumption 4)3; (ii) some (implicity) re-
quire that the domain is bounded (Juditsky et al., 2011; Mishchenko et al., 2020b); (iii) some require
increasing the batch size for convergence (Diakonikolas et al., 2021; Cai et al., 2022); (iv) sometimes
each stochastic component is assumed to be monotone (Mishchenko et al., 2020b); (v) convergence
is proved without the above four restrictions in (Hsieh et al., 2020), albeit for independent-sample
SEG, but the result lacks a convergence rate. Variance reduction techniques have also been consid-
ered (Carmon et al., 2019; Alacaoglu & Malitsky, 2022), but in this case the access to the full ob-
jective function f (or its gradient) is assumed. We note that our proposed SEG-FFA overcomes the
aforementioned limitations, and reaches an optimum with an explicit rate in unconstrained convex-
concave problems, under relatively mild conditions. The readers may also refer to Beznosikov et al.
(2023) for a comprehensive overview on this topic.

3 NOTATIONS AND PROBLEM SETTINGS

Let [n] ⊂ Z denote the set {1, . . . , n}. The set of all permutations on [n] will be denoted by Sn.

Recall that we are considering the finite-sum minimax problem as in (1). We denote the saddle
gradient operators by

F ( · ) :=
[
∇x f( · )
−∇y f( · )

]
, Fi( · ) :=

[
∇x fi( · )
−∇y fi( · )

]
, i = 1, . . . , n.

The derivatives of the operators will be denoted with a prefix D. For example, the derivative of F is
denoted by DF . Often a single vector will be used to denote the minimization and the maximization
variable at once. For instance, for z ∈ Rd1+d2 which is a concatenation of x ∈ Rd1 and y ∈ Rd2 ,
we simply write Fz to denote F (x,y).

It can be shown that, if f is µ-strongly convex on x and µ-strongly concave on y for some µ ≥ 0,
then its saddle gradient F is µ-strongly monotone, in the following sense (see e.g., Grimmer et al.
(2023) for a proof of this standard fact).
Assumption 1 (Strong monotonicity). For µ > 0, we say that an operator F is µ-strongly monotone
if for any z,w ∈ Rd1+d2 , it holds that

⟨Fz − Fw, z −w⟩ ≥ µ ∥z −w∥2 . (3)

Assumption 1′ (Monotonicity). If (3) holds for µ = 0, then we say that F is monotone.

Thus, from now on, we will use the term strongly monotone (respectively, monotone) problems
rather than strongly-convex-strongly-concave (respectively, convex-concave) problems. Notice that
we only assume that the full saddle gradient F is (strongly) monotone, not for each Fi’s.

Other three underlying assumptions we make on the problem (1) can be listed as follows.
Assumption 2 (Existence of a Solution). The optimal solution of the problem (1), which we denote
by z∗ = (x∗,y∗), exists in Rd1+d2 .

We make this existence assumption for convex-concave problems in order to exclude pathological
problems such as f(x, y) = x+ y.
Assumption 3 (Operator Smoothness). Each fi is L-smooth, and each Fi is M -smooth. In other
words, we have for any z,w ∈ Rd1+d2 ,

(i) ∥Fiz − Fiw∥ ≤ L ∥z −w∥ , (ii) ∥DFiz −DFiw∥ ≤M ∥z −w∥ . (4)
3Gorbunov et al. (2022a) do not assume any condition on the variance, but their results require a strong

regularity condition that is close to assuming strong monotonicity for the majority of component functions.
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It is worth mentioning that the gradient operator Fi arising from a quadratic function fi is M -smooth
with M = 0. Notice also that, by the finite-sum structure F = 1

n

∑n
i=1 Fi, it is then clear that As-

sumption 3 implies f being L-smooth and F being M -smooth. The L-smoothness assumption on
the objective functions is standard in the optimization literature, while the M -smoothness assump-
tion on the saddle gradients may look less standard. This smoothness assumption on the saddle
gradient (or the Lipschitz Hessian condition) for analyzing SEG-FFA stems from the analysis of
the flip-flop sampling scheme (Rajput et al., 2022). In particular, this is needed for bounding the
high-order error terms between the (deterministic) EG and SEG-FFA in Section 5.1. Indeed, exist-
ing analysis of flip-flop sampling (Rajput et al., 2022) is limited to quadratic functions that trivially
have the 0-Lipschitz Hessian, so our analysis is a step forward. Admittedly, the Lipschitz Hessian
condition may still look rather strong, but we would like to also point out that this assumption does
not lead to unfair comparisons against other algorithms; we show our divergence and lower bound
results (Theorems 4.2 and 5.6) for the baseline algorithms using quadratic functions (i.e., M = 0).
We leave studying how one can remove this assumption as an interesting future work.
Assumption 4 (Component Variance). There exist constants ρ ≥ 0 and σ ≥ 0 such that

1

n

n∑
i=1

∥Fiz − Fz∥2 ≤ (ρ ∥Fz∥+ σ)2 ∀z. (5)

In the existing works studying stochastic optimization methods for minimax problems, it is almost
always the case where Assumption 4 with ρ = 0 is imposed. This uniform bound on the variance
simplifies the convergence analyses, but it is also fairly restrictive especially in the unconstrained
settings. Already for bilinear finite-sum minimax problems, one can easily check that setting ρ = 0
prohibits any “noise” in the bilinear terms in component functions. For machine learning applica-
tions also, it has been reported that this assumption often fails to hold (Beznosikov et al., 2023).
Allowing the variance to grow with the gradient Fz makes the assumption much more realistic.

4 SHUFFLING ALONE IS NOT ENOUGH IN MONOTONE CASES

Under the settings we have discussed, let us study the consequences of applying shuffling-based
sampling schemes to SEG. First we describe the precise methods of our consideration, namely the
SEG-RR and SEG-FF.

For k ≥ 0, in the beginning of an epoch, a random permutation τk is sampled from a uniform
distribution over Sn. Then, for n iterations, we use each of the component functions once, in the
order determined by τk. That is, for i = 0, 1, . . . , n− 1 we do

wk
i ← zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 ← zk

i − βkFτk(i+1)w
k
i ,

(6)

for some stepsizes αk and βk. In case of using SEG-RR, the epoch is completed here, and we set
zk+1
0 ← zk

n as the initial point for the next epoch.

In case of SEG-FF, we perform n more iterations in the epoch, as proposed in Rajput et al. (2022).
In these additional iterations, the component functions are each used once more, but in reverse order.
That is, for i = n, n+ 1, . . . , 2n− 1, we do

wk
i ← zk

i − αkFτk(2n−i)z
k
i ,

zk
i+1 ← zk

i − βkFτk(2n−i)w
k
i .

(7)

Then we set zk+1
0 ← zk

2n as the initial point for the next epoch. The full pseudocode of these
methods can be found in Appendix A.

When F is strongly monotone, it is possible to show that both SEG-RR and SEG-FF indeed
provide speed-up over SEG-US, by proving a O(1/nK2−3ε) rate of convergence for a small ε > 0.
Theorem 4.1. Suppose that F is µ-strongly monotone with µ > 0, Assumptions 3, 4 hold, and we
are running either SEG-RR or SEG-FF for K epochs. For any given ε ∈ (0, 1/2), let the stepsize
be chosen to be a constant αk = βk = ω

nK1−ε for a sufficiently small constant ω. Then we achieve
the bound

E
[∥∥zK

0 − z∗∥∥2] ≤ exp

(
−µωKε

2

)∥∥z0
0 − z∗∥∥2 +O( 1

nK2−3ε

)
. (8)
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Proof. See Section 6 for the proof sketch, and the appendices referred therein for the full proof.

The well-known convergence rate of SEG-US under strong monotonicity of F is Θ(1/T), where T
is the total number of iterations (Gorbunov et al., 2022a; Beznosikov et al., 2020). Translating this
rate to our shuffling-based setting, where there are Θ(n) iterations per epoch, this rate amounts to
Θ(1/nK). Therefore, Theorem 4.1 shows that simply by controlling the order of how component
functions are sampled we can have an improvement in the speed of convergence when K is large
enough. Considering that SGDA-RR and PP with RR achieves the rate of Õ(1/nK2) in the strongly
monotone setting (Das et al., 2022), the performance of SEG-RR and SEG-FF is on par with the
existing known methods.

However, it turns out that the benefit of shuffling does not extend further beyond the “easy” strongly
monotone setting. In fact, when F is merely monotone, then in the worst case, SEG-RR and SEG-
FF suffers from nonconvergence, just as in the case of SEG-US.

Theorem 4.2. For n = 2, there exists a minimax problem with f(x, y) = 1
2

∑2
i=1 fi(x, y) having

a monotone F , consisting of L-smooth quadratic fi’s satisfying Assumption 4 with (ρ, σ) = (1, 0),
such that SEG-US, SEG-RR and SEG-FF diverge in expectation for any positive stepsizes.

Proof. We provide the explicit counterexample and the proof of divergence in Appendix G.1. In
particular, for SEG-US we show E[∥Fzt+1∥2] > E[∥Fzt∥2] for all iterations t ≥ 0, and for SEG-
RR and SEG-FF, we show E[

∥∥Fzk+1
0

∥∥2] > E[
∥∥Fzk

0

∥∥2] for all epochs k ≥ 0. These results
indicate that mint=0,...,T E[∥Fzt∥2] = Ω(1) for SEG-US and mink=0,...,K E[

∥∥Fzk
0

∥∥2] = Ω(1)
for SEG-RR and SEG-FF, as summarized in Table 1.

5 SEG-FFA: SEG WITH FLIP-FLOP ANCHORING

In this section, we investigate the underlying cause for nonconvergence of SEG-RR and SEG-FF
from the perspective of how accurately they match the convergent EG or PP methods in terms of
the Taylor expansions of updates. Our analysis is in line with the existing analysis showing the
superiority of EG over GDA by comparing how close they are to the PP updates (Mokhtari et al.,
2020) and also the analysis of shuffling-based SGD as an approximation of GD updates (Ahn et al.,
2020; Rajput et al., 2022).

As an outcome of our analysis, we will propose adding a simple anchoring step at the end of each
epoch of SEG-FF. After the 2n iterations described by (6) and (7), for a predetermined constant
θk ≥ 0 we perform an additional averaging of the initial iterate zk

0 and the last iterate zk
2n:

zk+1
0 ← zk

2n + θkz
k
0

1 + θk
, (9)

when setting the initial point for the next epoch. As both flip-flop and anchoring are used, we call
this method Stochastic ExtraGradient with Flip-Flop Anchoring (SEG-FFA). The particular choice
of parameters we employ is αk = βk/2 and θk = 1. One may check the pseudocode of SEG-FFA,
presented as Algorithm 4 in Appendix A, to see the precise description of the method.

5.1 DESIGNING SEG-FFA VIA SECOND-ORDER MATCHING

Let us provide a sketch of the motivations behind introducing the anchoring step (9) and our choice
of the parameters αk = βk/2 and θk = 1. Proof details are deferred to Section 6 and Appendix C.

As observed by Mokhtari et al. (2020), the key feature of EG behind its superior convergence prop-
erties compared to GDA is its update rule closely resembling PP, while the “error” of GDA as an
approximation of PP is so large that it hinders convergence. The difference between the updates
of EG and PP, in the Taylor expansion, is as small as O(η3) per iteration, where η is the stepsize.
On the other hand, GDA and PP show a difference of O(η2), and this greater “error” explains why
GDA diverges while EG and PP converge. Of course, EG and PP are not the only two algorithms
that converge in the monotone setting; let us recall the update rule of EG+ method (Diakonikolas
et al., 2021), and Taylor-expand it as the following:

z+ := z − η2F (z − η1Fz) = z − η2Fz + η1η2DF (z)Fz +O(η21η2). (10)
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EG+ is known to converge for unconstrained monotone problems if η1 ≥ η2. When η1 = η2, it
recovers EG and matches PP up to second-order terms.

Based on these observations, we now state our key principle for designing a convergent version of
SEG: second-order matching. We would like to choose proper stepsizes, sampling scheme, and an-
choring scheme so that our without-replacement SEG can deterministically match the update equa-
tion of a convergent algorithm (EG/PP or EG+) up to the O(η2) terms (i.e., second-order terms).
We show that (a) this second-order matching can be achieved with flip-flop anchoring, but not solely
by permutation-based sampling such as RR and flip-flop (without anchoring), and (b) second-order
matching indeed grants convergence for monotone problems. In particular, we demonstrate that

1. SEG-RR suffers a poor approximation error of O(η2) as an approximation of EG/EG+.
2. SEG-FF can match EG+ up to second-order terms, but it results in a choice of stepsizes

(η2 = 2η1) that make EG+ diverge (Proposition 5.2).
3. SEG-FFA matches EG up to second-order terms to get an error ofO(η3) (Proposition 5.3),

achieving convergence in monotone problems (Theorem 5.4) unlike SEG-RR or SEG-FF.

To this end, consider a general form of SEG that incorporates any arbitrary sampling scheme
and anchoring. More precisely, in a certain “epoch,” the components are chosen in the order of
T0,T1, · · · ,TN−1, where Ti ∈ {F1, . . . ,Fn} for each i, and N is some multiple of n (e.g., N = n
for SEG-RR, N = 2n for SEG-FF/SEG-FFA). Then, given α, β, and θ, we perform SEG updates

wi ← zi − αTizi, zi+1 ← zi − βTiwi, (11)
for i = 0, 1, . . . , N − 1, and then the anchoring step

z♯ ← zN + θz0
1 + θ

, (12)

so that z♯ is used as the initial point of the next epoch. For this method, we show the following.
Proposition 5.1. Suppose that Assumption 3 holds. For some ϵN = o

(
(α+ β)2

)
, it holds that

z♯ = z0−
β

1 + θ

N−1∑
j=0

Tjz0+
αβ

1 + θ

N−1∑
j=0

DTj(z0)Tjz0+
β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0+
ϵN
1 + θ

(13)

See Appendix C.1 for the proof. Comparing (10) with (13), for them to match up to the second-order,
η2
n

∑n

j=1
Fiz0 =

β

1 + θ

∑N−1

j=0
Tjz0, (14)

η1η2
n2

∑n

j=1
DFj(z0)Fjz0 +

η1η2
n2

∑
i ̸=j

DFj(z0)Fiz0

=
αβ

1 + θ

∑N−1

j=0
DTj(z0)Tjz0 +

β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0, (15)

must hold simultaneously. Clearly, without-replacement sampling will make (14) hold. However, it
is easy to check that random reshuffling falls short of making (15) hold. This is because, if RR is
used, then T0,T1, . . . ,Tn−1 is nothing but a reordering of F1, . . . ,Fn into Fτ(1), . . . ,Fτ(n), so the
RHS of (15) can only contain terms DFτ(j)(z0)Fτ(i)z0 with i ≤ j.

This observation motivates the use of flip-flop sampling, because choosing Ti = T2n−1−i lets the
RHS of (15) “cover” all required terms DFj(z0)Fiz0. Indeed, flip-flop does resolve this issue, but
there is still one complication remaining for SEG-FF, as described below.
Proposition 5.2. Suppose we use flip-flop sampling. Without anchoring, or equivalently when θ = 0,
in order to make (14) and (15) hold, we have to choose β = η1/n and α = β/2. However, such a
choice leads to η2 = 2η1, which is the set of parameters that fails to make EG+ converge.

The details can be found in Appendix C.2. This result shows that anchoring is necessary to get
a stochastic method that achieves second-order matching to a convergent method. Now, say we
actually use anchoring. Introducing the parameter θ increases the degree of freedom, and it opens
up multiple possible stepsizes and parameters that make (14) and (15) hold. We show that αk = βk/2
and θk = 1 are the simplest choices that, in fact, lead to the second-order matching to EG (instead
of the more general EG+). A more precise statement is in Theorem 6.1.
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Proposition 5.3. Suppose that F is µ-strongly monotone with µ ≥ 0, and Assumptions 3 and 4.
Then, for βk = η, αk = βk/2, and θk = 1, SEG-FFA becomes an approximation of EG with error
at most O(η3). In other words, we achieve∥∥z0 − ηnF (z0 − ηnFz0)− z♯

∥∥ = O(η3).

5.2 CONVERGENCE ANALYSIS OF SEG-FFA

As a result of the second-order matching, we obtain SEG-FFA, a stochastic method that has an
error ofO(η3) as an approximation of EG. Achieving this order of magnitude for the approximation
error turns out to be the key to the exact convergence to an optimum under the monotone setting, as
demonstrated in the following result.
Theorem 5.4. Suppose that F is monotone, Assumptions 2, 3, 4 hold, and we use SEG-FFA. By
choosing the stepsizes sufficiently small and decaying at the rate of ηk = O(1/k1/3 log k), the iterates
generated by SEG-FFA achieves the bound of

min
k=0,1,...,K

E
∥∥Fzk

0

∥∥2 = O
(
(logK)2

K1/3

)
. (16)

Proof. For the full statement of the theorem and its proof, see Appendix F.

The reduced error also shows a gain in the rate of convergence under the strongly monotone setting.
This aligns with the intuition that error hinders convergence, hence having a smaller error will be
beneficial in the convergence of a method.
Theorem 5.5. Suppose that F is µ-strongly monotone with µ > 0, Assumptions 3, 4 hold, and we
are running SEG-FFA for K epochs. For any given ε ∈ (0, 2/3), let the stepsize be a constant equal
to αk = βk = ω

nK1−ε for a sufficiently small constant ω. Then we achieve the bound

E
[∥∥zK

0 − z∗∥∥2] ≤ exp

(
−µωKε

2

)∥∥z0
0 − z∗∥∥2 +O( 1

nK4−5ε

)
. (17)

Proof. See Section 6 for the proof sketch, and the appendices referred therein for the full proof.

Notice the exponent of 4 − 5ε in the convergence rate, which is twice as large as the exponent 2
of SGDA-RR and 2 − 3ε of SEG-RR. In fact, this gain in the rate of convergence turns out to be
fundamental. As we show in the following theorem, the theoretical lower bounds of convergence
for SGDA-RR and SEG-RR with constant stepsize are both Ω(1/nK3). This exhibits that there is a
provable gap between those methods and SEG-FFA, which attains O(1/nK4−5ε).

Theorem 5.6. Suppose n ≥ 2. For both SGDA-RR with constant stepsize αk = α > 0 and SEG-
RR with constant stepsize αk = α > 0, βk = β > 0, there exists a µ-strongly monotone minimax
problem f(z) = 1

n

∑n
i=1 fi(z) with µ > 0 such that regardless of stepsizes, we have

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

Lσ2

µ3nK3

)
if K > L/µ.

Proof. The full statement and proof are presented in Appendix G.2.

In Appendix H, we present experiments to numerically validate our convergence and divergence
analyses. We conducted experiments spanning monotone and strongly monotone cases. The exper-
iments also include a comparison against existing convergent independent-sample SEG method by
Hsieh et al. (2020), and an ablation study testing the effect of anchoring applied to uniform sampling
and random reshuffling versions of SEG.

6 PROOF SKETCHES

Let us briefly sketch the proofs of the convergence results we have presented in the previous sections.
To this end, the statements shown in this section may be slightly informal. The precise statements
and the details are deferred to the appendices.

8
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6.1 WITHIN-EPOCH ERROR ANALYSIS FOR UPPER BOUNDS

Let us focus on the upper bounds of convergence. For the moment, we are only interested in the
sequence {zk

0}k≥0, so for convenience let us drop the subscripts and write zk to denote zk
0 .

