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Abstract

Late Gadolinium Enhancement (LGE) MRI is essential for visualizing and treating left
atrial fibrosis, but current protocols require lengthy acquisition times (7-20 minutes) and
often produce suboptimal image quality. While recent advances in isotropic imaging have
shown promise, scan times of 12-15 minutes still present clinical challenges. This study
evaluates the efficacy of existing Deep Image Prior (DIP) frameworks for accelerated 3D
LGE-MRI reconstruction. We comprehensively assess multiple DIP variants - vanilla DIP,
reference-guided DIP, DIP with Total Variation, and self-guided DIP - on their ability
to reconstruct high-quality isotropic (1.25mm3) images from highly undersampled k-space
data. Using data from 10 subjects, we demonstrate that self-guided DIP achieves superior
reconstruction quality (PSNR: 32.8±1.2 dB, SSIM: 0.891±0.015 at 1/4th of acquisition
time) compared to traditional compressed sensing and other DIP variants. Our evaluation
shows that DIP-based reconstruction can maintain diagnostic quality with acquisition times
reduced to 2-4 minutes, particularly in preserving thin left atrial wall details. These findings
suggest that DIP-based methods could improve clinical workflow efficiency and patient
comfort in high-resolution 3D LGE studies for atrial fibrillation patients.

Keywords: MRI Image Acquision & Reconstruction, Deep Image Prior, Unsupervised
Learning

1. Introduction

LGE-MRI plays a role in the clinical management of atrial fibrillation patients (McGann
et al., 2008). Current 3D LGE-MRI protocols, while effective, face significant challenges that
limit their clinical utility. The standard ECG-gated and respiratory navigated sequences
require lengthy acquisition times (typically 7-20 minutes), often resulting in patient discom-
fort and increased susceptibility to motion artifacts. Moreover, these sequences frequently
produce inadequate image quality and suffer from anisotropic resolution limitations. The
clinical need for high-resolution isotropic imaging is particularly acute in cardiac applica-
tions, where precise visualization of thin atrial walls is crucial for diagnosis and treatment
planning.

© 2025 CC-BY 4.0, M.H.H. Hisham, S. Elhabian, G. Adluru, A. Arai, E. Kholmovski, R. Ranjan & E. DiBella.

https://creativecommons.org/licenses/by/4.0/


Hisham Elhabian Adluru Arai Kholmovski Ranjan DiBella

While recent advances in fixed-time isotropic 3D LGE-MRI methods have shown promise
in improving spatial resolution, the current standard of 12-15 minute acquisition times still
presents challenges for patient comfort and workflow efficiency. Additionally, the prevalence
of respiratory motion in these scans introduces unique complexities not encountered in other
anatomical imaging sites, such as brain or knee imaging. This research studies the efficacy to
accelerate 3D LGE-MRI reconstruction using a family of Deep Image Prior (DIP) methods.
Unlike traditional supervised deep learning approaches that require extensive training data,
DIP-based methods offer several distinct advantages for cardiac imaging:

• They optimize network parameters for each specific case, allowing adaptation to
patient-specific characteristics such as unique anatomical variations, motion patterns,
and image contrast properties. This personalization is particularly valuable in cardiac
imaging where inter-patient variability is high.

• They maintain robust performance even with highly undersampled K-space data by
leveraging the network architecture itself as a learned prior. This approach naturally
handles the incoherent artifacts that arise from undersampling, making it particularly
effective for accelerated acquisitions.

• They avoid the need for large training datasets, which are particularly challenging to
obtain in cardiac imaging due to the complexity of acquiring fully-sampled reference
data and motion-related challenges.

This work aims to achieve high-quality isotropic reconstructions (1.25mm3) from signif-
icantly reduced acquisition times (approximately 2-4 minutes), representing a 4-6X accel-
eration compared to current standards. The goal is to maintain diagnostic quality while
addressing the fundamental limitations of current protocols, which could expand the acces-
sibility of 3D LGE studies for atrial fibrillation patients.

