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Abstract
Protecting intellectual property (IP) of text such
as articles and code is increasingly important, es-
pecially as sophisticated attacks become possible,
such as paraphrasing by large language models
(LLMs) or even unauthorized training of LLMs
on copyrighted text to infringe such IP. However,
existing text watermarking methods are not ro-
bust enough against such attacks nor scalable to
millions of users for practical implementation.
In this paper, we propose WATERFALL, the first
training-free framework for robust and scalable
text watermarking applicable across multiple text
types (e.g., articles, code) and languages support-
able by LLMs, for general text and LLM data
provenance. WATERFALL comprises several key
innovations, such as being the first to use LLM
as paraphrasers for watermarking along with a
novel combination of techniques that are surpris-
ingly effective in achieving robust verifiability
and scalability. We empirically demonstrate that
WATERFALL achieves significantly better scala-
bility, robust verifiability, and computational effi-
ciency compared to SOTA article-text watermark-
ing methods, and also showed how it could be
directly applied to the watermarking of code.

1. Introduction
Achieving robust text data provenance via watermarking,
independent of its digital format, is an important open prob-
lem impacting a wide-ranging set of real-world challenges.
Among these is the issue of intellectual property (IP) en-
forcement: Content creators of any text format (e.g., articles
or code) could potentially combat plagiarism and unautho-
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rized distribution by watermarking their works to prove data
ownership. However, existing text watermarking methods
have been unable to meet the challenging requirements of
many practical problem settings. For example, directly
adding digital metadata or invisible Unicode watermarks
(Rizzo et al., 2019; Taleby Ahvanooey et al., 2019) may
have limited impact in proving text data ownership in ad-
versarial settings as they may be easily removed. Existing
natural language watermarking (Qiang et al., 2023; Yoo
et al., 2023; Taleby Ahvanooey et al., 2019) that adjusts the
text itself to encode IDs are also lack robustness to para-
phrasing attacks and have limited scalability in terms of the
number of supportable IDs.

Adding to the challenge is the growing prevalence of gener-
ative large language models (LLMs) that may be trained on
copyrighted text without permission. To enforce IP rights,
content creators would need to be able to do data prove-
nance for LLMs, i.e., prove whether their set of work had
been used to train 3rd party black-box LLMs. While there
have been recent works tackling this problem (Abdelnabi
& Fritz, 2021; Zhang et al., 2023), they largely require
intervening in the training process of the LLMs. This is un-
realistic in practice, as not all LLM service providers may be
cooperative due to incentive misalignment, and adversaries
may also use open-source LLMs.

Hence, it is natural to ask whether it is possible to develop a
practical, robust and scalable text watermarking framework
for protecting IP against both plagiarism and unauthorized
training of LLMs. For example, the watermarks should
persist regardless of whether the original text has been para-
phrased, converted into speech or handwritten text,or used
in unauthorized LLM training (e.g., fine-tuning, in-context)
to produce a derived output. The framework should also be
general enough to tailor to a wide range of text formats (e.g.,
natural language or code), and be scalable (i.e., support mil-
lions of users, potentially multiple watermarks in the same
text, and with reasonable computational cost).

In this paper, we propose WATERFALL, the first training-free
framework for robust and scalable text watermarking ap-
plicable across multiple text types (e.g., articles, code) and
languages supportable by LLMs, for general text and LLM
data provenance. Rather than viewing LLMs as just sources
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Figure 1. Schematics of problem formulation. Client i watermarks
text To with ID µi, producing T

(i)
w . Client should still be able to

verify watermark in Tsus after attacks.

of IP infringement, we introduce the novel perspective of us-
ing LLMs’ capabilities to protect existing IP. Though simple,
our training-free framework comprises several key innova-
tions such as being the first to use LLM as paraphrasers for
watermarking along with a novel combination of techniques
that are surprisingly effective in achieving robust verifia-
bility, scalability, and data provenance for LLMs, beating
state-of-the-art (SOTA) text watermarking methods as we
empirically demonstrate.

2. Problem formulation and desiderata
Consider M clients, with client i possessing unique water-
mark ID µ and textual data To (e.g., articles or code). We
assume To has semantic content c (e.g., the IP content) that
is only determined by its tokens and fully represents the
text’s value. The goal is to develop a framework such that
client i can use a watermarking operator W(µ, To) → Tw
to produce a text Tw that contains watermark µ, preserves c,
and can be used/distributed freely.

There are adversaries who aim to infringe the IP in Tw
through attacks A(Tw) → Tsus that generate their own text
Tsus without the watermark µ while preserving semantic
content c. The adversaries do not know µ but are able to
perform several classes of attacks, such as paraphrasing or
translating with an LLM or using Tw with any LLM for
in-context prompting or fine-tuning. No other parties have
access to the LLMs used by adversaries.

After the attacks, client i should be able to use a verifica-
tion operator V(µ, Tsus) to generate a score q indicating the
likelihood that Tsus is watermarked with µ.

A suitable watermarking framework should satisfy the fol-
lowing desiderata: (1) The watermarked text Tw should have
high fidelity, e.g., Tw is semantically similar to To; (2) the
watermark should be easily verified, even after attacks by
adversaries; (3) the framework should allow for a large set
of IDs while meeting all other desiderata. Further details
are in Appendix A.

3. Method
Our watermarking framework, WATERFALL, first uses an
LLM paraphraser to autoregressively paraphrase the origi-
nal text To, producing initial logits for the new text Tw. The
client’s ID µ is used to seed a vocab permutation operator to

map the logits onto a watermarking space Vw, and choose
a perturbation function to produce a perturbed logits dis-
tribution that encodes the watermark. The LLM samples
the perturbed logits in the original token space to produce a
watermarked token. For the next token loop, the past n− 1
tokens are used to seed the vocab permutation, while all
past tokens are fed as context to help the LLM paraphraser
maintain the fidelity of Tw despite watermarking.

For verification, each token in a suspected text Tsus is
counted in Vw-space, which is specified for each µ and
preceding tokens in the same n-gram unit, producing an
average cumulative token distribution. The perturbation
function specified by the ID µ, is used to perform an inner
product with the cumulative distribution to compute a verifi-
cation score q. Larger q suggests greater similarity between
the underlying distributions that generate Tsus and Tw, hence
Tsus is more likely to be watermarked, i.e., Tsus is derived
from the copyrighted text Tw. Further technical details and
insights are in Appendix B.

4. Experiments
4.1. Data ownership

For watermarking of text articles, we demonstrate the ef-
fectiveness of WATERFALL with experiments using text
samples To from the c4 realnewslike dataset (Raffel
et al., 2020), comprising articles with mean token length
of 412. The experiments mirror realistic scenarios, for e.g.,
news outlets watermarking their articles before publishing
them, to be able to effectively scan the internet for, and
verify, plagiarized content (Brewster et al., 2023). For
this setting, we evaluate the semantic similarity S using
the Semantic Textual Similarity (STS) score based on the
all-mpnet-base-v2 model (S for sample text pairs
are provided in Appendix K).

As benchmarks, we consider two recent linguistics-based
watermarking methods: M-BIT by Yoo et al. (2023) and
P-NLW by Qiang et al. (2023). These methods are ad-
vanced variants of synonym substitution-based watermark-
ing schemes that use deep learning to improve watermarking
performance (details in Appendix G.3). To implement WA-
TERFALL, we use llama-2-13b-hf as the paraphraser,
and the Fourier basis for the perturbation functions. Addi-
tional details are in Appendix G.

Fidelity-verifiability. We first consider the fidelity and
verifiability of the schemes before adversarial attacks. The
verifiability of the schemes are computed as the AUROC
based on varying their respective classification thresholds,
i.e., the verification score threshold q̄ for WATERFALL, and
bit-error rate threshold for M-BIT and P-NLW.

WATERFALL supports adjustable watermarking strength, al-
lowing clients to calibrate the fidelity-verifiability trade-off
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Figure 2. (a) Higher κ trades off fidelity for higher verifiability.
(b) Higher κ and longer token length N improve verifiability. (c)
More queries improve LLM provenenace verifiability.

Table 1. Robust verifiability under insertion A1−I , deletion A1−D ,
synonym substitution A1−S , translation A2−T , paraphrase A2−P ,
overlap watermark A3 and in-context prompting A4.

A1−I A1−D A1−S A2−T A2−P A3 A4

WATERFALL 0.985 0.988 0.978 0.951 0.881 0.815 0.775
P-NLW 0.656 0.660 0.673 0.475 0.508 0.724 0.502
M-BIT 0.756 0.568 0.669 0.567 0.363 0.664 0.525

based on their use case. Figure 2(a) shows the Pareto frontier
of the trade-off. Stronger watermark strength κ improves
verifiability but also introduces larger distortions to the LLM
paraphrasing process, decreasing the fidelity of watermarked
text. For our experiments, we mainly used κ = 6, achieving
mean AUROC of 0.992 and STS of 0.887. Even with just
100 tokens (about 65 words), WATERFALL achieves high
verifiability with AUROC of 0.98 (Figure 2(b)).

Note that M-BIT and P-NLW were designed with only one
setting, allowing for only a single fidelity-verifiability score,
with mean STS scores of 0.998 and 0.942 respectively, and
corresponding AUROC scores of 0.987 and 0.882. While
the STS scores are high, it is expected given that the schemes
only make minor edits to To which would be more fragile
to attacks, as we will see later. Additionally, the word
replacements by M-BIT and P-NLW introduced noticeable
linguistic errors that are difficult to evaluate and not captured
by the STS score (shown in Appendix K).

Robust verifiability. We consider the various classes of
attacks A on the Tw without knowledge of µ:
A1: alter Tw with word additions/removals/substitutions;
A2: alter Tw with translation and paraphrasing by a LLM;
A3: watermark Tw again with WATERFALL and another µ′;
A4: using Tw with any LLM for in-context prompting.

Table 1 shows WATERFALL achieves significantly higher
robust verifiability than benchmarks under the attacks. In
fact, as several of these attacks significantly changed the
the words and structure of the text, the watermarks of M-
BIT and P-NLW were almost completely removed in many
instances. Further details and insights are in Appendix H.

Scalability. WATERFALL has a large maximum scalabil-
ity of M ∼ 10130274 based on our implementation using
the Llama-2 model as paraphraser and Fourier perturbation
function (details in Appendix B.3). In comparison, the scal-
ability of M-BIT and P-NLW is dependent on the number of

Table 2. Mean compute time over 100 texts on 1 Nvidia RTX
A5000. *Note that verification for WATERFALL was performed
only on CPU without requiring a GPU.

WATERFALL M-BIT P-NLW

Watermark 24.8s 2.97s 147s
Verification 0.035s* 2.61s 148s

possible synonym replacements in any given text, which is
limited by text length and varies for different text. On the
c4 dataset with a mean article length of 355 words, M-BIT
and P-NLW can only embed a mean of 9.5 bits (M ∼ 103)
and 23.2 bits (M ∼ 1010) respectively.

In practice, scalability is further limited by how well the
schemes can differentiate among similar watermarks. To
demonstrate this, we watermarked T

(i)
w with µi and com-

puted the verifiability of T
(i)
w against 1000 randomly se-

lected µj ̸=i. We found that for WATERFALL, all of the IDs
achieved very high AUROC, while M-BIT and P-NLW have
many IDs with low AUROC: The 1st percentile AUROC
for WATERFALL, M-BIT, P-NLW are 0.976, 0.614, 0.766
respectively. Details including results on scalability of WA-
TERFALL up to 100,000 IDs are in Appendix G.6.