The cumulative updates made within an epoch can decomposed into a sum of an exact EG update
and a within-epoch error term, which we denote by rk, as

zk+1 = zk − ηknF (zk − ηknFzk) + rk. (18)
The quality of the method will depend on how small the “noise” term rk is, as the noise will in
general hinder the convergence. It turns out that, regardless of the method that is in use, the noise
term can be bounded using a unified format, as follows. The proof can be found in Appendix D.2.
Theorem 6.1. Suppose that F is µ-strongly monotone with µ ≥ 0, and Assumptions 3, 4 hold.
For each of SEG-RR, SEG-FF, and SEG-FFA, there exists a choice of stepsizes that makes the
following hold: For an exponent a that depends on the method, there exist constants C1, D1, V1, C2,
D2, and V2, all independent of ηk and n, such that the error term rk satisfies a deterministic bound∥∥rk∥∥ ≤ ηakn

aC1
∥∥Fzk

∥∥+ ηakn
aD1

∥∥Fzk
∥∥2 + ηakn

aV1 (19)
and a bound that holds on expectation

E
[
∥r∥2

∣∣∣zk
]
≤ η2ak n2aC2

∥∥Fzk
∥∥2 + η2ak n2aD2

∥∥Fzk
∥∥4 + η2ak n2a−1V2. (20)

Furthermore, the exponent is a = 2 for SEG-RR and SEG-FF, and a = 3 for SEG-FFA.

In other words, SEG-FFA has an error that is order of magnitude smaller then other methods. Thus,
it is now intuitively clear that SEG-FFA should have an advantage in the convergence.

6.2 META-ANALYSIS FOR CONVERGENCE BOUNDS

When F is µ-strongly monotone with µ > 0, all SEG-RR, SEG-FF, and SEG-FFA do not diverge.
In this case, it is possible to establish the following unified analysis of the methods.
Theorem 6.2. Suppose that F is µ-strongly monotone with µ > 0, Assumptions 3, 4 hold, and an
optimization method whose within-epoch error satisfies (19) and (20) is run for K epochs. Then,
for any given ε ∈ (0, 1 − 1/a), by choosing a constant stepsize ηk = ω

nK1−ε for a sufficiently small
constant ω, we achieve the bound

E
[∥∥zK − z∗∥∥2] ≤ exp

(
−µωKε

2

)∥∥z0 − z∗∥∥2 +O( 1

nK2a−2−(2a−1)ε

)
. (21)

For the precise statement of this result and its proof, see Appendix E. As the polynomial de-
cay will dominate the exponential decay for large enough K, the bound we get is essentially
O(1/K2a−2−(2a−1)ε). For SEG-RR and SEG-FF where a = 2, we get the upper bound O(1/K2−3ε),
and for SEG-FFA where a = 3 we get the upper bound O(1/K4−5ε).

When F is non-strongly monotone, as shown in Theorem 4.2, SEG-RR and SEG-FF diverge in
the worst case. On the other hand, thanks to the second-order matching, the reduced error O(η3) of
SEG-FFA provides us convergence. See Appendix F for the precise statement on the convergence
rate and the affiliated details.

7 CONCLUSION

We proposed SEG-FFA, a new stochastic variant of EG that uses flip-flop sampling and anchoring.
While being a minimal modification from the vanilla SEG, SEG-FFA attains the “second-order
matching” property to the deterministic EG, leading to a two-fold improved convergence. On one
hand, SEG-FFA reaches an optimum in the monotone setting, unlike many baseline methods such
as SEG-US, SEG-RR, and SEG-FF that diverge. Moreover, in the strongly monotone setting,
SEG-FFA shows a faster convergence with a provable gap from the other methods.

An interesting future direction would be to extend our work to nonmonotone problems, further inves-
tigating the potentials of the second-order matching technique. Also, we note from our experiments
that, while our work successfully shows the convergence of SEG-FFA, the convergence rate we
derived may be suboptimal. Closing this gap between the observed convergence and the theoretical
rate would be an appealing future work.
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A PSEUDOCODE OF THE ALGORITHMS

We present the pseudocode of the algorithms we consider in this paper in Algorithms 2, 3 and 4,
with the pseudocode of the with-replacement stochastic methods in Algorithm 1.

Algorithm 1: SEG-US / SGDA-US
1 Input : The number of components n; stepsize sequences {αt}t≥0 and {βt}t≥0

2 Initialize : z0 ∈ Rd1+d2

3 for t = 0, 1, . . . do
4 sample i(t) uniformly from {1, . . . , n}
5 if SGDA-US then
6 zt+1 ← zt − αtFi(t)zt
7 end
8 else if SEG-US then
9 wt ← zt − αtFi(t)zt

10 zt+1 ← zt − βtFi(t)wt

11 end
12 end

Algorithm 2: SEG-RR / SGDA-RR
1 Input : The number of components n; stepsize sequences {αk}k≥0 and {βk}k≥0

2 Initialize : z0
0 ∈ Rd1+d2

3 for k = 0, 1, . . . do
4 sample τk uniformly from Sn
5 for i = 0 to n− 1 do
6 if SGDA-RR then
7 zk

i+1 ← zk
i − αkFτk(i+1)z

k
i

8 end
9 else if SEG-RR then

10 wk
i ← zk

i − αkFτk(i+1)z
k
i

11 zk
i+1 ← zk

i − βkFτk(i+1)w
k
i

12 end
13 end
14 zk+1

0 ← zk
n

15 end

Algorithm 3: SEG-FF
1 Input : The number of components n; stepsize sequences {αk}k≥0 and {βk}k≥0

2 Initialize : z0
0 ∈ Rd1+d2

3 for k = 0, 1, . . . do
4 sample τk uniformly from Sn
5 for i = 0 to n− 1 do
6 wk

i ← zk
i − αkFτk(i+1)z

k
i

7 zk
i+1 ← zk

i − βkFτk(i+1)w
k
i

8 end
9 for i = n to 2n− 1 do

10 wk
i ← zk

i − αkFτk(2n−i)z
k
i

11 zk
i+1 ← zk

i − βkFτk(2n−i)w
k
i

12 end
13 zk+1

0 ← zk
2n

14 end
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Algorithm 4: SEG-FFA
1 Input : The number of components n; stepsize sequences {ηk}k≥0

2 Initialize : z0
0 ∈ Rd1+d2

3 for k = 0, 1, . . . do
4 sample τk uniformly from Sn
5 for i = 0 to n− 1 do
6 wk

i ← zk
i −

ηk

2 Fτk(i+1)z
k
i

7 zk
i+1 ← zk

i − ηkFτk(i+1)w
k
i

8 end
9 for i = n to 2n− 1 do

10 wk
i ← zk

i −
ηk

2 Fτk(2n−i)z
k
i

11 zk
i+1 ← zk

i − ηkFτk(2n−i)w
k
i

12 end
13 zk+1

0 ← zk
0+zk

2n

2
14 end

B USEFUL LEMMATA

Lemma B.1 (Polarization identity). For any two vectors a and b, it holds that

2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2

= ∥a+ b∥2 − ∥a∥2 − ∥b∥2 .

Lemma B.2 (Weighted AM-GM inequality). For any γ > 0 and two vectors a and b in Rd,

2 |⟨a, b⟩| ≤ γ ∥a∥2 + 1

γ
∥b∥2 .

Proof. Notice that

2 |⟨a, b⟩| ≤ 2 (|a1b1|+ · · ·+ |anbn|)

≤
(
γa21 +

b21
γ

)
+ · · ·+

(
γa2d +

b2d
γ

)
= γ ∥a∥2 + 1

γ
∥b∥2 .

Lemma B.3 (Young’s inequality). For any γ > 0 and two vectors a and b,

∥a+ b∥2 ≤ (1 + γ) ∥a∥2 +
(
1 +

1

γ

)
∥b∥2 .

In particular, as a special case where γ = 1, it holds that

∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 . (22)

Lemma B.4. For any two vectors a and b, it holds that

∥a− b∥2 ≥ 1

2
∥a∥2 − ∥b∥2 .

Proof. From (22) it follows that

∥a∥2 = ∥(a− b) + b∥2 ≤ 2 ∥a− b∥2 + 2 ∥b∥2 .

Simply rearranging the terms gives us the result.

The following inequality is also frequently referred to as Young’s inequality, so we will also do so.
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Lemma B.5 (Generalized Young’s inequality). For any positive scalars p1, . . . , pn such that p1 +
· · ·+ pn = 1 and vectors a1, . . . ,an, it holds that

∥p1a1 + · · ·+ pnan∥2 ≤ p1 ∥a1∥2 + · · ·+ pn ∥an∥2 .

In particular, setting p1 = · · · = pn = 1
n and multiplying both sides by n2 yields

∥a1 + · · ·+ an∥2 ≤ n
(
∥a1∥2 + · · ·+ ∥an∥2

)
.

Lemma B.6. Suppose that F is M -smooth. Then for any z and w it holds that

∥Fw − Fz −DF (z)(w − z)∥ ≤ M

2
∥w − z∥2 .

Proof. The proof closely follows the arguments used for Lemma 1.2.4 in Nesterov (2018), by re-
placing the gradients therein by saddle gradients. The fundamental theorem of calculus with the
M -smoothness of F gives us

∥Fw − Fz −DF (z)(w − z)∥ =
∥∥∥∥∫ 1

0

DF (z + t(w − z)) dt (w − z)−DF (z)(w − z)

∥∥∥∥
≤
∫ 1

0

∥DF (z + t(w − z))−DF (z)∥ dt ∥w − z∥

≤
∫ 1

0

Mt ∥w − z∥ dt ∥w − z∥

=
M

2
∥w − z∥2 .

Lemma B.7. Let F be a µ-strongly monotone operator. Let z∗ be a point such that Fz∗ = 0, and
let η > 0. Then, for any point z in the domain of F and w := z − ηFz, it holds that

⟨Fw,w − z∗⟩ ≥ µ

2
∥z − z∗∥2 − η2µ ∥Fz∥2 .

Proof. By the µ-strong monotonicity of F and Lemma B.4 it holds that

⟨Fw,w − z∗⟩ ≥ µ ∥w − z∗∥2

= µ ∥z − ηFz − z∗∥2

≥ µ

2
∥z − z∗∥2 − µ ∥ηFz∥2

so we are done.

Lemma B.8 (Nonexpansiveness of the EG operator). Let F be a monotone L-Lipschitz operator.
Let z∗ be a point such that Fz∗ = 0, and z be any point in the domain of F . Then, for any η > 0
it holds that

∥z − ηF (z − ηFz)− z∗∥2 ≤ ∥z − z∗∥2 − η2(1− η2L2) ∥Fz∥2 .

Proof. This lemma is exactly from Gorbunov et al. (2022b); see Section D.7 therein.

The following lemma generalizes Lemma 3.2 in Gorbunov et al. (2022b) shown for monotone F to
µ-strongly monotone F .

Lemma B.9. Let F be a µ-strongly monotone L-Lipschitz operator, and let z be any point in the
domain of F . Then for any 0 < η < 1

L
√
2

, it holds that

∥F (z − ηF (z − ηFz))∥2 ≤
(
1− 2ηµ

5

)
∥Fz∥2 .

17
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Proof. For convenience, let us define w := z − ηFz and z+ := z − ηF (z − ηFz) = z − ηFw.
Because F is µ-strongly monotone, we have

µ
∥∥z+ − z

∥∥2 ≤ 〈Fz+ − Fz, z+ − z
〉

= η
〈
Fz − Fz+,Fw

〉
.

(23)

Also from the µ-strong monotonicity of F we get

µ
∥∥w − z+

∥∥2 ≤ 〈Fw − Fz+,w − z+
〉

= η
〈
Fw − Fz+,Fw − Fz

〉
.

(24)

Meanwhile, from the L-Lipschitzness of F we have∥∥Fw − Fz+
∥∥2 ≤ η2L2 ∥Fw − Fz∥2 . (25)

Summing up the inequalities (23), (24), (25) with weights 2/η, 1/2η, and 3/2 respectively, we obtain

µ

η

(
2
∥∥z+ − z

∥∥2 + 1

2

∥∥w − z+
∥∥2)+

3

2

∥∥Fw − Fz+
∥∥2

≤ 2
〈
Fz − Fz+,Fw

〉
+

1

2

〈
Fw − Fz+,Fw − Fz

〉
+

3η2L2

2
∥Fw − Fz∥2 .

From this inequality, we can exactly follow the arguments used in the proof of Lemma 3.2 in Gor-
bunov et al. (2022b) to derive that

µ

η

(
2
∥∥z+ − z

∥∥2 + 1

2

∥∥w − z+
∥∥2)+

∥∥Fz+
∥∥2 ≤ ∥Fz∥2 . (26)

On the other hand, Young’s inequality (Lemma B.3) tells us that

η2 ∥Fz∥2 = ∥w − z∥2 ≤
(
1 +

1

4

)∥∥w − z+
∥∥2 + (1 + 4)

∥∥z+ − z
∥∥2 .

This, combined with (26), implies that
2ηµ

5
∥Fz∥2 +

∥∥Fz+
∥∥2 ≤ ∥Fz∥2 .

It remains to simply rearrange the terms.

Lemma B.10. Let {ak}k≥0, {bk}k≥0, {ck}k≥0, and {dk}k≥0 be sequences of nonnegative numbers
satisfying the recurrence relation

bk ≤ (1 + ak)dk − dk+1 + ck ∀k ≥ 0.

Then for any k ≥ 0 it holds that

dk+1 +

k∑
j=0

bj ≤

 k∏
j=0

(1 + aj)

d0 +
k∑

j=0

cj

 .

Proof. Because ak ≥ 0, it suffices to show that
k∑

j=0

(bj − cj)

k∏
i=j+1

(1 + ai) ≤ −dk+1 + d0

k∏
j=0

(1 + aj), (27)

as this implies
k∑

j=0

bj ≤
k∑

j=0

bj

k∏
i=j+1

(1 + ai)

≤

 k∑
j=0

cj

k∏
i=j+1

(1 + ai)

− dk+1 + d0

k∏
j=0

(1 + aj)

≤ −dk+1 +

d0 +

k∑
j=0

ck

 k∏
j=0

(1 + aj).
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So, we show that (27) holds, by induction on k. For the base case k = 0, the recurrence relation tells
us that

b0 − c0 ≤ (1 + a0)d0 − d1

which is exactly (27) when k = 0. Now suppose that (27) holds for some k ≥ 0. Using the induction
hypothesis and the recurrence relation we get

k+1∑
j=0

(bj − cj)

k+1∏
i=j+1

(1 + ai) = bk+1 − ck+1 + (1 + ak+1)

 k∑
j=0

(bj − cj)

k∏
i=j+1

(1 + ai)


≤ bk+1 − ck+1 − (1 + ak+1)dk+1 + d0

k+1∏
j=0

(1 + aj)

≤ −dk+2 + d0

k+1∏
j=0

(1 + aj).

This shows that (27) holds also for k + 1, and we are done.

The subsequent lemma is technical, but it can be derived from elementary calculus.

Lemma B.11. For any K ≥ 1,

K+2∑
k=2

1

k2/3(log k)2
≥ (K + 3)1/3

(log(K + 3))2
.

Proof. Consider integrating the function x 7→ 1
x2/3(log x)2

over the interval [2,K + 3], where the
function is decreasing. An upper Riemann sum is an upper bound for an integral, so we have

K+2∑
k=2

1

k2/3(log k)2
≥
∫ K+3

2

1

x2/3(log x)2
dx. (28)

Now consider a function g : [1,∞)→ R, defined as

g(y) :=

∫ y+3

2

1

x2/3(log x)2
dx− (y + 3)1/3

(log(y + 3))2
.

Differentiating, we get

g′(y) =
2

(y + 3)2/3(log(y + 3))3
+

2

3(y + 3)2/3(log(y + 3))2
> 0

whenever y ≥ 1. That is, g is increasing on y ≥ 1.

It is easy to verify that g(1) ≥ 0; one way to do so is, for Ei( · ) denoting the exponential integral
function (Abramowitz & Stegun, 1965, Chapter 5), to use the indefinite integral∫

1

x2/3(log x)2
dx =

1

3
Ei

(
log x

3

)
−

3
√
x

log x
(29)

to numerically evaluate g(1). Since g is increasing, we have g(y) ≥ g(1) ≥ 0 for all y ≥ 1. This,
with (28), implies that

K+2∑
k=2

1

k2/3(log k)2
≥
∫ K+3

2

1

x2/3(log x)2
dx ≥ (K + 3)1/3

(log(K + 3))2

holds whenever K ≥ 1, which is exactly the claimed.
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C MISSING PROOFS FOR SECTION 5

C.1 UNRAVELLING THE RECURRENCE OF THE GENERALIZED SEG IN (11) AND (13)

In Section 5.1, we considered the method where, in an epoch, the iterates are generated following
the recurrence

wi = zi − αTizi

zi+1 = zi − βTiwi
(30)

for i = 0, 1, . . . , N − 1, where each Ti are sampled from the set {F1, . . . ,Fn}, and an additional
anchoring step

z♯ :=
zN + θz0
1 + θ

(31)

is performed so that z♯ is used as the initial point of the next epoch. In this section we would like to
prove the following two statements regarding this update rule.
Proposition C.1 (Proposition 5.1). It holds that

z♯ = z0−
β

1 + θ

N−1∑
j=0

Tjz0+
αβ

1 + θ

N−1∑
j=0

DTj(z0)Tjz0+
β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0+
ϵN
1 + θ

(32)
for some ϵN = o

(
(α+ β)2

)
.

Proof. Equation (32) immediately follows from Proposition C.2, with (34) giving us the precise
definition of ϵN . To show that ϵN = o

(
(α+ β)2

)
, we begin with noting that both ∥zj − z0∥ and

∥wj − z0∥ are of O(α + β), because both zj and wj are obtained from z0 by performing at most
j updates following (30). Thus, the first term in the right hand side of (34) is of O(β(α + β)2)
by Lemma B.6, and the remaining terms are of O((α + β)3) by the L-smoothness of the operators
F1, . . . ,Fn.

Proposition C.2. For any i = 0, 1, . . . , N , it holds that

zi = z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi (33)

where we denote

ϵi :=− β

i−1∑
j=0

(
Tjwj − Tjz0 −DTj(z0)(wj − z0)

)

+ αβ

i−1∑
j=0

DTj(z0)(Tjzj − Tjz0) + β2
i−1∑
j=0

DTj(z0)

j−1∑
k=0

(Tkwk − Tkz0).

(34)

Proof. We use induction on i. There is nothing to show for the base case i = 0. Now, suppose that
(33) and (34) hold for some i < N , and write

zi+1 = zi − βTiwi

= zi − βTiz0 − βDTi(z0)(wi − z0)− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
.

Here, notice that by the update rule we have

wi = zi − αTizi

= z0 − β

i−1∑
j=0

Tjwj − αTizi.

Using this identity and the induction hypothesis we get

zi+1 = z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi
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− βTiz0 − βDTi(z0)

−β i−1∑
j=0

Tjwj − αTizi


− β

(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i−1∑
j=0

Tjz0 + αβ

i−1∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i−1

DTj(z0)Tkz0 + ϵi

− βTiz0 + β2DTi(z0)

i−1∑
j=0

Tjz0 + β2DTi(z0)

i−1∑
j=0

(Tjwj − Tjz0)

+ αβDTi(z0)(Tizi − Tiz0) + αβDTi(z0)Tiz0

− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i∑
j=0

Tjz0 + αβ

i∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i

DTj(z0)Tkz0 + ϵi

+ β2DTi(z0)

i−1∑
j=0

(Tjwj − Tjz0) + αβDTi(z0)(Tizi − Tiz0)

− β
(
Tiwi − Tiz0 −DTi(z0)(wi − z0)

)
= z0 − β

i∑
j=0

Tjz0 + αβ

i∑
j=0

DTj(z0)Tjz0 + β2
∑

0≤k<j≤i

DTj(z0)Tkz0 + ϵi+1

which asserts that (33) also holds for i+ 1.