2. Related Works

The field of accelerated MRI reconstruction has evolved significantly over the past decade,
progressing from traditional compressed sensing approaches to sophisticated deep learning
methods. Compressed sensing (CS) leverages the inherent sparsity of MRI data in appro-
priate transform domains to enable high-quality reconstruction from undersampled K-space
measurements. Such approaches usually combine data consistency terms with carefully cho-
sen regularizers, such as Total Variation (TV) (Ehrhardt and Betcke, 2016; Chen et al., 2014)
or wavelets (Guerquin-Kern et al., 2011; Lai et al., 2016), to promote sparsity while pre-
serving image features. Ganesh et al.’s recent works include combining the above steps with
Block-Matching and 3D filtering (BM3D), thus exploiting non-local self-similarity in images
(Adluru et al., 2022). However, these iterative reconstruction methods often require careful
parameter tuning and can be computationally intensive, especially for high-resolution 3D
acquisitions.

Early Deep Learning-based approaches focused on supervised learning, where networks
were trained on paired datasets of undersampled and fully-sampled images (Ramanarayanan
et al., 2023). While effective, these methods face limitations in clinical deployment due to
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their dependence on high-quality training data and potential challenges in generalizing to
different acquisition protocols or anatomical variations. Ulyanov et al. proposed Deep
Image Prior (DIP) which bridges the gap between traditional optimization-based methods
and deep learning (Ulyanov et al., 2018). DIP leverages the structure of convolutional
neural networks as an implicit prior, eliminating the need for training data. The framework
has been successfully adapted to various image restoration tasks, including super-resolution,
inpainting, and denoising (Jo et al., 2021).

In the context of MRI reconstruction, several DIP variants have been proposed. Yazdan-
panah et al. have adapted the basic DIP framework to the MRI physics model (Pour Yaz-
danpanah et al., 2019). Xue et al. have explored combining DIP with TV to leverage both
the implicit network prior and explicit spatial regularization, on 3D CMRA data (Xue et al.,
2024). However, they perform the DIP in a slice-by-slice manner (2D), not utilizing the 3D
resolution. Building on these developments, self-guided learning has emerged as a promis-
ing direction in unsupervised image reconstruction (Liang et al., 2024). Bell et al. have
leveraged the network’s predictions as a form of regularization, reducing the dependence on
hand-crafted priors (Bell et al., 2023).

Late Gadolinium Enhancement (LGE) cardiac MRI presents unique challenges that
make it an ideal testing ground for advanced reconstruction methods. The need to capture
fine structural details in the heart while managing respiratory motion makes high-resolution
isotropic imaging particularly challenging. Traditional approaches often rely on anisotropic
acquisitions, sacrificing through-plane resolution for reduced scan time. Recent work has
focused on enabling high-quality isotropic imaging through advanced reconstruction tech-
niques (Adluru et al., 2022), though maintaining diagnostic quality with highly accelerated
acquisitions remains an open challenge.

3. Data Acquisition

We evaluated our methods on data from 10 human subjects acquired using Siemens 3T MRI
scanners with 20-channel cardiac coils. The imaging protocol used a segmented inversion-
recovery gradient echo sequence optimized for cardiac imaging, achieving an isotropic 1.25
mm3 resolution with 64-140 axial slices. Sequence parameters included TR = 2.7 ms,
TE = 1.5 ms, with individually optimized Inversion Time (TI) determined via a TI scout
sequence for optimal myocardial nulling. Motion compensation was implemented through
ECG-gating that targets the diastolic phase and a one-dimensional navigator at the liver-
diaphragm interface. The number of phase-encoding lines was picked at the start of the
acquisition based on the heartrate.

For our isotropic acquisitions, the K-space data was collected continuously regardless of
the navigator position. The 3D K-space was filled using a spiral-like variable density sam-
pling pattern with golden ratio-based angular and radial spacing, with strong oversampling
in the central ky-kz region. All acquisitions followed institutional review board-approved
protocols with informed consent. This dataset allows evaluation of reconstruction quality at
different acceleration rates while maintaining the challenging conditions of clinical cardiac
imaging.
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4. Methodology

4.1. Compressed Sensing Reconstruction

The gold standard reconstruction used in this study employs an iterative compressed sensing
(CS) approach (Adluru et al., 2022), which solves the following optimization problem:

argmin
x

{
λ1∥Ax− d∥22 + λ2TV(x) + λ3BM3D(x)

}
(1)

where x is the reconstructed image, A represents the forward model incorporating coil sen-
sitivities and Fourier transform, d is the acquired K-space data, TV(x) enforces total vari-
ation regularization, and BM3D(x) applies Block-Matching and 3D filtering. The weights
λ1, λ2, and λ3 are carefully tuned using hyperparameter grid search. λ1 controls the data
consistency with acquired k-space measurements, λ2 controls the spatial smoothness while
preserving edges, and λ3 controls the contribution of non-local self-similarity regularization.