Computational costs. We note that WATERFALL also has
lower computational cost compared to benchmarks (Table 2).
WATERFALL verification can be run in parallel on a CPU,
requiring only 0.035s when ran on a 16-core CPU, which is
75× and 4237× faster than M-BIT and P-NLW respectively,
both which require inference using deep learning models.
This is important in the context of protection of IP, e.g.,
where data providers may have to scan through large amount
of online data for any IP infringement. Further discussion
on the deployment costs of WATERFALL are in Appendix P.

4.2. Watermarking of code

To demonstrate the versatility of WATERFALL, we consider
its out-of-the-box performance on code watermarking. We
used the MBJSP dataset (Athiwaratkun et al., 2023) , and
evaluate fidelity using the pass@10 metric (Kulal et al.,
2019; Chen et al., 2021) achieved by Tw on functional tests
for the original code To. We compare WATERFALL with SR-
CMARKER (Yang et al., 2024), a recent state-of-the-art code
watermarking scheme. Further details are in Appendix J.

We found that surprisingly, WATERFALL achieves higher
verifiability and robust verifiability (after A2 paraphrasing
attacks) compared to SRCMARKER while maintaining high
code fidelity (Table 3). This is despite WATERFALL not
requiring any manual training/engineering of programming
language-specific watermarking rules, which SRCMARKER
does. Instead, WATERFALL inherits its code capabilities
from its LLM paraphraser, making it adaptable to other
languages (e.g., see Appendix J.5 for Python code results).
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Table 3. Fidelity, Verifiability, and Robust Verifiability of WATER-
FALL with κ = 3 on code watermarking.

Fidelity
(Pass@10)

Verifiability (AUROC) Scalability
(# of users)Pre-attack Post-attack

SRCMARKER 0.984 0.726 0.662 105

WATERFALL 0.969 0.904 0.718 10130274

4.3. LLM data provenance of articles

Finally, we explore how WATERFALL watermarks may per-
sist after LLM fine-tuning. We consider the setting where
client i watermarks a set of text {T (i)

w } that adversaries use,
without authorization, to fine-tune their own LLMs (i.e., A5

attacks). Given multiple queries to the fine-tuned black-box
LLM, the goal is for client i to be able to verify that {T (i)

w }
had been used for training. This setting mirrors realistic
scenarios where content owners want to detect unauthorized
use of data for LLM training (Novet, 2024).

For our experiments, we watermarked the ArXiv dataset
(Clement et al., 2019) which consists of scientific paper
abstracts categorized into topics. Each topic category is
associated with a unique client ID µ with 4000 text. These
texts are then used to fine-tune the gpt2-xl model us-
ing the LoRA framework (Hu et al., 2022)1 (details in Ap-
pendix L.1).

Fidelity. We verified that using the watermarked instead of
the original dataset has minimal effect on the fidelity of the
fine-tuned model. Details are in Appendix L.2.

Verifiability. To evaluate verifiability, we queried the
fine-tuned model with the first 50 tokens of a randomly
chosen abstract, and applied the verifiability operator on
the next 100 generated new tokens to test for the associated
watermark. Our results, presented in Figure 2(c), shows that
WATERFALL has high verifiability, reaching AUROC of 1.0
with just 100 queries to the fine-tuned LLM.

Scalability. To explore the scalability of WATERFALL for
data provenance, we combined the datasets of different num-
ber of clients, M ∈ {1, 5, 10, 20, 100}, each watermarked
with their own unique ID µ, and use the combined dataset for
fine-tuning the adversarial model. As expected, Figure 2(c)
shows that dealing with a aggregated dataset mixed with a
larger M number of different watermarks would result in a
decrease in verifiability. However, our results indicate that
this decrease leveled off from M = 20 to M = 100 and still
allow for an AUROC (verifiability) of 1.0 with around 100
queries even for M = 100, demonstrating the scalability of
WATERFALL to a sizeable number of clients.

1Note that this is a different model compared to that used for
watermarking. We chose this to demonstrate that our watermark
can persist despite the models’ different tokenizers.

5. Related Work
Early text watermarking techniques primarily depend on
structural adjustments (e.g., text formatting, use of different
Unicode characters, or semantic watermarking (e.g., sub-
stituting synonyms) (Kamaruddin et al., 2018; Taleby Ah-
vanooey et al., 2019). Recent works have augmented the
latter with deep learning and language models for better
performance (Qiang et al., 2023; Yoo et al., 2023; Ueoka
et al., 2021; Abdelnabi & Fritz, 2021). However, as we
showed in our experiments, these schemes are not robust to
the range of practical LLM-enabled attacks possible today.

A recently popular but separate line of work has focused
on the different model-centric problem setting of water-
marking newly-generated output generated by a single LLM
(Kirchenbauer et al., 2023; Venugopal et al., 2011; Christ
et al., 2023; Kuditipudi et al., 2023; Zhao et al., 2023),
rather than existing text owned by many clients. Hence,
these works do not address our problem desiderata such as
achieving scalability and robust verifiability while requiring
semantic preservation of the original text. Our work focused
on data-centric text watermarking of original text is the
first to use LLM paraphrasers with a novel combination of
techniques that are surprisingly effective in addressing the
text data ownership and LLM data provenance settings. For
further elaboration on the differences, see Appendix N.

6. Conclusion
We proposed WATERFALL, the first training-free framework
for text watermarking that has low computational cost, scal-
ability to large number of clients, and robustness to LLM
attacks including unauthorized training of LLMs that gener-
ates IP-infringing text.

As open-source LLM models become more prevalent and
capable, it is likely not viable to rely only on major LLM
providers to assist in IP protection. Instead, content creators
themselves should be equipped with methods such as WA-
TERFALL to protect their work before dissemination, such
as by injecting robust watermarks that allows verifiability
even after both traditional attacks and unauthorized use in
LLM training by adversaries.

WATERFALL faces limitations such as not being applicable
to works where IP values lies in its style or format (e.g.,
poems), or for very structured and short texts. Nevertheless,
WATERFALL is still useful for a wide range of settings where
the IP lies mainly in the content of the text, and presents
a major step forward for practical deployment of text wa-
termarking. Future work could build on WATERFALL to
adapt it to other use cases for data provenance, such as data
currency (i.e., ensuring that the data is up-to-date) or data
authenticity (i.e., that the data has not been manipulated).
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A. Problem formulation and Desiderata
We formalize our problem formulation and desiderata below.

Consider M clients, each with unique watermark ID µ ∈ M and textual data To ∈ T (e.g., articles or code) represented as
token sequences To = [w1, ..., wN ], where each token wi is from an ordered vocab space V = {v1, ..., v|V|}. We assume
that To has semantic content c (e.g., the IP content) that is only determined by its tokens and fully represents the text’s
value. Text formatting is irrelevant, especially as adversaries can strip all formatting, making those channels unusable for
watermarking2.

Watermarking: Client i uses a watermarking operator W(µi, To) → T
(i)
w to produce a text T (i)

w that contains watermark
µi, preserves c, and can be used/distributed freely.

Attacks: There are adversaries who aim to claim the IP in T
(i)
w through attacks A(T

(i)
w ) → T

(i)
sus that generate their own

text T (i)
sus without the watermark µi while preserving semantic content c. The adversaries do not know µi but are able to

perform several classes of attacks: (A1) alter T (i)
w with word addition/removal/substitutions; (A2) alter T (i)

w with translation
and paraphrasing by a LLM; (A3) watermark T

(i)
w again with another µ, i.e., W(µj , T

(i)
w ) for some µj ̸= µi; (A4) using

T
(i)
w with any LLM for in-context prompting; and (A5) using T

(i)
w to fine-tune any LLM. No other parties have access to the

LLMs used by adversaries.

Verification: Client i can use a verification operator V(µi, Tsus) to generate a score q indicating the likelihood that Tsus
contains µi. They can then use a setting-specific threshold q̄ to classify Tsus as watermarked with µi if q ≥ q̄. The operator
V should be quick and not assume access to To, as in practice client i may have a large set of Tw and would need to automate
the application of V to scan through a large set of {Tsus} to identify any plagiarism.

Given the above, a suitable watermarking framework should satisfy the following desiderata:

1. Fidelity. The watermarked text Tw should be semantically similar to To, i.e. S(To, Tw) ≥ s, where S : T× T → [0, 1] is
a user-defined fidelity metric depending on the purpose and type of text (e.g., semantic similarity score for articles, or unit
tests for code) and s is a setting-specific threshold. We define TW

c,s = {T ∈ T : S(To, T ) ≥ s} as the support set of all Tw a
watermarking operator W can generate for To with content c under a s-fidelity setting.

2. Verifiability. The verification operator V(µi, T
(i)
w ) should have high efficacy, accounting for Type I and II errors over

various thresholds q̄. We evaluate this with AUROC computed over a test set.

Note that there is a trade-off between fidelity and verifiability. Applying a stronger, more verifiable watermark tends to
reduce text fidelity and the optimal setting depends on each use case. We can evaluate a watermarking scheme in general
using its fidelity-verifiability Pareto frontier, which may be characterized by S-AUROC curves (e.g., Figure 2b).

3. Robust verifiability. The verification operator on watermarked text after attacks A ∈ A, i.e. V(µi,A(T
(i)
w )), retains

high verifiability. This means that the watermark should remain even after attacks, which constrains framework design. For
example, the verification operator should not extract µ in any subroutine, as an attacker may use it to get µ and devise an A3

attack to overwrite it (see Section 4.1).

4. Scalability. The framework should support a large M = |M| (set of IDs) while meeting all other desiderata.

B. Method
B.1. Increasing support set for watermarking via LLMs

We discuss three key insights to tackling challenges arising from these desiderata, before combining these to present our
watermarking framework WATERFALL.

First, note that the fidelity desideratum is a major constraint to a scheme’s ability to meet the other desiderata. Intuitively, a
scheme that can only generate a small set TW

c,s of possible watermarked text would have fewer ways to encode the watermark,
leading to lower signal capacity (smaller M, lower scalability), and less capacity for error correction to withstand attacks
(lower robust verifiability).

2Attacks include converting text to audio or non-digital formats like written text, which removes format-based watermarks (e.g.,
homoglyphs and zero-width Unicode characters) (Rizzo et al., 2019) or digital metadata.
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For illustration, consider a basic semantic watermarking scheme (BASIC) that lists out synonyms for each word in the
original text To (e.g., big cat) and remembers a map of IDs to possible combinations of these synonyms (e.g., 01:big feline,
10:large cat, 11:large feline). Watermarking for ID µ is then selecting the text Tw with the matching synonym combination.
Note that schemes like BASIC typically only have a relatively small support set TW

c,s and hence limited watermarking
possibilities.

However, LLMs can come up with many more possibilities and access a larger TW
c,s compared to schemes like BASIC using

mechanical paraphrasing rules (e.g., synonym replacement). Past works have shown that LLMs are able to effectively
paraphrase text given suitable prompts (Shu et al., 2024; Witteveen et al., 2019). For example, while synonym replacement
can only generate possibilities involving word replacements, an LLM may be able to completely reorder, break, or fuse
sentences while aiming to preserve semantic content c. In general, as some expressions are more common, we can associate
a probability distribution pc(T ) over this set TW

c,s.

Intuitively, we can consider a suitable paraphrasing prompt combined with text To as tokens ĉ that can constrain an LLM’s
text generation to TW

c,s. Given ĉ, the LLM autoregressively access pc(T ) by producing conditional probability distributions
p(wj |ŵ1:j−1, ĉ) for token wj at step j given the preceding sampled tokens ŵ, and sampling for each step until it deemed
that it had conveyed ĉ. Specifically, at step j, the LLM generates a vector of logits Lj(ŵ1:j−1, ĉ) : V → R|V |, where

p(wj |ŵ1:j−1, ĉ) = softmax(Lj(ŵ1:j−1, ĉ)). (1)

We denote LLMs used this way as LLM paraphrasers. By using LLM paraphrasers, we significantly increase TW
c,s, which

help us better meet the fidelity, robust verifiability and scalability desiderata.