C.2 INSUFFICIENCY OF ONLY USING FLIP-FLOP SAMPLING

Here we prove the following.

Proposition C.3 (Proposition 5.2). Suppose we use flip-flop sampling. Without anchoring, or equiv-
alently when θ = 0, in order to make (14) and (15) hold, we have to choose β = η1/n and α = β/2.
However, such a choice leads to η2 = 2η1, which is the set of parameters that fails to make EG+
converge.

Proof. Suppose that we have already established the upcoming Lemma C.4. Then, according to
Lemma C.4, for (15) to hold with θ = 0, the following system of equations should be satisfied:

η1η2 = 2n2β2,

η1η2 = n2(2αβ + β2),

η2 = 2nβ.

Solving this system of equations, we get η1 = nβ, η2 = 2nβ, and α = β/2.

For the latter part of the statement on the divergence of EG+ with η2 = 2η1, consider the (1 + 1)-
dimensional bilinear problem

min
x

max
y

xy

whose unique optimum is z∗ = (0, 0). A simple computation shows that

Fz =

[
0 1
−1 0

]
z.

Consequently, for any η > 0, the update rule of EG+ with η1 = η and η2 = 2η amounts to

z+ = z − 2ηF (z − ηFz) =

[
1− 2η2 −2η

2η 1− 2η2

]
z.
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It follows that ∥∥z+ − z∗∥∥2 =

∥∥∥∥[1− 2η2 −2η
2η 1− 2η2

] [
x
y

]∥∥∥∥2
=
(
(1− 2η2)x− 2ηy

)2
+
(
2ηx+ (1− 2η2)y

)2
= (1 + 4η4)(x2 + y2)

= (1 + 4η4) ∥z − z∗∥2 .

Therefore, the distance from the optimal solution strictly increases every iterate.

It remains to actually prove Lemma C.4.
Lemma C.4. When flip-flop sampling is used, it holds that

αβ

1 + θ

N−1∑
j=0

DTj(z0)Tjz0 +
β2

1 + θ

∑
0≤i<j≤N−1

DTj(z0)Tiz0

=
2αβ + β2

1 + θ

n∑
j=1

DFj(z0)Fjz0 +
2β2

1 + θ

∑
i ̸=j

DFj(z0)Fiz0.

Proof. As we are using flip-flop sampling, we have N = 2n, and it is clear that

N−1∑
j=0

DTj(z0)Tjz0 = 2

n∑
j=1

DFj(z0)Fjz0.

For the second term, as Ti = T2n−1−i, we have∑
0≤i<j≤2n−1

DTj(z0)Tiz0 =
∑

0≤i<j≤n−1

DTj(z0)Tiz0 +
∑

n≤i<j≤2n−1

DTj(z0)Tiz0

+

n−1∑
i=0

2n−2−i∑
j=n

DTj(z0)Tiz0 +

n−1∑
i=0

2n−1∑
j=2n−i

DTj(z0)Tiz0

+

n−1∑
i=0

DT2n−1−i(z0)Tiz0

=
∑

0≤i<j≤n−1

DTj(z0)Tiz0 +
∑

0≤j<i≤n−1

DTj(z0)Tiz0

+

n−1∑
i=0

n−1∑
j=i+1

DTj(z0)Tiz0 +

n−1∑
i=0

i−1∑
j=0

DTj(z0)Tiz0

+

n−1∑
i=0

DTi(z0)Tiz0

= 2
∑

0≤i<j≤n−1

DTj(z0)Tiz0 + 2
∑

0≤j<i≤n−1

DTj(z0)Tiz0

+

n−1∑
i=0

DTi(z0)Tiz0.

The claimed identity can be obtained by taking the weighted sum of the two results.

D MISSING PROOFS FOR SECTION 6.1

In this section, although it is an abuse of notation, for convenience we will write Fi to denote the
saddle gradient of the component function chosen in the ith iteration. More precisely, for indices
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i = 0, 1, . . . , n − 1 we denote Fτ(i+1) by Fi. Similarly, in cases of considering SEG-FF or SEG-
FFA, for i ≥ n we denote Fτ(2n−i) by Fi. Also, we omit the superscripts and subscripts denoting
the epoch number k unless strictly necessary, as all the iterates that we consider will be from the
same epoch.

We consider the iterates generated by the update rule

wi = zi − ξηFzi,

zi+1 = zi − ηFwi.
(35)

Note that ξ = 1/2 for SEG-FFA, and ξ = 1 for SEG-RR and SEG-FF.

D.1 AUXILIARY LEMMATA

For j = 1, . . . , 2n we define

gj :=

j−1∑
i=0

Fiz0, (36)

δj := ∥gj − jFz0∥ , (37)

Σj :=

j∑
i=1

δi, (38)

Ψj :=

j∑
i=1

δ2i . (39)

We set Σ0 = Ψ0 = 0, as they are empty sums. Notice that δj is a random variable that depends on
the permutation τ .

Meanwhile, by triangle inequality it is immediate that

∥gj∥ ≤ j ∥Fz0∥+ δj ,

and by Young’s inequality it holds that

∥gj∥2 ≤ 2j2 ∥Fz0∥2 + 2δ2j .

Lemma D.1. For any index i, it holds that

∥zi − z0∥ ≤ η (1 + ξηL) ∥gi∥

+ η2L
(
2ξ + 2ξηL+ ξ2η2L2

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ ,
(40)

∥wi − z0∥ ≤ ξη ∥gi+1∥+ ξη
(
(1− ξ−1) + 2ηL+ ξη2L2

)
∥gi∥

+ η(1 + ξηL)
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ .

(41)

Proof. By the fundamental theorem of calculus for line integrals and the update rule (35), we have

wi = zi − ξηFizi

= zi − ξηFiz0 − ξη(Fizi − Fiz0)

= zi − ξηFiz0 − ξη

∫ 1

0

DFi(z0 + t(zi − z0)) dt (zi − z0)

and similarly

zi+1 = zi − ηFiwi

= zi − ηFiz0 − η(Fiwi − Fiz0)

= zi − ηFiz0 − η

∫ 1

0

DFi(z0 + t(wi − z0)) dt (wi − z0).
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Hence, by defining

Ai :=

∫ 1

0

DFi(z0 + t(zi − z0)) dt

Bi :=

∫ 1

0

DFi(z0 + t(wi − z0)) dt

(42)

the update rule can be rewritten using these quantities as

wi = zi − ξηFiz0 − ξηAi(zi − z0), (43)
zi+1 = zi − ηFiz0 − ηBi(wi − z0). (44)

Subtracting z0 from both sides of (43) we get

wi − z0 = zi − z0 − ξηFiz0 − ξηAi(zi − z0)

= (I − ξηAi) (zi − z0)− ξηFiz0,
(45)

and plugging this into (44) gives us

zi+1 − z0 = zi − z0 − ηFiz0 − ηBi(wi − z0)

= zi − z0 − ηFiz0 − ηBi ((I − ξηAi) (zi − z0)− ξηFiz0)

=
(
I − ηBi + ξη2BiAi

)
(zi − z0)− η (I − ξηBi)Fiz0.

(46)

For convenience let us define

Ci := I − ηBi + ξη2BiAi,

Pi,ℓ := CiCi−1 . . .Cℓ+2Cℓ+1

and Pi,i := I as it denotes an empty product. Observe that for any j we have

∥Cj∥ =
∥∥I − ηBi + ξη2BiAi

∥∥ ≤ 1 + ηL+ ξη2L2. (47)

Also note that for any ℓ it holds that

(I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ)

= (I − ξηBℓ+1)−
(
I − ηBℓ+1 + ξη2Bℓ+1Aℓ+1

)
(I − ξηBℓ)

= ξη(Bℓ+1 +Bℓ)− ξη2Bℓ+1(Aℓ+1 +Bℓ) + ξ2η3Bℓ+1Aℓ+1Bℓ

and hence

∥(I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ)∥ ≤ 2ξηL+ 2ξη2L2 + ξ2η3L3. (48)

Unravelling the recurrence relation (46) we get

zi+1 − z0 = Ci(zi − z0)− η (I − ξηBi)Fiz0

= Ci

(
Ci−1(zi−1 − z0)− η (I − ξηBi−1)Fi−1z0

)
− η (I − ξηBi)Fiz0

= Pi,i−2(zi−1 − z0)− η

i∑
ℓ=i−1

Pi,ℓ (I − ξηBℓ)Fℓz0

= Pi,i−2

(
Ci−2(zi−2 − z0)− η (I − ξηBi−2)Fi−2z0

)
− η

i∑
ℓ=i−1

Pi,ℓ (I − ξηBℓ)Fℓz0

= Pi,i−3(zi−2 − z0)− η

i∑
ℓ=i−2

Pi,ℓ (I − ξηBℓ)Fℓz0

...

= Pi,−1(z0 − z0)− η

i∑
ℓ=0

Pi,ℓ (I − ξηBℓ)Fℓz0
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and therefore

zi − z0 = −η
i−1∑
ℓ=0

Pi−1,ℓ (I − ξηBℓ)Fℓz0. (49)

In order to compute the bound for ∥zi − z0∥, we use summation by parts to get

1

η
(z0 − zi) =

i−1∑
ℓ=0

Pi−1,ℓ (I − ξηBℓ)Fℓz0

= Pi−1,i−1 (I − ξηBi−1)

i−1∑
ℓ=0

Fℓz0

−
i−2∑
ℓ=0

(Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ))

ℓ∑
j=0

Fℓz0

= (I − ξηBi−1) gi −
i−2∑
ℓ=0

(Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)) gℓ+1.

Here, observe that

Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)

= Ci−1Ci−2 . . .Cℓ+2 ((I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ))

so by using (47) and (48) we obtain

∥Pi−1,ℓ+1 (I − ξηBℓ+1)− Pi−1,ℓ (I − ξηBℓ)∥

≤
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) (
1 + ηL+ ξη2L2

)i−ℓ−2
.

Therefore, we conclude that

∥zi − z0∥ ≤ η (1 + ξηL) ∥gi∥+η2L
(
2ξ + 2ξηL+ ξ2η2L2

) i−2∑
ℓ=0

(
1 + ηL+ ξη2L2

)i−ℓ−2 ∥gℓ+1∥ .

Meanwhile, substituting (49) back to (45) gives us

wi − z0 = −ξηFiz0 − η

i−1∑
ℓ=0

(I − ξηAi)Pi−1,ℓ (I − ξηBℓ)Fℓz0. (50)

For i > ℓ let us define

Ri,ℓ := ξ−1 (I − ξηAi)Pi−1,ℓ (I − ξηBℓ)

= ξ−1 (I − ξηAi)Ci−1Ci−2 . . .Cℓ+2Cℓ+1 (I − ξηBℓ)

and for convenience Ri,i := I so that (50) can be rewritten as

1

ξη
(z0 −wi) =

i∑
ℓ=0

Ri,ℓFℓz0. (51)

Applying summation by parts on the above, we obtain

1

ξη
(z0 −wi) = Ri,i

i∑
ℓ=0

Fℓz0 −
i−1∑
ℓ=0

(Ri,ℓ+1 −Ri,ℓ)

ℓ∑
j=0

Fjz0

= gi+1 −
i−1∑
ℓ=0

(Ri,ℓ+1 −Ri,ℓ)gℓ+1

and as a consequence we get

1

ξη
∥wi − z0∥ ≤ ∥gi+1∥+

i−1∑
ℓ=0

∥Ri,ℓ+1 −Ri,ℓ∥ ∥gℓ+1∥ . (52)
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It remains to bound ∥Ri,ℓ+1 −Ri,ℓ∥. For the special case where ℓ = i − 1, a direct computation
leads to

Ri,i −Ri,i−1 = I − ξ−1 (I − ξηAi) (I − ξηBi−1)

= (1− ξ−1)I + ηAi + ηBi−1 − ξη2AiBi−1

and thus we have
∥Ri,i −Ri,i−1∥ ≤ (1− ξ−1) + 2ηL+ ξη2L2. (53)

For the other cases; that is, when ℓ < i− 1, we have

Ri,ℓ+1 −Ri,ℓ = ξ−1 (I − ξηAi)Ci−1Ci−2 . . .Cℓ+2 ((I − ξηBℓ+1)−Cℓ+1 (I − ξηBℓ))

so by using (47) and (48) we get the bound

∥Ri,ℓ+1 −Ri,ℓ∥ ≤ ξ−1(1 + ξηL)
(
2ξηL+ 2ξη2L2 + ξ2η3L3

) (
1 + ηL+ ξη2L2

)i−ℓ−2
. (54)

Applying (53) and (54) on (52) gives the bound for ∥wi − z0∥.

Proposition D.2. Suppose that SEG-FFA is used, η < 1
nL , and let ν := 1 + 1

2n . Then for any
i = 1, . . . , 2n− 1 we have the bounds

∥zi − z0∥ ≤
(
ηνi+

ην2e2i(i− 1)

2n

)
∥Fz0∥+ ηνδi + η2Lν2e2Σi−1,

∥wi − z0∥ ≤
η

2

(
1 + 2ν2i+

ν3e2i(i− 1)

n

)
∥Fz0∥+

η

2
δi+1 +

η(2ν2 − 1)

2
δi + η2Lν3e2Σi−1,

∥wi − z0∥2 ≤
(
3η2(i+ 1)2

2
+

3η2(2ν2 − 1)2i2

2
+

η2ν6e4i(i− 1)2(2i− 1)

n2

)
∥Fz0∥2

+
3η2

2
δ2i+1 +

3η2(2ν2 − 1)2

2
δ2i +

6η2ν6e4(i− 1)

n2
Ψi−1.

Proof. Using elementary calculus one can show that x 7→ (1 + 1
x + 1

2x2 )
x increases on x > 0 and

is bounded above by e. Hence for all 0 ≤ ℓ < i ≤ 2n we have(
1 + ηL+

η2L2

2

)i−ℓ−2

≤
(
1 +

1

n
+

1

2n2

)2n

≤ e2.

Applying the definitions (37) and (38) on (40) and then substituting ξ = 1/2 we get

∥zi − z0∥ ≤ η

(
1 +

ηL

2

)
∥gi∥+ η2L

(
1 +

ηL

2

)2 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

≤ ην (i ∥Fz0∥+ δi) + η2Lν2
i−2∑
ℓ=0

e2 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ ην (i ∥Fz0∥+ δi) +
ην2e2i(i− 1)

2n
∥Fz0∥+ η2Lν2e2Σi−1.

Similarly, from (41) we get

∥wi − z0∥ ≤
η

2
∥gi+1∥+

η

2

(
1 + 2ηL+

η2L2

2

)
∥gi∥

+ η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

≤ η

2
((i+ 1) ∥Fz0∥+ δi+1) +

η

2

(
1 +

2

n
+

1

2n2

)
(i ∥Fz0∥+ δi)

+ η2Lν3
i−2∑
ℓ=0

e2 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ η

2
(1 + 2iν2) ∥Fz0∥+

ην3e2i(i− 1)

2n
∥Fz0∥+

η

2
δi+1 +

η(2ν2 − 1)

2
δi + η2Lν3e2Σi−1.
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Finally, applying generalized Young’s inequality on (41) we get

∥wi − z0∥2 ≤
3η2

4
∥gi+1∥2 +

3η2

4

(
1 + 2ηL+

η2L2

2

)2

∥gi∥2

+ 3

(
η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

)2

.

Using generalized Young’s inequality once more on the last term gives us

3

(
η2L

(
1 +

ηL

2

)3 i−2∑
ℓ=0

(
1 + ηL+

η2L2

2

)i−ℓ−2

∥gℓ+1∥

)2

≤ 3

(
ην3e2

n

i−2∑
ℓ=0

∥gℓ+1∥

)2

≤ 3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2 .

Plugging this back yields

∥wi − z0∥2 ≤
3η2

4
∥gi+1∥2 +

3η2

4

(
1 + 2ηL+

η2L2

2

)2

∥gi∥2 +
3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2

≤ 3η2

4

(
2(i+ 1)2 ∥Fz0∥2 + 2δ2i+1

)
+

3η2

4

(
2ν2 − 1

)2 (
2i2 ∥Fz0∥2 + 2δ2i

)
+

3η2ν6e4(i− 1)

n2

i−2∑
ℓ=0

(
2(ℓ+ 1)2 ∥Fz0∥2 + 2δ2ℓ+1

)
≤ 3η2

2

(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

3η2

2

(
2ν2 − 1

)2 (
i2 ∥Fz0∥2 + δ2i

)
+

η2ν6e4i(i− 1)2(2i− 1)

n2
∥Fz0∥2 +

6η2ν6e4(i− 1)

n2
Ψi−1.

Now the claimed inequalities can be obtained simply by rearranging the terms appropriately.

Proposition D.3. Suppose that either SEG-RR or SEG-FF is used with α = β = η < 1
nL , and let

ν̃ := 1 + 1
n . Then for any i = 1, . . . , 2n− 1 we have the bounds

∥zi − z0∥ ≤
(
ην̃i+

16ην̃2i(i− 1)

n

)
∥Fz0∥+ ην̃δi + 32η2Lν̃2Σi−1,

∥wi − z0∥ ≤ η

(
1 + iν̃2 +

16ν̃3i(i− 1)

n

)
∥Fz0∥+ ηδi+1 + η(ν̃2 − 1)δi + 32η2Lν̃3Σi−1,

∥wi − z0∥2 ≤

(
6η2(i+ 1)2 +

6η2 (1 + ν̃)
2
i2

n2
+

1024η2ν̃6i(i− 1)2(2i− 1)

n2

)
∥Fz0∥2

+ 6η2δ2i+1 +
6η2 (1 + ν̃)

2

n2
δ2i +

6144η2ν̃6(i− 1)

n2
Ψi−1.

Proof. One can verify that x 7→ (1 + 4
3x )

x increases on x ≥ 3 and is bounded above by e4/3 < 4.
With noting that (1 + 1

1 + 1
12 )

1 = 3 < 4, (1 + 1
2 + 1

22 )
2 = 49

16 < 4, and 1 + 1
x + 1

x2 ≤ 1 + 4
3x

whenever x ≥ 3, we see that for all 0 ≤ ℓ < i ≤ 2n it holds that

(
1 + ηL+ η2L2

)i−ℓ−2 ≤
(
1 +

1

n
+

1

n2

)2n

≤ 42 = 16.

Also, we have

2 + 2ηL+ η2L2 ≤ 2 +
2

n
+

1

n2
= 1 + ν̃2 ≤ 2ν̃2.
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Applying the definitions (37) and (38) on (40) and then substituting ξ = 1 we get

∥zi − z0∥ ≤ η (1 + ηL) ∥gi∥+ η2L
(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥

≤ ην̃ (i ∥Fz0∥+ δi) + 2η2Lν̃2
i−2∑
ℓ=0

16 ((ℓ+ 1) ∥Fz0∥+ δℓ+1)

≤ ην̃ (i ∥Fz0∥+ δi) +
16ην̃2i(i− 1)

n
∥Fz0∥+ 32η2Lν̃2Σi−1.

Similarly, from (41) we get

∥wi − z0∥ ≤ η ∥gi+1∥+ η2L (2 + ηL) ∥gi∥

+ η2L(1 + ηL)
(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥ .

≤ η ((i+ 1) ∥Fz0∥+ δi+1) +
η

n

(
2 +

1

n

)
(i ∥Fz0∥+ δi)

+ η2Lν̃
(
2ν̃2
) i−2∑
ℓ=0

16 (ℓ ∥Fz0∥+ δℓ) .