4.2. Deep Image Prior: Core Concept

The DIP framework introduces a fundamentally different approach to image reconstruction
by using an untrained neural network as a parameterized prior. The core idea can be
expressed through the following optimization (Ulyanov et al., 2018):

argmin
θ

∥fθ(z)− x̃∥22 (2)

where fθ represents a convolutional neural network with parameters θ, z is a fixed random
input, and x̃ is the degraded image.

4.3. DIP for MRI Reconstruction

Adapting the DIP framework to MRI reconstruction requires incorporating the physics of
MRI acquisition. The vanilla DIP formulation for MRI can be expressed as:

argmin
θ

Nc∑
c=1

∥Acfθ(z)− yc∥22 (3)

where Nc represents the number of receiver coils used in the MRI acquisition, Ac repre-
sents the forward model including unsdersampling mask, coil sensitivities and the Fourier
transform. The network fθ learns to map a fixed random noise z to the reconstructed image
while maintaining consistency with the acquired K-space data yc across all coils. This base-
line approach, which we refer to as vanilla DIP, serves as the foundation for the subsequent
methodological developments.

4.4. Reference-Guided DIP

Reference-guided DIP enhances the reconstruction by initializing the input z with zero-
filled reconstruction, instead of random noise. Zero-filled reconstruction is the initial image
obtained by directly applying inverse Fourier transform to the undersampled k-space data,
filling unsampled locations with zeros. The optimization problem maintains the same form
as the vanilla DIP. This network conditioning helps guide the optimization process towards
more plausible solutions in the early stages of reconstruction (Zhao et al., 2020).
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4.5. DIP-TV

DIP-TV combines the benefits of both DIP and Total Variation regularization. The opti-
mization problem is formulated as (Liu et al., 2019):

argmin
θ

Nc∑
c=1

∥Acfθ(z)− yc∥22 + λTV∥∇fθ(z)∥1 (4)

where λTV is the TV regularization weight and ∇fθ(z) denotes the spatial gradient of the
CNN output, which is computed via finite differences in the image domain. The input z can
either be a random noise or zero-filled reconstruction. The total variation term preserves
image edges while promoting piecewise smoothness, complementing DIP’s ability to capture
natural image statistics.

4.6. Self-Guided DIP

Self-guided DIP introduces a self-regularization mechanism through network architecture
design and optimization strategy. The optimization problem becomes (Bell et al., 2023):

argmin
θ,z

Nc∑
c=1

∥AcEη[fθ(z + η)]− yc∥22 + α∥Eη[fθ(z + η)]− z∥22 (5)

where η represents random perturbations, Eη denotes expectation over these perturbations,
and α is the weighting parameter that controls the strength of the self-regularization term.
The second term acts as a self-guidance mechanism, encouraging the network output to be
consistent under small random perturbations of its input. This approach adds stability by
acting as an implicit denoising mechanism, effectively preventing overfitting to noise. The
final reconstruction is obtained through:

x∗ = Eη∼Pη [fθ∗(z
∗ + η)] (6)

where η is sampled from distribution Pη (Gaussian in our experiments).

5. Results

5.1. Implementation Details

The compressed sensing reconstruction was implemented using parallel computing optimiza-
tion in MATLAB. Through extensive grid-search of the parameters, we set the regularization
parameters λ1 = 0.033, λ2 = 8.75 × 10−6, and λ3 = 0.1, with BM3D denoising parameter
σ = 1.25. After getting the rawdata from the scanner, we retrospectively removed motion-
contaminated data by analyzing the navigator signal and retaining only samples acquired
during stable respiratory phases. The reconstruction process started with an initial estimate
as the zero-filled reconstruction, employing an early stopping criterion with a maximum of
1000 iterations.