B.2. Increasing robustness using n-gram watermarking with LLM deviation correction

Given the extensive threat model, most watermarking schemes would face a major challenge in meeting the robust
verifiability desideratum. For example, A2 paraphrasing attacks would likely break schemes such as BASIC which depend
on word ordering3, let alone attacks involving further processing by black-box LLMs (e.g., A4, A5 attacks). Instead, we
could decompose pc(T ) and the watermarked text Tw into multiple signal carriers, and embed the same watermarking signal
to all. This way, we adopt a probabilistic approach where each carrier could independently be used to verify a watermark, to
withstand attacks that can only corrupt a proportion of carriers.

Specifically, we could consider each consecutive n tokens in Tw as an n-gram carrier unit. At each LLM paraphraser token
generation step j, we could apply a watermarking operator W (Appendix B.3) that perturbs the logits of Equation (1) based
on the ID µ and past n− 1 generated tokens: Ľj = W[µ, ŵj−n+1:j−1](Lj(ŵ1:j−1, ĉ)). The perturbed logits will cause a
detectable bias in each n-gram, hence the more n-grams that persist after any attack, the higher the verifiability.

Meanwhile, in future generation steps j′, the LLM paraphraser will correct deviations from semantic content c and preserve
fidelity given sufficient generation steps, as logits Lj′(ŵ1:j′−1, ĉ) are still condition on paraphrasing prompt ĉ.

This approach increases our framework’s robustness against not just paraphrasing, but also more general LLM-based attacks.
Past works have shown that language models tend to generate few novel n-grams outside their training set for small n
(McCoy et al., 2023). Hence, LLMs trained on text with our watermarked n-grams may more likely generate them in their
output. Given sufficient queries to the LLMs, the watermark could be reliably verified, which we empirically demonstrate in
Section 4.

B.3. Increasing scalability with vocab permutation and othorgonal perturbation

Finally, we propose a watermarking operator W comprising two components: 1) vocab permutation, and 2) orthogonal
perturbation. In this section, we will use a toy example (Vec) to show how these components work before presenting their
general form. In Vec, we have logits L = [3, 2, 1], indexed by an ordered set Vo = {α, β, γ} representing the token space,
e.g., L(α) = 3. Figure 3 presents L as a graph (Vo as x-axis).

Vocab permutation. The vocab permutation operator P produces a single permutation of Vo and L for any given key kπ
(arrow 1⃝ in Figure 3). The inverse operator P−1 reverses the permutation of P when provided the same key (arrow 2⃝ in
Figure 3). As |Vo| = 3, there are 6 possible permutations of L, plotted as graphs over a new ordered index Vw = {a, b, c},
which we can interpret as the watermarking space. Then, we define the average permutation operator P̄ acting on L

3Using example in Appendix B.1, “large cat"→“cat that is large" would invert the embedded ID “10" to “01".
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Figure 3. Intuition on permutation operators P , P−1 applied on LLM logits L and watermarking signal G with toy example, Vec. (a)
P applied to L in the Vo space results in 6 possible permutations in Vw space. This averages to constant vector L̄. (b) Similarly, P−1

applied to G in Vw produces permutations in Vo. These averages to constant vector Ḡ. (c) With kπ sampled uniformly from the possible
keys Kπ over multiple LLM generation steps, L+G in shows less distortion to G in Vw space, and to L in Vo space.

(indexed by Vo) as one that takes a sequence of keys Kπ , apply P to get Lkπ for each kπ ∈ Kπ , and averages them to get a
vector L̄ (indexed with Vw). Notice that when we use P̄ on L over all possible keys, we will get a constant vector (e.g.,
L̄ =

∑6
i=1 Li/6 = [2, 2, 2], 3⃝ in Figure 3 ).

Similarly, given a vector G indexed by Vw, which we can interpret as the watermark signal, the inverse operator P−1

permutes G and Vw given a key kπ , mapping it to Vo, the LLM-ordered token space (arrow 4⃝ in Figure 3). P̄−1 acting on G
analogously averages over all keys, and will also give a constant vector indexed over Vo (e.g., Ḡ =

∑6
i=1 Gi/6 = [0, 0, 0],

6⃝ in Figure 3).

This leads to an interesting insight: the permutation operators provide a way for us to add watermark signals in a
deterministically shifting (based on ID µ) Vw space to boost verifiability and fidelity. For illustration, assume that an
LLM paraphraser produces L (in Vo-space) for all token generation steps. We use a long sequence Kπ of pseudo-random
uniformly sampled keys to apply P on L multiple times (n-gram watermarking), and add the same watermarking signal G
in each resulting Vw space for all instances. If we apply P̄−1 with Kπ on the perturbed signal L+G, the distortion from the
permuted L will effectively contribute only uniform background noise to G ( 7⃝ of Figure 3), which improves verifiability.
If we instead convert L+G back to Vo space (for token generation) with P−1 for all steps and apply P̄ , we get the original
logits with only uniform background noise from watermarking ( 8⃝ of Figure 3), which improves fidelity.

More generally, we define the vocab permutation operator P and its inverse P−1 as pseudorandom permutations over
ordered sets Vo and Vw given a key kπ ∈ Kπ:

P(kπ, Vo) = V kπ
o

P−1(kπ, Vw) = V kπ
w

P−1(kπ,P(kπ, Vo)) = Vo, (2)

where V kπ
o , V kπ

w are uniform-randomly chosen permutations of Vo and Vw if kπ is sampled randomly. For a function
L over Vo mapped to a vector of length |Vo|, we have L(P(kπ, Vo)) = L(V kπ

o ) and we overload notation by defining
P(kπ, L(.)) ≜ L(P(kπ, .)) = Lkπ . As in the Vec example, P applied to a function (vector) can be viewed as the same
function but with its domain permuted.

We then define an average operator P̄ over a sequence of keys Kπ acting on a function L,

P̄(Kπ, L) ≜ 1
|Kπ|

∑
kπ∈Kπ

P(kπ, L), (3)

which outputs an average function of L over Vw (denoted as L̄ ). P̄(Kπ, L) will flatten towards a constant function over
Vw for a sufficiently large Kπ. To achieve this for our framework, we set Kπ = {kπ | kπ = hπ(µ, ŵj−n+1:j−1)}j , for all
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LLM paraphrasing steps j and where hπ is a hash function, which generates pseudorandom Kπ sequences. Empirically, we
clearly observe the flattened and clear watermarking signals (see Figure 5 in Appendix).

Orthogonal perturbation: Our proposed perturbation operator F involves two sub-operations acting on Vw. It maps each
key kp ∈ Kp to a unique function in a pre-defined family of orthogonal functions, and then adds the chosen perturbation
function to the logits Lj of the LLM output in Vw space:

F1 : Kp ↪→ {ϕ : Vw → R|Vw| | ⟨ϕi, ϕl⟩ = δil} (4)
F(kp, κ, Lj) = Lj + κF1(kp) (5)

where ⟨·, ·⟩ denotes the canonical dot product over Vw. Examples of orthogonal function families include the Fourier or
square wave basis, discretized over V. The key kp = hp(µ, z) ∈ Kp is a client defined function hp of ID µ, and also any
metadata z (which could be extracted after verification as we demonstrate in Section 4.1) if required. κ is a scalar that
controls the perturbation magnitude.

Combining both components, our watermarking operator (Algorithm 1 in Appendix) for generation step j involves (a) using
kπ = hπ(µ, ŵi−n+1:i−1) and the permutation operator P(kπ, Lj) to transform logits from the Vo to Vw space, (b) applying
the perturbation operator in Equation (5), and (c) transforming the perturbed logits back to Vo space using P−1(kπ, .) to
produce a probability distribution for sampling and generation of the watermarked text Tw:

Ľj = W(kπ, kp, Lj)

= P−1(kπ,F(kp, κ,P(kπ, Lj))). (6)

Our verification operator will produce a score by computing the average cumulative token distribution of a text using
P̄(Kπ, .) and taking the inner product with F1(kp). Applying the right keys kp and kπ on the suspected text Tsus will result
in a high score q, else the score will be close to 0 (see Figure 4, and Algorithm 2 in Appendix). Using orthogonal functions
helps us improve verifiability by avoiding interference from other watermarks (e.g., added by adversaries as an A3 attack).

Notice that the many possible vocab permutations (|V|!) and perturbation functions in any orthogonal function family
|F1| allows for a much large set of IDs compared to schemes like BASIC, helping with scalability. For example, up to
|F1| · |V|! IDs can be assigned to a unique permutation-perturbation function pair for watermarking. Using a relatively small
|V| = 32000 and the Fourier basis over that would yield a maximum |M| ∼ 10130274. Schemes like BASIC only support M
that scales with the number of possible synonym replacements for a text.

In addition, with orthogonal functions, our framework also allows the embedding of metadata during watermarking. For
e.g., a client can use µ to verify that Tsus is watermarked, and also extract info on which article it was plagiarized from
(Algorithm 3). We show this in Section 4.1 using the Fourier basis as perturbation functions and Fourier transform for
extraction.

B.4. WATERFALL Framework

Figure 4. Left: Watermarking schematic. 1⃝ LLM paraphraser takes in To, produces initial logits. 2⃝ kπ and kp from ID µ and metadata
kp for vocab permutation and perturbation function. 3⃝ Perturb logits with Equation (6). 4⃝ Sample perturbed logits, feed past tokens to
the next iteration. Right: Verification schematic. 1⃝ Permute tokens from Tsus into Vw with µ and preceding n− 1 tokens, to get average
cumulative distribution. 2⃝ Compute perturbation function F1(kp) linked to µ. 3⃝ Compute verification score as inner product of F1(kp)
and cumulative distribution, and compare with threshold.
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Our watermarking framework, WATERFALL, combines these insights into a structured watermarking/verification process.
For watermarking (Figure 4 left), given To and µ, WATERFALL uses an LLM paraphraser to autoregressively paraphrase
a text To, producing initial logits for the new text Tw [Step 1]. The ID µ is used to seed the vocab permutation operator
(Equation (2)) for mapping the logits to Vw space, and choose the perturbation function (Equation (5)) [Step 2], both which
will be used in the watermarking operation (Equation (6)) to produce the perturbed logits [Step 3]. The LLM samples
the perturbed logits to produce a watermarked token, and for the next token loop, the past n− 1 tokens are used to seed
vocab permutation while all past tokens are fed as context which helps the LLM paraphraser maintain Tw fidelity despite
watermarking [Step 4].

For verification (Figure 4 right), each token in Tsus is counted in Vw space, which is specified by µ and the previous tokens
in the same n-gram unit, producing an average cumulative token distribution [Step 1]. The ID µ also specifies a specific
perturbation function [Step 2], which is used to perform an inner product with the cumulative distribution to compute a
verification score [Step 3].

Practical considerations. WATERFALL is highly adaptable, e.g. it can be implemented with different models as LLM
paraphrasers, allowing our framework to achieve better watermarking performance and support more text types as the LLM
landscape evolves. Methods like prompt engineering (Wei et al., 2022; Lin et al., 2023) and Reflexion (Shinn et al., 2023;
Madaan et al., 2023) may also help to boost performance in some settings, as we demonstrate in our code watermarking
experiments (Appendix J.2). We elaborate further on possible large-scale deployment methods of WATERFALL and other
practical considerations in Appendix P.

C. Additional details on watermarking and verification operators

Algorithm 1 WATERFALL Watermarking algorithm

1: Input: Original text To, ID µ, text-specific metadata z, n-gram length n, perturbation magnitude κ, keys functions hπ

and hp

2: Provide to LLM paraphraser a prompt ĉ containing To and paraphrasing instructions, which represents semantic content
c of To.