≤ η(1 + iν̃2) ∥Fz0∥+
16ην̃3i(i− 1)

n
∥Fz0∥+ ηδi+1 + η(ν̃2 − 1)δi + 32η2Lν̃3Σi−1.

Finally, applying Young’s inequality on (41) we get

∥wi − z0∥2 ≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥

+ 3

(
η2L(1 + ηL)

(
2 + 2ηL+ η2L2

) i−2∑
ℓ=0

(
1 + ηL+ η2L2

)i−ℓ−2 ∥gℓ+1∥

)2

≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥+ 3

(
2ην̃3

n

i−2∑
ℓ=0

16 ∥gℓ+1∥

)2

.

Using Young’s inequality once more on the last term gives us

3

(
32ην̃3

n

i−2∑
ℓ=0

∥gℓ+1∥

)2

≤ 3072η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2 .

Plugging this back yields

∥wi − z0∥2 ≤ 3η2 ∥gi+1∥2 +
3η2 (2 + ηL)

2

n2
∥gi∥+

3072η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

∥gℓ+1∥2

≤ 6η2
(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

6η2 (2 + ηL)
2

n2

(
i2 ∥Fz0∥2 + δ2i

)
+

6144η2ν̃6(i− 1)

n2

i−2∑
ℓ=0

(
(ℓ+ 1)2 ∥Fz0∥2 + δ2ℓ+1

)
≤ 6η2

(
(i+ 1)2 ∥Fz0∥2 + δ2i+1

)
+

6η2 (1 + ν̃)
2

n2

(
i2 ∥Fz0∥2 + δ2i

)
+

1024η2ν̃6i(i− 1)2(2i− 1)

n2
∥Fz0∥2 +

6144η2ν̃6(i− 1)

n2
Ψi−1.

Now the claimed inequalities can be obtained simply by rearranging the terms appropriately.

Lemma D.4. For any j = 1, . . . , 2n, it deterministically holds that

δj ≤ n(ρ ∥Fz0∥+ σ). (55)
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Proof. For any set of indices J ⊂ {0, . . . , n− 1}, by Assumption 4 it holds that

∑
i∈J
∥Fiz0 − Fz0∥2 ≤

n−1∑
i=0

∥Fiz0 − Fz0∥2 ≤ n(ρ ∥Fz0∥+ σ)2.

Hence, for any j = 1, . . . , n we have

∥gj − jFz0∥2 =

∥∥∥∥∥
j−1∑
i=0

Fiz0 − jFz0

∥∥∥∥∥
2

≤ j

j−1∑
i=0

∥Fiz0 − Fz0∥2

≤ jn(ρ ∥Fz0∥+ σ)2

≤ n2(ρ ∥Fz0∥+ σ)2,

and for any j = n+ 1, . . . , 2n we have

∥gj − jFz0∥2 =

∥∥∥∥∥
n−1∑
i=0

Fiz0 +

j−1∑
i=n

Fiz0 − jFz0

∥∥∥∥∥
2

=

∥∥∥∥∥
j−1∑
i=n

Fiz0 − (j − n)Fz0

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2

≤ (j − n)

j−1∑
i=0

∥Fiz0 − Fz0∥2

≤ n2(ρ ∥Fz0∥+ σ)2.

(56)

Therefore, in any case we have

∥gj − jFz0∥2 ≤ n2(ρ ∥Fz0∥+ σ)2.

Taking square roots on both sides gives us the desired bound.

Lemma D.5. For any j = 1, . . . , 2n, it holds that

Eτ [δ
2
j ] ≤

n(ρ ∥Fz0∥+ σ)2

2
, (57)

Proof. If n = 1 then the left hand side is always 0, so there is nothing to show. So, we may assume
that n ≥ 2. Then, for any j = 1, . . . , n, using (Mishchenko et al., 2020a, Lemma 1) we obtain

Eτ

∥∥∥∥1j gj − Fz0

∥∥∥∥2 ≤ n− j

j(n− 1)
(ρ ∥Fz0∥+ σ)2.

Multiplying both sides by j2 and applying AM-GM inequality leads to

Eτ ∥gj − jFz0∥2 ≤
j(n− j)

n− 1
(ρ ∥Fz0∥+ σ)2 ≤ n2

4(n− 1)
(ρ ∥Fz0∥+ σ)2 ≤ n

2
(ρ ∥Fz0∥+ σ)2.

Meanwhile, for j = n+ 1, . . . , 2n, following the first few steps in (56) we get

∥gj − jFz0∥2 =

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2
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Applying (Mishchenko et al., 2020a, Lemma 1) here, we get

Eτ ∥gj − jFz0∥2 = Eτ

∥∥∥∥∥∥
n−1∑

i=2n−j

Fiz0 − (j − n)Fz0

∥∥∥∥∥∥
2

= (j − n)2 Eτ

∥∥∥∥∥∥ 1

j − n

n−1∑
i=2n−j

Fiz0 − Fz0

∥∥∥∥∥∥
2

≤ (j − n)2 · n− (j − n)

(j − n)(n− 1)
(ρ ∥Fz0∥+ σ)2

≤ (j − n)(2n− j)

n− 1
(ρ ∥Fz0∥+ σ)2.

Using AM-GM inequality on the last line gives us

Eτ ∥gj − jFz0∥2 ≤
(j − n)(2n− j)

n− 1
(ρ ∥Fz0∥+σ)2 ≤ n2

4(n− 1)
(ρ ∥Fz0∥+σ)2 ≤ n

2
(ρ ∥Fz0∥+σ)2.

Thus, for any case, we have (57).

Lemma D.6. For any k, ℓ ∈ {0, 1, . . . , 2n}, it holds that

Eτ [ΣkΣℓ] ≤
kℓn(ρ ∥Fz0∥+ σ)2

2
. (58)

Proof. Expanding the product ΣkΣℓ and writing in terms of δ, we get

ΣkΣℓ =

(
k∑

i=1

δi

) ℓ∑
j=1

δj

 =

k∑
i=1

ℓ∑
j=1

δiδj

≤
k∑

i=1

ℓ∑
j=1

δ2i + δ2j
2

where the last line follows from the AM-GM inequality. Taking the expectation with respect to τ
and using the bound from Lemma D.5, we obtain

Eτ [ΣkΣℓ] ≤
1

2

k∑
i=1

ℓ∑
j=1

(
Eτ [δ

2
i ] + Eτ [δ

2
j ]
)

≤ 1

2

k∑
i=1

ℓ∑
j=1

(
n(ρ ∥Fz0∥+ σ)2

2
+

n(ρ ∥Fz0∥+ σ)2

2

)

=
kℓn(ρ ∥Fz0∥+ σ)2

2

which is exactly the claimed.

Lemma D.7. For any k, ℓ ∈ {0, 1, . . . , 2n}, it holds that

Eτ

( k∑
i=1

Σi

) ℓ∑
j=1

Σj

 ≤ k(k + 1)ℓ(ℓ+ 1)n(ρ ∥Fz0∥+ σ)2

8
. (59)
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Proof. Expanding the product in the left hand side of (59) and applying (58), we get

Eτ

( k∑
i=1

Σi

) ℓ∑
j=1

Σj

 = Eτ

 k∑
i=1

ℓ∑
j=1

ΣiΣj

 =

k∑
i=1

ℓ∑
j=1

Eτ [ΣiΣj ]

≤
k∑

i=1

ℓ∑
j=1

ijn(ρ ∥Fz0∥+ σ)2

2

≤ k(k + 1)ℓ(ℓ+ 1)n(ρ ∥Fz0∥+ σ)2

8
.

D.2 UPPER BOUNDS OF THE WITHIN-EPOCH ERRORS

The full proof of Theorem 6.1 is quite long and technical, so we divide it into several parts. First we
show that (19) and (20) holds with a = 3 when SEG-FFA is in use. Then we show that Theorem 6.1
also holds for SEG-FF in Appendix D.2.3, and for SEG-RR in Appendix D.2.4.

D.2.1 PROOF OF EQUATION (19) FOR SEG-FFA

In this section we prove the following.
Theorem D.8. Say we use SEG-FFA. Then, as long as the stepsize used in an epoch satisfies
η < 1

nL , it holds that

∥r∥ ≤ η3n3C1A ∥Fz0∥+ η3n3D1A ∥Fz0∥2 + η3n3V1A (60)

for constants

C1A := L2

(
1

2

(
1 +

2e2

3

)
+

6 + e2

3
+ 15ρ

)
, (61)

D1A := M

(
83

4
+

24e4

5
+ ρ2

(
243

16
+ 27e4

))
, (62)

V1A := Mσ2

(
243

16
+ 27e4

)
+ 15L2σ. (63)

We first list the intermediate results. The actual proof of Theorem D.8 is in page 37, at the end of
this section.
Proposition D.9. For using SEG-FFA, the within-epoch update z♯ (12) satisfies

z♯ = z0 − nηF (z0 − nηFz0) + r

where we denote

r := nηF (z0 − nηFz0)− nηFz0 + n2η2DF (z0)Fz0 (64a)

− η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)
(64b)

+
η2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) (64c)

+
η2

2

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0). (64d)

Proof. Setting α = η/2, β = η, and θ = 1 in (13), we get

z♯ = z0 −
η

2

2n−1∑
j=0

Fjz0 +
η2

4

2n−1∑
j=0

DFj(z0)Fjz0 +
η2

2

∑
0≤k<j≤2n−1

DFj(z0)Fkz0 +
1

2
ϵ2n (65)
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where ϵ2n is defined as in (34). Recall that Fi = F2n−1−i for all i = 0, 1, . . . , 2n−1, and moreover,∑n−1
i=0 Fi =

∑2n−1
i=n Fi = nF . Thus, the first sum in the above is equal to 2nFz0, and the second

sum is equal to 2
∑n−1

j=0 DFj(z0)Fjz0. For the last sum, observe that∑
0≤k<j≤2n−1

DFj(z0)Fkz0 =
∑

0≤k<j≤n−1

DFj(z0)Fkz0 +
∑

n≤k<j≤2n−1

DFj(z0)Fkz0

+
∑

0≤k≤n−1
n≤j≤2n−1

DFj(z0)Fkz0

=
∑

0≤k<j≤n−1

DFj(z0)Fkz0 +
∑

n−1≥k>j≥0

DFj(z0)Fkz0

+
∑

0≤k≤n−1
n−1≥j≥0

DFj(z0)Fkz0

= 2
∑
k ̸=j

DFj(z0)Fkz0 +

n−1∑
j=0

DFj(z0)Fjz0.

Hence, (65) is equivalent to

z♯ = z0 − nηFz0 +
η2

2

n−1∑
j=0

DFj(z0)Fjz0 +
η2

2

∑
0≤k<j≤2n−1

DFj(z0)Fkz0 +
1

2
ϵ2n

= z0 − nηFz0 + η2
n−1∑
j=0

DFj(z0)Fjz0 + η2
∑
k ̸=j

DFj(z0)Fkz0 +
1

2
ϵ2n

= z0 − nηFz0 + η2

n−1∑
j=0

DFj(z0)

n−1∑
j=0

Fjz0

+
1

2
ϵ2n

= z0 − nηFz0 + n2η2DF (z0)Fz0 +
1

2
ϵ2n.

Observing that the terms (64b), (64c), and (64d) add up to 1
2ϵ2n completes the proof.

Proposition D.10. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then the noise term satisfies the
bound

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5

)

+
3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj


+

η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1.

Proof. We bound each line in equation (64). For (64a), we use Lemma B.6 to get∥∥nηF (z0 − nηFz0)− nηFz0 + n2η2DF (z0)Fz0
∥∥ ≤ nηM

2
∥−nηFz0∥2

=
n3η3M

2
∥Fz0∥2 .
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In bounding the remaining three lines we repeatedly use the bounds obtained in Proposition D.2.
We will also use the following bounds, which follows from (35), (37), and Young’s inequality:

∥w0 − z0∥ =
η

2
∥g1∥ ≤

η

2
∥Fz0∥+

η

2
δ1,

∥w0 − z0∥2 =
η2

4
∥g1∥2 ≤

η2

2
∥Fz0∥2 +

η2

2
δ21 .

For (64b), observe that Lemma B.6 gives us

∥Fjwj − Fjz0 −DFj(z0)(wj − z0)∥ ≤
M

2
∥wj − z0∥2 .

Thus, by using the bound obtained in Proposition D.2, we get∥∥∥∥∥∥−η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)∥∥∥∥∥∥
≤ η

2

2n−1∑
j=0

∥Fjwj − Fjz0 −DFj(z0)(wj − z0)∥

≤ ηM

4

2n−1∑
j=0

∥wj − z0∥2

≤ ηM

4

2n−1∑
j=1

(
3η2(j + 1)2

2
+

3η2(2ν2 − 1)2j2

2
+

η2ν6e4j(j − 1)2(2j − 1)

n2

)
∥Fz0∥2

+
ηM

4

2n−1∑
j=1

(
3η2

2
δ2j+1 +

3η2(2ν2 − 1)2

2
δ2j +

6η2ν6e4(j − 1)

n2
Ψj−1

)
+

ηM

4
∥w0 − z0∥2

=
ηM

4

(
η2n(1 + 2n)(1 + 4n)− 3η2

2
+

η2(2ν2 − 1)2n(2n− 1)(4n− 1)

2

+
η2ν6e4(n− 1)(2n− 1)(32n2 − 42n+ 11)

5n

)
∥Fz0∥2

+
3η3M

8
(Ψ2n − δ21) +

3η3M(2ν2 − 1)2

8
Ψ2n−1 +

3η3Mν6e4

2n2

2n−1∑
j=1

(j − 1)Ψj−1

+
ηM

4

(
η2

2
∥Fz0∥2 +

η2

2
δ21

)
≤ η3n3M

(
ν2 + (2ν2 − 1)2 +

16νe4

5

)
∥Fz0∥2

+
3η3M

8
Ψ2n +

3η3M(2ν2 − 1)2

8
Ψ2n−1 +

3η3Mν6e4

2n2

2n−2∑
j=1

jΨj

≤ η3n3M

(
4ν4 +

16νe4

5

)
∥Fz0∥2

+
3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj


where along the derivation we used the inequality

ν5(n− 1)(2n− 1)(32n2 − 42n+ 11) ≤ 64n4

which holds for all n ≥ 1. From now on, we will keep on using similar techniques to reduce the
exponents of ν, without explicitly stating the inequalities used, but recovering the inequalities that
are used should be clear from context.
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For (64c), we use L-smoothness of Fj , and also the fact that it implies ∥DFj(z0)∥ ≤ L, to get

∥∥∥∥∥∥η
2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0)

∥∥∥∥∥∥
≤ η2

4

2n−1∑
j=0

∥DFj(z0)∥ ∥Fjzj − Fjz0∥

≤ η2L2

4

2n−1∑
j=0

∥zj − z0∥

≤ η2L2

4

2n−1∑
j=1

((
ηνj +

ην2e2j(j − 1)

2n

)
∥Fz0∥+ ηνδj + η2Lν2e2Σj−1

)

=
η2L2

4

(
ηνn(2n− 1) +

2ην2e2(n− 1)(2n− 1)

3

)
∥Fz0∥

+
η3L2ν

4
Σ2n−1 +

η4L3ν2e2

4

2n−1∑
j=1

Σj−1

≤ η3n2L2

2

(
1 +

2e2

3

)
∥Fz0∥+

η3L2ν

4
Σ2n−1 +

η4L3ν2e2

4

2n−2∑
j=1

Σj .

By the same logic, each summand in (64d) with j > 0 can be bounded as

∥∥∥∥∥DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥
≤ ∥DFj(z0)∥

j−1∑
k=0

∥Fkwk − Fkz0∥

≤ L2

j−1∑
k=0

∥wk − z0∥

≤ L2
(η
2
∥Fz0∥+

η

2
δ1

)
+ L2

j−1∑
k=1

η

2

(
1 + 2ν2k +

ν3e2k(k − 1)

n

)
∥Fz0∥

+ L2

j−1∑
k=1

(
η

2
δk+1 +

η(2ν2 − 1)

2
δk + η2Lν3e2Σk−1

)
=

ηL2

2
(∥Fz0∥+ δ1) +

ηL2

2

(
j − 1 + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
ηL2

2
(Σj − δ1) +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1

=
ηL2

2

(
j + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
ηL2

2
Σj +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1,

34



Under review as a conference paper at ICLR 2024

and when j = 0 the sum with respect to k becomes an empty sum. Thus, (64d) in total satisfies the
bound∥∥∥∥∥∥η

2

2

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥∥
≤ η2

2

2n−1∑
j=0

∥∥∥∥∥DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0)

∥∥∥∥∥
≤ η3L2

4

2n−1∑
j=1

(
j + ν2j(j − 1) +

ν3e2j(j − 1)(j − 2)

3n

)
∥Fz0∥

+
η2

2

2n−1∑
j=1

(
ηL2

2
Σj +

ηL2(2ν2 − 1)

2
Σj−1 + η2L3ν3e2

j−1∑
k=1

Σk−1

)

=
η3L2

4

(
n(2n− 1) +

4ν2n(n− 1)(2n− 1)

3
+

ν3e2(n− 1)(2n− 1)(2n− 3)

3

)
∥Fz0∥

+
η3L2

4

2n−1∑
j=1

Σj +
η3L2(2ν2 − 1)

4

2n−1∑
j=1

Σj−1 +
η4L3ν3e2

2

2n−1∑
j=1

j−1∑
k=1

Σk−1

≤ η3L2

2

(
n2 +

4n3

3
+

2e2n3

3

)
∥Fz0∥

+
η3L2

4

2n−1∑
j=1

Σj +
η3L2(2ν2 − 1)

4

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

2n−1∑
j=k+1

Σk−1

≤ η3n3L2

(
4ν + e2

3

)
∥Fz0∥

+
η3L2

4
Σ2n−1 +

η3L2ν2

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1.

Simply collecting all the inequalities and rearranging the terms leads to the claimed bound.

Before we proceed, let us write

X1 :=
3η3M

8

Ψ2n + (2ν2 − 1)2Ψ2n−1 +
4ν6e4

n2

2n−2∑
j=1

jΨj

 , (66)

X2 :=
η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)Σk−1

(67)

so that the bound on ∥r∥ obtained in Proposition D.10 can be written as

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5

)
+X1 +X2.

(68)
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Theorem D.11. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then the noise term deterministically
satisfies the bound

∥r∥ ≤ η3n3L2 ∥Fz0∥
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3
+ 10νρ

)
+ η3n3M ∥Fz0∥2

(
1

2
+ 4ν4 +

16νe4

5
+ ρ2

(
3ν4 + 8ν3e4

))
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)
+ 10νη3n3L2σ.

Proof. From (38), (39), and Lemma D.4, it holds that

Σj =

j∑
i=1

δi ≤ jn(ρ ∥Fz0∥+ σ), (69)

Ψj =

j∑
i=1

δ2i ≤ jn2(ρ ∥Fz0∥+ σ)2. (70)

Plugging the bound for Ψj into (66) we get

X1 ≤
3η3M

8

2n3(ρ ∥Fz0∥+ σ)2 + (2ν2 − 1)2(2n− 1)n2(ρ ∥Fz0∥+ σ)2 + 4ν6e4
2n−2∑
j=1

j2(ρ ∥Fz0∥+ σ)2


=

3η3M

8

((
2n3 + (2ν2 − 1)2(2n− 1)n2

)
(ρ ∥Fz0∥+ σ)2 +

4ν6e4

3
(n− 1)(2n− 1)(4n− 3)(ρ ∥Fz0∥+ σ)2

)
≤ 3η3M

8

(
4ν4n3(ρ ∥Fz0∥+ σ)2 +

32ν3e4n3

3
(ρ ∥Fz0∥+ σ)2

)
=

η3n3M(ρ ∥Fz0∥+ σ)2

2

(
3ν4 + 8ν3e4

)
.