For the deep image prior implementations, we utilized a ResUNet architecture with
skip connections (Figure 1), which has demonstrated strong performance in medical image
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Figure 1: ResUNet architecture with skip connections, residual blocks, and Gaussian noise
injection for self-guided DIP denoising.

processing tasks (Kumar et al., 2023). The network processes complex-valued input data by
treating real and imaginary components as separate channels. Empirically, we found that
Leaky ReLU activation functions demonstrated marginally better performance (PSNR/
SSIM) compared to ReLU or tanh activations. This improvement is likely due to Leaky
ReLU’s ability to preserve negative values in the complex-valued MRI data, where both real
and imaginary components contain important signal information. We used Adam optimizer
with learning rate 3 × 10−4. For self-guided DIP, we set the denoiser weight α as 4. We
found that with α = 4, we got the best PSNR. For TV-DIP, we set the regularizarion weight
λTV as 2, as it obtained the best PSNR. For the Gaussian noise η in self-guided DIP, we
used 0 as mean and m/2 as the standard deviation, where m is the maximum value of
magnitude of the initial image. We ran all the DIP based methods upto 2500 epochs.

As a baseline comparison, we also implemented a supervised U-Net approach trained on
fully-sampled reconstructions (van der Velde et al., 2021). The network was trained using
a combination of perceptual loss (based on VGG16 features) and mean absolute error, with
the compressed sensing reconstructions from full acquisition time serving as ground truth.
We employed a ‘leave-one-out’ cross-validation strategy, training our model on 9 subjects
and testing on the remaining one, iterated across all 10 subjects. Training occured over
1000 epochs using the Adam optimizer with a 3× 10−4 learning rate.

The computational requirements vary significantly across methods. The iterative CS
reconstruction required approximately 3.5 hours per volume on a 16-core CPU server with
128GB RAM. The Deep Learning based methods were implemented in PyTorch and ran on
an NVIDIA A100 GPU with 80GB memory. Processing times for a full 3D volume (approx-
imately 140 slices) were: Vanilla DIP (28 minutes), Reference-Guided DIP (29 minutes),
DIP-TV (37 minutes), and Self-Guided DIP (39 minutes). Memory requirements peaked
at 21GB for Vanilla DIP and Reference-Guided DIP, 25GB for DIP-TV, and 35GB for
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Self-Guided DIP. For comparison, the supervised U-Net approach required 48GB during
training and 7GB for inference.

5.2. Experimental Setup

We conducted experiments on cardiac MRI data from 10 subjects, acquired over approx-
imately 12-15 minutes per scan. For each subject, we generated multiple undersampled
datasets by extracting k-space data corresponding to different acquisition time fractions
(1/6th, 1/4th, 1/2nd, and full time). Motion-consistent data was retained through ret-
rospective navigator gating. Each reconstruction method received identical inputs: the
undersampled k-space data, sampling mask, and coil sensitivity maps.
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Figure 2: Comparison of LGE-MRI reconstruction methods at different acquisition times
(1/2, 1/4, and 1/6 of full scan time), with error maps (red boxes) showing devi-
ations from ground truth.

5.3. Analysis

Our evaluation shows Self-Guided DIP’s effectiveness for accelerated LGE-MRI reconstruc-
tion across different undersampling rates. Figure 2 presents visual comparisons between all
methods at varying acquisition times from a randomly selected human subject. We have
cropped the images to the heart region for better visualization of the structural details
of the region of interest. At 1/4th of the full acquisition time, Self-Guided DIP produces
reconstructions visually comparable to fulla acquisition time CS reconstruction, while CS
with the 1/4 acquisition time shows significant quality degradation, particularly in the thin
left-atrium wall.