3: Compute kp = hp(µ, z).
4: for j = 1, . . . do
5: Obtain logits lj(ŵ1:j−1, ĉ) from LLM paraphraser, given Equation (1).
6: Compute kπ = hπ(µ, ŵj−n+1:j−1).
7: Compute perturbed logits ľj based on Equation (6).
8: Sample token ŵj based on the perturbed probability distribution p̌j = softmax(ľj).
9: end for

10: Output: Watermarked text Tw = [ŵ1, ...,<eos >].

Algorithm 2 WATERFALL Verification algorithm

1: Input: Suspected text Tsus = [ŵ1, . . . , ŵN ], ID µ, n-gram length n, keys function hπ , perturbation key kp, test threshold
q̄.

2: Initialize a vector C of length |Vo|, which keeps track of token counts, to 0.
3: for j = 1, . . . , |Tsus| do
4: Compute kπ = hπ(µ, ŵj−n+1:j−1) and permutation operator P(kπ), given Equation (2).
5: Set C(P(kπ, ŵi)) + +.
6: end for
7: Compute avg cumulative token distribution C̄ = C/N .
8: Compute verification score q = ⟨C̄,

F1(kp)
∥F1(kp)∥2

⟩ based on Equation (5).
9: Output: Returns true if q ≥ q̄.
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Algorithm 3 WATERFALL Extraction algorithm

1: Input: Suspected text Tsus = [ŵ1, . . . , ŵN ], ID µ, n-gram length n, keys function hπ .
2: Initialize a vector C of length |Vo|, which keeps track of token counts, to 0.
3: for j = 1, . . . , |Tsus| do
4: Compute kπ = hπ(µ, ŵj−n+1:j−1) and permutation operator P(kπ), given Equation (2).
5: Set C(P(kπ, ŵi)) + +.
6: end for
7: Compute avg cumulative token distribution C̄ = C/N .
8: Compute highest scoring key k̂p = argmaxkp∈Kp

⟨C̄,
F1(kp)

∥F1(kp)∥2
⟩ based on Equation (5).

9: Output: Returns k̂p.

D. Empirical illustration of watermarking signal in Tw

Here we empirically illustrate how the watermarking signal can be embedded in Vw space with the background logits
appearing as uniform noise, as described in section Appendix B.3. To illustrate the presence of the watermarking signal,
we use the combined watermarked dataset used in the data ownership experiments, and plot its average cumulative token
distribution C̄ (in Algorithm 2).

Figure 5. Average cumulative token distribution C̄ of watermarked and unwatermarked text from subset of c4 realnewslike dataset.
Fourier watermark signal with frequency 2 is clearly visible in Tw (left) as compared to To (right).

Figure 5 shows that when we use the correct ID and kπ for verification, the watermarking function can be clearly seen for
the watermarked text Tw (distribution in the shape of a cosine curve of 2 periods for kp = 2), while the unwatermarked text
To shows a flat function.

Similarly, Figure 6 shows that when verifying watermarked text Tw, the watermarking function is only visible with the
correct permutation P(kπ) (distribution in the shape of a cosine curve of 2 periods for kp = 2), but not with a different
permutation P(k′π) (i.e., wrong ID).

E. Examples of orthogonal watermarking functions
We chose cosine and sine functions as the watermarking functions, due to the orthogonality between the cosine and sine
functions of different frequencies.

ϕkp
(j) =

cos
(
2πkp

j
|V|

)
if kp ≤ |V|

2

sin
(
2π(kp − |V|

2 ) j
|V|

)
otherwise

where j ∈ {1, . . . , |V|} denote the index in the vocab space, kp ∈ {1, . . . , |V| − 1} denote the index of the available
orthogonal functions. We chose the cosine and sine sequences as any other bounded watermarking sequence can be
represented by a collection of sinusoidal sequences via the discrete Fourier transform (DFT).
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Figure 6. Average cumulative token distribution C̄ of watermarked text from subset of c4 realnewslike dataset. Fourier watermark
signal with frequency 2 is clearly visible when performing the correct permutation P(kπ) (left) compared to the wrong permutation
P(k′

π) (right).

In general, periodic functions of different frequencies could be used as the system of orthogonal functions, along with the
phase-shifted counterparts by phase of a quarter wavelength. Other than the cosine and sine functions, one other example is
the square wave functions.

Let kN = max
k∈N∗

{k | |V| ≡ 0 (mod 2k)}. Assuming kN ≥ 2, the number of orthogonal square waves supported is 2kN − 1,

such that kp ∈ {1, . . . , 2kN − 1}. The square watermarking function is defined as follows.

ϕkp(j) =

{
(−1)

⌊2kp j
|V| ⌋ if kp ≤ kN

(−1)
⌊2(kp−kN ) j

|V|+0.5⌋ otherwise

F. Discussion on weaknesses of existing text watermarking methods
Both benchmark text watermarking methods, M-BIT and P-NLW, are unable to achieve perfect verification accuracy despite
having deterministic watermarking and verification algorithms, as stated in their respective papers, and corroborated in our
experiments.

Both methods first use a language model to select viable word positions at which to perform the synonym substitution, then
another model or word list to generate the list of possible synonym for substitution. During verification, we observe that the
watermark could be corrupted in three ways.

Firstly, as the text being fed to the model for selecting the word replacement location is different (original text during
watermarking and watermarked text during verification), the locations being selected during verification could be different
as that used for watermarking.

Secondly, even if the correct locations are selected, a different synonym list could be generated during verification, due to
the words that were changed at other locations during the watermarking process.

Thirdly, as the benchmarks perform watermarking by sequentially embedding the bits of the watermark ID into the text,
any modifications to the text that inserts, deletes or shuffles the text would destroy the watermark ID. If an insertion or
deletion error appears early in the text either through the first corruption above or through attacks, i.e., the location for a
word replacement being inserted or removed during the verification as compared to during watermarking, the remainder of
the watermark ID would be shifted in position, resulting the all the bits after the error to be in the wrong position, resulting
in poor verifiability and robust verifiability. Additionally, as illustrated in Appendix B.2, attacks that reorders the text will
also shuffle the watermark ID, destroying its robust verifiability.

On the other hand, WATERFALL is not susceptible to the above mentioned issues. As discussed in Appendix B.2, the
watermark signal is injected into each n-gram in the watermarked text, and does not depend on the specific location within
the sentence, or specific word replacements. As the hash function hπ is deterministic, the same permutation used during
watermarking will always be selected during verification, as long as the n-gram unit is preserved.
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G. Data ownership experimental setting
G.1. Dataset

From the first 2000 samples in the c4 dataset, we selected text that were shorter than 1000 tokens long as our text samples
To, totaling 1360 samples. We restricted the token length to ensure the paraphrasing prompt, original text and watermarked
text can fit within the context window of the LLM used for paraphrasing. In practice, to overcome this limitation, longer
original text could either be first split up into multiple sections to be watermarked, or an LLM with a longer context window
could be used. The distribution of word and token lengths is shown in Figure 7.

Figure 7. Histogram of word and token lengths of text in the c4 realnewslike dataset used for data ownership experiments.

G.2. Watermarking methodology

To perform paraphrasing, we followed the prompt format for llama-2-13b-hf, and used the following prompt to
perform watermarking. No effort has been made to optimize the prompt.

[INST] <<SYS>>
Paraphrase the user provided text while preserving semantic similarity. Do not include any

other sentences in the response, such as explanations of the paraphrasing. Do not
summarize.

<</SYS>>

{text} [/INST]

Here is a paraphrased version of the text while preserving the semantic similarity:

After watermarking, we perform a simple post-processing step to strip away extraneous generation by the LLM, by filtering
out the last sentence or paragraph that contain the following phrases.

• let me know

• paraphrase

• paraphrasing

• other sentences

• original text

• same information

• Note:

• Note :

• Please note

• Please kindly note

• Note that I

• semantic similar

• semantically similar

• similar in meaning

• Please be aware

• the main changes made

• Kindly note

• Note this does

• I have made sure to

This list should be customized depending on the content of the text to be watermarked, and LLM used for watermarking.
Other methods of cleaning the watermarked text such as prompting the LLM to critic or correct issues within the watermarked
text could be employed (Shinn et al., 2023).
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G.3. Benchmark experiment settings

P-NLW (Qiang et al., 2023) proposes a watermarking process by incorporating a paraphraser-based lexical substitution
model. While M-BIT (Yoo et al., 2023) carefully chooses the potential original word to replace via finding features that are
invariant to minor corruption, and a BERT-based lexical substitution model. We use these two approaches as the benchmark
for text watermarking in the data ownership problem setting.

Key generation As default, both M-BIT and P-NLW use binary keys as watermark signals. The bits for the keys we use
for experiments were generated with a seeded pseudo-random number generator. Specifically, we used 0 as the seed to
NumPy’s Random Generator to generate the key used in the experiments4.

Figure 8. ROC curves and corresponding AUROC values for different µ, kp and κ

4NumPy random generator takes in an unsigned int as the seed
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G.4. Verifiability

In this section, given threshold score q̄, we define the classification problem as follows. Positive sample: watermarked text
T

(i)
w ; Negative sample: unwatermarked text To; Predictive positive: V (µi, Tsus) ≥ q̄, Predictive negative: V (µi, Tsus) < q̄.

The ROC curves and corresponding AUROC values for different µ, kp and κ are shown in Figure 8. We show that verifiability
is insensitive to different µ, kp used for watermarking. For κ = 6, WATERFALL was able to achieve AUROC of 0.989-0.996
across the different settings.

G.5. Verifiability fidelity trade-off

Figure 9. Fidelity and verifiability for different µ, kp and κ

We observe that different values for µ does not result in noticeable impact on the fidelity and verifiability of the watermarked
text, as shown in Figure 9. Varying kp results in minor variations in fidelity and verifiability at high κ, but the pareto-front of
the fidelity verifiability trade-off is similar across the different kp. Clients using different kp could adjust the value of κ to
suite their requirements for fidelity and verifiability.

G.6. Scalability

We examine the scalability of WATERFALL and benchmarks M-BIT, P-NLW in practice by watermarking with different IDs
and verifying with different IDs.

G.6.1. SCALABILITY WHEN VERIFYING WITH DIFFERENT IDS

Using a dataset of text watermarked with ID µ = i, we compare the verifiability using the correct ID (V(µi, T
(i)
w )) against

verifiability using the wrong IDs (V(µj ̸=i, T
(i)
w )). Figure 10 shows the histogram plot for the AUROC comparing the 2

verification scores (V(µi, T
(i)
w ) versus V(µj ̸=i, T

(i)
w )) for the different methods.

Notice that the AUROC of WATERFALL for the different IDs are all closely clustered around the high value of 0.985.
However, the AUROC of benchmarks M-BIT and P-NLW show a very large range, with some IDs showing very low AUROC
down to 0.69 and 0.53 respectively.

To further support our claim of WATERFALL having large scalability, we performed verification with 100,000 different IDs
for WATERFALL. Figure 11 shows that the distribution of AUROC values are similar when scaling up from 1,000 to 100,000
IDs, and this performance could be extrapolated into millions of IDs.