By Young’s inequality, it holds that

(ρ ∥Fz0∥+ σ)2

2
≤ ρ2 ∥Fz0∥2 + σ2,

from which we get

X1 ≤ η3n3Mρ2 ∥Fz0∥2
(
3ν4 + 8ν3e4

)
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)
. (71)

Meanwhile, plugging the bound for Σj into (67) we get

X2 ≤
η3L2(ν + 1)

4
(2n− 1)n(ρ ∥Fz0∥+ σ) +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

jn(ρ ∥Fz0∥+ σ)

+
η4L3ν3e2

2

2n−2∑
k=1

(2n− k − 1)(k − 1)n(ρ ∥Fz0∥+ σ)

=
η3L2(ν + 1)

4
(2n− 1)n(ρ ∥Fz0∥+ σ) +

η3L2ν2(1 + ηLe2)

2
(n− 1)(2n− 1)n(ρ ∥Fz0∥+ σ)

+
η4L3ν3e2

6

(
−3 + 11n− 12n2 + 4n3

)
n(ρ ∥Fz0∥+ σ)

≤ η3L2

(
n2(ρ ∥Fz0∥+ σ) + (1 + ηLe2)n3(ρ ∥Fz0∥+ σ) +

2ηLe2

3
n4(ρ ∥Fz0∥+ σ)

)
≤ η3n3L2(ρ ∥Fz0∥+ σ)

(
1

n
+ 1 +

e2

n
+

2e2

3

)
where in the last line we used that η < 1

nL . Because the inequality

1

n
+ 1 +

e2

n
+

2e2

3
≤ 10ν
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holds for all n ≥ 1, continuing from above we obtain

X2 ≤ 10νη3n3L2(ρ ∥Fz0∥+ σ)

≤ 10νη3n3L2ρ ∥Fz0∥+ 10νη3n3L2σ.
(72)

Rearranging (68) with applying the bounds (71) and (72) gives us the claimed result.

Proof of Theorem D.8. As n ≥ 1, we notice that 1/n ≤ 1 and ν ≤ 3/2. Then the bound (60) is
immediate from Theorem D.11.

D.2.2 PROOF OF EQUATION (20) FOR SEG-FFA

In this section, we prove the following.
Theorem D.12. Say we use SEG-FFA. Then, as long as the stepsize used in an epoch satisfies
η < 1

nL , it holds that

E
[
∥r∥2

∣∣∣ z0] ≤ η6n6C2A ∥Fz0∥2 + η6n6D2A ∥Fz0∥4 + η6n5V2A (73)

for constants

C2A := 4L4

((
1

2

(
1 +

2e2

3

)
+

6 + e2

3

)2

+ 36ρ2e4

)
, (74)

D2A := 4M2

((
83

4
+

24e4

5

)2

+ ρ4
(
243

16
+ 27e4

)2
)
, (75)

V2A := 4M2σ4

(
243

16
+ 27e4

)2

+ 144e4L4σ2. (76)

Proof. As n ≥ 1, we notice that 1/n ≤ 1 and ν ≤ 3/2. The bound is then immediate from the
following Theorem D.13.

Theorem D.13. Suppose that η < 1
nL , and let ν := 1 + 1

2n . Then, in expectation, the noise term
satisfies the bound

E
[
∥r∥2

∣∣∣ z0] ≤ 4η6n6L4 ∥Fz0∥2
((

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)2

+
36ρ2e4

n

)

+ 4η6n6M2 ∥Fz0∥4
((

1

2
+ 4ν4 +

16νe4

5

)2

+
ρ4
(
3ν4 + 8ν3e4

)2
n

)
+ 4η6n5M2σ4

(
3ν4 + 8ν3e4

)2
+ 144e4η6n5L4σ2.

Proof. Notice that, when conditioned on z0, the only source of randomness included in Ψj is the
random permutation τ selected for the epoch. Hence, we can use Lemma D.5 to get

E [Ψj | z0] = E

[
j∑

i=1

δ2i

∣∣∣∣∣ z0
]
=

j∑
i=1

E
[
δ2i
∣∣ z0] ≤ jn(ρ ∥Fz0∥+ σ)2

2
.

Applying Young’s inequality on (68) we get

∥r∥2 ≤ 4η6n6L4 ∥Fz0∥2
(

1

2n

(
1 +

2e2

3

)
+

4ν + e2

3

)2

+ 4η6n6M2 ∥Fz0∥4
(
1

2
+ 4ν4 +

16νe4

5

)2

+ 4X2
1 + 4X2

2 .

(77)

When conditioned on z0, the first two lines are not random quantities. Thus, it suffices to derive the
bounds for E

[
X2

i

∣∣ z0], i = 1, 2.
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Recall that the bound (71) on X1 holds deterministically. Hence, it holds that

E
[
X2

1

∣∣ z0] ≤ E
[
X1

(
η3n3Mρ2 ∥Fz0∥2

(
3ν4 + 8ν3e4

)
+ η3n3Mσ2

(
3ν4 + 8ν3e4

)) ∣∣∣ z0]
= η3n3M

(
3ν4 + 8ν3e4

) (
ρ2 ∥Fz0∥2 + σ2

)
E [X1 | z0] .

Now, to compute E [X1 | z0], we apply the linearity of expectation on (66) to get

E [X1 | z0] =
3η3M

8

E [Ψ2n | z0] + (2ν2 − 1)2 E [Ψ2n−1 | z0] +
4ν6e4

n2

2n−2∑
j=1

j E [Ψj | z0]


≤ 3η3M

8

n2(ρ ∥Fz0∥+ σ)2 +
(2ν2 − 1)2(2n− 1)nσ2

2
+

4ν6e4

n2

2n−2∑
j=1

j2n(ρ ∥Fz0∥+ σ)2

2


=

3η3M

8

(
2n2 + (2ν2 − 1)2(2n− 1)n

2
(ρ ∥Fz0∥+ σ)2 +

2ν6e4(n− 1)(2n− 1)(4n− 3)(ρ ∥Fz0∥+ σ)2

3n

)
≤ 3η3M

8

(
2ν4n2(ρ ∥Fz0∥+ σ)2 +

16ν3e4n2(ρ ∥Fz0∥+ σ)2

3

)
=

η3n2M(ρ ∥Fz0∥+ σ)2

4

(
3ν4 + 8ν3e4

)
.

Young’s inequality gives us the bound

(ρ ∥Fz0∥+ σ)2

2
≤ ρ2 ∥Fz0∥2 + σ2 (78)

which, with the inequality derived above, leads to

E [X1 | z0] ≤
η3n2M

2

(
3ν4 + 8ν3e4

) (
ρ2 ∥Fz0∥2 + σ2

)
.

As a consequence, with using Young’s inequality once again, we obtain

E
[
X2

1

∣∣ z0] ≤ η6n5M2

2

(
3ν4 + 8ν3e4

)2 (
ρ2 ∥Fz0∥2 + σ2

)2
≤ η6n5M2

(
3ν4 + 8ν3e4

)2 (
ρ4 ∥Fz0∥4 + σ4

)
.

(79)

To get the bound of E
[
X2

2

∣∣ z0], we begin by using

ηLν2(2n− k − 1) ≤
(
1 +

1

2n

)2
2n− k − 1

n

= − k

4n3
− k

n2
− k

n
− 1

4n3
− 1

2n2
+

1

n
+ 2 ≤ 2,

which holds for all 1 ≤ k ≤ 2n− 2, to (67) to obtain

X2 ≤
η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj +
η3L2ν3e2

2

2n−2∑
k=1

2n− k − 1

n
Σk−1

≤ η3L2(ν + 1)

4
Σ2n−1 +

η3L2ν2(1 + ηLe2)

2

2n−2∑
j=1

Σj + η3L2νe2
2n−2∑
k=1

Σk−1

≤ η3L2(ν + 1)

4
Σ2n−1 +

(
η3L2ν2(1 + ηLe2)

2
+ η3L2νe2

) 2n−2∑
j=1

Σj

≤ η3L2(ν + 1)

4
Σ2n−1 + 3η3L2e2

2n−2∑
j=1

Σj .
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Then we directly square both sides and expand them to get

X2
2 ≤

η3L2(ν + 1)

4
Σ2n−1 + 3η3L2e2

2n−2∑
j=1

Σj

2

=
η6L4(ν + 1)2

16
Σ2

2n−1 + 9η6L4e4

2n−2∑
j=1

Σj

2

+
3η6L4e2(ν + 1)

2

2n−2∑
j=1

Σ2n−1Σj .

Here, using Lemma D.6 and Lemma D.7 on the right hand side leads to

E
[
X2

2

∣∣ z0] ≤ η6L4(ν + 1)2n(2n− 1)2(ρ ∥Fz0∥+ σ)2

32
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+
3η6L4e2(ν + 1)

2

2n−2∑
j=1

jn(2n− 1)(ρ ∥Fz0∥+ σ)2

2

≤ η6L4(ν + 1)2n(2n− 1)2(ρ ∥Fz0∥+ σ)2

32
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+
3η6L4e2(ν + 1)n(n− 1)(2n− 1)2(ρ ∥Fz0∥+ σ)2

4

≤ η6L4n3(ρ ∥Fz0∥+ σ)2

2
+

9η6L4e4n(2n− 2)2(2n− 1)2(ρ ∥Fz0∥+ σ)2

8

+ 6η6L4e2n3(n− 1)(ρ ∥Fz0∥+ σ)2

= η6L4(ρ ∥Fz0∥+ σ)2
(
n3

2
+

9e4n(2n− 2)2(2n− 1)2

8
+ 6e2n3(n− 1)

)
≤ 18e4η6L4n5(ρ ∥Fz0∥+ σ)2.

As a consequence, with using (78) once again, we obtain

E
[
X2

2

∣∣ z0] ≤ 36e4η6L4n5
(
ρ2 ∥Fz0∥2 + σ2

)
. (80)

Taking the conditional expectation on (77), applying the bounds (79) and (80), and then rearranging
the terms leads to the claimed inequality.

D.2.3 UPPER BOUNDS OF THE WITHIN-EPOCH ERRORS FOR SEG-FF

Theorem D.14. Say we use SEG-FF with α = β = η/2. Then, as long as the stepsize used in an
epoch satisfies η < 1

nL , it holds that

∥r∥ ≤ η2n2C1F ∥Fz0∥+ η2n2D1F ∥Fz0∥2 + η2n2V1F

E
[
∥r∥2

∣∣∣ z0] ≤ η4n4C2F ∥Fz0∥2 + η4n4D2F ∥Fz0∥4 + η4n3V2F

for constants C1F, D1F, V1F, C2F, D2F, and V2F to be determined later in (83) and (84).

Proof. As we have discussed in Section 5.1, we already know that aiming to achieve O(η3) error
without anchoring is futile. Instead, we show that error of magnitude O(η2) is possible with the
chosen stepsizes.

By Proposition C.2 and Lemma C.4 we have For any i = 0, 1, . . . , N , it holds that

z2n = z0 −
η

2

2n−1∑
j=0

Tjz0 +
η2

4

2n−1∑
j=0

DTj(z0)Tjz0 +
η2

4

∑
0≤k<j≤2n−1

DTj(z0)Tkz0 + ϵ2n

= z0 − η

n−1∑
j=0

Fjz0 +
3η2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i ̸=j

DFj(z0)Fiz0 + ϵ2n

= z0 − ηnFz0 + η2n2DF (z0)Fz0 −
η2

4

n∑
j=1

DFj(z0)Fjz0 −
η2

2

∑
i ̸=j

DFj(z0)Fiz0 + ϵ2n
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where we denote

ϵ2n :=− η

2

2n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)

+
η2

4

2n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) +
η2

4

2n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0).

(81)

Comparing z2n to a point that would have been the result of a deterministic EG update with step-
size ηn we get

z2n − (z0 − ηnF (z0 − ηnFz0)) = ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵ2n

− η2

4

n∑
j=1

DFj(z0)Fjz0 −
η2

2

∑
i ̸=j

DFj(z0)Fiz0.

Let us define

r̃ := ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵ2n. (82)

Noticing the resemblence between (64) and the equations in (81) and (82), we can repeat the same
reasoning used for Theorem D.8 and Theorem D.12, but with replacing the bounds given by Propo-
sition D.2 to those in Proposition D.3 (and plugging in η/2 in place of η in the statement of Proposi-
tion D.3) to conclude that

∥r̃∥ ≤ η3n3C̃1A ∥Fz0∥+ η3n3D̃1A ∥Fz0∥2 + η3n3Ṽ1A

E
[
∥r̃∥2

∣∣∣ z0] ≤ η6n6C̃2A ∥Fz0∥2 + η6n6D̃2A ∥Fz0∥4 + η6n5Ṽ2A

for some constants C̃1A, D̃1A, Ṽ1A, C̃2A, D̃2A, and Ṽ2A. Meanwhile, we also have∥∥∥∥∥∥η
2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i̸=j

DFj(z0)Fiz0

∥∥∥∥∥∥
=

∥∥∥∥∥∥η
2n2

2
DF (z0)Fz0 −

η2

4

n∑
j=1

DFj(z0)Fjz0

∥∥∥∥∥∥
≤ η2n2

2
∥DF (z0)∥ ∥Fz0∥+

η2

4

n∑
j=1

∥DFj(z0)∥ ∥Fjz0∥

≤ η2n2

2
L ∥Fz0∥+

η2

4

n∑
j=1

L (∥Fjz0 − Fz0∥+ ∥Fz0∥)

≤ η2(n2 + n)L

2
∥Fz0∥+

η2L

4

n∑
j=1

∥Fjz0 − Fz0∥

≤ η2n2L ∥Fz0∥+
η2L

4

 n∑
j=1

∥Fjz0 − Fz0∥2
1/2 n∑

j=1

1

1/2

= η2n2L ∥Fz0∥+
η2nL

4
(ρ ∥Fz0∥+ σ)

where in the second to the last line we used the Cauchy-Schwarz inequality. Therefore, as η ≤ 1/nL,
we conclude that

∥z2n − (z0 − ηnF (z0 − ηnFz0))∥ ≤ η2n2C1F ∥Fz0∥+ η2n2D1F ∥Fz0∥2 + η2n2V1F

for constants

C1F = L+
ρL

4
+

C̃1A

L
, D1F =

D̃1A

L
, V1F =

σL

4
+

Ṽ1A

L
. (83)
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Moreover, using Young’s inequality, we see that∥∥∥∥∥∥η
2

4

n∑
j=1

DFj(z0)Fjz0 +
η2

2

∑
i ̸=j

DFj(z0)Fiz0

∥∥∥∥∥∥
2

≤ 3η4n4L2 ∥Fz0∥2 +
3η4n2L2

16
ρ2 ∥Fz0∥2 +

3η4n2L2

16
σ2,

so we also conclude that

E
[
∥z2n − (z0 − ηnF (z0 − ηnFz0))∥2

∣∣∣ z0] ≤ η4n4C2F ∥Fz0∥2+η4n4D2F ∥Fz0∥4+η4n3V2F

holds for constants

C2F = 6L2 +
3ρ2L2

8
+

2C̃2A

L2
, D2F =

2D̃1A

L2
, V2F =

3σ2L2

8
+

2Ṽ1A

L2
. (84)

D.2.4 UPPER BOUNDS OF THE WITHIN-EPOCH ERRORS FOR SEG-RR

Theorem D.15. Say we use SEG-RR with α = β = η. Then, as long as the stepsize used in an
epoch satisfies η < 1

nL , it holds that

∥r∥ ≤ η2n2C1R ∥Fz0∥+ η2n2D1R ∥Fz0∥2 + η2n2V1R

E
[
∥r∥2

∣∣∣ z0] ≤ η4n4C2R ∥Fz0∥2 + η4n4D2R ∥Fz0∥4 + η4n3V2R

for constants C1R, D1R, V1R, C2R, D2R, and V2R to be determined later in (88) and (89).

Proof. As we have discussed in Section 5.1, we already know that aiming to achieve O(η3) error
with only using random reshuffling is futile. Instead, we show that error of magnitude O(η2) is
possible with the chosen stepsizes.

By Proposition C.2 and Lemma C.4 we have For any i = 0, 1, . . . , N , it holds that

zn = z0 − η

n−1∑
j=0

Fjz0 + η2
n−1∑
j=0

DFj(z0)Fjz0 + η2
∑

0≤k<j≤n−1

DFj(z0)Fkz0 + ϵn

= z0 − ηnFz0 + η2n2DF (z0)Fz0 − η2
∑

0≤j<k≤n−1

DFj(z0)Fkz0 + ϵn

where we denote

ϵn :=− η

n−1∑
j=0

(
Fjwj − Fjz0 −DFj(z0)(wj − z0)

)

+ η2
n−1∑
j=0

DFj(z0)(Fjzj − Fjz0) + η2
n−1∑
j=0

DFj(z0)

j−1∑
k=0

(Fkwk − Fkz0).

(85)

Comparing zn to a point that would have been the result of a deterministic EG update with step-
size ηn we get

zn − (z0 − ηnF (z0 − ηnFz0)) = ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵn

− η2
∑

0≤j<k≤n−1

DFj(z0)Fkz0.

Let us define
ř := ηnF (z0 − ηnFz0)− ηnFz0 + η2n2DF (z0)Fz0 + ϵn. (86)

Comparing the sums (64b)–(64d) to (85), we can repeat the same reasoning used for Theorem D.8
and Theorem D.12, but with replacing the bounds given by Proposition D.2 to those in Proposi-
tion D.3, to conclude that

∥ř∥ ≤ η3n3Č1A ∥Fz0∥+ η3n3Ď1A ∥Fz0∥2 + η3n3V̌1A

E
[
∥ř∥2

∣∣∣ z0] ≤ η6n6Č2A ∥Fz0∥2 + η6n6Ď2A ∥Fz0∥4 + η6n5V̌2A
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for some constants Č1A, Ď1A, V̌1A, Č2A, Ď2A, and V̌2A. Meanwhile, we also have∑
0≤j<k≤n−1

DFj(z0)Fkz0 =

n−1∑
j=0

DFj(z0)(nFz0 − gj+1)

=

n−1∑
j=0

(n− j − 1)DFj(z0)Fz0 −
n−1∑
j=0

DFj(z0)(gj+1 − (j + 1)Fz0)

which leads to∥∥∥∥∥∥
∑

0≤j<k≤n−1

DFj(z0)Fkz0

∥∥∥∥∥∥ ≤
n−1∑
j=0

(n− j − 1)L ∥Fz0∥+ L

n−1∑
j=0

δj+1

≤ n2L

2
∥Fz0∥+ L

n−1∑
j=0

δj+1.

(87)

Therefore, from η ≤ 1/nL and Lemma D.4, on one hand we obtain

∥zn − (z0 − ηnF (z0 − ηnFz0))∥ ≤ η2n2C1R ∥Fz0∥+ η2n2D1R ∥Fz0∥2 + η2n2V1R

for constants

C1R =
L

2
+ ρL+

Č1A

L
, D1R =

Ď1A

L
, V1R = σL+

V̌1A

L
. (88)

On the other hand, applying Young’s inequality on (87) we get∥∥∥∥∥∥
∑

0≤j<k≤n−1

DFj(z0)Fkz0

∥∥∥∥∥∥
2

≤ n4L2 ∥Fz0∥2 + 2L2

n−1∑
j=0

δj+1

2

≤ n4L2 ∥Fz0∥2 + 2nL2
n∑

j=1

δ2j .