For quantitative assessment, we have used two metrics: Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM). Table 1 presents these metrics averaged
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Method
1/2 acquisition time 1/4 acquisition time 1/6 acquisition time

PSNR SSIM PSNR SSIM PSNR SSIM

Self-Guided DIP 34.5± 1.0 0.912± 0.012 32.8± 1.2 0.891± 0.015 29.4± 1.4 0.862± 0.018

DIP-TV 31.8± 1.3 0.885± 0.015 29.7± 1.5 0.863± 0.018 26.8± 1.8 0.828± 0.023

Ref-Guided DIP 31.4± 1.4 0.882± 0.016 29.2± 1.6 0.858± 0.020 26.5± 1.9 0.825± 0.024

Vanilla DIP 29.5± 1.7 0.858± 0.022 27.6± 1.9 0.835± 0.025 24.8± 2.2 0.798± 0.028

CS recon 30.6± 1.5 0.873± 0.018 28.4± 1.8 0.842± 0.023 25.7± 2.0 0.812± 0.026

Supervised U-Net 32.3± 1.2 0.889± 0.015 30.1± 1.5 0.867± 0.019 27.2± 1.7 0.835± 0.022

Table 1: Comparison of reconstruction quality metrics (PSNR and SSIM) for different meth-
ods at various acquisition time fractions. Values shown are mean ± standard de-
viation across all subjects.
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Figure 3: Comparison of average PSNR values across training epochs for different DIP
variants. All reconstructions use data from 1/4th of the acquisition time.

across all 10 subjects for each reconstruction method and acquisition time. The values
reported correspond to the optimal epoch for each method and subject. These metrics are
calculated using the full reconstructed images, not just the cropped heart regions shown in
the visual comparisons.

Deep Image Prior models tend to overfit when trained for excessive epochs (Wang et al.,
2021). The stability analysis (Figure 3) reveals varying overfitting behaviors across DIP
variants. We tested this through an experiment running the DIP models up to 4000 epochs,
where PSNR values were calculated and averaged across all subjects at each epoch. This
analysis provides insights into the optimal stopping points for different DIP variants. The
Self-Guided DIP achieves the highest PSNR and maintains better stability over epochs, but
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starts declining around 2300 epochs. While Vanilla DIP shows early convergence but starts
declining very soon. Both DIP-TV and Reference-Guided DIP demonstrate intermediate
performance with gradual degradation after reaching their peaks around 1700 epochs. The
PSNR values were calculated using the full reconstructed images.

An important consideration for working with a prospective subject is determining an
appropriate stopping criterion without access to ground truth for PSNR calculation. Based
on the experiments above on stability analysis, we find that 2000 epochs generally pro-
vide optimal results for self-guided DIP. In future work, we plan to explore metric-based
automated stopping criteria, for example, monitoring the data consistency term until it
stabilizes or tracking the structural consistency between consecutive reconstructions. Other
promising approaches include Stein’s Unbiased Risk Estimator (SURE) (Khan et al., 2024)
and methods leveraging acquisition noise characteristics, which we aim to explore in our
ongoing research efforts.

6. Conclusion

This study demonstrates the effectiveness of self-guided Deep Image Prior for accelerated
3D LGE MRI reconstruction, enabling high-quality isotropic imaging (1.25mm3) with ac-
quisition times reduced to 2-4 minutes. Our comprehensive evaluation of the DIP variants
reveals that self-guided DIP outperforms traditional compressed sensing and other DIP
approaches.

This acceleration in acquisition time may address several key clinical challenges by
reducing patient discomfort, decreasing motion artifacts, and improving workflow efficiency.
This acceleration in acquisition time could potentially facilitate high-resolution 3D LGE
imaging, which may improve pre-ablation planning and post-procedure assessment. The
method shows particular strength in preserving the details of the thin left atrial wall which
is critical to fibrosis assessment.

While our results demonstrate significant promise, several limitations should be ac-
knowledged. First, our evaluation was limited to 10 human subjects, and validation on
larger cohorts is needed. Publicly available 3D isotropic LGE-MRI datasets (k-space) for
reconstruction tasks are currently unavailable, making broader validation challenging. Sec-
ond, our study was conducted retrospectively; prospective validation in clinical workflows
is necessary to fully assess real-world performance and determine optimal stopping criteria
without ground truth references.

Future work should address three key directions. First, integrating explicit motion
compensation mechanisms could further improve image quality in regions affected by res-
piratory motion. Second, comprehensive evaluation across different scanner platforms and
sequence parameters would be essential to validate the method’s robustness for potential
clinical translation. Finally, addressing the fundamental limitations of DIP models - par-
ticularly their susceptibility to noise overfitting at high epochs and difficulty in capturing
high-frequency features from undersampled data (spectral bias) (Shi et al., 2022) - remains
crucial for improving reconstruction quality.
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