G.6.2. SCALABILITY WHEN WATERMARKING DIFFERENT IDS

We further explore the scalability of WATERFALL when verifying text watermarked with different IDs. We compare the
verifiability using the correct ID (V(µi, T

(i)
w )) against verifiability using the wrong IDs (V(µi, T

(j ̸=i)
w )). Due to the higher

computational cost of watermarking compared to verification, we performed this experiments over a smaller subset of 358
pieces of text of the c4 realnewslike dataset. 500 different IDs were used to watermark the dataset. Figure 12 shows
the distribution of AUROC comparing the 2 verification scores V(µi, T

(i)
w ) versus V(µi, T

(j ̸=i)
w ) for WATERFALL is closely

clustered around 0.98, similar to the results in Appendix G.6.1. Note that a smaller number of text are considered for this
experiment, resulting in the slightly difference in distribution.
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Figure 10. AUROC of T (i)
w when verifying with µi vs. µj ̸=i. WATERFALL has consistently high verifiability for all 1000 µj ̸=i, compared

to benchmarks which have many µj ̸=i with poor verifiability.

Figure 11. Scalability of WATERFALL for AUROC of T (i)
w when verifying with µi vs. µj ̸=i, when using 1000 IDs versus 100,000 IDs.

Scaling up to 100,000 IDs shows the same narrow clustering of values around the high AUROC value of 0.985.

G.6.3. DISCUSSION ON SCALABILITY IN PRACTICE

M-BIT, P-NLW suffer from poor scalability in practice, as shown above. As we consider watermarking or verification with
the wrong ID µj ̸=i, there can be situations where the wrong ID differ from the correct ID at only 1 single bit, or very few
bits. If the text is too short to be able to encode sufficient number of bits to include the differing bits, the watermarking
method would be unable to differentiate between the 2 IDs during verification.

Even if the texts are sufficiently long, IDs that have few differing bits will be harder to differentiate. As discussed in
Appendix F, errors could be present in the verification of watermark with M-BIT and P-NLW. Such errors could overshadow
the small differences in the watermarking and verification IDs, resulting in poor verification performance. To achieve
satisfactory performance, M-BIT and P-NLW would have to limit their scheme to IDs with sufficient number of differing
bits, which further limit the scalability of their schemes.

On the other hand, WATERFALL is not susceptible to such issues. As the watermark signal is not embedded directly into the
specific substitutions in the text space, but rather into signals in the permuted token space determined by a hash of the ID,
small differences in the ID results in drastically different permutations in the token space, and they are extremely unlikely to
collide, i.e., 2 different IDs are extremely unlikely to map to the same permutations over the entire piece of text. As a result,
WATERFALL can achieve significantly higher scalability than M-BIT and P-NLW in practice.

H. Experimental details and additional results for attacks
A1 attacks are insertion, deletion, and synonym substitution attacks that are often considered in past works As shown in
Figure 13, robust verifiability of WATERFALL shows only a very slight decrease even with strong attacks on 20% of words,
while that of benchmarks M-BIT and P-NLW fall drastically with increasing attack strength.

A2 involves translation and paraphrasing attacks, which are more realistic and effective attacks that can achieve higher
fidelity and verification reduction than A1 and had not been considered by past text watermarking works. We perform
translation attack to translate the watermarked text to Spanish and back to English, and paraphrasing attack to paraphrase
the watermarked text. Again, the verifiability of WATERFALL remains significantly higher than benchmarks post-attack.

A3 involves using the same scheme to try overwrite the existing watermark with another watermark. For WATERFALL,
the 1st watermark remain verifiable even after the 2nd is added, given the design of P and F with vocab permutation and
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Figure 12. AUROC of T (i)
w vs. T (j ̸=i)

w when verifying with µi. WATERFALL shows consistently high AUROC when verifying T
(i)
w with

µi compared to verifying T
(j ̸=i)
w with µi

orthogonal perturbation functions that minimizes interference of the 2nd watermark on the 1st. However, this attack destroys
the verifiability of M-BIT and P-NLW, as the 2nd watermark process almost always chooses the same word positions as the
original process, overwriting µ1. Furthermore, the benchmark schemes extracts µ1 as part of verification, enabling targeted
overlap watermark attacks which we demonstrated in Appendix H.3.

A4 uses Tw for in-context prompting of any LLM to perform tasks that rely on the IP or semantic content of Tw. For
illustration, we considered the case where adversaries use an LLM to answer questions regarding watermarked articles.
As this attack totally changed the structure of the texts, the watermarks of M-BIT and P-NLW were removed. However,
with WATERFALL, watermarks were still verifiable due to the preservation of watermarked n-grams from the context to the
response.

A5 which involves using text containing IP for unauthorized LLM training such as fine-tuning is discussed in Section 4.3.

H.1. A1

Following Kamaruddin et al. (2018), we design three types of attack: insertion, deletion, and synonym substitution attacks
for A1. Attack strength indicates the rate of attacked words over the total number of words in a given content.

Insertion attack. We consider two types of insertion attacks mentioned in Kamaruddin et al. (2018):

(1) Localized insertion: this kind of attack inserts a random word into the original content at a random position. This is
labeled as “local” in Figure 13.

(2) Dispersed insertion: multiple random words are added in multiple random positions into the original content. In our
experiment, we iteratively insert a random English word into a random position of the original content.

Deletion attack. Random words are deleted, to attempt to distort the watermark in the original content.

Synonym substitution attack. Given original content, the synonym substitution attack tries to replace some words with
their synonyms. In our experiments, we use the Natural Language Toolkit (NLTK) (Bird et al., 2009) to find a set of
synonyms for a certain word, then choose a random word in this synonym set to replace the original word. We used the
random function in the NumPy library (Harris et al., 2020) to randomly select words to be substituted for these types of
attacks.

As shown in Figure 13, robust verifiability of WATERFALL shows only a very slight decrease, while that of benchmarks
M-BIT and P-NLW fall drastically with increasing attack strength.

H.2. A2

Translation attack was performed with gpt-3.5-turbo-0613, with the following prompts, where the language field
is “Spanish” and “English”.
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Figure 13. WATERFALL demonstrates robust verifiability under A1 (insertion, deletion, and synonym substitution attacks) with minimal
degradation in AUROC compared to M-BIT and P-NLW.

{
’role’: ’system’,
’content’: ’Translate the provided piece of text to {language}.’

}
{

’role’: ’user’,
’content’: ’{text}’

}

Paraphrase attack was performed with llama-2-13b-hf, prompted in the following format.

[INST] <<SYS>>
Paraphrase the user provided text while preserving semantic similarity. Do not include any

other sentences in the response, such as explanations of the paraphrasing. Do not
summarise.

<</SYS>>

{text} [/INST]

Here is a paraphrased version of the text while preserving the semantic similarity:

We ran further experiments using different LLMs to perform paraphrasing attack. The robust verifiability of WATERFALL, M-
BIT and P-NLW are reported in Table 4. WATERFALL achieves significantly higher robust verifiability than the benchmarks
under paraphrasing attack across the different LLMs.

Table 4. Robust verifiability under paraphrasing attack with different LLMs.

gemma-7b-it5 Llama-2-7b-chat-hf6 Mixtral-8x7B-Instruct-v0.17 gpt-3.5-turbo

WATERFALL 0.880 0.881 0.701 0.760
M-BIT 0.524 0.509 0.522 0.385
P-NLW 0.374 0.359 0.467 0.512

H.3. A3

We show the results of A3 overlap watermark on WATERFALL when the watermark overlap was applied on µ or kp in
Table 5.

5https://huggingface.co/google/gemma-7b-it
6https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
7https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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Table 5. Robust verifiability under overlap watermarking attack with different µ or kp
Pre-attack Post-attack

Overlap µ 0.992 0.815
Overlap kp 0.992 0.743

A3 on benchmarks with complement binary key We consider the worst-case scenario of robust verifiability under A3

for two traditional approaches P-NLW and M-BIT. Because these two methods are based on embedding binary keys in
the watermarking stage, we try to apply A3 with the complement of the binary watermark key, to illustrate the worst-case
scenario. We conduct this experiment with setting as Section 4.1. The results are illustrated in Table 6 and Figure 14. Do
note that attacks could engineer their attacks by performing overlap watermarking with a mixture of watermark bits, random
bits and complement bits, to target any AUROC value between the pre-attack and overlap complement AUROC.

Table 6. AUROC of P-NLW and M-BIT under A3 with the complement of binary watermark key (worst case scenario)
Pre-attack Overlap complement

P-NLW 0.8848 0.1780
M-BIT 0.9882 0.0547

Figure 14. ROC curves and corresponding AUROC values of A3 with the complement of binary watermark key of P-NLW and M-BIT.

H.4. A4

To perform the in-context prompting experiments, we made use of gpt-3.5-turbo-1106 to generate 3 questions each
for 300 text articles. The following prompt was used to generate the questions.

{
’role’: ’system’,
’content’: ’Using the provided article, create 3 reading comprehension questions.’

}
{

’role’: ’user’,
’content’: ’{text}’

}

We then separately prompt gpt-3.5-turbo-1106, providing the watermarked text as the context to answer the questions.
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{
’role’: ’system’,
’content’: ’Using the provided article, answer the questions.’

}
{

’role’: ’user’,
’content’: ’{text}\n\n{questions}’

}

H.5. Additional results for robust verifiability

Beyond AUROC reported in the main paper, we additionally report the true positive rate (TPR) at fixed false positive rate
(FPR) of 0.1 and 0.01 for verifiability and robust verifiability under different attacks across different watermarking methods
in Table 7.

Table 7. TPR at FPR of 0.1 and 0.01 for verifiability and robust verifiability.
FPR Pre-attack A2−T A2−T A3 A4

0.1
WATERFALL 0.982 0.890 0.750 0.640 0.472
P-NLW 0.667 0.078 0.110 0.281 0.114
M-BIT 0.993 0.126 0.126 0.520 0.000

0.01
WATERFALL 0.910 0.608 0.405 0.284 0.122
P-NLW 0.110 0.007 0.010 0.037 0.032
M-BIT 0.693 0.126 0.000 0.126 0.000

Note that under WATERFALL, we are able to drastically improve the verification performance when multiple pieces of
text are available to be considered, where a realistic setting would involve multiple samples from the adversaries that we
could test the watermarks for. In reality, IP holders are concerned about large-scale unauthorized IP use (i.e., multiple
infringements) rather than one-off cases.

To demonstrate this, we ran an experiment where we test our watermarks given multiple samples under attack A4. Desipte the
low TPR of 0.472 and 0.122 for FPR of 0.1 and 0.01 respectively when only considering 1 sample, our results demonstrates
that given just 10 samples, we are able to achieve a TPR of 0.907 even with the strict requirement of a FPR of 0.01. The
TPR increases to even 1.000 given 17 samples when we have the requirement of 0.1 FPR. This is also realistic because in
practice, IP holders may use this as a screening tool for suspicious parties, to investigate them further, and hence would be
alright with a higher FPR.

I. Metadata extraction
We also demonstrate how WATERFALL could be used to embed metadata while watermarking. We consider metadata
kp ∈ {1, 2, ..., 31998}, and the task is to extract the embedded kp if the text has been verified as watermarked with µ.
We do so by using kp as the frequency of the Fourier perturbation function F1, and perform extraction with the Discrete
Fourier transform (DFT). To evaluate extraction accuracy, we applied Algorithm 3 on the watermarked text. The accuracy is
calculated based on the percentage of exact matches (extracted k̂p matches the kp used to watermark the text).

Figure 15 shows the extraction accuracy of WATERFALL for different perturbation magnitudes κ. Note that as there are
31999 supported kp when using the Fourier basis functions with llama-2-13b-hf as the paraphraser, the probability of
randomly guessing the correct kp is 1/31999 = 0.003125%. Despite this, WATERFALL is able to achieve high extraction
accuracy of 48% when extracting from a single text for our default setting of κ = 6. This performance can be further
improved when more pieces of watermarked text are available, such that accuracy improves to the high value of 99% with
only 5 pieces of text. This is done by combining multiple pieces of text watermarked by the same ID µ and perturbation key
kp, by simply summing the cumulative token counts in Vw space, C, of the different pieces of text, before performing step 7
of Algorithm 3.
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Figure 15. Higher watermark strength κ and more samples of watermarked text improves extraction accuracy.