Taking the expectation conditioned on z0 and applying Lemma D.5, we conclude that

E
[
∥z2n − (z0 − ηnF (z0 − ηnFz0))∥2

∣∣∣ z0] ≤ η4n4C2R ∥Fz0∥2+η4n4D2R ∥Fz0∥4+η4n3V2R

holds for constants

C2R = 2L2 + 4ρ2L2 +
2Č2A

L2
, D2R =

2Ď2A

L2
, V2R = 4σ2L2 +

2V̌2A

L2
. (89)

E CONVERGENCE BOUNDS IN THE STRONGLY MONOTONE SETTING

In this section, we provide further details for Theorem 6.2. The precise statement of Theorem 6.2 is
presented as Theorem E.4. As we are now interested in the iterates {zk

0}k≥0, we omit the subscript
0 unless necessary, and simply write zk instead of zk

0 .

For any of SEG-RR, SEG-FF, and SEG-FFA, we can decompose the update across the epoch into
a deterministic EG update plus a noise. More precisely, letting wk

† := zk − ηknFzk, we define F̂ k

by the relation ηknF̂
k = ηknFwk

† + rk so that

zk+1 = zk − ηknF̂
k. (90)

Proposition E.1. Let F be µ-strongly monotone. Then, for any ηk > 0, it holds that

η2kn
2

(
1− 3

2
µηkn−

(
1 +

1

2
µηkn

)
η2kn

2L2

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηkn

)∥∥zk − z∗∥∥2 − ∥∥zk+1 − z∗∥∥2 + 2 + µηkn

µηkn

∥∥rk∥∥2 . (91)
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Proof. From (90), using Lemma B.7 we get∥∥zk+1 − z∗∥∥2 =
∥∥zk − z∗∥∥2 − 2

〈
ηknF̂

k, zk − z∗
〉
+
∥∥∥ηknF̂ k

∥∥∥2
=
∥∥zk − z∗∥∥2 − 2ηkn

〈
Fwk

† ,w
k
† − z∗〉− 2η2kn

2
〈
Fwk

† ,Fzk
〉

− 2
〈
rk, zk − z∗〉+ ∥∥∥ηknF̂ k

∥∥∥2
≤
∥∥zk − z∗∥∥2 − µηkn

∥∥zk − z∗∥∥2 − 2η2kn
2
〈
Fwk

† ,Fzk
〉

− 2
〈
rk, zk − z∗〉+ ∥∥∥ηknF̂ k

∥∥∥2 + 2µη3kn
3
∥∥Fzk

∥∥2 .
Meanwhile, using the polarization identity (Lemma B.1) and the L-smoothness of F we get

−2
〈
Fwk

† ,Fzk
〉
=
∥∥Fwk

† − Fzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
≤ L2

∥∥wk
† − zk

∥∥2 − ∥∥Fwk
†
∥∥2 − ∥∥Fzk

∥∥2
≤ −(1− η2kn

2L2)
∥∥Fzk

∥∥2 − ∥∥Fwk
†
∥∥2 .

Combining the two inequalities and using the definition of F̂ we obtain∥∥zk+1 − z∗∥∥2 ≤ (1− µηkn)
∥∥zk − z∗∥∥2 − η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 − η2kn

2
∥∥Fwk

†
∥∥2

− 2
〈
rk, zk − z∗〉+ ∥∥ηknFwk

† + rk
∥∥2 + 2µη3kn

3
∥∥Fzk

∥∥2
≤ (1− µηkn)

∥∥zk − z∗∥∥2 − η2kn
2(1− 2µηkn− η2kn

2L2)
∥∥Fzk

∥∥2
− 2

〈
rk, zk − z∗〉+ 2

〈
rk, ηknFwk

†
〉
+
∥∥rk∥∥2

≤ (1− µηkn)
∥∥zk − z∗∥∥2 − η2kn

2(1− 2µηkn− η2kn
2L2)

∥∥Fzk
∥∥2

− 2
〈
rk, zk − ηknFwk

† − z∗〉+ ∥∥rk∥∥2 .
Let us consider the inner product term in the last line above. By Lemma B.2 and the nonexpansive-
ness of the EG update (Lemma B.8), for any γk > 0 we have

−2
〈
rk, zk − ηknFwk

† − z∗〉 ≤ 1

γk

∥∥rk∥∥2 + γk
∥∥zk − ηknFwk

† − z∗∥∥2
≤ 1

γk

∥∥rk∥∥2 + γk
∥∥zk − z∗∥∥2 − γkη

2
kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 .

Plugging this back we get

η2kn
2(1 + γk − 2µηkn− (1 + γk)η

2
kn

2L2)
∥∥Fzk

∥∥2
≤ (1 + γk − µηkn)

∥∥zk − z∗∥∥2 − ∥∥zk+1 − z∗∥∥2 + (1 + 1

γk

)∥∥rk∥∥2 . (92)

Choosing γk = µηkn
2 completes the proof.

Proposition E.2. Let F be a µ-strongly monotone and L-Lipschitz operator. Then, whenever
ηk < 1

nL
√
2

, it holds that ∥∥Fzk+1
∥∥ ≤ (1− µnηk

5

)∥∥Fzk
∥∥+ L

∥∥rk∥∥ .
Proof. Let zk+1

† := zk − ηknF (zk − ηknFzk), so that we have
∥∥∥zk+1 − zk+1

†

∥∥∥ =
∥∥rk∥∥. Then,

the L-smoothness of F and Lemma B.9 implies∥∥Fzk+1
∥∥ ≤ ∥∥∥Fzk+1 − Fzk+1

†

∥∥∥+ ∥∥∥Fzk+1
†

∥∥∥
≤ L

∥∥∥zk+1 − zk+1
†

∥∥∥+ ∥∥∥Fzk+1
†

∥∥∥
≤ L

∥∥rk∥∥+ (1− 2µηkn

5

)1/2 ∥∥Fzk
∥∥

≤ L
∥∥rk∥∥+ (1− µηkn

5

)∥∥Fzk
∥∥
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where in the last line we apply a simple inequality 1−2x ≤ (1−x)2 which holds for all x ∈ R.

Lemma E.3. Let Ω :=
∥∥Fz0

∥∥, and suppose that (19) holds. Given a constant b ≥ 1/a and the
number of epochs K, say we use constant stepsize ηk = ω

nKb where ω is a constant such that
ω ≤ 1

L
√
2

and

ωa−1 (C1 +D1 (Ω + ωaLV1)) ≤
1

5κ
, (93)

where κ = L/µ denotes the condition number. Then for any k = 0, 1, . . . ,K, it holds that∥∥Fzk
∥∥ ≤ Ω+ ωaLV1. (94)

Proof. We show a stronger statement that∥∥Fzk
∥∥ ≤ ∥∥Fz0

∥∥+ ωaLV1 ·
k

Kab
(95)

holds for all k = 0, 1, . . . ,K, by induction on k. For k = 0 there is nothing to show. Let us use
induction on k, and to this end, suppose that (95) holds for some k ≥ 0. Then, with noting that (95)
implies (94), by Proposition E.2 and (19) we have∥∥Fzk+1

∥∥ ≤ (1− µηkn

5

)∥∥Fzk
∥∥+ ηakn

aL
(
C1
∥∥Fzk

∥∥+D1
∥∥Fzk

∥∥2 + V1

)
≤
(
1− µηkn

5
+ ηakn

aLC1 + ηakn
aLD1 (Ω + ωaLV1)

)∥∥Fzk
∥∥+ ηakn

aLV1.
(96)

Here, observe that if ω satisfies (93) then

ηakn
aLC1 + ηakn

aLD1 (Ω + ωaLV1) ≤
ηknLω

a−1

Kb(a−1)
(C1 +D1 (Ω + ωaLV1))

≤ ηknL

5κKb(a−1)

≤ µηkn

5

(97)

where the last line follows from b(a− 1) ≥ 0 and κ = L/µ. Therefore, combining (96) and (97) and
then invoking the induction hypothesis (95) leads to∥∥Fzk+1

∥∥ ≤ ∥∥Fzk
∥∥+ ηakn

aLV1

=
∥∥Fzk

∥∥+ ωaLV1

Kab

≤
∥∥Fz0

∥∥+ ωaLV1 ·
k + 1

Kab
.

That is, (95) also holds for k + 1, so we are done.

Theorem E.4 (Theorem 6.2). Let Ω :=
∥∥Fz0

∥∥, and suppose that both (19) and (20) hold. Given
a constant b ∈ (1/a, 1) and the number of epochs K, say we use constant stepsize ηk ≡ η = ω

nKb

where ω is a constant such that ω ≤ 1
L
√
2

and

ωa−1 (C1 +D1 (Ω + ωaLV1)) ≤
1

5κ
.

Furthermore, for a constant
Φ := C2 +D2 (Ω + ωaLV1)

2
,

suppose that ω is chosen sufficiently small so that the constant stepsize η further satisfies

3

2
µηn+

(
1 +

1

2
µηn

)
η2n2L2 +

η2a−3n2a−3Φ(2 + µηn)

µ
≤ 1. (98)

Then for ε = 1− b, it holds that

E
[∥∥zK − z∗∥∥2] ≤ exp

(
−µωKε

2

)∥∥z0 − z∗∥∥2 +O( 1

nK2a−2−(2a−1)ε

)
. (99)
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Proof. From (20) and Lemma E.3 it follows that

E
[
∥r∥2

∣∣∣ zk
]
≤ η2ak n2aC2

∥∥Fzk
∥∥2 + η2ak n2aD2

∥∥Fzk
∥∥4 + η2ak n2a−1V2

≤ η2ak n2aC2
∥∥Fzk

∥∥2 + η2ak n2aD2 (Ω + ωaZLV1)
2 ∥∥Fzk

∥∥2 + η2ak n2a−1V2

= η2ak n2aΦ
∥∥Fzk

∥∥2 + η2ak n2a−1V2.

Thus, taking the conditional expectation on (91) we get

η2kn
2

(
1− 3

2
µηkn−

(
1 +

1

2
µηkn

)
η2kn

2L2

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηkn

)∥∥zk − z∗∥∥2 − E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
+

2 + µηkn

µ

(
η2a−1
k n2a−1Φ

∥∥Fzk
∥∥2 + η2a−1

k n2a−2V2

)
.

Rearranging the terms, we further get

η2kn
2

(
1− 3

2
µηkn−

(
1 +

1

2
µηkn

)
η2kn

2L2 −
η2a−3
k n2a−3Φ(2 + µηkn)

µ

)∥∥Fzk
∥∥2

≤
(
1− 1

2
µηkn

)∥∥zk − z∗∥∥2 − E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
+

η2a−1
k n2a−2V2(2 + µηkn)

µ
.

(100)
Because ηk = η, by assuming (98), we can guarantee that the left hand side of (100) is nonnegative,
so we obtain

E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
≤
(
1− 1

2
µηkn

)∥∥zk − z∗∥∥2 + η2a−1
k n2a−2V2(2 + µηkn)

µ
.

Applying the law of total expectation, and using the simple identity 1 − x ≤ e−x which holds for
all x ∈ R, from the above we get

E
∥∥zk+1 − z∗∥∥2 ≤ e−

1
2µηkn E

∥∥zk − z∗∥∥2 + η2a−1
k n2a−2V2(2 + µηkn)

µ
. (101)

As ηknL ≤ 1 and κ = L/µ, we have L(2 + µηkn) ≤ 2µκ+ µ, so (101) in turn implies

E
∥∥zk+1 − z∗∥∥2 ≤ e−

1
2µηkn E

∥∥zk − z∗∥∥2 + η2a−1
k n2a−2V2(2κ+ 1)

L
.

Noting that e−
1
2µηkn ≤ 1, simply unravelling this recurrence leads to

E
[∥∥zK − z∗∥∥2] ≤ e−

nµ
2

∑K−1
k=0 ηk

∥∥z0 − z∗∥∥2 + K−1∑
k=0

η2a−1
k n2a−2V2(2κ+ 1)

L

≤ e−
µωK1−b

2

∥∥z0 − z∗∥∥2 + ω2a−1V2(2κ+ 1)

LnKb(2a−1)−1
.

(102)

Now, for the first term to get smaller as the choice of the number of epochs K gets larger, we want
1− b > 0. Choosing b = 1− ε, we get

E
[∥∥zK − z∗∥∥2] ≤ exp

(
−µωKε

2

)∥∥z0 − z∗∥∥2 +O( 1

nK2a−2−(2a−1)ε

)
as claimed.

F CONVERGENCE RATE OF SEG-FFA IN THE MONOTONE SETTING

In this section, we consider SEG-FFA. As in the previous section, we decompose the update across
the epoch into a deterministic EG update plus a noise, as

wk
† := zk − ηknFzk,

zk+1 = zk − ηknF̂
k.

(103)
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for F̂ k defined by the equation
ηknF̂

k = ηknFwk
† + rk. (104)

Lemma F.1. Let u be any point in Rd1+d2 . Then, for any ηk > 0 and γk > 0, it holds that

2ηkn
〈
Fu,wk

† − u
〉
≤
∥∥zk − u

∥∥2 − 1

1 + γk

∥∥zk+1 − u
∥∥2

− η2kn
2(1− η2kn

2L2)
∥∥Fzk

∥∥2 + 1

γk

∥∥rk∥∥2 . (105)

Proof. By (103) and (104) we get∥∥zk+1 − u
∥∥2 =

∥∥∥zk − ηknF̂
k − u

∥∥∥2
=
∥∥zk − u

∥∥2 − 2
〈
ηknF̂

k, zk − u
〉
+
∥∥∥ηknF̂ k

∥∥∥2
=
∥∥zk − u

∥∥2 − 2
〈
ηknFwk

† ,w
k
† − u

〉
− 2

〈
ηknFwk

† , z
k −wk

†
〉
− 2

〈
rk, zk − u

〉
+
∥∥ηknFwk

†
∥∥2 + 2

〈
rk, ηknFwk

†
〉
+
∥∥rk∥∥2

=
∥∥zk − u

∥∥2 − 2ηkn
〈
Fwk

† ,w
k
† − u

〉
− 2

〈
ηknFwk

† , ηknFzk
〉

+
∥∥ηknFwk

†
∥∥2 − 2

〈
rk, zk − ηknFwk

† − u
〉
+
∥∥rk∥∥2

=
∥∥zk − u

∥∥2 − 2ηkn
〈
Fwk

† ,w
k
† − u

〉
− 2η2kn

2
〈
Fwk

† ,Fzk
〉

+ η2kn
2
∥∥Fwk

†
∥∥2 − 2

〈
rk, zk+1 − u

〉
−
∥∥rk∥∥2 .

We now bound the inner products. On one hand, by the polarization identity (Lemma B.1) and the
L-smoothness of f , we have

−2
〈
Fwk

† ,Fzk
〉
=
∥∥Fwk

† − Fzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
≤ L2

∥∥−ηknFzk
∥∥2 − ∥∥Fwk

†
∥∥2 − ∥∥Fzk

∥∥2
= −(1− η2kn

2L2)
∥∥Fzk

∥∥2 − ∥∥Fwk
†
∥∥2 .

On the other hand, by the weighted AM-GM inequality (Lemma B.2), for any number ak ∈ (0, 1) it
holds that

−2
〈
rk, zk+1 − u

〉
≤ 1

ak

∥∥rk∥∥2 + ak
∥∥zk+1 − u

∥∥2 .
Using these two bounds, we get∥∥zk+1 − u

∥∥2 ≤ ∥∥zk − u
∥∥2 − 2ηkn

〈
Fwk

† ,w
k
† − u

〉
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2

− η2kn
2
∥∥Fwk

†
∥∥2 + η2kn

2
∥∥Fwk

†
∥∥2 + ak

∥∥zk+1 − u
∥∥2 + ( 1

ak
− 1

)∥∥rk∥∥2 .
Choosing ak = γk

1+γk
and rearranging the terms, we obtain

2ηkn
〈
Fwk

† ,w
k
† − u

〉
≤
∥∥zk − u

∥∥2 − 1

1 + γk

∥∥zk+1 − u
∥∥2

− η2kn
2(1− η2kn

2L2)
∥∥Fzk

∥∥2 + 1

γk

∥∥rk∥∥2 . (106)

As the monotonicity of F implies〈
Fwk

† ,w
k
† − u

〉
≥
〈
Fu,wk

† − u
〉
,

plugging this to (106) gives us the claimed inequality.

Now we show that choosing the appropriate stepsizes leads to
∥∥Fzk

∥∥ being bounded uniformly
over k.
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Proposition F.2. Say we are using SEG-FFA. Let the sequence of stepsizes {ηk}k≥0 be nonincreas-
ing, with

S :=

∞∑
k=0

η3kn
3L3 <∞. (107)

Suppose that initial stepsize η0 is chosen sufficiently small so that

η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1 (108)

for constants C1A, D1A, and V1A defined in (61)–(63). Then for all k ≥ 0,∥∥Fzk
∥∥2 ≤ eSL2

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
. (109)

Proof. We use induction on k, to establish a stronger inequality∥∥zk − z∗∥∥2 ≤ eS
(∥∥z0 − z∗∥∥2 + 6SV 2

1A
L6

)
. (110)

To see that (110) indeed implies (109), notice that by the L-smoothness of f it holds that∥∥Fzk
∥∥2 =

∥∥Fzk − Fz∗∥∥2 ≤ L2
∥∥zk − z∗∥∥2 .

For the case when k = 0, as S > 0, it is clear that (110) holds. Now suppose that (110) holds for
some k ≥ 0. Applying Young’s inequality on (19) leads to∥∥rk∥∥2 ≤ 3η6kn

6
(
C2

1A

∥∥Fzk
∥∥2 +D2

1A

∥∥Fzk
∥∥4 + V 2

1A

)
.

Taking u = z∗ in (105) and then using the bound on
∥∥rk∥∥2 above, we obtain

η2kn
2

(
1− η2kn

2L2 −
3η4kn

4C2
1A

γk
−

3η4kn
4D2

1A
γk

∥∥Fzk
∥∥2)∥∥Fzk

∥∥2
≤
∥∥zk − z∗∥∥2 − 1

1 + γk

∥∥zk+1 − z∗∥∥2 + 3η6kn
6V 2

1A
γk

.

(111)

Choose γk = η3kn
3L3. Notice that (108) implies η0nL ≤ 1, henceforth ηk ≤ η0 ≤ 1/nL. This, with

the induction hypothesis (109), implies

η2kn
2L2 +

3η4kn
4C2

1A
γk

+
3η4kn

4D2
1A

γk

∥∥Fzk
∥∥2

= η2kn
2L2 +

3ηknC
2
1A

L3
+

3ηknD
2
1A

L3

∥∥Fzk
∥∥2

≤ η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L3

∥∥Fzk
∥∥2

≤ η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L3
· eSL2

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1.

That is, the left hand side of (111) becomes nonnegative. Then it is immediate from (111) that∥∥zk+1 − z∗∥∥2 ≤ (1 + γk)
∥∥zk − z∗∥∥2 + 3η6kn

6 (1 + γk)V
2

1A
γk

≤
(
1 + η3kn

3L3
) ∥∥zk − z∗∥∥2 + 6η3kn

3V 2
1A

L3
.
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Using Lemma B.10 to unravel this recurrence relation, we obtain

∥∥zk+1 − z∗∥∥2 ≤
 k∏

j=0

(
1 + η3jn

3L3
)∥∥z0 − z∗∥∥2 + k∑

j=0

6η3jn
3V 2

1A

L3


≤ e

∑k
j=0 η3

jn
3L3

∥∥z0 − z∗∥∥2 + 6V 2
1A

L6

k∑
j=0

η3jn
3L3


≤ eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
which shows that (110) also holds when k is replaced by k + 1. This completes the proof.