J. WATERFALL in code watermarking
J.1. Code watermarking experiment settings

In the main paper, we report the result of code watermarking on the MBJSP dataset (Athiwaratkun et al., 2023) with the
data ownership problem setting. This is a JavaScript dataset including around 800 crowd-sourced JavaScript programming
problems. To show the ability of WATERFALL on watermarking other programming languages, we also perform data
ownership watermarking on Python datasets, which can be found in Appendix J.5.

In this setting, we use Phind-CodeLlama-34B-v28 , as LLM paraphraser for code watermarking, the square wave
basis with kp = 1 (Appendix E) for watermark perturbation and randomly choose µ = 10 in all code experiments. As
default, we denote WATERFALL code to indicate WATERFALL in this code watermarking settings. Moreover, we also show
that prompt engineering techniques, such as Reflexion (Shinn et al., 2023) could improve the fidelity of watermarked code
while preserving the verifiability (Appendix J.2). For SRCMARKER (Yang et al., 2024), we configured their algorithm for
16-bit watermarks, to demonstrate scalability of at least 105.

For verifiability evaluation, we use the same evaluation protocol as article watermarking in Section 4.1. As a result, the ROC
curve and AUROC values for WATERFALL code are shown in Figure 16

Figure 16. The ROC curves and corresponding AUROC values on the MBJSP dataset using WATERFALL code.

Watermarked code fidelity evaluation As mentioned in the main paper, we evaluate the fidelity of the watermarked code
by evaluating its accuracy based on functional tests for the original code and use the standard pass@k metric (Kulal et al.,
2019; Chen et al., 2021) for evaluating functional correctness. Given the deterministic nature of the baseline SRCMARKER
(Yang et al., 2024), which inherently upholds fidelity, the pass@10 metric is adopted to facilitate a fair comparison between
WATERFALL and SRCMARKER in terms of fidelity performance. This metric specifically measures the likelihood of
WATERFALL producing watermarked code that passes unit tests within 10 generation attempts. The pass@10 metric is also
realistic in practice as it aligns with real-world scenarios where clients can assess the quality of watermarked code through

8https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
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predefined tests and subsequently regenerate the code if test failures arise.

To evaluate the functional correctness of code, we adapt the JavaScript evaluation protocol from Athiwaratkun et al. (2023)
for the MBJSP dataset. On the other hand, for Python evaluation, we adapt the HumanEval (Chen et al., 2021) code
evaluation protocol9 and test script from both datasets (Chen et al., 2021; Austin et al., 2021). However, the watermarked
code usually modifies the original function name into some related names, so we use Levenshtein distance to find the
new text function in the watermarked code. For a more precise evaluation of the watermarked code, this related function
name-finding process can be improved by using other similarity distances, such as the Semantic Textual Similarity (STS)
score.

J.2. WATERFALL code + Reflexion methodology

In this section, we show that some prompt engineering approaches could help the watermarked code improve fidelity without
hurting the verifiability. Adapting the techiques from Shinn et al. (2023), we try to correct the watermarked code through the
LLM-based self-reflection mechanism. After being watermarked with WATERFALL code, this watermarked code undergoes
a correcting process via multiple feedback loops (3 feedback loops in our experiments). Each feedback loop contains two
self-reflection components aiming to perform syntax correction and functional similarity alignment. Each self-reflection
component performs two main steps: 1) evaluating or analyzing the given information based on task criterions, e.g., the
correctness of programming syntax. 2) regenerate the “better” code based on given feedback.

Applying the same LLM in WATERFALL code to the self-reflection component plays a crucial role in this combination. This
is simply because LLM is a good way to handle and generate linguistic feedback, which contains more information than
scalar results in the evaluation step. Moreover, watermarking LLM helps the final code preserve the robust and scalable
watermark signal through the correction step, which is the ultimate goal of our text watermarking framework. The prompts
to perform the syntax correction step and functional similarity alignment are illustrated in Appendix J.6.

The effect of the Reflexion approach is shown in Figure 17. From this illustration, we can see that Reflexion improves
fidelity while maintaining high verifiability of WATERFALL code. So we apply this technique in all code watermarking
experiments.

Figure 17. The effect of Reflexion in WATERFALL code on MBJSP dataset

J.3. Verifiability and fidelity trade-off

Figure 18 shows the trade-off of verifiability and fidelity can be adjusted via κ. Similar to article watermarking in Section 4.1,
increasing watermark strength κ can increase verifiability but lower fidelity. Therefore, the users can adjust κ to balance the
trade-off based on their preference.

J.4. Scalability of WATERFALL in code watermarking

One of the advantages of WATERFALL over baseline SRCMARKER is in terms of scalability. SRCMARKER verifiability
depends heavily on the number of watermarked bits (scalability), larger number of bits, worse verifiability (Yang et al.,

9https://github.com/openai/human-eval
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Figure 18. Verifiability and fidelity trade-off of WATERFALL code on the MBJSP dataset

pass@10 AUROC

MBJSP 0.969 0.904
MBPP 0.954 0.897

Table 8. WATERFALL code achieves high verifiability and fidelity on MBJSP and MBPP datasets.

2024). Therefore, to ensure high verifiability, SRCMARKER can not support larger scalability. In contrast, the verifiability
of WATERFALL is independent to its scalability, and this scalability only depends on the vocabulary size of the tokenizer.
In our experiments (Table 3), we use Phind-CodeLlama-34B-v2 , which has a large vocabulary size as same as
llama-2-13b-hf, which M ∼ 10130274, far better than M ∼ 105 of SRCMARKER 16-bits.

J.5. WATERFALL in watermarking Python code

Inheriting the multi-lingual ability of LLM, WATERFALL can easily apply to new programming languages without the
need for pre-defined syntax rules. This is a big advantage of WATERFALL in comparison to AST-based code watermarking
approaches like SRCMARKER (Yang et al., 2024). We show that WATERFALL can also watermark Python code, through
experiments on the MBPP dataset (Austin et al., 2021) which includes around 1000 crowd-sourced Python programming
problems. We show the verifiability and fidelity results of WATERFALL on watermarking Python code in Table 8.

J.6. LLM prompts for code watermarking

We use the following prompts and apply the chat template of Phind-CodeLlama-34B-v2, which follows the alpaca
instruction prompt format on these prompts.
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Code paraphrasing
### System Prompt
You are given a user-provided code snippet.
Please do ONLY two tasks:
1. Refactor the provided code snippet with the following requirements:
- retain all imported libraries.
- keep the same programming language.
- retain the function names and functionality of the code.
- don’t complete the code, just refactor it.
- don’t explain.
2. Return the response with the refactored code snippet in the following format strictly:
‘‘‘
<refactored code>
‘‘‘
Do not generate any comments or explaining texts.
### User Message
‘‘‘
{input code}
‘‘‘
### Assistant
Here is the refactored code:
‘‘‘

Funtional similarity alignment
### System Prompt
You are given two code snippets, code A and code B. Modify code B based on code A, such

that these two code have the same functionality, input, and output. Return the
response with corrected code B in the following format strictly:

‘‘‘
<corrected code B>
‘‘‘
Do not generate any comments or explaining texts.
### User Message
code A:
‘‘‘
{original code}
‘‘‘

code B:
‘‘‘
{watermarked code}
‘‘‘
### Assistant
Here is the code B:
‘‘‘

Code syntax correction
### System Prompt
Double-check the code to make sure the syntax is correct. Only generate the corrected code

in the following format.
‘‘‘
<corrected code>
‘‘‘
Do not generate any comments or explaining texts.
### User Message
‘‘‘
{watermarked code}
‘‘‘
### Assistant
Here is the corrected code:
‘‘‘

25



WATERFALL: Framework for Robust and Scalable Text Watermarking of Original Text

J.7. Watermarked code examples

Examples of code watermarking by WATERFALL are illustrated in Figure 19. Note that WATERFALL code changes not only
the variable names but also the ways of representing the same code logic, which results in high verifiability while preserving
high fidelity.

K. Fidelity metric
We provide some examples of text watermarked by the WATERFALL, M-BIT and P-NLW. Table 9 shows a few samples
from the c4 dataset with watermarked text of varying STS scores. M-BIT has the highest STS across these samples listed,
due to its algorithm only changing very few words within the text, resulting in lower scalability as described in Section 4.1.
Despite the high STS score, it can be visually seen that text watermarked with M-BIT and P-NLW introduces linguistic and
grammatical errors to the text, which are not measured by the STS score.

Figure 20. Distribution of token length of unwatermarked text To against watermarked text Tw

We noticed that there is a tendency of LLMs to summarize when performing paraphrasing, where some details of the
text are lost during the watermarking process. This can be seen in the decrease in token length comparing the original
unwatermarked text To against watermarked text Tw in Figure 20. However, there are multiple methods of mitigating this
issue. Firstly, longer text could be broken apart into different sections to be watermarked separately before being combined
together. Secondly, due to the robustness of WATERFALL to modifications, the watermarked text could be edited to correct
for errors or reinsert missing information, either manually or by leveraging LLMs to perform self-critic, similar to the
method described by Shinn et al. (2023). Lastly, as WATERFALL does not require the use or training of specific LLMs for
watermarking, it can be applied to newer models with better paraphrasing performance as they become available.
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Table 9: Text watermarked with WATERFALL, M-BIT and P-NLW, along with their STS scores. For M-BIT and P-NLW,
highlighted words are words that were selected for watermarking, and may or may not have been changed as compared to
the original text depending on the ID used for watermarking.

Text STS
Original (0) After the martyrdom of St. Boniface, Vergilius was made Bishop of Salzburg (766

or 767) and laboured successfully for the upbuilding of his diocese as well as for the
spread of the Faith in neighbouring heathen countries, especially in Carinthia. He died
at Salzburg, 27 November, 789. In 1233 he was canonized by Gregory IX. His doctrine
that the earth is a sphere was derived from the teaching of ancient geographers, and
his belief in the existence of the antipodes was probably influenced by the accounts
which the ancient Irish voyagers gave of their journeys. This, at least, is the opinion of
Rettberg ("Kirchengesch. Deutschlands", II, 236).

-

WATERFALL After St. Boniface’s martyrdom, Vergilius became the Bishop of Salzburg in 766 or
767 and worked tirelessly to strengthen his diocese and spread the faith in nearby
heathen regions, particularly in Carinthia. He died in Salzburg on November 27, 789.
In 1233, he was canonized by Gregory IX. According to Rettberg (“Kirchengesch.
Deutschlands”, II, 236), Vergilius’ belief that the earth is a sphere was based on the
teachings of ancient geographers, and his belief in the existence of the antipodes may
have been influenced by the accounts of ancient Irish voyagers.

0.978

M-BIT (8 bits) Following the martyrdom of St. Boniface, Vergilius became made Bishop of Salzburg
(766 or 767) and laboured successfully for the upbuilding of his diocese as well as for
the spread of the Faith in neighbouring heathen countries, especially in Carinthia. He
died at Salzburg, 27 November, 789. In 1233 he was canonized by Gregory IX. His
doctrine that the earth is a sphere was derived from the teaching of ancient geographers,
and his belief in the existence of the antipodes was probably influenced by the accounts
which the ancient Irish voyagers gave of their journeys. This, at least, is the opinion of
Rettberg (“Kirchengesch. Deutschlands”, II, 236).