Theorem F.3 (Formal version of Theorem 5.4). Suppose that we are using SEG-FFA with ηk =
η0

3√2 log 2
(k+2)1/3 log(k+2)

for k = 0, 1, . . . , where, for S :=
∑∞

k=0 η
3
kn

3L3, the initial stepsize η0 is chosen
so that

η20n
2L2 +

3η0nC
2
1A

L3
+

3η0nD
2
1A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1 (112)

for constants C1A, D1A, and V1A defined in (61)–(63), and there exists a positive constant λ > 0
such that

η20n
2L2 +

η0nC2A

L3
+

η0nD2A

L
· eS

(∥∥z0 − z∗∥∥2 + 6SV 2
1A

L6

)
≤ 1− λ (113)

for constants C2A, D2A, and V2A defined in (74)–(76). Then for Λ := λe−3/2( 3
√
2 log 2)2 it holds

that

min
k=0,1,...,K

E
∥∥Fzk

∥∥2 ≤ (log(K + 3))2

(K + 3)1/3
·

(∥∥z0 − z∗
∥∥2 + 3V2A

nL6

Λη20n
2

)
. (114)

Proof. As the sequence of stepsizes {ηk}k≥0 is nonincreasing and (112) asserts that η0 ≤ 1/nL, we
can use the bounds established in Theorem D.8 and Theorem D.12. Also, the premises required for
Proposition F.2 are also satisfied, so the bound (109) holds.

Taking u = z∗ and γk = η3kn
3L3 in (105), with using (73) and (113), we obtain

0 = 2ηkn
〈
Fz∗,wk

† − z∗〉
≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 + 1

γk
E
[∥∥rk∥∥2 ∣∣∣ zk

]
≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2(1− η2kn
2L2)

∥∥Fzk
∥∥2 + 1

L3

(
η3kn

3C2A
∥∥Fzk

∥∥2 + η3kn
3D2A

∥∥Fzk
∥∥4 + η3kn

2V2A

)
≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− η2kn

2

(
1− η2kn

2L2 − ηknC2A

L3
− ηknD2A

L3

∥∥Fzk
∥∥2)∥∥Fzk

∥∥2 + η3kn
2V2A

L3

≤
∥∥zk − z∗∥∥2 − 1

1 + γk
E
[∥∥zk+1 − z∗∥∥2 ∣∣∣ zk

]
− λη2kn

2
∥∥Fzk

∥∥2 + η3kn
2V2A

L3
.

By the law of total expectation, and that γk = η3kn
3L3 < 1, from the above we get

(1 + γk)λη
2
kn

2 E
∥∥Fzk

∥∥2 ≤ (1 + γk)E
∥∥zk − z∗∥∥2 − E

∥∥zk+1 − z∗∥∥2 + (1 + γk)η
3
kn

2V2A

L3

≤ (1 + γk)E
∥∥zk − z∗∥∥2 − E

∥∥zk+1 − z∗∥∥2 + 2η3kn
2V2A

L3
.
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This recurrence can be unraveled using Lemma B.10, giving us

E
∥∥zK+1 − z∗∥∥2 + K∑

k=0

(1 + γk)λη
2
jn

2 E
∥∥Fzk

∥∥2
≤

(
K∏

k=0

(1 + γk)

)(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)
.

(115)

For the left hand side of (115), we have

E
∥∥zK+1 − z∗∥∥2 + K∑

k=0

(1 + γk)λη
2
kn

2 E
∥∥Fzk

∥∥2 ≥ λ

K∑
k=0

η2kn
2 E
∥∥Fzk

∥∥2
≥ λ min

k=0,1,...,K
E
∥∥Fzk

∥∥2 K∑
k=0

η2kn
2.

From Lemma B.11, we know that whenever K ≥ 1,
K∑

k=0

η2kn
2 = η20n

2(
3
√
2 log 2)2

K∑
k=0

1

(k + 2)2/3(log(k + 2))2

≥ η20n
2(

3
√
2 log 2)2 · (K + 3)1/3

(log(K + 3))2
.

Meanwhile, as x 7→ 2(log 2)3

(x+2)(log(x+2))3 is a decreasing function, we have
∞∑
k=0

2(log 2)3

(k + 2)(log(k + 2))3
≤ 1 +

2(log 2)3

3(log 3)3
+

∫ ∞

1

2(log 2)3

(x+ 2)(log(x+ 2))3
dx

≤ 1 +
2(log 2)3

3(log 3)3
+

(log 2)3

(log 3)2
≤ 3

2

and thus

S =

∞∑
k=0

η3kn
3L3 = η30n

3L3
∞∑
k=0

2(log 2)3

(k + 2)(log(k + 2))3
≤ 3

2
η30n

3L3 ≤ 3

2
.

Thus, for the right hand side of (115), it holds that(
K∏

k=0

(1 + γk)

)(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)
≤ e

∑K
k=0 γk

(∥∥z0 − z∗∥∥2 + K∑
k=0

2η3kn
2V2A

L3

)

≤ eS
(∥∥z0 − z∗∥∥2 + 2SV2A

nL6

)
≤ e3/2

(∥∥z0 − z∗∥∥2 + 3V2A

nL6

)
.

Therefore, from (115) we get

λη20n
2(

3
√
2 log 2)2 · (K + 3)1/3

(log(K + 3))2
· min
k=0,1,...,K

E
∥∥Fzk

∥∥2 ≤ e3/2
(∥∥z0 − z∗∥∥2 + 3V2A

nL6

)
.

Letting Λ := λe−3/2( 3
√
2 log 2)2 and simply rearranging the terms gives us the desired inequality.

G PROOF OF LOWER BOUNDS

G.1 PROOF OF SEG-US, SEG-RR AND SEG-FF DIVERGENCE

We prove the divergence of SEG-US, SEG-RR and SEG-FF in each proposition below, using the
same worst-case problem for n = 2. These constitute the proof of Theorem 4.2.
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Proposition G.1 (Part of Theorem 4.2). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfying

Assumption 4 with (ρ, σ) = (1, 0) such that SEG-US diverges in expectation for any choice of
stepsizes {αt}t≥0 and {βt}t≥0. That is, for all t ≥ 0,

E
[
∥zt+1∥2

]
> E

[
∥zt∥2

]
, E

[
∥Fzt+1∥2

]
> E

[
∥Fzt∥2

]
.

Proof. We consider the case of

f1(x, y) = −
L

4
x2 +

L

2
xy − L

4
y2,

f2(x, y) =
L

4
x2 +

L

2
xy +

L

4
y2,

which result in a bilinear (and hence convex-concave) objective function

f(x, y) =
1

2

2∑
i=1

fi(x, y) =
L

2
xy. (116)

One can quickly check from the definitions of the component functions f1 and f2 that the corre-
sponding saddle gradient operators are given as

F1z =

[
−L/2 L/2
−L/2 L/2

]
︸ ︷︷ ︸

:=A1

z, F2z =

[
L/2 L/2
−L/2 −L/2

]
︸ ︷︷ ︸

:=A2

z, Fz =

[
0 L/2
−L/2 0

]
z

where z = (x, y) ∈ R2. From the fact that ∥Ai∥ ≤ L for all i’s, we can confirm that fi’s are indeed
L-smooth. As for Assumption 4, we can verify that

1

2

2∑
i=1

∥Fiz − Fz∥2 =
L2

4
∥z∥2 = (∥Fz∥)2 ,

thus proving that our example f indeed satisfies Assumption 4 with (ρ, σ) = (1, 0).

We now proceed to show that for this particular worst-case example f , SEG-US diverges in ex-
pectation. For t ≥ 0, the (t + 1)-th iteration of SEG-US starts at zt, and the algorithm uniformly
chooses an index i(t) from [n]. The algorithm then makes an update

wt = zt − αtFi(t)zt,

zt+1 = zt − βtFi(t)wt.

In our worst-case example f , the updates can be compactly written as

zt+1 = (I − βtAi(t) + αtβtA
2
i(t))zt.

Since we have n = 2, the update can be summarized as

zt+1 =

{
(I − βtA1 + αtβtA

2
1)zt with probability 1/2,

(I − βtA2 + αtβtA
2
2)zt with probability 1/2.

By the definition of A1 and A2 and using A2
1 = A2

2 = 0, we can verify that

N1 := I − βtA1 + αtβtA
2
1 =

[
1 + βtL

2 −βtL
2

βtL
2 1− βtL

2

]
,

N2 := I − βtA2 + αtβtA
2
2 =

[
1− βtL

2 −βtL
2

βtL
2 1 + βtL

2

]
.

From this, we notice that the expectation of ∥zt+1∥2 conditional on zt reads

E
[
∥zt+1∥2

∣∣∣ zt] = z⊤
t

(
N⊤

1 N1 +N⊤
2 N2

2

)
zt.
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Working out the calculations, we can check that

N⊤
1 N1 +N⊤

2 N2

2
=

[
1 +

β2
tL

2

2 0

0 1 +
β2
tL

2

2

]
,

thus resulting in

E
[
∥zt+1∥2

∣∣∣ zt] = (1 + β2
tL

2

2

)
∥zt∥2 .

Since this holds for all t ≥ 0, SEG-US diverges in expectation, for any positive stepsizes {αt}t≥0

and {βt}t≥0. The statement on ∥Fzt∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.

Proposition G.2 (Part of Theorem 4.2). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfying

Assumption 4 with (ρ, σ) = (1, 0) such that SEG-RR diverges in expectation for any choice of
stepsizes {αk}k≥0 and {βk}k≥0. That is, for any k ≥ 0,

E
[∥∥zk+1

0

∥∥2] > E
[∥∥zk

0

∥∥2] , E
[∥∥Fzk+1

0

∥∥2] > E
[∥∥Fzk

0

∥∥2] .
Proof. The proof uses the same example as Proposition G.1, outlined in (116). We show that for
this particular worst-case example f , SEG-RR diverges in expectation. For k ≥ 0, the (k + 1)-th
epoch of SEG-RR starts at zk

0 , and the algorithm randomly chooses a permutation τk : [n] → [n].
The algorithm then goes through a series of updates

wk
i = zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βkFτk(i+1)w
k
i ,

for i = 0, . . . , n− 1. In our worst-case example f , the updates can be compactly written as

zk
i+1 = (I − βkAτk(i+1) + αkβkA

2
τk(i+1))z

k
i .

Since we have n = 2 and there are only two possible permutations, the updates over an epoch can
be summarized as

zk+1
0 = zk

n =

{
(I − βkA1 + αkβkA

2
1)(I − βkA2 + αkβkA

2
2)z

k
0 with probability 1/2,

(I − βkA2 + αkβkA
2
2)(I − βkA1 + αkβkA

2
1)z

k
0 with probability 1/2.

By the definition of A1 and A2 and using A2
1 = A2

2 = 0, we can verify that

M1 := (I − βkA1 + αkβkA
2
1)(I − βkA2 + αkβkA

2
2)=

[
1− β2

kL
2

2 −βkL− β2
kL

2

2

βkL− β2
kL

2

2 1− β2
kL

2

2

]
, (117)

M2 := (I − βkA2 + αkβkA
2
2)(I − βkA1 + αkβkA

2
1)=

[
1− β2

kL
2

2 −βkL+
β2
kL

2

2

βkL+
β2
kL

2

2 1− β2
kL

2

2

]
. (118)

From this, we notice that the expectation of
∥∥zk+1

0

∥∥2 conditional on zk
0 reads

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
= (zk

0 )
⊤
(
M⊤

1 M1 +M⊤
2 M2

2

)
zk
0 .

Working out the calculations, we can check that

M⊤
1 M1 +M⊤

2 M2

2
=

[
1 +

β4
kL

4

2 0

0 1 +
β4
kL

4

2

]
,

thus resulting in

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
=

(
1 +

β4
kL

4

2

)∥∥zk
0

∥∥2 .
Since this holds for all k ≥ 0, SEG-RR diverges in expectation, for any positive stepsizes {αk}k≥0

and {βk}k≥0. The statement on
∥∥Fzk

0

∥∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.
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Proposition G.3 (Part of Theorem 4.2). For n = 2, there exists a convex-concave minimax problem
f(x, y) = 1

2

∑2
i=1 fi(x, y) having a monotone F , consisting of L-smooth quadratic fi’s satisfy-

ing Assumption 4 with (ρ, σ) = (1, 0) such that SEG-FF diverges in expectation for any positive
stepsizes {αk}k≥0 and {βk}k≥0. That is, for any k ≥ 0,

E
[∥∥zk+1

0

∥∥2] > E
[∥∥zk

0

∥∥2] , E
[∥∥Fzk+1

0

∥∥2] > E
[∥∥Fzk

0

∥∥2] .
Proof. The proof uses the same example as Proposition G.1, outlined in (116). We prove that
SEG-FF also diverges for this f . For k ≥ 0, the (k + 1)-th epoch of SEG-FF starts at zk

0 , and the
algorithm randomly chooses a permutation τk : [n]→ [n], as in the case of SEG-RR. The algorithm
then goes through a series of updates for i = 0, . . . , n− 1:

wk
i = zk

i − αkFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βkFτk(i+1)w
k
i ,

which are the same as SEG-RR; but then, it performs another series of n updates, in the reverse
order. For i = n, . . . , 2n− 1,

wk
i = zk

i − αkFτk(2n−i)z
k
i ,

zk
i+1 = zk

i − βkFτk(2n−i)w
k
i .

Using the definition of M1 and M2 from (117) and (118), one can verify that the 2n = 4 updates
over an epoch of SEG-FF can be summarized as

zk+1
0 = zk

2n =

{
M2M1z

k
0 with probability 1/2,

M1M2z
k
0 with probability 1/2.

From this, we notice that the expectation of
∥∥zk+1

0

∥∥2 conditional on zk
0 reads

E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
= (zk

0 )
⊤
(
M⊤

1 M⊤
2 M2M1 +M⊤

2 M⊤
1 M1M2

2

)
zk
0 .

Working out the calculations, we can check that

M⊤
1 M⊤

2 M2M1 +M⊤
2 M⊤

1 M1M2

2
=

[
1 + 2β6

kL
6 0

0 1 + 2β6
kL

6

]
,

thus resulting in
E
[∥∥zk+1

0

∥∥2 ∣∣∣ zk
0

]
=
(
1 + 2β6

kL
6
) ∥∥zk

0

∥∥2 .
Since this holds for all k ≥ 0, SEG-FF diverges in expectation, for any positive stepsizes {αk}k≥0

and {βk}k≥0. The statement on
∥∥Fzk

0

∥∥ follows by realizing that ∥Fz∥ = L
2 ∥z∥.

G.2 PROOF OF SGDA-RR AND SEG-RR LOWER BOUNDS

Theorem G.4. Suppose n ≥ 2 and L, µ > 0 satisfies L/µ ≥ 2. There exists a µ-strongly-convex-
strongly-concave minimax problem f(z) = 1

n

∑n
i=1 fi(z) consisting of L-smooth quadratic fi’s

satisfying Assumption 4 with (ρ, σ) = (0, σ) and initialization z0
0 such that SEG-RR with any

constant stepsize αk = α > 0, βk = β > 0 satisfies

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

Lσ2

µ3nK3

)
if K > L/µ.

where z∗ is the unique equilibrium point of f . For a similar choice of problem f (this time with
(ρ, σ) = (1, σ)), SGDA-RR with any constant stepsize αk = α > 0 satisfies

E
[∥∥zK

0 − z∗∥∥2] =
Ω

(
σ2

LµnK

)
if K ≤ L/µ,

Ω
(

σ2

µ2n2K2 + Lσ2

µ3nK3

)
if K > L/µ.
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Remark. In Theorem G.4, we adopt techniques from the existing lower bounds for SGD-RR to
prove lower bounds for the minimax algorithms SGDA-RR and SEG-RR. In the literature, there
are two types of lower bounds for SGD-RR when K ≳ L/µ: Ω( 1

n2K2 + 1
nK3 ) bounds for strongly

convex quadratic functions (Safran & Shamir, 2020; 2021) and Ω( 1
nK2 ) bounds for strongly convex

non-quadratic functions (Rajput et al., 2020; Yun et al., 2022; Cha et al., 2023). Upper bounds
that match the lower bounds in n and K are also known, which indicates that SGD-RR is one
of the rare examples of minimization algorithms whose tight convergence rates for quadratic vs.
non-quadratic functions differ, within the narrow scope of strongly convex and smooth functions.
While it is tempting to aim for a tighter Ω( 1

nK2 ) lower bound for our algorithms of interest, we
note that the existing Ω( 1

nK2 ) bounds for SGD-RR are proven for piecewise-quadratic functions
whose Hessian is discontinuous. Since the discontinuous Hessian violates our Assumption 3, we
instead adhere to the quadratic case to prove lower bounds Ω( 1

nK3 ) for both SGDA-RR and SEG-
RR (when K ≥ L/µ). These bounds may not be the tightest possible (since they are restricted
to the quadratics), but they still suffice to demonstrate that SEG-FFA is provably superior to both
SGDA-RR and SEG-RR.

G.2.1 EXISTING LOWER BOUND FOR SGD-RR

For the proof of lower bounds for SGDA-RR and SEG-RR, we utilize results and techniques from
the lower bounds proven for SGD-RR; thus, it would be profitable to summarize the existing result.

In case of SGD-RR, it is known from Theorem 2 of Safran & Shamir (2021) that there exists a
minimization problem g(x) such that SGD-RR satisfies a lower bound of Ω( 1

n2K2 + 1
nK3 ) for

large enough values of K. We rewrite the theorem in a version in accordance with our notation and
assumptions:

Theorem G.5 (Theorem 2 of Safran & Shamir (2021)). For any n ≥ 2 and L, µ > 0 satisfying
L/µ ≥ 2, there exists a µ-strongly convex minimization problem g(x) = 1

n

∑n
i=1 gi(x) consisting

of L-smooth quadratic gi’s satisfying Assumption 4 with (ρ, σ) = (1, σ) such that SGD-RR using
any constant stepsize αk = α > 0 satisfies

E
[∥∥xK

0 − x∗∥∥2] = Ω

(
σ2

LµnK
·min

{
1,

L

µnK
+

L2

µ2K2

})
.

The statement is equivalent to saying that for SGD-RR with constant stepsize α > 0, the bound
Ω( σ2

LµnK ) holds for K ≲ L/µ and Ω( σ2

µ2n2K2 + Lσ2

µ3nK3 ) for K ≳ L/µ.

The function g = 1
n

∑n
i=1 gi used in the theorem is defined by the following component functions:

gi(x) = gi(x1, x2, x3) :=
µ

2
x2
1 +

L

2
x2
2 +

{
σ
2x2 +

L
2 x

2
3 +

σ
2x3 i ≤ n

2 ,

−σ
2x2 − σ

2x3 i > n
2 ,

(119)

thus making the objective function

g(x1, x2, x3) :=
µ

2
x2
1 +

L

2
x2
2 +

L

4
x2
3.

One can notice that the linear terms in gi (119) change signs depending on i ≤ n
2 or not, and

handling these sign flips is the key to the proof of lower bound.

G.2.2 PROOF OF LOWER BOUND FOR SGDA-RR

For the SGDA-RR lower bound, we consider the following minimax optimization problem:

f(x, y) =
1

n

n∑
i=1

fi(x, y), where x ∈ R3, y ∈ R,

fi(x, y) = gi(x)−
µ

2
y2,

(120)

where gi’s are from (119). We need to first check if the problem instance satisfies the assumptions
listed in the theorem statement. Since f(x, y) = g(x)− µ

2 y
2 and g is a µ-strongly convex function,
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f is µ-strongly-convex-strongly-concave as claimed. Also, it is easy to check from the definition of
gi that each component fi(x, y) is L-smooth quadratic.