0.999

P-NLW (3 bits) following the martyrdom of St. Boniface, Vergilius was made Bishop of Salzburg (766
or 767) and worked worked for the upbuilding of his diocese as well as for the spread
of the Faith in neighbouring heathen countries, especially in Carinthia. He died at
Salzburg, 27 November, 789. In 1233 he was canonized by Gregory IX. His doctrine
that the earth is a sphere was derived from the teaching of ancient geographers, and
his belief in the existence of the antipodes was probably influenced by the accounts
which the ancient Irish voyagers gave of their journeys. This, at least, is the opinion of
Rettberg (“Kirchengesch. Deutschlands”, II, 236).

0.964
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Text STS
Original (4) Karl Kispert, principal of cyber and information security, has more than 28 years of

experience in selling, managing and delivering information risk management, internal
audit, regulatory and compliance programs, and information security and technology
risk management. A former chief information security officer, Kispert has helped
design and implement cybersecurity programs for many firms, according to the firm.
“By adding this new service line, and bringing someone with Karl’s expertise to
the firm, we can service yet another important aspect of our clients’ and prospects’
businesses, ensuring their continued success,” CEO Louis Grassi said in a written
statement. Services will include full security programs, compliance, third party vendor
risk assessment, threat management, and managed security services.

-

WATERFALL Karl Kispert, a principal specialist in cybersecurity and information risk manage-
ment, has extensive experience spanning 28 years in providing sales, management,
and delivery of information risk management, internal audit, compliance programs,
and technology risk management solutions. As a former Chief Information Security
Officer, Kispert has supported the design and implementation of comprehensive cy-
bersecurity programs for numerous organizations. The CEO of the firm, Louis Grassi,
has expressed enthusiasm about expanding the firm’s service offerings through the
integration of this new service line, which will be supported by Kispert’s proficiency
in providing comprehensive security measures, compliance, vendor risk assessment,
threat management, and managed security services.

0.899

M-BIT (5 bits) Karl Kispert, principal in cyber and information security, has more than 28 years of
experience in selling, managing and delivering information risk management, internal
audit, regulatory and compliance programs, and information security and technology
risk management. A former chief information security officer, Kispert had helped
design and implement cybersecurity programs for many firms, according to the firm.
“By adding this new service line, and bringing someone with Karl’s expertise to
the firm, we can service yet another important aspect of our clients’ and prospects’
businesses, ensuring their continued success,” CEO Louis Grassi said in a written
statement. Services offered include full security programs, compliance, third party
vendor risk assessment, threat management, and managed security services.

0.9969

P-NLW (21 bits) carl kisper, principal of cyber and information protection, has has than 28 old of
experience experience selling, managing and delivery information risk risks, internal
audit, regulatory cyber cybernetic programs, and information security and technology
risk management. A former chief information security officer, Kispert has helped
project and project cybersecurity programs for many firms, according to the firm. “ By
adding this new service line, and bringing someone with Karl’ s expertise to the firm,
we can service yet another important aspect of our clients ’ and prospects ’ businesses,
ensuring their continued success, ” CEO Louis Grassi said in a written job. Services
will include full security programs, compliance, third party vendor risk assessment,
threat management, and managed security services.

0.938
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Text STS
Original (15) Larry checks in with KPCC reporter Sharon McNary, who’s been hitting up several

polling stations in Orange County and Los Angeles County, as well as Registrar of
Voters for O.C. and L.A. After being a finalist for LAPD chief in 2009 only to see
the job go to Charlie Beck, Michel Moore has been selected to succeed Beck by L.A.
Mayor Eric Garcetti. President Donald Trump signed the “right-to-try” bill into law on
Wednesday, a measure that gives terminally ill patients access to experimental drugs
that have not yet been approved by the Food and Drug Administration (FDA). Humans
have a habit of measuring things. Our shoe size. The ingredients in our food. How
long it takes to get to work, with or without traffic.

-

WATERFALL Larry talks with KPCC reporter Sharon McNary about polling stations and the Reg-
istrar of Voters in both Orange County and Los Angeles County. The Los Angeles
Mayor, Eric Garcetti, has appointed Michel Moore as the new Chief of the LA Police
Department after he was previously a finalist for the position in 2009. The US Presi-
dent, Donald Trump, signed a law giving terminally ill patients access to unapproved
experimental treatments. Humans tend to quantify aspects of life, such as shoe size,
food ingredients, commute times, and more.

0.857

M-BIT (4 bits) Larry checks in with KPCC reporter Sharon McNary, who’s been hitting up several
polling stations in Orange County and Los Angeles County, as well as Registrar of
Voters for O.C. and L.A. After being a finalist for LAPD chief in 2009 only to see
the job go to Charlie Beck, Michel Moore has been selected to succeed Beck by L.A.
Mayor Eric Garcetti. President Donald Trump signed the “right-to-try” bill into law
on Wednesday, a measure that gives terminally ill patients access to experimental
drugs that have not yet become approved by the Food and Drug Administration (FDA).
Humans have a habit for measuring things. Our shoe size. The ingredients of our food.
How long it takes to get to work, with or without traffic.

0.999

P-NLW (12 bits) lary controls on on KPCC journalist Sharon McNary, who is s been attacked up several
polling stations in Orange County and Los Angeles County, as well as Registrar of
Voters for O.C. los L.A. After being a finalist for LAPD chief in 2009 only to see
the job go to Charlie Beck, Michel Moore has been selected to succeed Beck by L.A.
Mayor Eric Garcetti. President Donald Trump signed the “ right-to-try ” bill into law
on Wednesday, a measure that gives terminally ill patients access to experimental drugs
that have not yet been approved by the Food and Drug on (FDA). Humans have a habit
of measuring things. Our shoe size. The ingredients in our food. How long it takes to
get to work, with or without traffic.

0.829
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Text STS
Original (28) Come test your luck on the best slot machine app in the app store. Great graphics make

this app so fun to play. Test your luck with Pharaoh Slots! Bet, Spin and Get Lucky!
-

WATERFALL Experience the ultimate entertainment with the most thrilling slot machine game in the
app store! Marvel at stunning visuals that make playing so enjoyable.

0.787

M-BIT (4 bits) Come test your luck on the best slot machine app in the app store. Great graphics make
this app so fun to play. Test your luck on Pharaoh Slots! Bet, Spin and Get Lucky!

0.9985

P-NLW (12 bits) please test yourself happiness happiness the best place machine app in the app store.
Great graphics make it app app fun to play. Test your luck with Pharaoh Slots ! Bet,
Spin and Get get!

0.716

L. Details of experiments on LLM data provenance
L.1. LLM fine-tuning experimental setup

To fine-tune the gpt2-xl models, we used the LoRA framework (Hu et al., 2022), with LoRA rank of 16 and target
modules c_attn, c_proj, c_fc. The models were fine-tuned for a total of 5 epochs, with default batch size of 128
and learning rate of 0.0003.

L.2. Fidelity of model fine-tuned over watermarked text

We used lm-evaluation-harness10 (Gao et al., 2021) to evaluate the fine-tuned models for its fidelity over several
different datasets. Table 10 reports the models fine-tuned over the watermarked datasets results in minimal differences in
fidelity as compared to the model fine-tuned over the unwatermarked datasets. This shows that act of watermarking data
used for fine-tuning does not significantly affect its value for fine-tuning.

Table 10. Fidelity of model fine-tuned using watermarked text (Watermarked) and unwatermarked text (Unwatermarked) of different
number of clients M , evaluated over the various datasets.

Dataset M
1 5 10 20 100

Pile-ArXiv (ppl) Watermarked 2.209 2.218 2.218 2.180 2.166
Unwatermarked 2.192 2.210 2.197 2.170 2.154

Wikitext (ppl) Watermarked 1.771 1.770 1.780 1.787 1.818
Unwatermarked 1.766 1.769 1.774 1.783 1.814

MRPC (acc) Watermarked 0.662 0.618 0.674 0.581 0.326
Unwatermarked 0.679 0.627 0.627 0.380 0.314

PIQA (acc) Watermarked 0.687 0.676 0.682 0.676 0.673
Unwatermarked 0.686 0.682 0.683 0.680 0.678

WNLI (acc) Watermarked 0.563 0.620 0.535 0.549 0.493
Unwatermarked 0.620 0.577 0.592 0.563 0.535

M. Adapting model watermarking schemes into WATERFALL framework
There exists a separate area of research addressing a different problem setting of model watermarking, where instead of
watermarking existing text, newly generated text from LLMs are watermarked. Contrary to the setting of text watermarking,
where scalability is a critical requirement, model watermarking schemes are only concerned with a single client (the LLM
provider).

Despite this, we could try adapting some model watermarking schemes into the WATERFALL framework, though some
features of our framework may not be achievable. One such possible scheme that can be adapted is KGW (Kirchenbauer
et al., 2023). To adapt, KGW, line 5 and 6 of Algorithm 1 would be replaced with "Green" and "Red" lists, with γ = 0.5. In
order to satisfy the scalability criteria, we appended our watermark ID µ to the hash of the previous token, to be used to seed

10https://github.com/EleutherAI/lm-evaluation-harness
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the random partition of the vocabulary list into "Green" and "Red" lists. For verification, we used z-score as proposed in
their paper.

Despite our various additions to the scheme (such as increasing its scalability by adjusting the original function for
seeding the random partitioning), this WATERFALL variant under performs compared to our original proposed WATERFALL
implementation, and is still missing key features such as the ability for clients to embed and extract metadata from text after
verification with their ID.

Figure 21 shows that WATERFALL (Ours) has a strictly better fidelity-verifiability Pareto frontier, i.e., for any required
fidelity (STS score), WATERFALL (Ours) has higher verifiability than WATERFALL (KGW).

Figure 21. Strictly better fidelity-verifiability Pareto frontier for WATERFALL (Ours) than WATERFALL (KGW).

We also performed comparison of robust verifiability for WATERFALL (Ours) vs. WATERFALL (KGW). For fair comparison,
the watermark strength was selected such that the STS score were similar for both variants (WATERFALL (Ours): 0.887;
WATERFALL (KGW): 0.885). Table 11 shows that due to better Pareto frontier of WATERFALL (Ours), we are able to achieve
a higher verifiability both before and after attacks, with the watermarked texts at the same fidelity as WATERFALL (KGW).

Table 11. WATERFALL (Ours) has better robust verifiability than WATERFALL (KGW).
Pre-attack A2−T A2−P A3

WATERFALL (Ours) 0.992 0.951 0.881 0.815
WATERFALL (KGW) 0.977 0.915 0.811 0.718

N. Differences with model-centric watermarking
Our paper focuses on text watermarking, where our problem setting (Section 2) is on watermarking existing text (e.g.,
containing IP) produced by many clients (with any method including human written), such that each client can verify text
that were watermarked with their own unique watermark, and additionally ensure that the watermark is robust to attacks and
downstream uses by other LLMs (e.g., prompting, fine-tuning).

On the other hand, there exists a separate line of work focusing on a different problem of model-centric watermarking,
which marks output from these watermarked models (e.g., differentiate text generated by these LLMs vs. that by humans).

The problem settings of such model-centric watermarking considers a specific LLM, and addresses how to design an
algorithm that allows distinguishing the output of that specific LLM from other text (e.g., human generated). In this setting,
the scalability issue is ignored, as only 1 client (the LLM provider) is considered. Additionally, LLM watermarking does not
watermark individual original texts, and hence do not have the challenging requirements of preserving semantic content of
these original texts. Rather, it typically only considers generative text quality through metrics like perplexity. Therefore,
LLM watermarking methods tackles a different problem and should not be confused with the focus of our work.

To provide more detailed comparison on the differences with our work, we further separate model-centric watermarking into
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Table 12. Comparison of robust verifiability of WATERFALL versus Yang et al. (2023)

Pre-attack A2−T A2−P A3

WATERFALL 0.992 0.951 0.881 0.815
Yang et al. (2023) 0.975 0.761 0.659 0.474

the following classifications:

1. Text watermarking of text generated from black-box LLMs.

2. White-box LLM watermarking leading to generated text which contains the model’s watermarks.

3. Black-box LLM watermarking such that a watermarked model’s output is passed to black-box models, with outputs that
are still watermarked.

N.1. Text watermarking of text generated from black-box LLM

To the best of our knowledge, the only work related to this topic we have found so far is the unpublished work (Yang et al.,
2023) which applies text watermarking methods to the specific use case of text generated by black-box language models and
is therefore essentially a text watermarking paper. The text watermarking method of Yang et al. (2023) is similar to the
M-BIT benchmark (Yoo et al., 2023) that we considered in the main paper, and essentially encodes watermarks by first
identifying words to replace (based on linguistic rules), then finds synonyms for them which are used to represent bits of
the watermarking signal. Although the two methods differ in the way of selecting which word to perform watermarking
(sentence/word embedding similarity for Yang et al. (2023) and a 2nd BERT model for M-BIT), given their similar
characteristics, both methods ultimately still suffer from robust verifiability compared to WATERFALL.

Nonetheless, we have performed additional experiments with their method on the same c4-realnewslike dataset
from our paper, and considered the attacks A2 and A3. Note that WATERFALL has significantly higher robust verifiability
compared to Yang et al. (2023), similar to its better performance over the other benchmarks M-BIT and P-NLW.

N.2. White-box LLM watermarking

This line of work assumes access to the model and directly changes the model generation process to embed the watermark,
primarily to differentiate the text generated by specific LLMs vs. for example that by humans. This type of model
watermarking that has become a rapidly growing field, especially since the proposal of the KGW watermark (Kirchenbauer
et al., 2023). Although these works eventually end up with (model-centric) watermarks in the output of LLMs which are
also text, they are actually solving a different problem setting from our work. Our work is focused on watermarking any
given text, rather than watermarking an LLM such that its output will all end up being watermarked.

Even though they are not directly comparable, as mentioned in the main paper, some of these white-box LLM watermarking
works might be adapted as sub-routines of WATERFALL if they meet our framework’s requirements. We have run additional
experiments to demonstrate this by introducing a new WATERFALL framework implementation variant that swaps our
watermarking scheme described in Sec. 3.3 with a modified KGW watermarking scheme, with changes to make it fit our
framework, such as appending our watermark ID µ to the hash of the previous token, to be used to seed the random partition
of the vocabulary list into "Green" and "Red" lists.

Despite our attempts to adapt the scheme (such as increasing its scalability by adjusting the original function for seeding the
random partitioning), key features such as the ability for clients to embed and extract metadata from text after verification
with their ID Algorithm 3 will not be available for this WATERFALL variant.

We ran additional experiments to compare this WATERFALL variant [WATERFALL (KGW)] with our original watermarking
scheme [WATERFALL (Ours)]. Figure 21 demonstrate that WATERFALL (Ours) has a strictly better fidelity-verifiability
Pareto frontier, i.e., for any required fidelity (STS score), WATERFALL (Ours) has higher verifiability than WATERFALL
(KGW).

We also performed comparison of robust verifiability for WATERFALL (Ours) vs. WATERFALL (KGW). We can see that due
to better Pareto frontier of WATERFALL (Ours), with the watermarked texts at the same fidelity as WATERFALL (KGW), we
are able to achieve a higher verifiability both before and after attacks.
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N.3. Black-box LLM watermarking

This line of work considers how to ensure that text generated from a client-controlled LLM may be watermarked such that
other black-box models (e.g., neural networks) owned by adversaries that rely on the watermarked LLM would also have
their output watermarked. Similar to "white-box LLM watermarking" described above, the focus of these works are on
watermarking the specific models in question, although the output of these models may be text, which are the channels in
which the model watermarks are transferred. An example of these type of works would be Li et al. (2023), which clearly
have methods specific to model-centric training and watermarking, and hence cannot be applied to text watermarking.

O. Comparison with plagiarism checkers
Although tackling the similar issue of IP protection and plagiarism detection, works on plagiarism checkers tackle a distinctly
different problem from our problem setting, and cannot be used in our problem setting.

Firstly, contrary to watermarking where a watermark signal is actively embedded into the text, traditional plagiarism
detection depends on passive detection, typically via pairwise comparisons of a suspected text to a large corpus of reference
text. In their setting, a single (or small number) of suspected text is to be examined for plagiarism. They accomplish this by
maintaining a huge database of reference text, and each suspected text is compared pairwise to each piece of reference text.
Such pairwise comparison of the suspicious text with all possible reference text is extremely computationally expensive
(Foltỳnek et al., 2019). In our problem setting of identifying unauthorized usage of textual data, clients could desire to
scan through the entire Internet’s worth of textual content for potential plagiarism, and the shear amount of data makes
such techniques computationally infeasible. With watermarking, only the suspected text is required during the verification
process, without requiring the reference text to be compared against.

Secondly, due to the requirement to maintain a huge database of reference text, which is costly for individual clients, this
task is currently commonly subcontracted out to third party detection systems (e.g., Turnitin). These vendors can have
unfavorably broad licensing agreements regarding texts that were submitted for checking (de Zwart, 2018). Such approaches
are not feasible in situations where either the original reference data or the suspected text are sensitive and cannot be shared
with these external vendors, greatly limiting the applications where plagiarism checker can be deployed in.

P. Practical considerations for real world deployment of WATERFALL

WATERFALL’s initial setup and computational resources for large-scale applications are low and practically viable. This
makes actual large-scale deployment of text watermarking feasible, which is currently not possible given the current state of
the art (SOTA) watermarking methods’ limitations and resource requirements.

We illustrate this by laying out two approaches (decentralized or centralized) to deploying WATERFALL, both of which have
low initial setup and computational cost requirements.

P.1. Decentralized deployment

In this approach, clients randomly generate their own IDs (given the large space of supportable IDs), and can do watermark
and verification operations on their own using their laptops with minimal setup.

Setup For most common text types/languages supported by LLMs, clients could immediately run WATERFALL with no
setup, given a default LLM and WATERFALL settings, to generate the watermarked text Tw.

Computational cost WATERFALL’s watermarking computational cost is just that of running inference of the LLM
paraphraser, with negligible overheads. Using a GPU available in many laptops (Nvidia RTX 5000), a user could use the
Llama-2-13b model to watermark a text in < 25s to already achieve great performance, as shown in Table 2 in our paper.
We expect that the cost of running high performance LLMs on personal devices (e.g., MacBooks, laptops with GPUs) will
get cheaper and cheaper, given the rapidly evolving landscape of LLMs.

WATERFALL’s verification operation is extremely fast and can be run on just a CPU (< 0.04s per text), without the need for
any LLM. For practical applications, the verification operation will be the main operation run multiple times, rather than the
watermarking operation (typically only once before the user publishes the text). WATERFALL’s verification operator is 2-5
orders of magnitude faster than baseline text watermarking methods (Table 2 in our paper).
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P.2. Centralized deployment

In this approach, central parties assigns clients unique IDs, and run the WATERFALL watermarking and verification operations
for them. This is similar to how some LLM service providers are providing interfaces or APIs for LLM queries.

Setup At a minimum, they could do the same as individuals in the decentralized approach and not need to do any setup.
However, given their scale, they could also provide customized service by optimizing the choice of LLMs and WATERFALL
settings for specific non-common text types or other user requirements (see section below for clarification on adaptability).

Computational cost Existing LLM service providers could easily provide this additional watermarking service to clients,
given the minimal overheads of WATERFALL over processing a single LLM chat API call. The speed of our verification
operation even allows companies to provide value-added services such as near-real-time scanning of newly-published articles
from target sources to detect any plagiarism.

P.3. Adaptability to different LLMs

A key strength of WATERFALL is that it evolves together with the evolving landscape of LLMs, with increasingly better
watermarking performance as LLMs become more capable. As LLMs become more capable, they would be able to better
preserve semantic meaning of the original text while still embedding watermarks via WATERFALL when used as LLM
paraphrasers in our framework. This allows WATERFALL to achieve higher fidelity-verifiability Pareto frontier, and reduce
any fidelity degradation while using higher watermarking strength for greater robust verifiability.

To illustrate, we have performed additional experiments with other LLM models as paraphraser models, with the same
c4-realnewslike dataset used in the main paper. Figure 22 shows that the newer/larger models have higher Pareto
fronts with higher STS scores for the same verifiability values. Going forward, we expect further significant improvements
in LLM capabilities, allowing WATERFALL’s performance to also significantly improve.

Figure 22. Plot of Pareto frontier of different LLMs, where larger/newer models show better Pareto fronts on the fidelity-verifiability
trade-off.

P.4. Selection of watermarking LLM and hyperparameter

As with any adaptable methods, WATERFALL would require some effort to gain boosted performance in specific domains
(e.g., text type or language). That said, the WATERFALL framework is designed to reduce such efforts, and it is relatively
easy for a user to perform such fine-tuning given only 1 hyperparameter to tune (watermarking strength κ) and the choice of
LLM paraphraser. For example, the user could just follow these simple steps:

1. Identify the SOTA LLM for the domain, to use as the LLM paraphraser component. As a domain expert and content
creator (of the text to be watermarked), the client should be familiar with what is available. Given the evolving
landscape of LLMs, we believe that it is realistic for each domain to have a relatively capable fine-tuned model.
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2. Run WATERFALL with default watermarking strength κ and assess if the fidelity and robust verifiability of the text
meets expectation. As a domain expert, the client can assess if the text has sufficient fidelity or use a domain-specific
fidelity metric to automate the check. The client can also use an automated suite of robustness checks (comprising
standard attacks) would assess the expected robust verifiability of the watermarked text.

3. If the results are not up to expectation, perform optimization over the κ hyperparameter using standard AutoML
methods like Bayesian Optimization (BO). This could be automated especially if a fidelity metric is provided, but
manual sequential checks could also be used given just 1 hyperparameter and a query-efficient approach like BO.

In practice, if WATERFALL is widely adopted, an open research or developer community would also likely be able to share
such configurations and fine-tuning, similar to how fine-tuned deep learning models are also being shared today. Even
if WATERFALL is implemented by closed-source companies, economies of scale would make it worth fine-tuning and
optimizing WATERFALL across languages and text types.

P.5. Refinement of watermarked text to improve fidelity

As paraphrasing is applied to the original text when performing the watermark, there might be a change in the style of
writing, some loss in information, or in the case of code watermarking, loss of functionality. However, these can be mitigated
through several techniques, some of which we have already implemented in our experiments.

In practice, the client could assess the fidelity of the watermarked text Tw before using it. If Tw does not meet the fidelity
threshold (i.e., semantic content is not sufficiently preserved), the client could simply use the LLM paraphraser to correct
the watermarked text Tw to increase semantic preservation. This could be done automatically as demonstrated in the code
example (e.g., Reflexion, or multiple generations), or done manually with prompt engineering. The LLM paraphraser will
once again introduce the same embedded watermark to produce the new watermarked text T ′

w, strengthening both the
verifiability and fidelity of the text.

Additionally, as the field develops, it is expected for LLMs’ paraphrasing capabilities to increase significantly across
domains, languages and text types. This enables the WATERFALL framework, using these more capable LLMs, to
generate watermarked text with smaller and smaller semantic degradation, further improving its performance and allowing
WATERFALL to remain effective in highly specialized or technical domains.
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Figure 19. Example of watermarked code with WATERFALL. WATERFALL code changes not only the variable names but also the ways of
representing the same code logic (e.g., ternary operator vs. conditional statement), which results in high verifiability while preserving
code functionality (high fidelity).
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