Lastly, to check Assumption 4, we first define s1, . . . , sn as si = 1 for i ≤ n
2 and si = 0 for i > n

2 .
Using this notation, The function gi can be compactly written as the following:

gi(x1, x2, x3) =
µ

2
x2
1 +

L

2
x2
2 +

σ

2
(2si − 1)x2 +

L

2
six

2
3 +

σ

2
(2si − 1)x3.

Therefore, the saddle gradient operators Fi of fi and F of f evaluate to

Fiz :=

[
∇gi(x)
µy

]
=

 µx1

Lx2 +
σ
2 (2si − 1)

Lsix3 +
σ
2 (2si − 1)
µy

 , Fz =

µx1

Lx2
L
2 x3

µy

 ,

which in turn yields

∥Fiz − Fz∥2 =
σ2

4
+

(
L

2
x3 +

σ

2

)2

≤
(
L

2
|x3|+ σ

)2

≤ (∥Fz∥+ σ)
2

for all i = 1, . . . , n. This confirms that the function f = 1
n

∑
i fi satisfies Assumption 4 with

(ρ, σ) = (1, σ).

If we run SGDA-RR on this problem, the updates on x done by SGDA-RR is exactly identical to
what SGD-RR would perform for the minimization problem g(x) = 1

n

∑
i gi(x) with the same

choices of random permutations. Therefore, after K epochs of SGDA-RR, it follows from Theo-
rem G.5 that

E
[∥∥zK

0 − z∗∥∥2] ≥ E
[∥∥xK

0 − x∗∥∥2] = Ω

(
σ2

LµnK
·min

{
1,

L

µnK
+

L2

µ2K2

})
,

which is in fact a tighter lower bound for SGDA-RR than what is stated in Theorem G.4. This
finishes the proof.

G.2.3 PROOF OF LOWER BOUND FOR SEG-RR

In this subsection, we prove the lower bound for SEG-RR. We will first define a new problem
instance f to be used here, and verify that the assumptions in the theorem statement are indeed
satisfied by this new f . We will then spell out the update equation of SEG-RR for this example,
which will serve as a basis for the case analysis that follows: we will divide the choices of stepsizes
α, β > 0 to four regimes and prove a lower bound for each of them. Combining the regimes will
result in the desired lower bound.

For SEG-RR, we use a slightly different problem from (120). This time, we consider

f(x, y) =
1

n

n∑
i=1

fi(x, y), where x ∈ R2, y ∈ R,

fi(x, y) =
L

2
x2
1 +

L

4
x2
2 + σ(2si − 1)x2 −

µ

2
y2,

(121)

where si = 1 for i ≤ n
2 and si = 0 for i > n

2 , as defined above.

We first check if the problem (121) satisfies the assumptions in the theorem statement. Since

f(x, y) =
L

2
x2
1 +

L

4
x2
2 −

µ

2
y2

and L/2 ≥ µ by assumption, f is µ-strongly-convex-strongly-concave. Also, it is straightforward
to see that each fi is an L-smooth quadratic function. It is left to check Assumption 4. The saddle
gradient operators Fi of fi and F of f evaluate to

Fiz =

 Lx1
L
2 x2 + σ(2si − 1)

µy

 , Fz =

Lx1
L
2 x2

µy

 ,
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which in turn yields
∥Fiz − Fz∥2 = σ2,

for all i = 1, . . . , n. This confirms that the function f = 1
n

∑
i fi satisfies Assumption 4 with

(ρ, σ) = (0, σ), as required by the theorem.

For k ≥ 0, the (k + 1)-th epoch of SEG-RR starts at zk
0 = (xk

0 , y
k
0 ) and the algorithm chooses a

random permutation τk. The algorithm then goes through a series of updates

wk
i = zk

i − αFτk(i+1)z
k
i ,

zk
i+1 = zk

i − βFτk(i+1)w
k
i ,

for i = 0, . . . , n− 1. For our example f (121), it can be checked that a single iteration by SEG-RR
reads

zk
i+1 =

xk
i+1,1

xk
i+1,2

yki+1

 =

 (1− βL+ αβL2)xk
i,1

(1− βL
2 + αβL2

4 )xk
i,2 − βσ(1− αL

2 )(2sτk(i+1) − 1)
(1− βµ+ αβµ2)yki

 .

Aggregating the SEG-RR updates over an entire epoch (i = 0, . . . , n− 1) results in

xk+1
0,1 = (1− βL+ αβL2)nxk

0,1,

xk+1
0,2 =

(
1− βL

2
+

αβL2

4

)n

xk
0,2 − βσ

(
1− αL

2

) n∑
i=1

(2sτk(i) − 1)

(
1− βL

2
+

αβL2

4

)n−i

︸ ︷︷ ︸
=:Φ

,

yk+1
0 = (1− βµ+ αβµ2)nyk0 .

We will now square both sides of these equations above and take expectations over τk. In doing so,
there is a useful identity:

E[Φ] =
n∑

i=1

E[2sτk(i) − 1]

(
1− βL

2
+

αβL2

4

)n−i

= 0.

Also, it worth mentioning that τk is independent of zk
0 = (xk

0,1, x
k
0,2, y

k
0 ). Using these facts, we can

arrange the terms to obtain

(xk+1
0,1 )2 = (1− βL+ αβL2)2n(xk

0,1)
2, (122)

E[(xk+1
0,2 )2] =

(
1− βL

2
+

αβL2

4

)2n

E[(xk
0,2)

2] + β2σ2

(
1− αL

2

)2

E[Φ2], (123)

(yk+1
0 )2 = (1− βµ+ αβµ2)2n(yk0 )

2. (124)

Based on these three per-epoch update equations above, we now divide the choices of SEG-RR
stepsizes α, β > 0 into the following four cases and handle them separately:

1. α > 1
L , in which case we show that SEG-RR makes (xk+1

0,1 )2 > (xk
0,1)

2 hold determinis-
tically, so that if we initialize at x0

0,1 = σ√
Lµ

then we have

E
[∥∥zK

0

∥∥2] ≥ (xK
0,1)

2 > (x0
0,1)

2 =
σ2

Lµ
.

2. α ≤ 1
L and β ≤ 1

µnK , in which case we show that SEG-RR initialized at y00 = σ√
Lµ

suffers

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

Lµ

)
,

3. α ≤ 1
L and 1

µnK < β < 1
nL , in which case we show that SEG-RR initialized at x0

0,2 = 0

suffers

E
[∥∥zK

0

∥∥2] = Ω

(
Lσ2

µ3nK3

)
,
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4. α ≤ 1
L , β > 1

µnK , and β ≥ 1
nL in which case we show that SEG-RR initialized at

x0
0,2 = 0 suffers

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

LµnK

)
.

Notice that the third case 1
µnK < β < 1

nL only makes sense when K > L/µ; otherwise, the third
case just disappears. Hence, for the “large epoch” regime where K > L/µ, the third case achieves
the minimum error possible, so it holds that

E
[∥∥zK

0

∥∥2] = Ω

(
Lσ2

µ3nK3

)
.

For the “small epoch” regime (K ≤ L/µ), the third case does not exist and the fourth case achieves
the minimum, so

E
[∥∥zK

0

∥∥2] = Ω

(
σ2

LµnK

)
.

Combining the two cases yields the desired lower bound in the theorem statement. It is now left to
carry out the case analysis.

Case 1: α > 1
L . For this case, we use (122) to prove divergence. Notice from α > 1

L that

1− βL+ αβL2 = 1 + βL(αL− 1) > 1,

regardless of β > 0. Hence, from (122), we get

E
[∥∥zK

0

∥∥2] ≥ (xK
0,1)

2 > (x0
0,1)

2.

If we initialize at x0
0,1 = σ√

Lµ
, then this proves

E
[∥∥zK

0

∥∥2] ≥ σ2

Lµ
.

Case 2: α ≤ 1
L and β ≤ 1

µnK . For this case, we employ (124) to show that the “contraction rate”
is too small to make enough “progress.” Notice from our stepsizes that

1− βµ+ αβµ2 ≥ 1− βµ ≥ 1− 1

nK
≥ 0.

Applying this inequality to (124), we have

(yk+1
0 )2 ≥

(
1− 1

nK

)2n

(yk0 )
2,

which in turn means that the progress over K epoch is bounded from below by

(yK0 )2 ≥
(
1− 1

nK

)2nK

(y00)
2 ≥ (y00)

2

16
,

where we used our assumption that n ≥ 2 and K ≥ 1. Hence, if our initialization was given as
y00 = σ√

Lµ
, then this proves

E
[∥∥zK

0

∥∥2] ≥ (yK0 )2 ≥ (y00)
2

16
= Ω

(
σ2

Lµ

)
.

Case 3: α ≤ 1
L and 1

µnK < β < 1
nL . For stepsizes in this interval, we use (123) to derive the

desired bound. Here, it is important to characterize a lower bound on the quantity

E[Φ2] := E

( n∑
i=1

(2sτk(i) − 1)

(
1− βL

2
+

αβL2

4

)n−i
)2
 .

To this end, we can use a lemma from Safran & Shamir (2020), stated below:
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Lemma G.6 (Lemma 1 of Safran & Shamir (2020)). Let π1, . . . , πn (for even n) be a random
permutation of (1, 1, . . . , 1,−1,−1, . . . ,−1) where both 1 and −1 appear exactly n/2 times. Then
there is a numerical constant c > 0 such that for any ν > 0,

E

( n∑
i=1

πi(1− ν)n−i

)2
 ≥ c ·min

{
1 +

1

ν
, n3ν2

}
.

One can notice that Lemma G.6 is directly applicable to E[Φ2], with ν ← βL
2 −

αβL2

4 . Since

ν =
βL

2
− αβL2

4
≤ βL

2
≤ 1

2n
,

we have n3ν2 ≤ 1
8ν , thereby

min

{
1 +

1

ν
, n3ν2

}
≥ min

{
1

ν
, n3ν2

}
= n3ν2.

Therefore, Lemma G.6 gives

E[Φ2] ≥ cn3

(
βL

2
− αβL2

4

)2

=
cβ2n3L2

4

(
1− αL

2

)2

≥ cβ2n3L2

16
, (125)

where the last inequality used α ≤ 1
L . Applying (125) to (123) and also using (1− αL

2 )2 ≥ 1
4 ,

E[(xk+1
0,2 )2] ≥

(
1− βL

2
+

αβL2

4

)2n

E[(xk
0,2)

2] +
cβ4n3L2σ2

64
.

Unrolling the inequality for k = 0, . . . ,K − 1 gives

E
[
(xK

0,2)
2
]
≥
(
1− βL

2
+

αβL2

4

)2nK

(x0
0,2)

2 +
cβ4n3L2σ2

64

K−1∑
j=0

(
1− βL

2
+

αβL2

4

)2nj

=

(
1− βL

2
+

αβL2

4

)2nK

(x0
0,2)

2 +
cβ4n3L2σ2

64
·
1−

(
1− βL

2 + αβL2

4

)2nK
1−

(
1− βL

2 + αβL2

4

)2n .

Now note that our initialization x0
0,2 can be set to zero, which eliminates the need to think about the

first term in the RHS. It is now left to bound the second term. First, by the stepsize range α ≤ 1
L ,

β > 1
µnK and our assumption L/µ ≥ 2, we have(

1− βL

2
+

αβL2

4

)2nK

≤
(
1− βL

4

)2nK

≤
(
1− L

4µnK

)2nK

≤ e−
L
2µ ≤ e−1.

Next, by Bernoulli’s inequality(
1− βL

2
+

αβL2

4

)2n

≥
(
1− βL

2

)2n

≥ 1− βnL > 0.

Plugging in the two inequalities to above, we obtain

E
[
(xK

0,2)
2
]
≥ cβ4n3L2σ2

64
·
1−

(
1− βL

2 + αβL2

4

)2nK
1−

(
1− βL

2 + αβL2

4

)2n
≥ cβ4n3L2σ2

64
· 1− e−1

1− (1− βnL)
= c′β3n2Lσ2

for a numerical constant c′ > 0. Plugging in the lower bound β > 1
µnK yields

E
[∥∥zK

0

∥∥2] ≥ E
[
(xK

0,2)
2
]
= Ω

(
Lσ2

µ3nK3

)
.
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Case 4: α ≤ 1
L , β > 1

µnK , and β ≥ 1
nL . We again use (123). By noticing that the initialization

x0
0,2 = 0, we can unroll (123) for k = 0, . . . ,K − 1 to get

E
[
(xK

0,2)
2
]
≥ β2σ2

4
E[Φ2]

K−1∑
j=0

(
1− βL

2
+

αβL2

4

)2nj

≥ β2σ2

4
E[Φ2], (126)

where the last inequality holds regardless of β because each summand with j ≥ 1 is nonnegative.
We then invoke Lemma G.6 to lower bound E[Φ2], again with ν ← βL

2 −
αβL2

4 . Since

ν =
βL

2
− αβL2

4
≥ βL

4
≥ 1

4n
,

we have n3ν2 ≥ 1
64ν , thereby

min

{
1 +

1

ν
, n3ν2

}
≥ min

{
1

ν
, n3ν2

}
≥ 1

64ν
.

Therefore, Lemma G.6 gives

E[Φ2] ≥ c

64ν
=

c

32βL
· 1

1− αL
2

≥ c

32βL
. (127)

Combining (127) with (126) gives

E
[
(xK

0,2)
2
]
≥ cβσ2

128L
= Ω

(
σ2

LµnK

)
,

where the last step used β > 1
µnK . This finishes the case analysis, hence the proof of Theorem G.4.

H EXPERIMENTS

To evaluate our algorithm SEG-FFA as well as other baseline algorithms, we conduct numerical
experiments on monotone and strongly monotone problems. Specifically, we consider a random
quadratic problem of the form

min
x∈Rdx

max
y∈Rdy

1

n

n∑
i=1

[
x
y

]⊤[
Ai Bi

B⊤
i −Ci

] [
x
y

]
− t⊤i

[
x
y

]
. (128)

We also denote z =
[
x⊤ y⊤]⊤. We choose dx = dy = 20 and n = 40 for experiments below.

Monotone case & Ablation study on the anchoring step For an experiment for the monotone
case, the random components are sampled as follows. We choose Bi so that each element is an
i.i.d. sample from a uniform distribution over the interval [0, 1], and ti so that each element is an
i.i.d. sample from a standard normal distribution. We chose Ai to be diagonal matrices in the
following procedure: for each j = 1, . . . , 20 we randomly chose a subset Ij of n

2 = 20 indices from
[n] = {1, . . . , 40}, and set the (j, j)-entry of Ai to be

(Ai)j,j =

{
2 if i ∈ Ij
−2 otherwise

.

We repeat the exact same procedure for Ci as well. Notice that
∑n

i=1 Ai =
∑n

i=1 Ci = 0 by
design. Hence, each of the component functions will be a nonconvex-nonconcave quadratic function
in general, but the objective function itself becomes a convex-concave function.

We compare the performance of the various SEGs, namely SEG-FFA, SEG-FF, SEG-RR, and
SEG-US. In addition, as an ablation study on the anchoring technique, we also compare SEG-
RRA and SEG-USA, which are each SEG-RR and SEG-US with an additional anchoring step,
respectively. For these two methods, we take the anchoring step after every n iterations. We ran
the experiment on 5 random instances of (128) with stepsizes ηk = η0/(1+k/10)0.34 where η0 =
min{0.01, 1

L} for SEG-FFA, and αk = βk = ηk for the remaining methods. The exponent 0.34
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Figure 1: Experimental results in the monotone example, comparing the variants of SEG. For a fair
comparison, we take the number of passes as the abscissae. As a consequence of SEG-FFA and
SEG-FF using two passes per epoch, for those two methods, we get to plot ∥Fz

t/2
0 ∥2

/∥Fz0
0∥

2.

is to ensure a sufficient decay rate following Theorem 5.4, but the value of η0 is a heuristically
determined small number.

The results are plotted in Figure 1. To have a fair comparison between the methods and across the

random instances, we compute the ratio ∥Fzt
0∥2

∥Fz0
0∥2

where t denotes the number of passes, and plot

the geometric mean over the 5 runs. Notice that, for SEG-FFA and SEG-FF, we are then plotting

the values of

∥∥∥Fz
t/2
0

∥∥∥2

∥Fz0
0∥2

instead of ∥Fzt
0∥2

∥Fz0
0∥2

, because SEG-FFA and SEG-FF takes two passes per

epoch (i.e., the number of epochs is half the number of passes) while other methods take one pass
per epoch.

As it is predictable from our theoretical results, SEG-FFA successfully shows convergence, while
all of SEG-FF, SEG-RR, and SEG-US diverge in the long run. As for anchoring, it turns out that
adding the anchoring step does improve the performance of the method up to a certain level, but it
alone does not fully resolve the nonconvergence issue: observe that both SEG-RRA and SEG-USA
fail to demonstrate convergence.

Monotone case: comparison with (Hsieh et al., 2020) Let us also compare the performance
of SEG-FFA with the independent-sample double stepsize SEG (DSEG) by Hsieh et al. (2020).
Writing in terms of the finite-sum structure, the update rule of DSEG can be written as

wk ← zk − η1,kFi(1,k)z
k

zk+1 ← zk − η2,kFi(2,k)w
k

where i(1, k) and i(2, k) are random indices that are independently drawn from [n] for each k. The
stepsizes are chosen in the form of η1,k = Θ(1/kr1) and η2,k = Θ(1/kr2), where setting r1 ≤ r2 is
the key point of DSEG. Two choices of the exponent pair (r1, r2) proposed in (Hsieh et al., 2020)
are (1/3, 2/3) for general monotone problems and (0, 1) exclusively for the case when F is affine.

We again use the same component functions as in the previous experiment. The setup for running
SEG-FFA are kept the same. For DSEG, we found that η1,k = η0/(k+19)r1 and η2,k = η0/(k+19)r2 ,
where again η0 = min{0.01, 1

L}, works the best among the candidates we have tried (and the
choices in (Hsieh et al., 2020)). The number 19 in the denominators is the constant suggested in the
experiments section of (Hsieh et al., 2020).

The results are displayed in Figure 2, where the details on how the plots are drawn are the same
as Figure 1. Here we can see that SEG-FFA shows also a faster speed of convergence than both
versions of DSEG.
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Figure 2: Experimental results in the monotone example, comparing SEG-FFA and the methods
proposed by Hsieh et al. (2020). By the same reason as in Figure 1, we plot ∥Fz
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SEG-FFA only.
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Figure 3: Experimental results in the strongly monotone example. By the same reason as in Figure 1,
we plot ∥Fz
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2 for SEG-FFA and SEG-FF.

Strongly monotone case For the experiment in the strongly monotone case we again use the
random quadratic problem (128), but with different choices of Ai and Ci to ensure the objective
function to be strongly-convex-strongly-concave. In particular, for each i = 1, . . . , n, we sample
Ai by computing Ai = QiDiQ

⊤
i , where Di is a random diagonal matrix whose diagonal entries

are i.i.d. samples from a uniform distribution over the interval [ 12 , 1], and Qi is a random orthogonal
matrix obtained by computing a QR decomposition of a 20× 20 random matrix whose elements are
i.i.d. samples from a standard normal distribution. We sample Ci by the exact same method.

As we are considering strongly-convex-strongly-concave problems, along with the variants of SEG,
we also compare the performances of SGDA-RR and SGDA-US. We ran the experiment on 5
random instances of (128) with stepsizes ηk ≡ 0.001.

The results are plotted in Figure 3, where the details of the plotting are the same as the monotone
cases. We again observe an agreement between the empirical result and our theory; all methods used
in the experiment are expected to find a point with a reasonably small gradient, but nonetheless,
the fastest decrease of the gradient norm is demonstrated by SEG-FFA. Moreover, we see that
SEG-FFA eventually finds the point with the smallest gradient norm among the methods that are
considered.
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